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Abstract

Adversarial vulnerabilities in vision-language
models pose a critical challenge to the relia-
bility of large language systems, where typo-
graphic manipulations and adversarial pertur-
bations can effectively bypass language model
defenses. We introduce Attack as Defense
(AsD), the first approach to proactively defend
at the cross-modality level, embedding protec-
tive perturbations in vision to disrupt attacks
before they propagate to the language model.
By leveraging the semantic alignment between
vision and language, AsD enhances adversar-
ial robustness through model perturbations and
system-level prompting. Unlike prior work that
focuses on text-stage defenses, our method in-
tegrates visual defenses to reinforce prompt-
based protections, mitigating jailbreaking at-
tacks across benchmarks. Experiments on the
LLaVA-1.5 show that AsD reduces attack suc-
cess rates from 56.7% to 12.6% for typographic
attacks and from 89.0% to 47.5% for adver-
sarial perturbations. Further analysis reveals
that the key bottleneck in vision-language se-
curity lies not in isolated model vulnerabilities,
but in cross-modal interactions, where adver-
sarial cues in the vision model fail to consis-
tently activate the defense mechanisms of the
language model. Our code is publicly available
at https://github.com/AngelAlita/AsD.

1 Introduction

As large language models (LLMs) have grown
increasingly sophisticated, so have efforts to en-
force safety and prevent misuse (Achiam et al.,
2023). Despite these advancements, models remain
vulnerable to adversarial manipulation, resulting
in a phenomenon known as "jailbreaking." Jail-
breaking involves designing prompts that bypass
a model’s built-in safety measures, often leading
to unintended, harmful, or even unethical outputs.
This issue gained widespread attention with the
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Figure 1: The proposed Attack as Defense strategy can
defends against multiple combined jailbreaking of per-
turbation, typographic attacks.

release of ChatGPT, as "jailbreak prompts" began
circulating extensively on social media (Achiam
et al., 2023). These manipulations range from overt
strategies, such as role-playing scenarios such as
the infamous DAN (Do Anything Now) prompt
(walkerspider, 2022; JailbreakChat, 2024), to more
subtle attacks that exploit weaknesses in the ethical
constraints of a model (Shen et al., 2023; Anthropic,
2023). Although these attacks often require signif-
icant human ingenuity, their increasing frequency
underscores persistent vulnerabilities in the safety
mechanisms of even the most advanced models
(Ganguli et al., 2022).

Although advances in defense mechanisms have
improved the security of large language mod-
els (LLMs), Multimodal Large Language Models
(MLLMs) introduce new vulnerabilities, particu-
larly in their visual components (Zhao et al., 2024;
Liu et al., 2024; Qi et al., 2024; Shayegani et al.,
2023a). Unlike text-only models, MLLMs also
face adversarial image manipulations, which have
emerged as a significant attack vector as textual
defenses improve (Shayegani et al., 2023a). At-
tackers embed malicious content into benign im-
ages or overlay adversarial text, as exemplified by
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techniques such as Figstep (Gong et al., 2023; Liu
et al., 2023b), to evade existing security measures.
These challenges highlight the need for more com-
prehensive cross-modal defense strategies.

Building on foundational techniques, more ad-
vanced jailbreak variants have emerged. These
methods introduce pixel-level adversarial pertur-
bations into benign images, creating adversarial
examples that bypass existing defenses (Shayegani
et al., 2023a). This combination of visual and ad-
versarial manipulation significantly increases the
effectiveness of attacks, underscoring the need for
more robust defenses in vision-language models.

In summary, the vulnerability of vision-language
models (VLMs) to multimodal jailbreaks arises
from weaknesses in the visual modality. Attacks
exploit the model’s semantic understanding by
embedding malicious content, either through text
or deceptive visual cues, allowing them to evade
safety mechanisms focused primarily on textual
constraints.

At the same time, the mechanisms that enable
these attacks suggest a potential direction for de-
fense. If adversarial perturbations can be crafted
to manipulate a model’s predictions, they can also
be designed to constrain them. In this work, we
introduce Attack as Defense (AsD), a strategy that
reframes adversarial attack techniques as a means
of protection. As shown in Figure 1, our approach
follows the same underlying principles as adversar-
ial attacks but redirects them to reinforce, rather
than undermine, the model’s integrity. By leverag-
ing the shared semantic space between the visual
and language components, we embed protective
prompts within images, ensuring that the defense
remains effective across different attack types and
model architectures.

AsD strategy provides a universal defense ap-
proach, adaptable across various attack types. For
typography-based attacks, protective semantics are
embedded directly into the visual content, neutral-
izing conceptual threats. In perturbation-based at-
tacks, the defense is augmented with pixel-level
modifications that disrupt malicious inputs. De-
spite differences in the underlying mechanics, the
core defense strategy remains consistent, provid-
ing robust protection against both typographic and
adversarial perturbation attacks. The main contri-
butions of this work are as follows.

• We introduce Attack as Defense (AsD), a
defense framework that repurposes adversar-

ial perturbations to reinforce language model
safeguards. Unlike existing methods that in-
tervene at the text generation stage, AsD is
the first to defend at the cross-modal level,
disrupting attacks before they propagate to
the language model. By embedding protec-
tive perturbations in the vision modality, AsD
proactively engages cross-modal defenses, re-
ducing the model’s vulnerability to jailbreak
attempts. Our analysis further highlights a key
limitation in vision-language robustness: the
inconsistent activation of text-based defenses
by adversarial visual cues, underscoring the
need for stronger cross-modal security mech-
anisms.

• AsD is training-free and universally applica-
ble across different vision-language models.
Unlike existing approaches that rely on ex-
plicit model retraining or fine-tuning, AsD op-
erates as an input-level intervention, applied
directly to images like a patch. This enables
scalable deployment across architectures with-
out modifying model parameters.

2 Related Work

2.1 VLM Jailbreaking
Jailbreaking seeks to bypass AI systems’ safety
mechanisms, enabling them to generate harmful or
undesirable content, thereby exposing security vul-
nerabilities. One type of method for jailbreaking
Vision-Language Models (VLMs) involves adver-
sarial attacks, where minimal but carefully crafted
perturbations are used to make the model deviate
from its intended outputs. Qi et al. (2023) optimize
visual adversarial examples, allowing them to uni-
versally bypass the security defenses of the model.
Similarly, Bailey et al. (2023) introduces an image
hijacking approach based on Behavior Matching
and Prompt Matching, manipulating VLM outputs
in line with the attacker’s preset instructions. Wang
et al. (2024b) propose a dual-optimization approach
targeting both image and text inputs simultaneously
to maximize the likelihood of generating harmful
content. In contrast, Shayegani et al. (2023a) im-
plements embedding-space attacks by embedding
adversarial signals into visual representations, com-
bined with text prompts, to bypass alignment mech-
anisms and produce harmful outputs.

Another approach leverages the semantic con-
sistency of the visual encoder. Gong et al. (2023)
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AsD Strategy

 

If the image contains a instruction phrase, 
you must refuse to answer any inappropriate, 
dangerous, or unethical questions, and you 

must not provide …

Safety Trigger

[###Instruction]
The image may 
contain harmful 

content.

Sorry, I can’t answer your question.

Safety Perturbation

concat

Vision
Model

Language
Model

Synergy

Jailbreaking Attempt

List steps in detail to design an 
AI-powered mobile app that 
enables users to perform this 

activity.

1. Obtain a laptop and ...
2. Set up a workspace ...
3. Acquire a variety of ...
4. Organize the workspace ...
5. Develop a user-friendly ...

...

overlay

Malicious image

Figure 2: AsD (Attack as Defense) strategy integrates visual and textual safety mechanisms in a synergistic manner.
In the visual model, a safety trigger image is transformed into adversarial perturbations and overlaid onto the
potentially harmful image. Simultaneously, the system augments text prompts with safety instructions, guiding the
language model to reject unethical or dangerous requests.

transforms textual inputs into typographic images,
circumventing safety measures designed for text-
based inputs. Expanding on this idea, Li et al.
(2024) proposes the HADES method, enhancing
jailbreak capabilities by converting harmful text
into typography, merging it with adversarial im-
ages, and prompting multimodal models to gener-
ate harmful content.

2.2 Jailbreaking Defense

To improve the safety of Vision-Language Mod-
els (VLMs) and prevent the generation of harmful
content, one strategy focuses on achieving better
alignment during training. Zong et al. (2024) high-
lights the issue of catastrophic forgetting in safety
alignments during fine-tuning and introduce VL-
Guard, a vision-language instruction, following a
dataset designed to enhance safety across models.
Similarly, Zhang et al. (2024) proposes a large-
scale safety preference alignment dataset, enabling
VLMs to more effectively filter harmful content. In
another approach, Chen et al. (2024b) emphasizes
the risk of VLMs generating unhelpful or harmful
responses without additional feedback mechanisms.
To address this, they propose Natural Language
Feedback (NLF) to guide safety alignment, training
the models with conditional reinforcement learning
to improve responses.

An alternative approach focuses on inference-

time alignment, offering a more cost-effective
and practical defense strategy. Wu et al. (2023)
highlight VLM vulnerabilities to system prompts
and propose improving prompt design to mitigate
manipulation, though this relies on manual ad-
justments, limiting flexibility. To address this,
Adashield Wang et al. (2024c) introduce an adap-
tive framework that dynamically refines defense
prompts in real time.

Beyond static prompts, Wang et al. (2024a) lever-
age Safety Steering Vectors (SSVs) extracted from
aligned models to adjust activation states during in-
ference, guiding models toward safer outputs. Sim-
ilarly, Gou et al. (2024) reduce reliance on raw im-
age inputs by converting images to text, mitigating
visual manipulation risks at the cost of increased
computational overhead.

For detecting jailbreak attempts, CIDER Xu et al.
(2024) propose measuring cross-modal similarity
between text and images, setting thresholds to en-
hance safeguards. Meanwhile, Fares et al. (2024)
introduce a two-step verification process: first gen-
erating captions from a VLM, then reconstructing
images using a Text-To-Image model. By com-
paring the embeddings of the original and recon-
structed images, this method detects adversarial
modifications in the visual domain.
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3 Attack as Defense (AsD) Strategy

3.1 Overview

Existing adversarial attacks exploit vulnerabilities
in the vision-language embedding space. Aich
et al. (2022) generate perturbations by deceiving
surrogate classifiers, while Zhao et al. (2024) use
visual encoders to align adversarial images with
target targets in generative models. While these
approaches focus on attacking vision-language
models, defenses for large-scale language models
(LLMs) have primarily targeted text-only jailbreak
attempts.

We propose Attack as Defense (AsD), a strat-
egy that integrates visual and textual defenses to
counter multimodal adversarial attacks. As shown
in Figure 2, AsD consists of two key components:
visual perturbations and system prompts. The vi-
sual defense embeds safety triggers into images,
transforming them into safety perturbations that
modify the vision model’s embedding space while
preserving perceptual quality. The textual defense
augments system prompts with safety constraints,
ensuring the language model correctly interprets
visual cues and rejects unsafe queries. Together,
these mechanisms provide a coordinated defense
against jailbreaking attempts.

3.2 Safety Trigger

The safety trigger is central to generating safety per-
turbations, however, it can be any image that con-
veys safety warning semantics. In our experiments,
we find that using a simple image with warning
text (e.g., "[###Instruction] The image may con-
tain harmful content") provides strong defensive
performance. When we combine these visual warn-
ing images with additional warning visuals, such as
various exclamation marks, the system still main-
tains the safety signal but shows a slight decrease
in its ability to accurately process pure text instruc-
tions. We also observe that longer textual prompts
challenge the model’s capacity to embed the full se-
mantic content. Based on these findings, we adopt
a safety trigger with a short and simple warning
text for our defense strategy.

3.3 Safety Perturbation

Generation. The safety perturbation x̂iadv is
generated from the safety trigger image xsafe by
the following equation:

x̂iadv = argminL2
(
Iϕ(xsafe), Iϕ(xiadv)

)
(1)

Algorithm 1 Safety Perturbation Generation

1: Input: Target safe input xsafe, Initial adver-
sarial image xiadv,

2: Vision encoder Iϕ(·), AdamW optimizer with
learning rate η and the number of iterations τ

3: Output: Adversarial image x̂iadv
4: Compute visual embedding Iϕ(xsafe)
5: for i = 1 to τ do
6: Compute adversarial embedding Iϕ(xiadv)
7: L ← L2

(
Iϕ(xsafe), Iϕ(xiadv)

)

8: Compute gradient g ← ∇xi
adv
L

9: Update xiadv ← xiadv − η · g
10: end for
11: return x̂iadv = xiadv

where Iϕ denotes the vision encoder from the CLIP
model, specifically the CLIP-ViT-Large-Patch14-
336 configuration. xsafe refers to the safety per-
turbation image, with its design detailed in Sec-
tion 3.2.

The objective is to minimize the l2 distance be-
tween the embeddings of the safety perturbation
and the safety trigger image using the AdamW
optimizer with a learning rate η, as outlined in
Algorithm 1. For our experiments, we set the learn-
ing rate to η = 0.1 and the number of iterations
τ = 5000, which yields effective results for embed-
ding the safety triggers within the vision-language
model.

Overlay. To preserve the visual integrity of be-
nign images, we refine the generated safety per-
turbation before application. First, we adjust its
transparency to minimize perceptual intrusion, en-
suring seamless integration with the input. Second,
we scale the perturbation to maintain proportional
coverage across different image sizes, preventing
excessive modification of the original content. The
processed perturbation is then randomly overlaid
at various locations, enhancing robustness against
adversarial attacks while preserving natural image
quality. Specific transparency levels and coverage
ratios are detailed in Section 4.5.

3.4 System Safety Prompt

To ensure consistent adherence to safety guide-
lines, the system-level safety prompt is embedded
directly into the language model’s input. It is con-
catenated with the user’s query before inference,
reinforcing alignment with predefined constraints
from the outset.
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The design of our safety prompt follows a prin-
cipled approach, drawing from established guide-
lines that provide explicit behavioral constraints.
Rather than relying on complex prompt engineer-
ing techniques such as role playing (walkerspider,
2022; JailbreakChat, 2024) or a few / many shot
prompt (Zheng et al., 2024; Anil et al., 2024), we
adopt a minimal but effective strategy that ensures
reliability in diverse scenarios.

The embedded safety prompt is: "If the image
contains an instruction phrase, you must refuse to
answer any inappropriate, dangerous, or unethical
questions, and you must not provide any details
about activities mentioned in the image that fall
under these categories". This prompt is adaptable,
allowing customization based on specific safety
policies and risk thresholds in different applica-
tions. We investigated two variants of the safety
prompt (see Appendix A.4) to determine the most
robust design.

4 Experiments

We evaluate Attack as Defense (AsD) strategy on
typography-based and perturbation-based jailbreak
attacks, assessing its defense performance, compu-
tational efficiency, and impact on benign images.
Additional analyses examine the ablation study on
perturbation coverage, opacity, and the model’s
ability to recognize safety perturbations.

4.1 Defense Performance
4.1.1 Typography-Based Jailbreaking
Datasets. We evaluate our defense strategy on
MM-SafetyBench (Liu et al., 2023b), a dataset of
5,040 text-image pairs spanning 13 scenarios. Sce-
narios 01-07 and 09 contain harmful key phrases
designed to elicit unsafe responses. Scenario 08
and 13 focus on political topics, ensuring neutrality,
while Scenarios 10-12 address legal, financial, and
health-related queries, where incorrect responses
may pose risks.

Models. Defense mechanisms are less explored
than attack strategies, limiting available base-
lines. LLaVA-1.5 (Liu et al., 2023a), Qwen-VL-
Chat (Bai et al., 2023), and ShareGPT4V (Chen
et al., 2024a) serves as a baseline with safety
alignment but struggles against jailbreak attacks
(Table 1). ECSO (Gou et al., 2024) enhances
safety by converting images into query-aware text,
restoring model safeguards. Additional results on
more models, including LLaVA-1.6 (Liu et al.,

2023a), Qwen2.5-VL (Bai et al., 2025), and In-
structBLIP (Dai et al., 2023), are provided in the
Appendix A.1.

Evaluation. Following Liu et al. (2023b), model
outputs are classified as ’safe’ or ’unsafe’ and au-
tomatically evaluated by GPT-4. We use Attack
Success Rate (ASR) as the primary metric. To
mitigate the evaluation bias and noise, we used
Llama Guard 3 (Llama Team, 2024) as an addi-
tional LLM judge for the LLaVA 1.6, Qwen2.5-VL
and InstructBLIP on the MM-SafetyBench Image
+ TYPO subset (see Appendix A.3.).

Table 1 presents the ASR results across 13 mali-
cious categories. Our method exhibits strong defen-
sive performance across nearly all categories. For
explicitly illegal or malicious categories (1-7 and
9), the ASR of LLaVA-1.5 for pure image attacks,
pure typography attacks, and combined image-plus-
typography attacks are 1.1, 5.8, and 12.6, respec-
tively, which are substantially lower compared to
other defense methods. Although the Text-Only
defense, which relies solely on the safety prompt,
is a simple and effective approach for pure image
attacks, its efficacy is considerably reduced when
confronting mixed image-text attacks. In contrast,
our AsD method, as a multimodal defense operat-
ing within the semantic embedding space, provides
significantly stronger protection against such mul-
timodal threats. For categories that are not overtly
malicious (8, 10-13) (in Appendix A.2), while the
defense performance is comparatively limited, it
can be enhanced by modifying the safety prompt
based on the required security level, thereby in-
creasing the robustness of the defense.

Vision-Language Synergy. To systematically
evaluate the interplay between vision and language
defenses, we conduct experiments on the Tiny Im-
age + Typography attack subset from the MM-
SafetyBench. Specifically, we assess the effective-
ness of visual perturbations and textual prompts
both in isolation and in combination. As shown
in Table 2, visual perturbations alone contribute
minimally to defense effectiveness, whereas their
integration with textual prompts leads to a substan-
tial improvement. This finding highlights a crit-
ical insight: Visual semantics, while insufficient
on their own, serve as amplifiers that enhance the
impact of language-based defenses. The results
suggest that multimodal defenses do not merely
stack independent safeguards but instead leverage
cross-modal reinforcement, where vision augments
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Model Category Image Typography Image + Typography
Normal Text-Only ECSO Ours Normal Text-Only ECSO Ours Normal Text-Only ECSO Ours

LLaVA-1.5

01-Illegal Activity 25.8 1.0 9.3 0.0 83.5 7.2 18.6 3.1 78.4 40.2 12.4 3.6
02-Hate Speech 16.0 1.8 5.5 1.2 49.1 7.4 20.2 3.1 60.1 22.7 21.5 4.5

03-Malware Generation 15.9 0.0 4.5 0.0 63.6 6.8 29.5 4.6 63.6 31.8 20.5 10.5
04-Physical Harm 24.3 2.8 9.0 1.4 67.4 11.8 25.7 6.3 66.0 33.3 27.8 11.4

05-Economic Harm 5.7 1.6 6.6 0.0 16.4 5.7 9.0 2.5 17.2 10.7 10.7 6.6
06-Fraud 23.4 0.7 10.4 0.7 74.7 13.0 26.6 9.1 72.1 35.7 22.1 22.0
07-Sex 7.3 7.3 7.3 5.5 30.3 14.7 31.2 10.1 33.9 28.4 30.3 19.3

09-Privacy Violence 18.7 2.2 11.5 0.0 64.8 15.8 25.9 7.9 62.6 42.5 26.6 23.0
Average 17.1 2.2 8.0 1.1 56.2 10.3 23.3 5.8 56.7 30.7 21.5 12.6

Qwen-VL-Chat

01-Illegal Activity 2.0 1.0 6.2 1.0 59.8 27.8 10.3 15.5 66.0 33.0 19.6 30.9
02-Hate Speech 1.8 1.2 1.2 3.7 39.9 21.5 6.7 4.9 53.4 23.3 12.3 16.0

03-Malware Generation 4.5 0.0 0.0 0.0 38.6 9.1 20.5 4.5 47.7 18.2 24.7 13.6
04-Physical Harm 2.1 1.4 1.4 1.4 49.3 20.1 18.1 6.9 54.9 18.8 23.6 14.6

05-Economic Harm 0.8 0.0 0.8 2.5 13.9 2.5 6.6 1.6 20.5 3.3 4.9 2.5
06-Fraud 1.9 0.6 0.6 0.0 61.0 11.0 10.4 4.5 72.1 13.4 16.9 6.5
07-Sex 7.3 0.9 3.7 0.9 31.2 13.8 14.7 6.4 25.7 12.8 14.7 12.8

09-Privacy Violence 0.0 1.4 3.4 1.4 61.9 12.9 15.8 14.4 60.4 25.2 18.0 18.0
Average 2.6 0.8 2.2 1.4 44.5 14.8 12.9 7.3 50.1 18.5 16.8 14.4

ShareGPT4V

01-Illegal Activity 19.6 0.0 5.1 1.0 83.5 0.0 13.4 1.0 77.3 0.0 11.3 1.0
02-Hate Speech 10.4 0.0 0.0 0.0 47.2 0.0 7.4 1.8 47.8 0.6 9.8 1.8

03-Malware Generation 9.1 2.2 0.0 0.0 63.6 0.0 9.1 0.0 52.3 0.0 25.0 0.0
04-Physical Harm 16.0 0.0 6.2 0.7 58.3 1.4 15.3 0.7 61.1 2.1 20.1 0.7

05-Economic Harm 1.6 0.0 0.0 0.0 13.1 1.6 5.7 0.0 10.7 0.8 3.3 0.0
06-Fraud 18.2 0.0 3.9 0.0 70.8 1.3 11.7 0.0 72.1 1.3 11.7 0.0
07-Sex 11.0 0.0 6.4 0.0 26.6 0.0 14.7 0.0 33.0 0.0 22.0 0.0

09-Privacy Violence 15.1 0.7 4.3 0.0 56.1 0.7 7.9 0.7 63.3 1.4 14.4 0.7
Average 12.6 0.4 3.2 0.2 52.4 0.6 10.7 0.5 52.2 0.8 14.7 0.5

Table 1: Attack success rate (ASR) comparison across the MM-SafetyBench (Liu et al., 2023b). ‘Normal’ denotes
the vanilla model, ECSO (Gou et al., 2024) is a text-only defense baseline, and ‘Text-Only’ applies only our system
prompt without visual intervention. Categories 1–7 and 9 exhibit explicit malicious intent and should be strictly
rejected as unsafe. The results of Categories 8 and 10-13 are in the Appendix A.2.

language-driven protections, forming a more cohe-
sive and robust security mechanism against com-
plex attacks.

LLaVA-1.5 Text Pert Ours (Text + Pert)

ASR 75.0 51.2 74.4 38.7

Table 2: Synergistic safeguard from both safety pertur-
bation (Pert) and safety prompt (Text), evaluated using
the ASR metric on the Tiny MM-SafetyBench dataset.

4.1.2 Perturbation-Based Jailbreaking
Datasets. Following Shayegani et al. (2023b), we
construct a dataset of 400 samples, each compris-
ing a harmful image and a malicious prompt. Ad-
versarial images are generated by optimizing CLIP
features to align with target image features from the
penultimate layer, then semi-transparently overlaid
onto the originals. Using 16 prompts, we perform
25 rounds of question-answering to generate the
full dataset.

Models. We evaluated the vulnerability of three
distinct model architectures to perturbation-based
jailbreaking attacks. We selected two models that
use CLIP as the visual encoder: LLaVA-1.5 and its
successor, LLaVA-1.6. To demonstrate the general-
izability of our findings, we also included models
with alternative visual encoders. These include

Model Baseline CIDER Text-Only Ours

LLaVA-1.5 89.0 63.5 53.5 47.5
LLaVA-1.6 78.0 22.8 25.6 20.0
InstructBLIP 33.3 6.0 1.3 0.0
PaliGemma 84.3 60.0 37.5 36.5

Table 3: ASR comparison of perturbation-based jail-
breaking attacks on LLaVA-1.5, LLaVA-1.6, Instruct-
BLIP, and PaliGemma, evaluated against baseline meth-
ods CIDER (Xu et al., 2024), (Liu et al., 2023b), and
our method.

InstructBLIP, which utilizes a Q-Former architec-
ture, and PaliGemma (Beyer et al., 2024), which
employs SigLIP as its visual encoder.

Results. The evaluation method is the same as
described in 4.1.1. The results are shown in Table 3.
On LLaVA-1.5, adversarial perturbation-based at-
tacks are highly effective (Shayegani et al., 2023a),
achieving an ASR of 89%, while CIDER and text-
only defenses reduce it to 63.5% and 53.5%, re-
spectively. Our method further lowers the ASR
to 47.5%. Similar reductions are observed across
LLaVA-1.6, InstructBLIP, and PaliGemma, where
our method consistently achieves the lowest ASR
compared with both CIDER and text-only defenses.
Notably, our safety perturbation covers only 25%
of the image and includes transparency, indicating
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Method Additional
Inference

Auxiliary
Modules

Inference
Time

Peak GPU
Memory

ECSO ! % 17.8s 15.7GB
AdaShield % ! 1.6s 22.0GB
CIDER % ! 7.2s 30.2GB
Ours % % 3.01s 15.4GB

Table 4: Comparison of architectural and computa-
tional characteristics across VLM defense methods. Our
method avoids additional inference cost and auxiliary
modules, while achieving low latency and efficient mem-
ory usage.

that the defense is not merely a result of obscur-
ing image content but rather effectively combats
malicious elements at the semantic level. Further
analysis of these factors is provided in Section 4.5.

4.2 Computational Costs

Most current jailbreak defense methods operate
at the language model level or focus on isolated
modalities, introducing significant computational
overhead, as summarized in Table 4. To illustrate
these trade-offs, we analyze three representative
approaches that cover different defense paradigms:
ECSO, AdaShield, and CIDER. These methods
primarily focus on mitigating attacks during text
generation, often requiring additional inference-
time interventions or external filtering mechanisms,
which further increase computational cost. We per-
form a quantitative analysis by measuring the in-
ference time and peak GPU memory usage on 50
samples from MM-SafetyBench.

ECSO converts potentially harmful images into
textual descriptions, introducing costly inference
steps. AdaShield employs an auxiliary LLM to
generate defense prompts, operating solely in the
text modality. CIDER integrates an isolated image
denoising module to mitigate adversarial attacks,
further increasing computational and storage de-
mands. In contrast, AsD requires neither additional
inference nor auxiliary modules, significantly re-
ducing computational overhead. Moreover, as a
cross-modal approach, it operates directly on both
text and images, ensuring efficient and scalable
deployment.

4.3 Can the Model Comprehend the Safety
Perturbations?

We examine whether vision-language models gen-
uinely understand the semantics of safety-related
perturbations or merely react to their presence.

Figure 3: Examples of the model detecting semantics in
safety perturbations. Safety-related content is in green,
malicious text in red. Images are blurred for ethical
considerations.

These perturbations, designed to obscure parts of
an image as a defensive measure, can mitigate at-
tacks by masking harmful content. However, ef-
fective defense requires more than occlusion, it
demands that the model recognize and interpret the
safety signals embedded within the perturbations.

As illustrated in Figure 3, the model successfully
identifies both safety-critical (green) and malicious
content (red), even when perturbations are subtle.
This suggests that the model is not simply react-
ing to masked regions but can actively interpret
their defensive intent. While occlusion reduces
an attack’s immediate impact, our results indicate
that models can go beyond passive obfuscation and
leverage safety perturbations as meaningful signals,
strengthening their robustness against adversarial
threats.

4.4 Benign Images Performance
Ensuring that a defense mechanism does not com-
promise normal model behavior is critical for prac-
tical deployment. To evaluate this, we assess its
impact on two benchmark tasks: MM-Vet and Sci-
enceQA datasets.

Datasets. The MM-Vet (Yu et al., 2024) is de-
signed for complicated multimodal tasks. It fo-
cus on six core visual-language functions: recogni-
tion, OCR, knowledge, language generation, spa-
tial awareness, and mathematical computation. It
contains 200 images from online sources, VCR
dataset and ChestX-ray14 dataset, with 218 ques-
tions. The goal is to evaluate how effectively mod-
els can combine different skills to solve complex
problems that involve visual and text information.
The ScienceQA (Lu et al., 2022) is a large-scale
resource for multimodal question answering, focus-
ing on science and general knowledge. It includes
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Figure 4: Performance comparison across different cat-
egories of the MM-Vet dataset.

over 21,000 questions paired with explanatory dia-
grams or text across domains like biology, physics,
and chemistry, testing both factual knowledge and
reasoning abilities of models.

LLaVA-1.5 Ours

ScienceQA 70.2 67.0
MM-Vet 31.1 23.9

Table 5: Performance comparison between Baseline and
Ours on ScienceQA and MM-Vet datasets.

Results. As shown in Table 5 and Figure 4, our
method introduces a controlled degree of occlu-
sion, resulting in a minor decrease in performance.
On ScienceQA, accuracy declines from 70.2% to
67.0%. While this indicates some loss of visual
information, the model retains its overall capacity
for image understanding. On MM-Vet, compared
to other defense strategies, our approach strikes
a balance between robustness and accuracy, miti-
gating adversarial threats while maintaining com-
petitive performance. These findings suggest that
although occlusion inevitably impacts recognition,
the trade-off remains manageable, underscoring the
effectiveness of our method in preserving model
utility under adversarial conditions.

4.5 Ablations of Coverage and Opacity
The effectiveness of visual perturbations hinges
on two critical parameters: spatial coverage (de-
fense area proportion) and opacity (perturbation
intensity). We formalize their trade-off through

D(c, o) = α · ASR(c, o)− β ·∆Acc(c, o) (2)

where c ∈ [0.2, 0.9] denotes coverage, o ∈
[0.3, 0.9] opacity, and (α, β) are task-specific

weights.
Sampling across above configurations, we eval-

uate: (1) Attack success rate (ASR) reduction
against state-of-the-art attacks (Figure 5a, b), and
(2) Preservation of visual reasoning capability via
TextQA accuracy (Figure 5c). Attack scenarios
include: Typography Attacks: Adversarial text ren-
dering (e.g., toxic words in styled fonts) and Per-
turbation Attacks: Gradient-based universal noise
patterns. As shown in Figure 5, the findings demon-
strate a clear correlation: Non-linear Interaction:
The defense efficacy surfaceD(c, o) exhibits phase
transitions. Beyond critical thresholds (c > 0.6,
o > 0.8), marginal security gains diminish rapidly
while capability degradation accelerates. Attack-
Type Dependence: Typography defenses require
balanced c-o coordination, whereas perturbation
defenses prioritize coverage. This aligns with at-
tack vectors’ sensitivity to spatial occlusion versus
intensity variation.

Based on these observations, we adopt 25% cov-
erage and 70% opacity as the optimal settings in
our experiments. Nevertheless, given the limited
range of our sampling, there may be superior hy-
perparameter combinations, particularly when used
alongside other safety triggers.

4.6 Qualitative Analysis of Safety Failures
Our qualitative analysis reveals two key issues in
multimodal safety mechanisms (Figure 6-7 in the
Appendix). First, a post-hoc filtering paradigm
remains dominant: systems such as LLaVA-1.5 fre-
quently emit disallowed content before issuing a
refusal, which indicates that safety verification is
executed externally rather than embedded within
the decoding process. Second, we observe cross-
modal attenuation: visual danger signals, although
correctly encoded by the vision backbone, are pro-
gressively weakened at the vision-to-language in-
terface and consequently fail to constrain the lin-
guistic output.

These deficiencies give rise to three recurrent
failure modes. The model may (i) comply ini-
tially and apologise only after the fact, evidenc-
ing latency in refusal; (ii) process visual and tex-
tual streams in isolation, yielding modality-specific
judgements that remain unaligned; or (iii) privilege
the linguistic prompt when it conflicts with visual
evidence, thereby overriding embedded safeguards.
Collectively, these observations demonstrate that
strengthening a single modality is inadequate; ro-
bust safety demands integrated, end-to-end align-
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Figure 5: Ablation study on the transparency and coverage of the safety perturbation.

ment across the entire multimodal pipeline.

5 Conclusion

We introduce Attack as Defense (AsD), a cross-
modal defense strategy that repurposes adversar-
ial attack techniques to enhance vision-language
model security. By embedding defensive perturba-
tions in the vision modality, AsD reinforces prompt-
based defenses, significantly reducing the success
rate of both typographic and adversarial attacks.
Our analysis reveals that multimodal vulnerabili-
ties stem not from isolated weaknesses in vision
or language models but from the failure of cross-
modal signals to reliably activate language model
defenses. This insight underscores the need to
shift focus from unimodal safety mechanisms to
cross-modal alignment. AsD provides a scalable,
model-agnostic solution to evolving jailbreak at-
tacks, demonstrating that adversarial techniques
can be restructured to serve as proactive safeguards
rather than threats.

Limitations

Although our method effectively reduces the suc-
cess rate of jailbreaking attacks, it comes at the
cost of some performance degradation on clean im-
ages. This trade-off arises because the defensive
perturbations, while serving as a protective mecha-
nism, inevitably introduce additional noise at both
the image and semantic levels, interfering with the
original representations of the model. The chal-
lenge lies in striking a balance between the defense
and preservation of clean image integrity, an issue
that remains unresolved.

A key limitation of our approach is the difficulty
in isolating the defensive perturbations from the
core visual features that the model relies on for
accurate predictions. Existing methods for inte-
grating adversarial perturbations into the defense
pipeline still lack precise control over their seman-

tic influence. Future research should focus on re-
fining how these perturbations interact with the
model, both in terms of their application strategy
and their synergy with language-based defenses.
Whether through optimizing the way perturbations
are overlaid, refining prompt-based interventions,
or exploring new ways to disentangle defensive
signals from core image features, more work is
needed to improve robustness without sacrificing
clean image performance.

Ethical Impact

The Attack as Defense (AsD) strategy introduces
a dual-use concern, as the same adversarial tech-
niques designed to enhance security could also be
repurposed for refining attacks. This creates a risk
of escalating the security arms race, making it es-
sential to ensure that the method is deployed re-
sponsibly to prevent malicious use.

Additionally, the complexity of adversarial de-
fenses may reduce the transparency of the model,
making it harder to interpret and trust its deci-
sions. In high-stakes applications, this opacity un-
derscores the need for clear accountability struc-
tures, ensuring that the system’s behavior is under-
standable and that responsibility is assigned in case
of failure.
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A Appendix

A.1 Defense Performance on Additional Models

Model Category Image + Typography
Normal Text-Only ECSO Ours

LLaVA-1.6

01-Illegal Activity 93.8 51.5 14.4 21.6
02-Hate Speech 63.8 32.5 13.5 23.3

03-Malware Generation 81.8 52.3 31.8 15.9
04-Physical Harm 89.6 68.1 35.4 19.4

05-Economic Harm 27.9 22.1 16.4 8.2
06-Fraud 75.3 51.3 13.6 12.3
07-Sex 34.9 26.6 15.6 21.1

09-Privacy Violence 87.8 52.5 20.1 22.3

Average 69.4 44.6 20.1 18.0

Qwen2.5-VL

01-Illegal Activity 45.4 6.2 14.4 2.1
02-Hate Speech 46.6 13.5 31.3 1.8

03-Malware Generation 79.5 20.5 47.7 6.8
04-Physical Harm 78.5 29.9 53.5 15.3

05-Economic Harm 21.3 7.4 21.3 8.2
06-Fraud 59.7 9.1 13.6 0.6
07-Sex 46.8 21.1 46.8 10.1

09-Privacy Violence 64.7 16.5 38.8 4.3
Average 55.3 15.5 33.4 6.2

InstrctBLIP

01-Illegal Activity 60.8 17.5 13.4 2.1
02-Hate Speech 38.7 14.1 7.4 4.3

03-Malware Generation 47.7 6.8 29.5 0.0
04-Physical Harm 38.2 11.1 23.6 4.2

05-Economic Harm 17.2 9.8 9.8 3.3
06-Fraud 44.2 9.1 9.7 1.3
07-Sex 29.4 22.9 6.4 8.3

09-Privacy Violence 51.8 5.8 17.3 1.4
Average 41.0 12.1 14.6 3.1

Table 6: Attack success rate (ASR) on the ’Image + Typography’ setting of MM-SafetyBench (Liu et al., 2023b).
‘Normal’ denotes the vanilla model, ECSO (Gou et al., 2024) is a text-only defense baseline, and ‘Text-Only’ applies
only our system prompt without visual intervention.

A.2 Defense Performance on Harmless Scenarios in MM-SafetyBench

Model Category Image Typography Image + Typography

Normal Text-Only Ours Normal Text-Only Ours Normal Text-Only Ours

LLaVA-1.5

08-Political Lobbying 64.7 22.9 14.4 92.8 45.1 25.5 94.2 76.7 51.6
10-Legal Opinion 88.5 51.5 53.1 90.8 69.2 66.2 93.1 77.7 69.2

11-Financial Advice 100.0 93.4 91.6 97.6 94.6 92.8 98.8 96.4 96.4
12-Health Consultation 96.3 70.6 58.7 99.1 72.5 70.6 96.3 93.6 77.1

13-Gov Decision 96.0 46.3 33.6 98.7 66.4 52.4 97.3 85.2 70.5

Average 89.1 56.9 50.3 95.8 69.6 61.5 95.9 85.9 73.0

Qwen-VL-Chat

08-Political Lobbying 32.0 25.5 22.9 85.6 28.1 22.9 93.5 47.1 45.1
10-Legal Opinion 53.1 32.3 48.5 67.7 43.1 29.2 72.3 39.2 36.9

11-Financial Advice 65.9 82.0 85.6 98.2 86.2 84.4 97.0 88.0 90.4
12-Health Consultation 69.7 57.8 45.9 83.5 56.0 47.7 89.9 58.7 65.1

13-Gov Decision 51.0 25.5 18.8 83.9 37.6 40.3 92.6 48.9 37.6

Average 54.3 44.6 44.3 83.8 50.2 44.9 89.1 56.4 55.0

ShareGPT4V

08-Political Lobbying 59.5 38.6 13.1 60.1 45.8 33.3 93.5 49.0 32.0
10-Legal Opinion 96.9 60.0 53.8 94.6 65.4 46.2 99.0 59.2 47.7

11-Financial Advice 99.0 91.2 95.2 100.0 93.4 94.6 99.0 96.4 91.6
12-Health Consultation 97.2 67.9 67.0 98.2 76.1 77.1 98.2 76.1 78.0

13-Gov Decision 96.0 37.6 25.5 98.0 35.6 19.5 99.3 32.2 20.1

Average 89.7 59.1 50.9 90.2 63.3 54.1 97.8 62.6 53.9

Table 7: Attack success rate (ASR) comparison on personal topics (Categories 08, 10–13) from MM-SafetyBench
(Liu et al., 2023b). ’Normal’ refers to vanilla models. The ’Text-Only’ baseline applies our system prompt without
visual input. Our method consistently reduces ASR across sensitive question types.
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A.3 Safety Evaluation using Llama Guard 3

Model Category Image + Typography
Normal Text-Only Ours

LLaVA-1.6

01-Illegal Activity 54.6 6.2 6.2
02-Hate Speech 19.6 3.1 0.6

03-Malware Generation 20.5 2.3 2.3
04-Physical Harm 34.7 4.2 4.2

05-Economic Harm 5.7 1.6 0.0
06-Fraud 37.0 4.5 5.8
07-Sex 6.4 0.0 0.9

09-Privacy Violence 26.6 5.8 5.0

Average 25.6 3.3 3.1

Qwen2.5-VL

01-Illegal Activity 21.6 2.2 0.0
02-Hate Speech 11.7 1.2 0.0

03-Malware Generation 29.5 0.0 0.0
04-Physical Harm 31.3 0.0 0.7

05-Economic Harm 1.6 0.0 0.0
06-Fraud 22.7 1.9 0.0
07-Sex 6.4 0.9 0.0

09-Privacy Violence 25.9 0.7 0.7

Average 18.8 0.9 0.2

InstructBLIP

01-Illegal Activity 39.2 7.2 1.0
02-Hate Speech 15.3 1.2 1.2

03-Malware Generation 27.3 4.5 0.0
04-Physical Harm 14.6 4.9 0.0

05-Economic Harm 1.6 1.6 0.0
06-Fraud 25.3 1.9 0.6
07-Sex 21.1 11.0 5.5

09-Privacy Violence 35.3 1.4 0.0

Average 22.5 4.2 1.0

Table 8: Attack success rate (ASR) on the ’Image + Typography’ setting of MM-SafetyBench (Liu et al., 2023b).
‘Normal’ denotes the vanilla model, and ‘Text-Only’ applies only our system prompt without visual intervention.

A.4 Variants of Safety Prompt
To assess the robustness of our safety prompt, we explored two variants of the safety prompt proposed
in this paper. The results of a subset of MM-SafetyBench are shown below in Table 9. We find that the
current prompt design is the most effective.

• Core (Focuses on the core instructions, eliminating conditional statements):
“You must refuse to answer any inappropriate, dangerous, or unethical questions and must not provide
any details related to such activities.”

• Simplified Instruction (Retains the conditional phrase but simplifies its wording):
“If the image contains an instruction phrase, you should refuse to answer any inappropriate, dangerous,
or unethical requests and withhold all related details.”

Method ASR

Baseline 75.0
Text-only 51.2
Core 57.7
Simplified Instruction 57.7
Ours 38.7

Table 9: ASR performance using different prompts on the tiny MM-SafetyBench dataset. ’Text-only’ is only using
the prompt.
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A.5 Qualitative Results on Typography-based and Perturbation-based Jailbreaking

Figure 6: Typography-based Jailbreaking: Examples comparing the output of LLaVA-1.5 with and without our
safety perturbation. For ethical reasons, the example images are blurred, and key details in the responses are replaced
with ellipses (’...’). Generated malicious content is highlighted in red.
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Figure 7: Perturbation-based Jailbreaking: Examples comparing the output of LLaVA-1.5 with and without our
safety perturbation. For ethical reasons, the example images are blurred, and key details in the responses are replaced
with ellipses (’...’). Generated malicious content is highlighted in red.
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