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Abstract

Automatic open-domain dialogue evaluation
has attracted increasing attention, yet remains
challenging due to the complexity of assessing
response appropriateness. Traditional evalua-
tion metrics, typically trained with true posi-
tive and randomly selected negative responses,
tend to assign higher scores to responses that
share greater content similarity with contexts.
However, adversarial negative responses, de-
spite possessing high lexical overlap with con-
texts, can be semantically incongruous. Con-
sequently, existing metrics struggle to effec-
tively evaluate such responses, resulting in low
correlations with human judgments. While re-
cent studies have demonstrated the effective-
ness of Large Language Models (LLMs) for
open-domain dialogue evaluation, they still
face challenges in handling adversarial neg-
ative examples. We propose a novel evalua-
tion framework that integrates Abstract Mean-
ing Representation (AMR) enhanced domain-
specific language models (SLMs) with LLMs.
Our SLMs explicitly incorporate AMR graph
information through a gating mechanism for en-
hanced semantic representation learning, while
both SLM predictions and AMR knowledge
are integrated into LLM prompts for robust
evaluation. Extensive experiments on open-
domain dialogue evaluation tasks demonstrate
the superiority of our method compared to
state-of-the-art baselines. Our comprehensive
ablation studies reveal that AMR graph in-
formation contributes substantially more to
performance improvements. Our framework
achieves strong correlations with human judg-
ments across multiple datasets, establishing a
new benchmark for dialogue evaluation. Our
code and data are publicly available at https:
//github.com/Bernard-Yang/SIMAMR.

* Equal contribution.
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Dialogue Context

Would you recommend some places for sightseeing?

How about great canyon? Is it seeing?
O Adversarial negative response
(20
The movie was really good, it was watching it.
T e ———— ~

:sntl
:snt2

:ARG1 smod
:ARGO polarity @
:polarity

: quant

:location

sightsee

pm———

e

Figure 1: AMR graphs for the conversational context
and response. The semantic relationship of the word
“worth” appearing in both context and response is cap-
tured through distinct colored representations in their
respective AMR graphs.

1 Introduction

Open-domain dialogue systems have garnered sub-
stantial attention owing to their broad applicabil-
ity (Zhao et al., 2023; Liu et al., 2023) across
various domains, including personal medical as-
sistance and biomedical telecommunications (Sai
et al., 2020; Yang et al., 2024b). Traditional evalua-
tion approaches, such as n-gram-based metrics (Pa-
pineni et al., 2002; Lin, 2004; Banerjee and Lavie,
2005) and embedding-based metrics (Zhang et al.,
2020), assess the semantic similarity between re-
sponse candidates and gold references. These meth-
ods correlate poorly with human evaluation due to
their limited capacity to incorporate conversational
context (Liu et al., 2016).

While recent advances in trainable evaluation
frameworks (Lowe et al., 2017; Tao et al., 2018)
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have improved context-response relationship mod-
eling, they face fundamental limitations stemming
from their training . These models, typically trained
with true positive and randomly sampled nega-
tive examples, tend to assess responses primar-
ily through surface-level content similarity. Al-
though some approaches have attempted to address
this by incorporating adversarial examples (Sai
et al., 2020; Gupta et al., 2021), they either re-
quire extensive pre-training on large-scale conver-
sational corpora or demand adaptation to specific
datasets, incurring substantial computational over-
head. Moreover, their exclusive reliance on surface-
form features compromises robustness when eval-
uating adversarial examples that deviate from the
training distribution. The vulnerability to adversar-
ial attacks further compounds this challenge. Jin
et al. (2019) demonstrated that even simple syn-
onym substitutions can lead to misclassification
in text analysis tasks. For instance, a positive re-
view stating “The characters, cast in impossibly
contrived situations, are totally estranged from re-
ality” would be misclassified as negative when min-
imally modified to “The characters, cast in impossi-
bly engineered circumstances, are fully estranged
from reality”, despite maintaining semantic equiva-
lence.

Recent advances in Large Language Models
(LLMs) have shown promise across a variety of
tasks (Yang et al., 2023; Liu et al., 2023; Yang
et al., 2025; Chiang and yi Lee, 2023). However,
these models still exhibit suboptimal performance
when evaluating adversarial negative responses.
To address these limitations, we propose integrat-
ing LLMs with domain-specific language models
(SLMs) enhanced by Abstract Meaning Representa-
tion (AMR) graph information, specifically aimed
at improving evaluation robustness for adversarial
examples. AMR graphs serve as powerful tools
for capturing dialogue system states and provid-
ing complementary semantic knowledge (Bai et al.,
2021; Bonial et al., 2020). Consider the follow-
ing example: given the context “Would you rec-
ommend some places for sightseeing? How about
great canyon? lIs it worth seeing?”’, and an ad-
versarial negative response “The movie was really
good, it was worth watching it”, existing metrics
might erroneously classify this as positive due to
lexical overlap. AMR graphs help address this by
modeling semantic relationships between concepts
(e.g., “worth” and “canyon”) through explicit edge
relations (e.g., ““mod” and “:ARG1”).

Our approach introduces an AMR graph-
enhanced SLM that effectively identifies adversar-
ial negative examples in open-domain dialogue.
The framework integrates both the SLM’s predic-
tions and AMR graph information into the LLM’s
prompt, creating a robust automatic evaluator that
leverages domain-specific knowledge during infer-
ence. The SLM architecture comprises two key
components: sentence and graph encoders. The
sentence encoder processes surface-form knowl-
edge from conversational contexts and responses,
while the graph encoder models AMR structural in-
formation, capturing both conceptual elements and
their interrelations. These complementary represen-
tations are unified through a sophisticated gating
mechanism and optimised via contrastive learning,
encouraging alignment between textual and struc-
tural features for positive context-response pairs.
The final evaluation integrates both the SLM’s pre-
diction score and AMR graph information into the
LLM’s prompt.

Comprehensive empirical evaluation across
three public datasets demonstrates our model’s su-
perior performance compared to state-of-the-art
baselines, including LLM-based methods. Our key
contributions include:

Our contributions can be summarised as follows:

* A novel framework integrating AMR graph
information into open-domain dialogue evalu-
ation through a dual-representation approach
that combines specialized SLMs with LLMs.

* A comprehensive evaluation methodology
across four distinct criteria (Naturalness,
Coherence, Engagingness, and Grounded-
ness), with detailed performance break-
downs demonstrating consistent improve-
ments across all dimensions.

» Extensive experimental results demonstrating
substantial improvements over existing meth-
ods including reasoning-focused LLMs, with
ablation studies revealing that AMR graph
information contributes 7.4% more to perfor-
mance than SLM score alone.

2 Related Work

Dialogue Evaluation Metrics. Traditional n-
gram-based metrics, including BLEU (Papineni
et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005), compute lexical
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overlap between response candidates and gold ref-
erences. More sophisticated embedding-based met-
rics, such as Extrema (Forgues and Pineau, 2014)
and BERTScore (Zhang et al., 2020), first project
responses and references into high-dimensional
semantic spaces before calculating their similar-
ity. However, both approaches have shown limited
efficacy in evaluating open-domain dialogue sys-
tems (Liu et al., 2016).

Regarding trainable metrics, RUBER (Tao et al.,
2018) evaluates response quality by measuring se-
mantic similarity between the generated response,
dialogue context, and ground truth reference. Sai
et al. (2020) introduced DEB, which leverages
a BERT model pre-trained on large-scale Reddit
conversations. While effective, the computational
cost of pre-training on extensive datasets makes
this approach less practical. Similarly, Mask-and-
fill (Gupta et al., 2021) employs a Speaker-Aware
BERT architecture (Gu et al., 2020) to enhance
dialogue understanding, though it requires dataset-
specific adaptation before fine-tuning. Zhang et al.
(2021) developed MDD-Eval for cross-domain dia-
logue evaluation, but this method necessitates hu-
man annotations and additional training data while
failing to address adversarial negative examples.
LLM-based Evaluators. The emergence of Large
Language Models (LLMs) has enabled new ap-
proaches to dialogue evaluation. Fu et al. (2023)
developed GPTScore, leveraging pre-trained lan-
guage models for multi-aspect, customizable eval-
uation without task-specific training. Wang et al.
(2023) empirically validated the effectiveness of
LLM-based evaluation approaches. Kocmi and Fe-
dermann (2023) demonstrated the utility of GPT
models in machine translation evaluation. Liu et al.
(2023) introduced G-Eval, employing GPT-4 across
multiple generation tasks including dialogue re-
sponse, text summarization, data-to-text genera-
tion, and machine translation. Chan et al. (2023)
proposed ChatEval, a multi-agent debate frame-
work that surpasses single-LLLM evaluators in per-
formance. However, these LLM-based approaches
have yet to be applied to evaluating adversarial neg-
ative responses incorporating non-textual domain
knowledge.

3 Methodology

3.1 Task Description

Our model operates on input tuples consisting of
a dialogue context C, a response R, and their cor-

responding AMR graphs G¢ and Gr. The primary
objective of the SLM component is to perform bi-
nary classification, predicting a label ) € {0, 1}
for each response, where 0 and 1 denote negative
and positive responses, respectively.

The SLM generates a classification confidence
score defined as:

SCOI‘GSLM - P(y ‘ CvR7 gC7 gR) (1)

The derived confidence score, in conjunction
with the semantic structural information encoded
in AMR graphs G¢ and G, is incorporated into the
LLM’s prompt. This integration enables the LLM
to leverage both statistical confidence and explicit
semantic knowledge for more robust open-domain
dialogue evaluation.

3.2 Overall Architecture

Figure 2 illustrates the comprehensive architecture
of our proposed framework, which seamlessly in-
tegrates SLM and LLM components. The SLM
architecture incorporates a dual-encoder design: a
sequence encoder for processing textual informa-
tion and a graph encoder specialized in AMR graph
representation learning. The complementary rep-
resentations from these encoders are dynamically
balanced through an adaptive gating mechanism,
which modulates the information flow from both
sources.

To optimise the alignment between textual and
structural representations, particularly for positive
response pairs, we employ a contrastive learning
strategy during the training phase. This approach
minimizes the representational distance between
sentence and graph embeddings for semantically
coherent pairs, while maintaining appropriate sepa-
ration for negative examples.

The final evaluation framework leverages
both the SLM’s classification confidence score
Scoregry and the structured AMR graph infor-
mation, which are systematically integrated into
the LLM’s prompt through a carefully designed
template. This multi-modal integration enables the
LLM to synthesize both statistical and semantic
evidence for more robust dialogue evaluation.

The complementary nature of SLM and LLM
integration stems from their distinct capabilities:
while the SLM excels at encoding structured
graph information through specialized transform-
ers, LLMs offer superior contextual reasoning but
lack native graph processing abilities. As shown in
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Figure 2: The architecture of the proposed model. The left part is the SLM architecture, containing two encoders and
the gate mechanism for encoding and fusing the sequence and AMR graph information of context-response pairs.
The right part is the LLM where the prompt contains the prediction score of the SLM and AMR graph information.

our attention analysis in Appendix A.2, the SLM’s
graph encoder can identify semantic inconsisten-
cies in adversarial examples that may be missed
by text-only representations. By combining these
approaches, our framework leverages both struc-
tured semantic knowledge and advanced reasoning
capabilities.

3.3 Sequence Encoder

The sequence encoder employs a standard Trans-
former architecture (Vaswani et al., 2017) to pro-
cess the input dialogue components. Given a di-
alogue context C; = {wy,ws,...,we} and a re-
sponse R; = {w1,wa, ..., wr}, where w; denotes
the i-th token and C, R represent respective se-
quence lengths, the encoder generates a sentence
representation Hg. The encoding process can be
formally expressed as:

Hgs = SeqEncoder(C,R) 2)
C+R

hi=Y_ ai (Why) ©)
j:l

a;j = Attention (hs, hj) “)

where Hg = {h1, ho, ..., hcytr} represents the
sequence of hidden states and W denotes the
transformation matrix.

3.4 Graph Encoder

For modeling AMR graph structures, we utilise the
Graph Transformer (Zhu et al., 2019), an exten-
sion of the standard Transformer that specialises in
graph-structured data. An AMR graph G = (V, &)
comprises nodes V and edges £, where each edge
e € £ is represented as a triple (n;, 75, n;) denot-

ing the relation 7;; between nodes n; and n;. The
graph encoding process is defined as:

H 4 = GraphEncoder(V, £) (5)
M

Wy =" ay (WYRG+Whr)  (6)
j=1

where Hy = {h},h5, ..., h,} represents the
graph embeddings, and WV, W# are learnable
transformation matrices.

The graph attention mechanism, which distin-
guishes the Graph Transformer from standard
Transformers, is computed as:

" . exp (é”)
Qij = M -
Zmzl exp (elm)
o (wem)” (WRR 4 W)
€ij = (7)

Vd

where W?, WK are transformation matrices
and d is the dimensionality of the hidden states.

3.5 Aggregation Gate

To effectively combine the complementary infor-
mation from both sequence and graph representa-
tions, we implement an adaptive gating mechanism.
Given the sentence representation Hg and graph
representation H 4, the gate value g; is computed
as:

gi =0 (WGHS + bg)

H=ygHs+ (1—-g)Hx

(®)
€))

where WG, by are learnable parameters, and H
represents the final fused representation.
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3.6 Training objectives and Evaluation

The fused representation H is used to predict the
classification probability for the context-response
pair:

Scoreg\f = softmax <WF H+b f> (10)

The training objective combines classification
and contrastive learning:

L=Lygs+ Lo
[fcls = _10gP(y

1D

= 1| H) (12)

The contrastive loss L¢ facilitates alignment be-
tween sentence and graph representations:

(13)

where H;, Hj denote positive pair representa-
tions and Hg, H, represent negative pairs.

The final evaluation score integrates the SLM
prediction score Scoregr,y and AMR graph infor-
mation G through the LLM’s prompt.

Score = LLMs(Scoregrn, G) (14)

4 Experiments

4.1 Dataset

We conduct experiments on three widely-
recognised open-domain dialogue datasets: Daily-
Dialog++ (Sai et al., 2020), PersonaChat (Zhang
et al., 2018), and TopicalChat (Gopalakrishnan
et al.,, 2019). DailyDialog++ is particularly
noteworthy as it is the sole publicly available
dataset containing human-crafted adversarial
negative responses. Each context is paired with
three types responses: five positive responses, five
random negative responses, and five adversarial
negative responses.

For PersonaChat and TopicalChat, which lack
human-created adversarial responses in their orig-
inal forms, we utilise the augmented datasets
from (Zhao et al., 2024). These enhanced datasets
feature 2,000 conversational contexts, each accom-
panied by five positive responses and adversarial
negative counterparts.

4.2 Experimental Settings

The preprocessing of AMR graph structures in-
volves multiple stages. Initially, we employ the
amrlib library (Cai and Lam, 2020) to transform
each context-response pair into its corresponding
AMR graph representation. Following the method-
ology outlined in (Song et al., 2020), we subse-
quently process these graphs using the AMR simpli-
fier (Konstas et al., 2017). This procedure include
the error-checking and therefore yields refined
and accurate AMR graphs. For the LLM compo-
nent, we utilise GPT-3.5-turbo and GPT-4-1106.
The SLM is trained on the DailyDialog++ dataset,
which comprises 9,259 dialogue contexts in the
training set, 1,028 in the validation set, and 1,142
in the test set.

4.3 Baselines

For the word-overlap and embedding-based met-
rics, we select widely used ones in generative dia-
logue systems, including BLEU (Papineni et al.,
2002), ROUGE (Lin, 2004), METEOR (Baner-
jee and Lavie, 2005), and BERTScore (Zhang
et al.,, 2020). For the learning-based metrics,
We compare our method with DEB (Sai et al.,
2020), USR (Mehri and Eskenazi, 2020), Mask-
and-fill (Gupta et al., 2021), and MDD-Eval (Zhang
et al., 2021). Additionally, we select G-Eval (Liu
et al., 2023), QWQ-32B (Team, 2025), Qwen2.5-
7B (Yang et al., 2024a), and LLM-Eval (Lin and
Chen, 2023) as the LLM-based metrics. For
Qwen2.5-7B, we fine-tuned it on 12,000 both text
and AMR structured dialogue examples from all
three datasets, ensuring no overlap with evaluation
sets.

4.4 Evaluation Set and Human Annotation

To rigorously assess our proposed metric, we es-
tablish a comprehensive evaluation protocol com-
prising two distinct sets: a Standard Set and an
Adversarial Set.

Dataset Construction The Standard Set encom-
passes positive and random negative responses,
with 400 context-response pairs sourced from each
of DailyDialog++, PersonaChat, and TopicalChat
datasets, totalling 1,200 samples. The random neg-
ative responses are selected from different dialogue
turns to ensure contextual diversity. The Adver-
sarial Set, designed to evaluate robustness against
challenging examples, contains an additional 400
context-response pairs per dataset, featuring pos-
itive and adversarial negative responses. In ag-
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Standard Set Adversarial Set

Metrics Pearson’s p Spearman’s 7 Pearson’s p Spearman’s 7

BLEU-1 0.1841 (0.1620)  0.1825(0.1623) | 0.2064 (0.1321)  0.2102 (0.9274)
BLEU-2 0.1881 (0.1928)  0.1772(0.3928) | 0.1540(0.3937)  0.1969 (0.3921)
BLEU-3 0.1847 (0.4265)  0.1835(0.3521) | 0.1543 (0.4336) 0.1973 (0.2292)
BLEU-4 0.1980 (0.2552)  0.1787 (0.8398) | 0.1598 (0.6175)  0.1844 (0.7698)
ROUGE-1 0.2183 (0.4698)  0.2026 (0.7390) | 0.2305 (0.9120) 0.2141 (0.4276)
ROUGE-2 0.2055 (0.9153)  0.1911 (0.1263) | 0.1516 (0.5291)  0.1693 (0.5201)
ROUGE-L 0.2183 (0.1028)  0.2034 (0.1928) | 0.2377 (0.0183)  0.2271 (0.1912)
METEOR 0.1804 (0.1018)  0.1561 (0.1793) | 0.1342(0.1123)  0.1034 (0.5443)
BERTScore 0.2517 (0.3556)  0.2658 (0.2369) | 0.2016 (0.3430)  0.2230 (0.2561)
DEB 0.3236 (0.0630)  0.2856 (0.2382) | 0.3492 (0.0622)  0.3406 (0.8098)
USR 0.2636 (0.0206)  0.2482 (0.8432) | 0.2297 (0.0624)  0.2760 (0.1892)
Mask-and-fill 0.1904 (0.1732)  0.2056 (0.0975) | 0.2604 (0.1320)  0.2895 (0.0460)
MDD-Eval 0.2813 (0.0610)  0.2424 (0.8223) | 0.2982 (0.4162)  0.2792 (0.0218)
G-Eval (GPT-3.5) 0.3418 (0.0106)  0.3325 (0.0190) | 0.3294 (0.2327)  0.3412 (0.2272)
QwQ-32B 0.3915 (0.0123)  0.3876 (0.0142) | 0.3783 (0.0224) 0.3861 (0.0182)
Qwen2.5-7B 0.3687 (0.0152)  0.3702 (0.0134) | 0.3557 (0.0213)  0.3674 (0.0198)
G-Eval (GPT-4) 0.4321 (0.0001)  0.4312 (0.0071) | 0.4298 (0.0225) 0.4528 (0.0021)
LLM-Eval (GPT-3.5) 0.3548 (0.0211)  0.3723 (0.0190) | 0.3501 (0.3712)  0.3421 (0.0762)
LLM-Eval (GPT-4) 0.4315 (0.0206)  0.4621 (0.0172) | 0.4691 (0.2355)  0.4528 (0.5632)
Ours(w/0 LLM) 0.3575 (0.0442)  0.3646 (0.0347) | 0.3492 (0.0620)  0.3545 (0.0215)
Ours (GPT-3.5 w/o AMR)  0.4590 (0.0241)  0.4592 (0.0539) | 0.4623 (0.2327) 0.4745 (0.2342)
Ours (GPT-3.5 w/o SLM)  0.4782(0.1242) 0.4723 (0.0119) | 0.4898 (0.2237)  0.4902 (0.0938)
Ours (GPT-3.5) 0.4890 (0.0001)  0.4873 (0.0019) | 0.4955 (0.1237)  0.4920 (0.0462)
Ours (GPT-4 w/o0 AMR) 0.5290 (0.2421)  0.5392 (0.0129) | 0.5212(0.2375)  0.5522 (0.5632)
Ours (GPT-4 w/o SLM) 0.5426 (0.0106)  0.5701 (0.0019) | 0.5521 (0.8375)  0.5209 (0.9472)
Ours (GPT-4) 0.5693 (0.0021)  0.5927 (0.0043) | 0.5628 (0.0116)  0.5826 (0.0025)

Table 1: Pearson and Spearman correlations with human judgments on the DailyDialog++ dataset. The number
figures in parentheses are p-values.

Standard Set Adversarial Set

Metrics Pearson’s p Spearman’s T Pearson’s p Spearman’s 7

BLEU-1 0.2063 (0.9228)  0.2152 (0.6538) | 0.1764 (0.2243)  0.1663 (0.0335)
BLEU-2 0.1951 (0.7401)  0.1823 (0.1361) | 0.1405 (0.3621)  0.1619 (0.1422)
BLEU-3 0.1680 (0.3465)  0.1941 (0.8264) | 0.1375(0.2103)  0.1676 (0.3456)
BLEU-4 0.2002 (0.2836)  0.1930 (0.1712) | 0.1253 (0.0924)  0.1543 (0.8927)
ROUGE-1 0.2130 (0.4942)  0.2159 (0.3892) | 0.2075 (0.5918) 0.2198 (0.1984)
ROUGE-2 0.2016 (0.0183)  0.2023 (0.9172) | 0.1832(0.1830) 0.2073 (0.1983)
ROUGE-L 0.2103 (0.9028)  0.2034 (0.9283) | 0.2027 (0.9278)  0.2236 (0.9183)
METEOR 0.1997 (0.0183)  0.1768 (0.0918) | 0.1439 (0.9214)  0.1705 (0.4028)
BERTScore 0.2865 (0.2357)  0.2721 (0.2568) | 0.2254 (0.5914)  0.2643 (0.6019)
DEB 0.3653 (0.0241)  0.3434 (0.8346) | 0.3512(0.0301)  0.3706 (0.8398)
USR 0.3466 (0.0392)  0.3456 (0.1343) | 0.3681 (0.0462) 0.3859 (0.1846)
MDD-Eval 0.3481 (0.0619)  0.3410 (0.1802) | 0.3735(0.1503)  0.3601 (0.9348)
Mask-and-fill 0.3093 (0.1812)  0.3105 (0.8013) | 0.3764 (0.3153)  0.3613 (0.2203)
G-Eval (GPT-3.5) 0.4891 (0.0923)  0.4874 (0.0122) | 0.4551(0.0410) 0.4610 (0.0512)
QwQ-32B 0.5027 (0.0124)  0.5006 (0.0132) | 0.4778 (0.0215)  0.4827 (0.0164)
Qwen2.5-7B 0.4792 (0.0146)  0.4734 (0.0129) | 0.4623 (0.0218) 0.4707 (0.0173)
G-Eval (GPT-4) 0.5241 (0.0131)  0.5313 (0.0424) | 0.5123 (0.0112) 0.5513 (0.0253)
LLM-Eval (GPT-3.5) 0.4648 (0.1821)  0.4573 (0.9181) | 0.4450 (0.7163) 0.4614 (0.7817)
LLM-Eval (GPT-4) 0.5321 (0.8127)  0.5392 (0.7161) | 0.5269 (0.9221)  0.5258 (0.9271)
Ours(w/0 LLM) 0.3668 (0.0044)  0.3784 (0.0037) | 0.3954 (0.0060)  0.3911 (0.0055)
Ours (GPT-3.5 w/o AMR)  0.5007 (0.0032)  0.4998 (0.0008) | 0.5011 (0.0237) 0.5105 (0.0047)
Ours (GPT-3.5 w/o SLM)  0.5118 (0.0024)  0.5068 (0.0038) | 0.5199 (0.0007)  0.5187 (0.0005)
Ours(GPT-3.5) 0.5517 (0.0044)  0.5209 (0.0002) | 0.5204 (0.0053) 0.5225 (0.0057)
Ours (GPT-4 w/o0 AMR) 0.6199 (0.0001)  0.6127 (0.0004) | 0.6178 (0.0017)  0.6004 (0.0028)
Ours (GPT-4 w/o SLM) 0.6267 (0.0021)  0.6299 (0.0003) | 0.6245 (0.0047)  0.6309 (0.0145)
Ours (GPT-4) 0.6598 (0.0021)  0.6604 (0.0023) | 0.6526 (0.0013)  0.6612 (0.0046)

Table 2: Pearson and Spearman correlations with human judgments on the PersonaChat dataset.
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Standard Set

Adversarial Set

Metrics Pearson’s p Spearman’s 7 Pearson’s p Spearman’s 7

BLEU-1 0.2102 (0.2993)  0.1982 (0.8628) | 0.1444 (0.0203)  0.1553 (0.0032)
BLEU-2 0.1721 (0.7761)  0.1772(0.3132) | 0.1295(0.4321)  0.1439 (0.5402)
BLEU-3 0.1577(0.1357)  0.1642 (0.1854) | 0.1225(0.0203)  0.1328 (0.0341)
BLEU-4 0.1482 (0.2901)  0.1503(0.1709) | 0.1323 (0.0203)  0.1228 (0.3265)
ROUGE-1 0.2050 (0.4808)  0.2144 (0.0371) | 0.1752(0.2839) 0.1788 (0.6052)
ROUGE-2 0.2005 (0.0956)  0.2027 (0.1231) | 0.1835(0.4462) 0.2028 (0.2302)
ROUGE-L 0.2197 (0.4980)  0.2011 (0.3924) | 0.1908 (0.2993)  0.2335 (0.7158)
METEOR 0.1857 (0.1314)  0.1576 (0.4371) | 0.1518 (0.8903)  0.1685 (0.4094)
BERTScore 0.2555 (0.6227)  0.2542 (0.9268) | 0.2194 (0.1936)  0.2558 (0.2032)
DEB 0.3255 (0.0152)  0.3306 (0.0470) | 0.3419 (0.0158) 0.3668 (0.0812)
USR 0.3466 (0.0045)  0.3428 (0.1257) | 0.3338 (0.0478)  0.1706 (0.0462)
MDD-Eval 0.3277 (0.0245)  0.3398 (0.2784) | 0.3869 (0.3478)  0.3557 (0.0254)
Mask-and-fill 0.2998 (0.0458)  0.3052 (0.0025) | 0.3668 (0.1069)  0.3627 (0.0044)
G-Eval (GPT-3.5) 0.4995 (0.0025)  0.4754 (0.0011) | 0.4774 (0.0069)  0.4688 (0.0098)
QwQ-32B 0.5092 (0.0118)  0.4836 (0.0125) | 0.4887 (0.0208) 0.4824 (0.0152)
Qwen2.5-7B 0.4927 (0.0137)  0.4703 (0.0114) | 0.4702 (0.0211)  0.4678 (0.0167)
G-Eval (GPT-4) 0.5314 (0.0028)  0.5055 (0.0015) | 0.4995 (0.0057)  0.5022 (0.0064)
LLM-Eval (GPT-3.5) 0.4837 (0.0001)  0.4798 (0.0004) | 0.4512 (0.0007) 0.4799 (0.0004)
LLM-Eval (GPT-4) 0.5008 (0.0022)  0.5096 (0.0036) | 0.5178 (0.0019)  0.5257 (0.0007)
Ours(w/0 LLM) 0.3602 (0.0011)  0.3599 (0.0004) | 0.3611 (0.0017)  0.3587 (0.0023)
Ours (GPT-3.5 w/o AMR)  0.5022 (0.0001)  0.5120 (0.0009) | 0.5118 (0.0025)  0.5099 (0.0002)
Ours (GPT-3.5 w/o SLM)  0.5172(0.0025) 0.5099 (0.0065) | 0.5112(0.0004) 0.5101 (0.0051)
Ours(GPT-3.5) 0.5200 (0.0051)  0.5115 (0.0007) | 0.5127 (0.0057) 0.5110 (0.0001)
Ours (GPT-4 w/o0 AMR) 0.6274 (0.0001)  0.6266 (0.0019) | 0.6198 (0.1237)  0.5207 (0.0272)
Ours (GPT-4 w/o SLM) 0.6470 (0.0021)  0.6482 (0.0031) | 0.6398 (0.0004)  0.6402 (0.0054)
Ours (GPT-4) 0.6641 (0.0002)  0.6603 (0.0002) | 0.6598 (0.0007)  0.6674 (0.0003)

Table 3: Pearson and Spearman correlations with human judgments on the TopicalChat dataset.

gregate, our evaluation corpus comprises 2,400
context-response pairs.

Correlation Computation For reporting our ex-
perimental results, we compute correlation between
automated scores and human judgments separately
for each of the four criteria (Naturalness, Coher-
ence, Engagingness, and Groundedness). The re-
ported values in Tables 1-3 represent the average
correlations across all four dimensions. This ap-
proach follows standard practices in dialogue eval-
uation research (Mehri and Eskenazi, 2020). A
detailed breakdown of performance across individ-
ual criteria is provided in Appendix C.

Human Annotation Three qualified human eval-
uators, each holding at least a master’s degree
in Computer Science and demonstrating full pro-
fessional English proficiency, independently rated
each context-response pair. Assessments were con-
ducted using a 5-point Likert scale, where higher
scores indicate superior quality. The final human
annotation score for each aspect was derived by
averaging across all evaluators. To ensure annota-
tion reliability, we computed the Inner-Annotator
Agreement (IAA) using Cohen’s Kappa coeffi-
cient (Cohen, 1960). The achieved average IAA
score of 0.64 between annotator pairs indicates
substantial agreement (0.6-0.8), validating the ro-
bustness of our human evaluation framework.

5 Results

5.1 Evaluation Performance on Standard Set

We evaluate our model against the baselines by
analysing the correlation between automated eval-
uation scores and human judgements across three
datasets. The results presented in Table 1 to Table 3
reveal that n-gram and embedding-based baselines,
which compute word overlap or semantic similarity
between gold references and responses, demon-
strate weak positive correlations with human anno-
tations across two datasets. Amongst the n-gram
baselines, ROUGE-L exhibits the strongest correla-
tion. The embedding-based approach, BERTScore,
whilst outperforming the n-gram baselines, still
achieves suboptimal performance when compared
with more sophisticated metrics. Learning-based
metrics, which consider the contextual relationship
between dialogue pairs, demonstrate superior over-
all performance. Specifically, Mask-and-fill and
USR achieve better correlations than n-gram base-
lines, whilst DEB and MDD-Eval secure higher
correlations among these approaches.

Regarding LLM-based methods, G-Eval and
LLM-Eval demonstrate strong performance across
all three datasets. We also evaluated reasoning-
focused LLMs including QwQ-32B (via direct
prompting without AMR) and Qwen2.5-7B (fine-
tuned with structured data for 5 epochs). These
models perform slightly better than GPT-3.5 across
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all datasets. Similarly, the fine-tuned Qwen2.5-7B
(0.3687/0.3702) outperforms GPT-3.5, demonstrat-
ing the potential of specialized reasoning models.

Our method in its basic configuration (Ours w/o
LLM) achieves moderately positive correlations
across the three datasets (less than 0.4). How-
ever, when integrating SLM with LLM, our ap-
proach achieves the highest overall performance
on both Pearson and Spearman correlations across
all datasets. Notably, our GPT-4 variant exhibits
superior performance compared to all baselines, in-
cluding the reasoning-focused LLMs. Through ab-
lation studies examining the effectiveness of SLM
and AMR graphs, we observe that Ours (w/o SLM)
outperforms Ours (w/o AMR), which combines
only LLM and SLM components, thereby validat-
ing the effectiveness of incorporating AMR graphs
in open-domain dialogue evaluation.

5.2 Evaluation Performance on Adversarial
Set

To evaluate our method’s capability in evaluating
adversarial negative examples, we conduct compar-
ative analyses against baseline approaches on the
adversarial set. Tables 1 to 3 present the correla-
tion results between automated metrics and human
judgements. The n-gram and embedding-based
metrics exhibit weakly positive correlations with
human judgements, primarily due to their inherent
limitation of solely comparing gold references with
response candidates, without considering the con-
textual relationships that characterise adversarial
examples. Regarding learning-based approaches,
USR demonstrates limited robustness against adver-
sarial negative examples, showing only weak posi-
tive correlations with human judgements. In con-
trast, MDD-Eval, Mask-and-fill, and DEB achieve
notably stronger performance across both Pearson
and Spearman correlations.

LLM-based methods establish themselves as
the strongest baseline approaches, with reasoning-
focused models like QwQ-32B and fine-tuned
Qwen?2.5-7B showing improved performance over
standard GPT-3.5. However, despite these im-
provements, these reasoning-focused LLMs still
fall short of our full approach, suggesting that ex-
plicit semantic structure through AMR graphs pro-
vides complementary information that enhances
evaluation capabilities beyond what these models
can derive from text alone.

Our proposed metric consistently surpasses all
baseline approaches across both correlation metrics.

Specifically, Ours(GPT-4) achieves strong correla-
tions on the adversarial set, significantly outper-
forming the strongest baseline G-Eval. Similar im-
provements are observed in Spearman correlations
across the three datasets. The ablation analysis
further substantiates the benefits of our integrated
approach: Ours(w/o AMR) shows notably lower
correlations, demonstrating that the incorporation
of AMR graph information significantly enhances
the model’s ability to evaluate adversarial exam-
ples. These results comprehensively validate the
effectiveness of integrating AMR graph-enhanced
SLM with LLMs for robust open-domain dialogue
evaluation.

5.3 Ablation Study

We evaluate our SLM’s classification performance
on the DailyDialog++ testset. As shown in Table 5,
our SLM surpasses all baselines and demonstrat-
ing the effectiveness of incorporating AMR graph
information. Ablation studies reveal that removing
either the Graph Transformer or Sentence Trans-
former components of SLM leads to decreased per-
formance, with the Graph Transformer alone per-
forming marginally better than the Sentence Trans-
former. While removing the contrastive learning
(CL) or gating mechanism (GM) shows minimal
impact, the removal of AMR information results in
the most significant performance drop, highlighting
its crucial role in dialogue evaluation.

When comparing Ours (w/o AMR) and Ours
(w/o SLM) variants, we observe that removing
AMR graph information leads to a more significant
performance drop than removing the SLM score,
confirming that the structured semantic knowledge
encoded in AMR graphs contributes more to per-
formance improvements. However, the full model
combining both components achieves the best re-
sults, demonstrating that the SLM’s specialized
architecture for processing graph information and
the LLM’s reasoning capabilities operate synergis-
tically rather than redundantly.

6 Conclusion

In this paper, we presents a novel evaluation frame-
work for open-domain dialogue systems that in-
tegrates AMR graph-enhanced SLMs with LLMs.
Comprehensive experimental results across multi-
ple datasets demonstrate that our method consis-
tently outperforms existing approaches, including
state-of-the-art LLM-based methods, in the chal-
lenging task of open-domain dialogue evaluation.
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Ethics Statement

Our proposed evaluation metric enhances the as-
sessment of open-domain dialogue systems through
AMR integration and contrastive learning. While
the framework effectively addresses the one-to-
many nature of dialogue evaluation, it may oc-
casionally assign high scores to inappropriate re-
sponses. We recommend careful screening of train-
ing data and implementation of content filters be-
fore deployment.

Limitations

Despite demonstrating robust performance, our
method primarily focuses on semantic dependen-
cies between context and response. Following
Howecroft et al. (2020), we acknowledge that hu-
man evaluation encompasses multiple attributes
beyond semantic relationships. Future work should
explore disentangling these various attributes to
enhance model interpretability and evaluation com-
prehensiveness.
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A More Experimental Results and
Analysis

A.1 Case Study

To demonstrate the effectiveness of AMR graphs
in identifying adversarial negative responses, we
present several illustrative examples in Table 4.
These cases highlight instances where responses
were incorrectly classified as “positive” without
AMR graph information, but were accurately iden-
tified as “negative” when incorporating semantic
structural knowledge from AMR graphs. This anal-
ysis underscores the crucial role of AMR-derived
semantic information in enhancing the model’s dis-
criminative capability for challenging adversarial
examples.

Hi kevin, how was your year at college?
It was great! How was your year? It
was good. Do you have a girlfriend at
school?

Are you still in touch with any of your
old school friends?

Would you recommend some places for
sightseeing? How about great canyon?
Is it worth seeing?

Singapore is reportedly a very exciting
place to live.

I need change for the machines? You
need to put 50 cents into the washer ma-
chine and a dollar into the dryer. So
what do I need to do?

In our factory, there are 50 electrical ma-
chines.

Context:

Response:

Context:

Response:

Context:

Response:

Table 4: Samples of context-response pairs. The bold
words represent the overlapping words.

A.2 Attention Visualisation Analysis

We analyse the attention patterns of both Sentence
and Graph Transformers of the SLM through visu-
alisation of their attention heatmaps for the context-
response pair shown in Figure 3.

The Sentence Transformer exhibits strong atten-
tion weights between overlapping tokens in con-
text and response. As illustrated in Figure 3 (top),
tokens such as “school” and “friend” in the re-
sponse show high attention scores with their coun-
terparts “school” and “girlfriend” in the context.
In contrast, the Graph Transformer, which incor-
porates entity relationships through AMR struc-
tures, demonstrates different attention patterns. Fig-
ure 3 (bottom) shows that these lexically similar
tokens receive lower attention weights, indicating
the model’s ability to capture semantic differences
beyond surface-level similarities.

Model Accuracy
BERT Regressor 75.92
RUBER 76.50
DEB 82.04
Mask-and-fill 85.27
Ours (SLM) 86.81
Ours (- w/o GM) 86.22
Ours (- w/o CL) 86.46
Ours (- w/o GM, CL) 85.64
Graph Transformer 84.73
Sentence Transformer 83.81

Table 5: Ablation study on Dailydialog++ dataset.

B Prompt Templates

B.1 Prompt for Engagingness evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.
How dull/interest is the text of the
dialogue response? (on a scale of 1-5,
with 1 being the lowest)

Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Engagingness:

B.2 Prompt for Naturalness evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.

To what extent the response is naturally
written (on a scale of 1-5, with 1 being
the lowest)

Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
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Naturalness:

B.3 Prompt for Coherence evaluation

Rate the dialogue response.

Use the prediction probability from the
SLMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.

To what extent the response is
well-structured, logical, and meaningful
(on a scale of 1-5, with 1 being the
lowest)

Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Coherence:

B.4 Prompt for Groundedness evaluation

Rate the dialogue response.

Use the prediction probability from the
SIMs and AMR graphs of the conversation
pair to aid your judgment.

Note: Please take the time to fully read
and understand the dialogue response.

To what extent the response is grounded
in facts present in the context (on a
scale of 1-5, with 1 being the lowest)
Input:

Conversation Context:

Response:

AMR Graph:

SLM score:

Evaluation Form (Score ONLY):
Groundedness:

C Performance Breakdown by
Evaluation Criteria

Tables 6, 7, and 8 present the correlation results
broken down by individual evaluation criteria (Nat-
uralness, Coherence, Engagingness, and Ground-
edness) for each dataset. This detailed analysis
reveals that our method consistently outperforms

baselines across all criteria, with particularly no-
table improvements in Coherence and Grounded-
ness for adversarial examples. This pattern aligns
with our expectation that AMR graph information
would be especially beneficial for capturing seman-
tic inconsistencies that affect contextual appropri-
ateness.

D Example Prompt with AMR Graph
and SLM Score

In Table Table D, we provide a concrete example
of how the SLM score and AMR graph information
are incorporated into the LLLM prompt for evalua-
tion.
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Figure 3: Attention pattern visualisation for context-response analysis. Top: Graph Transformer attention heatmap
showing semantic-aware attention distribution. Bottom: Sentence Transformer attention heatmap highlighting
lexical-level attention patterns. Overlapping tokens between context and response (friends and school) demonstrate
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Standard Set

Adversarial Set

Naturalness Coherence Naturalness Coherence
Metrics Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7
BLEU-1 0.1793 0.1769 0.1924 0.1873 0.2012 0.2054 0.2138 0.2168
BLEU-2 0.1836 0.1723 0.1947 0.1835 0.1487 0.1921 0.1598 0.2035
BLEU-3 0.1802 0.1788 0.1906 0.1893 0.1496 0.1925 0.1599 0.2026
BLEU-4 0.1932 0.1741 0.2053 0.1843 0.1549 0.1798 0.1648 0.1906
ROUGE-1 0.2126 0.1976 0.2266 0.2087 0.2248 0.2088 0.2392 0.2207
ROUGE-2 0.2001 0.1861 0.2134 0.1971 0.1462 0.1641 0.1574 0.1753
ROUGE-L 0.2129 0.1984 0.2258 0.2092 0.2318 0.2216 0.2459 0.2343
METEOR 0.1762 0.1521 0.1866 0.1612 0.1296 0.1002 0.1392 0.1071
BERTScore 0.2452 0.2593 0.2607 0.2742 0.1959 0.2176 0.2084 0.2301
DEB 0.3152 0.2778 0.3356 0.2954 0.3402 0.3321 0.3617 0.3517
USR 0.2568 0.2419 0.2730 0.2567 0.2234 0.2693 0.2365 0.2845
Mask-and-fill 0.1852 0.2007 0.1969 0.2124 0.2532 0.2827 0.2684 0.2986
MDD-Eval 0.2739 0.2354 0.2918 0.2505 0.2907 0.2723 0.3083 0.2886
G-Eval (GPT-3.5) 0.3326 0.3243 0.3512 0.3406 0.3201 0.3326 0.3411 0.3523
QwQ-32B 0.3822 0.3793 0.4023 0.3962 0.3692 0.3774 0.3898 0.3963
Qwen2.5-7B 0.3595 0.3615 0.3782 0.3796 0.3462 0.3584 0.3672 0.3779
G-Eval (GPT-4) 0.4219 0.4210 0.4458 0.4435 0.4183 0.4421 0.4443 0.4654
LLM-Eval (GPT-3.5) 0.3459 0.3638 0.3662 0.3834 0.3405 0.3335 0.3613 0.3528
LLM-Eval (GPT-4) 0.4210 0.4520 0.4452 0.4751 0.4573 0.4415 0.4842 0.4662
Ours(w/o LLM) 0.3486 0.3557 0.3686 0.3754 0.3398 0.3452 0.3612 0.3658
Ours (GPT-3.5 w/0 AMR) 0.4474 0.4476 0.4725 0.4723 0.4504 0.4628 0.4765 0.4880
Ours (GPT-3.5 w/0 SLM) 0.4663 0.4605 0.4922 0.4856 0.4767 0.4775 0.5055 0.5044
Ours (GPT-3.5) 0.4768 0.4751 0.5035 0.5006 0.4826 0.4793 0.5107 0.5057
Ours (GPT-4 w/0 AMR) 0.5158 0.5258 0.5449 0.5545 0.5086 0.5384 0.5367 0.5685
Ours (GPT-4 w/o0 SLM) 0.5292 0.5559 0.5586 0.5862 0.5391 0.5079 0.5681 0.5361
Ours (GPT-4) 0.5550 0.5779 0.5863 0.6093 0.5485 0.5680 0.5801 0.5991
Engagingness Groundedness Engagingness Groundedness
Metrics Pearson’s p Spearman’s 7 | Pearson’s p  Spearman’s 7 | Pearson’s p  Spearman’s 7 | Pearson’s p  Spearman’s 7
BLEU-1 0.1824 0.1809 0.1823 0.1849 0.2059 0.2091 0.2087 0.2095
BLEU-2 0.1868 0.1759 0.1873 0.1773 0.1527 0.1963 0.1548 0.1967
BLEU-3 0.1832 0.1825 0.1848 0.1834 0.1537 0.1968 0.1540 0.1973
BLEU-4 0.1967 0.1777 0.1968 0.1786 0.1593 0.1844 0.1602 0.1828
ROUGE-1 0.2171 0.2026 0.2169 0.2026 0.2294 0.2141 0.2281 0.2135
ROUGE-2 0.2042 0.1911 0.2043 0.1911 0.1501 0.1693 0.1502 0.1685
ROUGE-L 0.2176 0.2034 0.2183 0.2034 0.2367 0.2271 0.2364 0.2254
METEOR 0.1797 0.1561 0.1791 0.1561 0.1331 0.1034 0.1341 0.1059
BERTScore 0.2504 0.2658 0.2505 0.2639 0.2004 0.2230 0.2017 0.2221
DEB 0.3212 0.2856 0.3224 0.2834 0.3480 0.3406 0.3469 0.3391
USR 0.2619 0.2482 0.2627 0.2460 0.2282 0.2760 0.2307 0.2742
Mask-and-fill 0.1895 0.2056 0.1900 0.2037 0.2592 0.2895 0.2608 0.2872
MDD-Eval 0.2798 0.2424 0.2797 0.2413 0.2975 0.2792 0.2963 0.2767
G-Eval (GPT-3.5) 0.3352 0.3289 0.3483 0.3363 0.3273 0.3401 0.3291 0.3398
QwQ-32B 0.3844 0.3805 0.3972 0.3943 0.3757 0.3829 0.3826 0.3878
Qwen2.5-7B 0.3615 0.3625 0.3758 0.3774 0.3518 0.3635 0.3576 0.3698
G-Eval (GPT-4) 0.4264 0.4256 0.4342 0.4347 0.4264 0.4500 0.4302 0.4537
LLM-Eval (GPT-3.5) 0.3525 0.3723 0.3546 0.3697 0.3484 0.3421 0.3502 0.3379
LLM-Eval (GPT-4) 0.4283 0.4621 0.4315 0.4569 0.4660 0.4528 0.4689 0.4497
Ours(w/o LLM) 0.3553 0.3646 0.3586 0.3625 0.3473 0.3545 0.3497 0.3524
Ours (GPT-3.5 w/0 AMR) 0.4563 0.4592 0.4598 0.4577 0.4583 0.4745 0.4640 0.4727
Ours (GPT-3.5 w/o0 SLM) 0.4755 0.4723 0.4788 0.4708 0.4849 0.4902 0.4921 0.4887
Ours (GPT-3.5) 0.4865 0.4873 0.4892 0.4862 0.4906 0.4920 0.4981 0.4900
Ours (GPT-4 w/o AMR) 0.5263 0.5392 0.5299 0.5379 0.5171 0.5522 0.5230 0.5499
Ours (GPT-4 w/o0 SLM) 0.5398 0.5701 0.5429 0.5682 0.5481 0.5209 0.5531 0.5195
Ours (GPT-4) 0.5665 0.5927 0.5694 0.5909 0.5579 0.5826 0.5647 0.5807

Table 6: Breakdown of Pearson and Spearman correlations with human judgments by evaluation criteria on the
DailyDialog++ dataset.
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Standard Set Adversarial Set

Naturalness Coherence Naturalness Coherence
Metrics Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7
BLEU-1 0.2014 0.2103 0.2115 0.2204 0.1725 0.1625 0.1807 0.1702
BLEU-2 0.1905 0.1780 0.1996 0.1869 0.1369 0.1581 0.1443 0.1658
BLEU-3 0.1638 0.1897 0.1722 0.1987 0.1340 0.1637 0.1412 0.1715
BLEU-4 0.1954 0.1886 0.2052 0.1976 0.1220 0.1505 0.1286 0.1582
ROUGE-1 0.2078 0.2106 0.2183 0.2214 0.2024 0.2145 0.2127 0.2251
ROUGE-2 0.1967 0.1975 0.2065 0.2073 0.1786 0.2023 0.1879 0.2124
ROUGE-L 0.2051 0.1985 0.2155 0.2085 0.1978 0.2182 0.2077 0.2291
METEOR 0.1949 0.1725 0.2047 0.1812 0.1403 0.1667 0.1476 0.1744
BERTScore 0.2796 0.2656 0.2934 0.2788 0.2196 0.2579 0.2313 0.2708
DEB 0.3562 0.3351 0.3744 0.3518 0.3424 0.3618 0.3601 0.3796
USR 0.3381 0.3370 0.3551 0.3542 0.3591 0.3765 0.3772 0.3954
MDD-Eval 0.3396 0.3328 0.3566 0.3492 0.3640 0.3513 0.3830 0.3689
Mask-and-fill 0.3017 0.3030 0.3168 0.3182 0.3673 0.3525 0.3856 0.3702
G-Eval (GPT-3.5) 0.4773 0.4757 0.5009 0.4988 0.4442 0.4502 0.4662 0.4722
QwQ-32B 0.4905 0.4889 0.5148 0.5126 0.4662 0.4714 0.4894 0.4942
Qwen2.5-7B 0.4675 0.4617 0.4910 0.4844 0.4512 0.4598 0.4735 0.4819
G-Eval (GPT-4) 0.5115 0.5195 0.5368 0.5444 0.5002 0.5391 0.5246 0.5640
LLM-Eval (GPT-3.5) 0.4539 0.4464 0.4757 0.4683 0.4343 0.4506 0.4557 0.4726
LLM-Eval (GPT-4) 0.5193 0.5265 0.5449 0.5522 0.5142 0.5131 0.5396 0.5385
Ours(w/o LLM) 0.3582 0.3696 0.3754 0.3873 0.3858 0.3815 0.4052 0.4007
Ours (GPT-3.5 w/0 AMR) 0.4887 0.4878 0.5127 0.5119 0.4892 0.4982 0.5131 0.5229
Ours (GPT-3.5 w/0 SLM) 0.4995 0.4946 0.5240 0.5192 0.5074 0.5062 0.5325 0.5313
Ours(GPT-3.5) 0.5385 0.5084 0.5648 0.5335 0.5079 0.5099 0.5329 0.5352
Ours (GPT-4 w/o0 AMR) 0.6051 0.5982 0.6347 0.6273 0.6029 0.5862 0.6327 0.6149
Ours (GPT-4 w/o0 SLM) 0.6116 0.6149 0.6418 0.6450 0.6094 0.6158 0.6397 0.6462
Ours (GPT-4) 0.6441 0.6448 0.6756 0.6762 0.6370 0.6458 0.6683 0.6768
Engagingness Groundedness Engagingness Groundedness
Metrics Pearson’s p Spearman’s 7 | Pearson’s p  Spearman’s 7 | Pearson’s p  Spearman’s 7 | Pearson’s p  Spearman’s 7
BLEU-1 0.2052 0.2142 0.2072 0.2158 0.1755 0.1657 0.1769 0.1669
BLEU-2 0.1940 0.1813 0.1961 0.1830 0.1397 0.1616 0.1410 0.1621
BLEU-3 0.1670 0.1933 0.1688 0.1947 0.1367 0.1673 0.1380 0.1680
BLEU-4 0.1992 0.1921 0.2010 0.1936 0.1244 0.1537 0.1260 0.1548
ROUGE-1 0.2119 0.2147 0.2139 0.2168 0.2067 0.2194 0.2082 0.2203
ROUGE-2 0.2004 0.2014 0.2027 0.2030 0.1823 0.2066 0.1839 0.2079
ROUGE-L 0.2091 0.2024 0.2116 0.2043 0.2017 0.2225 0.2036 0.2244
METEOR 0.1987 0.1758 0.2005 0.1777 0.1430 0.1697 0.1446 0.1711
BERTScore 0.2850 0.2707 0.2881 0.2733 0.2240 0.2633 0.2265 0.2652
DEB 0.3626 0.3417 0.3678 0.3452 0.3489 0.3687 0.3533 0.3722
USR 0.3444 0.3434 0.3488 0.3478 0.3663 0.3838 0.3698 0.3877
MDD-Eval 0.3460 0.3392 0.3503 0.3428 0.3712 0.3581 0.3760 0.3621
Mask-and-fill 0.3073 0.3087 03114 0.3123 0.3744 0.3594 0.3781 0.3631
G-Eval (GPT-3.5) 0.4862 0.4847 0.4928 0.4904 0.4527 0.4587 0.4573 0.4629
QwQ-32B 0.4997 0.4981 0.5058 0.5038 0.4749 0.4801 0.4809 0.4852
Qwen2.5-7B 0.4762 0.4704 0.4822 0.4761 0.4598 0.4683 0.4645 0.4728
G-Eval (GPT-4) 0.5209 0.5290 0.5271 0.5342 0.5098 0.5489 0.5146 0.5532
LLM-Eval (GPT-3.5) 0.4624 0.4548 0.4673 0.4597 0.4426 0.4590 0.4474 0.4639
LLM-Eval (GPT-4) 0.5284 0.5357 0.5356 0.5425 0.5234 0.5223 0.5304 0.5292
Ours(w/o LLM) 0.3651 0.3767 0.3685 0.3798 0.3934 0.3890 0.3973 0.3930
Ours (GPT-3.5 w/0 AMR) 0.4978 0.4969 0.5037 0.5027 0.4984 0.5075 0.5037 0.5131
Ours (GPT-3.5 w/o0 SLM) 0.5089 0.5039 0.5150 0.5097 0.5170 0.5158 0.5226 0.5216
Ours(GPT-3.5) 0.5481 0.5175 0.5553 0.5241 0.5173 0.5194 0.5234 0.5253
Ours (GPT-4 w/o0 AMR) 0.6158 0.6088 0.6240 0.6166 0.6139 0.5969 0.6217 0.6038
Ours (GPT-4 w/o0 SLM) 0.6227 0.6261 0.6307 0.6334 0.6206 0.6269 0.6283 0.6347
Ours (GPT-4) 0.6555 0.6562 0.6639 0.6643 0.6483 0.6571 0.6567 0.6650

Table 7: Breakdown of Pearson and Spearman correlations with human judgments by evaluation criteria on the
PersonaChat dataset.
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Standard Set Adversarial Set

Naturalness Coherence Naturalness Coherence
Metrics Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7  Pearson’s p  Spearman’s 7
BLEU-1 0.2055 0.1938 0.2149 0.2026 0.1408 0.1517 0.1480 0.1588
BLEU-2 0.1682 0.1732 0.1759 0.1812 0.1261 0.1403 0.1330 0.1475
BLEU-3 0.1541 0.1605 0.1613 0.1679 0.1191 0.1293 0.1259 0.1363
BLEU-4 0.1449 0.1468 0.1515 0.1538 0.1289 0.1198 0.1358 0.1258
ROUGE-1 0.2004 0.2095 0.2096 0.2193 0.1710 0.1747 0.1793 0.1829
ROUGE-2 0.1958 0.1982 0.2049 0.2074 0.1789 0.1983 0.1880 0.2075
ROUGE-L 0.2148 0.1965 0.2246 0.2056 0.1863 0.2283 0.1953 0.2388
METEOR 0.1815 0.1539 0.1899 0.1612 0.1483 0.1647 0.1554 0.1724
BERTScore 0.2497 0.2485 0.2613 0.2600 0.2142 0.2501 0.2245 0.2617
DEB 0.3181 0.3230 0.3330 0.3381 0.3341 0.3585 0.3497 0.3752
USR 0.3387 0.3350 0.3545 0.3507 0.3258 0.1667 0.3419 0.1745
MDD-Eval 0.3201 0.3320 0.3353 0.3476 0.3777 0.3475 0.3961 0.3638
Mask-and-fill 0.2929 0.2982 0.3068 0.3123 0.3582 0.3545 0.3754 0.3710
G-Eval (GPT-3.5) 0.4880 0.4645 0.5108 0.4866 0.4663 0.4578 0.4883 0.4798
QwQ-32B 0.4975 0.4724 0.5208 0.4950 0.4773 0.4714 0.5004 0.4936
Qwen2.5-7B 0.4814 0.4596 0.5041 0.4810 0.4591 0.4569 0.4812 0.4788
G-Eval (GPT-4) 0.5192 0.4939 0.5434 0.5173 0.4880 0.4907 0.5107 0.5137
LLM-Eval (GPT-3.5) 0.4724 0.4687 0.4949 0.4909 0.4408 0.4688 0.4618 0.4909
LLM-Eval (GPT-4) 0.4893 0.4979 0.5123 0.5214 0.5059 0.5137 0.5298 0.5378
Ours(w/o LLM) 0.3520 0.3516 0.3685 0.3681 0.3529 0.3505 0.3694 0.3669
Ours (GPT-3.5 w/0 AMR) 0.4907 0.5003 0.5138 0.5237 0.5001 0.4981 0.5235 0.5216
Ours (GPT-3.5 w/0 SLM) 0.5053 0.4981 0.5290 0.5217 0.4994 0.4983 0.5228 0.5218
Ours(GPT-3.5) 0.5080 0.4997 0.5319 0.5233 0.5009 0.4993 0.5245 0.5228
Ours (GPT-4 w/o0 AMR) 0.6130 0.6122 0.6417 0.6410 0.6055 0.5087 0.6338 0.5326
Ours (GPT-4 w/o0 SLM) 0.6325 0.6336 0.6615 0.6629 0.6251 0.6258 0.6546 0.6546
Ours (GPT-4) 0.6490 0.6455 0.6789 0.6752 0.6449 0.6524 0.6748 0.6822
Engagingness Groundedness Engagingness Groundedness
Metrics Pearson’s p Spearman’s 7 | Pearson’s p  Spearman’s 7 | Pearson’s p  Spearman’s 7 | Pearson’s p  Spearman’s 7
BLEU-1 0.2091 0.1971 0.2111 0.1984 0.1435 0.1546 0.1452 0.1561
BLEU-2 0.1714 0.1765 0.1731 0.1777 0.1287 0.1429 0.1304 0.1449
BLEU-3 0.1569 0.1635 0.1585 0.1647 0.1215 0.1318 0.1231 0.1339
BLEU-4 0.1474 0.1494 0.1490 0.1510 0.1312 0.1220 0.1333 0.1235
ROUGE-1 0.2037 0.2130 0.2065 0.2151 0.1742 0.1780 0.1764 0.1796
ROUGE-2 0.1993 0.2019 0.2015 0.2035 0.1824 0.2020 0.1847 0.2038
ROUGE-L 0.2186 0.2000 0.2207 0.2023 0.1899 0.2325 0.1922 0.2344
METEOR 0.1845 0.1567 0.1868 0.1575 0.1509 0.1675 0.1527 0.1693
BERTScore 0.2542 0.2530 0.2568 0.2553 0.2183 0.2547 0.2207 0.2575
DEB 0.3237 0.3288 0.3273 0.3324 0.3402 0.3649 0.3439 0.3689
USR 0.3448 0.3409 0.3487 0.3448 0.3320 0.1698 0.3358 0.1715
MDD-Eval 0.3259 0.3380 0.3296 0.3415 0.3847 0.3539 0.3892 0.3576
Mask-and-fill 0.2983 0.3037 0.3012 0.3067 0.3649 0.3609 0.3688 0.3646
G-Eval (GPT-3.5) 0.4970 0.4728 0.5033 0.4775 0.4750 0.4665 0.4800 0.4710
QwQ-32B 0.5067 0.4809 0.5127 0.4852 0.4863 0.4801 0.4909 0.4846
Qwen2.5-7B 0.4902 0.4681 0.4962 0.4731 0.4678 0.4652 0.4727 0.4694
G-Eval (GPT-4) 0.5286 0.5027 0.5345 0.5080 0.4970 0.4996 0.5022 0.5048
LLM-Eval (GPT-3.5) 0.4811 0.4773 0.4864 0.4823 0.4489 0.4772 0.4532 0.4826
LLM-Eval (GPT-4) 0.4981 0.5069 0.5036 0.5125 0.5147 0.5226 0.5207 0.5287
Ours(w/o LLM) 0.3584 0.3580 0.3621 0.3616 0.3593 0.3569 0.3629 0.3605
Ours (GPT-3.5 w/0 AMR) 0.4997 0.5094 0.5046 0.5145 0.5093 0.5074 0.5143 0.5124
Ours (GPT-3.5 w/o0 SLM) 0.5146 0.5073 0.5200 0.5124 0.5089 0.5076 0.5136 0.5127
Ours(GPT-3.5) 0.5173 0.5089 0.5226 0.5142 0.5102 0.5087 0.5153 0.5132
Ours (GPT-4 w/o0 AMR) 0.6247 0.6239 0.6304 0.6293 0.6169 0.5173 0.6229 0.5242
Ours (GPT-4 w/o0 SLM) 0.6444 0.6456 0.6506 0.6517 0.6366 0.6372 0.6429 0.6430
Ours (GPT-4) 0.6612 0.6576 0.6674 0.6638 0.6566 0.6641 0.6631 0.6709

Table 8: Breakdown of Pearson and Spearman correlations with human judgments by evaluation criteria on the
TopicalChat dataset.
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Prompt for Dialogue Response Evaluation

Rate the dialogue response.

Use the prediction probability from the SLMs and AMR graphs of the conversation pair to aid your judgment.
Note: Please take the time to fully read and understand the dialogue response.

How coherent is the text of the dialogue response? (on a scale of 1-5, with 1 being the lowest)

Input:
Conversation Context: Would you recommend some places for sightseeing? How about great canyon? Is it worth seeing?

Response: The movie was really good, it was worth watching it.

AMR Graph:
(multi-sentence
:sntl (recommend
:ARGO (you)
:polarity (amr-unk)
:ARGTI (place
:quant (some)
:location (sightsee)))
:snt2 (canyon
:mod (great)
:polarity (amr-unk))
:ARG1 (worth)
:ARG?2 (see)
:snt3 (and
:mod (worth
:ARGI (watch)
:ARG1 (movie)
:mod (good
:ARG1 (movie)))))

SLM score: 0.32

Evaluation Form (Score ONLY):
Coherence:

Table 9: Example of prompt template showing how SLM score and AMR graph information are integrated to
evaluate dialogue response coherence.
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