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Abstract

We examine three evaluation paradigms: stan-
dard benchmarks (e.g., MMLU and BBH),
interactive games (e.g., Signalling Games or
Taboo), and cognitive tests (e.g., for working
memory or theory of mind). First, we inves-
tigate which of the former two—benchmarks
or games—is most effective at discriminating
LLMs of varying quality. Then, inspired by hu-
man cognitive assessments, we compile a suite
of targeted tests that measure cognitive abili-
ties deemed essential for effective language use,
and we investigate their correlation with model
performance in benchmarks and games. Our
analyses reveal that interactive games are supe-
rior to standard benchmarks in discriminating
models. Causal and logical reasoning correlate
with both static and interactive tests, while dif-
ferences emerge regarding core executive func-
tions and social/emotional skills, which corre-
late more with games. We propose a new eval-
uation framework triangulating LLMs progress.
Our findings highlight the importance of defin-
ing evaluation regimes that consider multiple
paradigms. We advocate for the development
of new interactive benchmarks and targeted
cognitive tasks inspired by human ability as-
sessments but designed specifically for LLMs.
The code for running the experiments is re-
leased at: https://github.com/momentino/
playpen_eval/tree/triangulating.

1 Introduction

Evaluating LLMs is critical to track progress, iden-
tify blind spots, and ultimately advance towards the
kind of language-based Al systems we want as a so-
ciety (Wooldridge and Jennings, 1995). Currently,
the most widespread way to evaluate LLMs is by
means of large benchmarks made up of miscella-
neous tasks. Pre-LLM benchmarks such as GLUE
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and SuperGLUE (Wang et al., 2019b,a) have been
replaced by even larger evaluation suites such as
MMLU (Measuring Massive Multitask Language
Understanding; Hendrycks et al., 2021), MMLU-
Pro (Wang et al., 2024), or BBH (BIG-Bench Hard;
Suzgun et al., 2023; Srivastava et al., 2023). Mod-
els with high performance on these benchmarks are
taken to possess extensive world knowledge along
with complex problem-solving abilities.

This trend has promoted standardisation in LLM
evaluation protocols, with online leaderboards
constantly updated as new models are released.
Despite this undeniable benefit, general-purpose
benchmarks, like those mentioned above, are not
without problems. Evaluation results may be in-
flated by data contamination (see, e.g., Gema et al.
2025 for MMLU) and distorted by model sensitiv-
ity to prompt format (Zhuo et al., 2024). Moreover,
by design, such benchmarks overlook actual lan-
guage use in favour of knowledge-intensive tasks
where success is measured against gold reference
answers provided in a single conversational turn.

This contrasts with the view, put forward by
philosophers and psycholinguists alike (Wittgen-
stein, 1953; Austin, 1962; Searle, 1969; Clark,
1996), that the quintessence of language resides
in situated language use, i.e., using language
for a purpose in social and task-based multi-turn
interactions (Bisk et al., 2020). This situated and
interactive view underpins a parallel trend where
LLMs are evaluated as goal-directed language
users by means of interactive games (Bertolazzi
et al., 2023; Schlangen, 2023; Suglia et al., 2024).1
This interactive evaluation paradigm goes beyond
single-turn text generation, which is critical for
deploying LLMs as agents. Additionally, it is

'Online leaderboards have started to appear for the in-
teractive games evaluation paradigm; see, e.g., https://
textarena.ai/, https://clembench.github.io.
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less susceptible to data contamination because
the vast space of possible multi-turn interactions
is unlikely to be fully represented in the training
data. Yet, despite these advantages, it is not easy to
pinpoint which specific abilities underpin models’
performance on interactive language games—a
difficulty that to some extent also applies to static
question-answering benchmarks such as MMLU.

In this paper, we study these two evaluation
paradigms—general-purpose benchmarks and in-
teractive games—and show that they can provide
complementary perspectives. In particular, we in-
vestigate whether standard benchmarks or games
are more effective in gauging qualitative differ-
ences between models, evaluate a selection of cur-
rent LLMs from five model families, and find that
games highlight more nuanced differences between
LLMs compared to standard benchmarks. While
scaling model size leads to systematic improve-
ments on benchmarks, game-based evaluation re-
veals differences between models of the same size.

To shed light on the abilities underlying models’
performance on these two evaluation frameworks,
we resort to targeted cognitive tests. In the ab-
sence of specifically designed tests for LLMs, we
propose a taxonomy of cognitive skills motivated
by human neurocognitive science and compile
a list of existing evaluation datasets designed to
assess each skill in isolation. Specifically, we
investigate to what extent increased performance
on specific abilities correlates with performance
gain in standard benchmarks and interactive games,
respectively.

In sum, our work brings in a unique perspective
by studying the interrelations between a diverse set
of evaluation paradigms which, to our knowledge,
have not been jointly investigated before.

2 Models

We apply our evaluation framework to the follow-
ing open-weight LLMs ranging from 3.8B to 72B
models: Phi-4-Mini with 3.8B parameters (Mi-
crosoft et al., 2025), OLMo-2-1124 with 7B and
13B parameters (Walsh et al., 2024), Falcon3 with
10B parameters (Falcon Team, 2024), Qwen2.5
with 7B, 32B, and 72B parameters (Yang et al.,
2024; Team, 2024), and Llama-3 with 8B and 70B
parameters (Grattafiori et al., 2024). All these
models score above 70% on IFEval (Zhou et al.,
2023), which we take as indication that they pos-
sess the instruction-following capabilities neces-

sary for playing games and understanding task de-
scriptions in the cognitive tests. See Appendix A
for further model details.

3 How to Identify Blind Spots in LLMs

Evaluation paradigms have most practical use when
they allow us to track progress by identifying
blind spots in LLMs. Here we compare the two
paradigms under study on the extent to which they
highlight differences between current models, help-
ing us form hypotheses about possible performance
gaps and successful mitigation strategies.

General-purpose reference-based benchmarks
We take MMLU (Hendrycks et al., 2021) and
BBH (Suzgun et al., 2023) as representative of
standard benchmarks. MMLU evaluates whether
LLMs can apply knowledge from specific domains:
it consists of multiple-choice questions spanning 57
academic subjects. BBH assembles diverse tasks
drawing problems from linguistics, child develop-
ment, maths, and common-sense reasoning, a.o.

Interactive games We take clembench (Chala-
malasetti et al., 2023) as a benchmark to assess
LLMs’ gameplay ability in dialogue games. We
consider the games 1) Taboo, 2) Wordle (base) and
the two variants Wordle (Clue) and Wordle (Critic),
3) Reference Game, 4) Image Game, and 5) Pri-
vate/Shared. Game descriptions and examples are
provided in Appendices C and D.

Taboo
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Wordle (Clue) Wordle
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Figure 1: Accuracy for all models on standard bench-
marks and interactive games. See Table 3 in App. L.
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Figure 2: Comparing datasets in their power to discriminate between models of different size but same family (left)
and of different families but similarly large (right). The number next to the benchmark’s name indicates the ratio of
performance between the two models. The asterisk ‘*’ next to Wordle indicates that the ratio is undefined.

Results Figure 1 shows models’ performance

on the standard benchmarks and interactive games.

While the OLMo-2 models are more inconsistent
across different model sizes, all the other models
exhibit the expected pattern of showcasing better
performance on both benchmarks and interactive
games as the parameter count increases. At the

same time, we observe that most of the interactive
games highlight the benefits of larger model sizes
much more strongly. This can more easily be
appreciated in Figure 2 (left). In this visualisation,
the further away a benchmark is from the diagonal,
the more affected performance is by model
size. While Wordle is an extremely challenging
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game for any model, scaling up the number of
parameters appears to be fundamental to succeed
at Private/Shared, Image Game, and Reference
Game—much more than what can be observed for
MMLU and BBH.

Is size however all we need? Figure 2 (right)
shows that reference-based benchmarks do not sub-
stantially distinguish between models of compa-
rable size: Scaling on the number of parameters
results in performance boosts across model fami-
lies. Hence, arguably, reference-based benchmarks
test for abilities that can be expressed within para-
metric knowledge. Given that such benchmarks are
currently the standard LLM evaluation paradigm, it
is not surprising that scaling is high on the agenda
of model developers. In contrast, interactive games
seem to provide a different picture: models with
comparable parametric capacity perform very dif-
ferently on Image Game, Private/Shared, and Wor-
dle (Clue/Critic). Similar trends can be observed in
other model comparisons (see Appendix I). This re-
sult supports the hypothesis that size is not all there
is behind the potential of LLMs to learn inferential
strategies for effective language use in interaction.

4 Cognitive Abilities

We now turn to targeted cognitive tests, which as-
sess specific cognitive abilities deemed essential for
effective language use in real-world situations. We
explore the use of such tests as a complementary
evaluation method to reference-based benchmarks
and interactive games.

Ideally, such an investigation should be carried
out using tests tailored to machine intelligence,
which unfortunately have not yet been systemati-
cally developed (Hagendorff et al., 2024). To make
progress in this direction, Milliere and Rathkopf
(2024) advocate for the development of an “artifi-
cial cognition evaluation toolkit” through a cyclic
process that takes cognitive tests designed for hu-
mans as the starting point. Following this literature,
we present a taxonomy of abilities and a suite of
existing evaluation datasets inspired by human cog-
nition, with the aim to make a first step towards
more adequate testing of artificial cognition.

4.1 Taxonomy and Datasets

We present a taxonomy of cognitive abilities in-
volved in human functional linguistic competence
(Mahowald et al., 2024). It is guided by neurocog-
nitive research (Ward, 2019), and it separates capa-

Cognitive Ability Benchmark
» Cognitive Flexibility Kennedy and Nowak (2024)
S Working Memory Gong et al. (2024)
Inhibitory Control -
Causal Reasoning Jin et al. (2023)
% Common-sense Reasoning  Sakaguchi et al. (2021)

Liu et al. (2023)
Zheng et al. (2024)

Logical Reasoning
Planning

Table 1: Core and Higher-Order Executive Functions.

Cognitive Ability Benchmark
Attribution and Judgement Gu et al. (2025)
Emotional Intelligence Paech (2023)
Pragmatics Hu et al. (2023)
Social Common-sense Reasoning ~ Sap et al. (2019)
Theory of Mind Gu et al. (2025)

Emotion Regulation -
Self-Awareness -
Empathy -
Social Problem-Solving -

Table 2: Social and Emotional Skills.

bilities into two distinct macro-categories known
to recruit different brain networks: executive func-
tions and socio-emotional skills. Executive func-
tions are broadly defined as the complex processes
by which we control and optimise our thoughts and
behaviour (Baddeley, 1986), divided into core and
higher-order abilities. Socio-emotional skills are
abilities necessary to interact adaptively with other
individuals (Higgins, 1987), including the ability
to recognize their emotional and cognitive states.
For each cognitive ability, we select an existing
evaluation dataset designed to test it in isolation.
Socio-emotional skills have only recently entered
the evaluation landscape in NLP, and they have
done so with a forceful presence: remarkably, small
benchmarks already exist for almost all of the abili-
ties in this category. Tables 1 and 2 list the abilities
in the taxonomy and the datasets we use to evaluate
them.? More details are available in App. B and E.

4.2 Cognitive Ability Analysis

Equipped with our taxonomy and associated cog-
nitive tests, we aim to shed some light on the cog-
nitive abilities involved in interactive games and
general benchmarks. Figure 3 reports Kendall’s 7
correlation coefficients. The analysis reveals that
performance both on static and interactive evalua-
tion correlates with performance on tests measur-

*We found no dataset to evaluate inhibitory control. The
datasets we found for Emotion-regulation, Self-awareness (Liu
et al., 2024), Empathy (Chen et al., 2024) and Social Problem-
solving (Du et al., 2024) require human evaluation.
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ing higher-order reasoning abilities: while planning
is more dominant in static problem-solving tasks,
working memory seems to be beneficial for games.
Among the social skills, pragmatics appears to be
relevant for both static and interactive tests, while
ToM correlates better with the latter.

These results suggest that interactive tests corre-
late more strongly with socio-emotional skills com-
pared to static tests, despite this analysis remain-
ing speculative in nature, as we still lack carefully
curated cognitive tests specifically designed for
LLMs. Expanded results reporting correlation co-
efficients for each game and benchmark considered
are shown in Appendix I, Figure 8. Specifically
for games, in Appendix D we provide a qualitative
analysis where we aim to draw tentative connec-
tions between capabilities and gameplay. Remark-
ably, such connections appear to be clearer for exec-
utive functions compared to socio-emotional skills.

Cog. Flex. -

Working Mem.
Attr./Judgment

Causal R.
Emo. Int.

Commonsense R. - Pragmatics

Logic R. - Social R.

Planning - Theory of Mind

Figure 3: Correlation of cognitive abilities with perfor-
mance on games and benchmarks (* = p < 0.05).

5 Related Work

A few recent papers have evaluated the abilities of
LLMs beyond standard benchmarks. For example,
Waldis et al. (2024) propose a framework to eval-
uate models’ linguistic competence (in Chomsky
1965’s sense) using probing classifiers to disentan-
gle knowledge of, e.g., syntax and semantics from
other abilities such as instruction following. Lu
et al. (2024) posit that some perceived functional
linguistic abilities (e.g., related to emotional intel-
ligence) may be the result of in-context learning,
model memory, and formal linguistic knowledge,
whereas Ma et al. (2023) propose an evaluation pro-
tocol for assessing machine Theory of Mind based
on a taxonomy of existing benchmarks driven by
psychology research.

In contrast, the present work includes a uniquely
comprehensive selection of evaluation tasks, en-
compassing standard benchmarks, interactive
games, and cognitive ability assessments. To our

knowledge, this diverse range of evaluations has
not been jointly tested in prior work. Moreover, we
systematically compare their discriminative power
and analyse their interrelations—an approach that,
to our knowledge, is unprecedented.

6 Conclusion

In this paper, we have examined three LLM evalu-
ation paradigms. Our analyses revealed that inter-
active games have superior model discrimination
power over standard reference-based benchmarks:
Models with comparable parametric capacity per-
form similarly on standard benchmarks, but very
differently on games. This suggests that scaling is
not sufficient to learn strategies for effective lan-
guage use in interaction.

We have further argued for the use of targeted
cognitive tests as a complementary method to trian-
gulate LLM progress. While each cognitive ability
test alone does not get us very far in the quest for
robust LLM evaluation, we contend that this type
of evaluation paradigm has the potential to enhance
our understanding of what fundamental abilities
LLMs must develop to be able to function effec-
tively as language agents, where multiple skills
may be required and possibly interact. In our study,
we have drawn inspiration from human cognitive
tests as a first step in this direction. We hope to
encourage the future development of targeted tests
tailored to artificial cognition and supplemented
with mechanistic analyses.

Limitations

The evaluation methods we have study in this pa-
pers have been applied without employing chain-of-
thought (CoT) reasoning or similar elicitation tech-
niques. While different elicitation strategies may
enhance question-answering, interactive, and cog-
nitive abilities in different ways (Yao et al., 2023;
Hao et al., 2023; Li et al., 2024), we opted for an
approach that remains agnostic to specific prompt-
ing methods and datasets. This ensures a consistent
basis for comparison across models, though fu-
ture work could explore how alternative prompting
strategies influence performance across the three
evaluation paradigms.

The set of models we evaluated is of course lim-
ited in scope, although representative of a wide
range of open-weight model families and sizes. In
particular, we did not evaluate any close-weight
proprietary models, as we wanted to ensure full
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reproducibility of our experiments.

Regarding the cognitive ability assessments,
we have used currently available datasets; such
resources have started to be compiled only very
recently, hence there is no guarantee that in their
current state they truly assess the intended cog-
nitive abilities in LLMs. Nevertheless, they help
in establishing a starting point and encouraging
further progress in this direction.

Finally, our evaluation is only on English data,
hence we cannot claim the results hold for any
language. Yet, we believe the main take-home
message of the paper, viz. using different evaluation
methods which include static and interactive tasks
as well as controlled cognitive experiments, holds
independently of the language analysed. Whether
this is indeed the case, remains an interesting open
question for future research.
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Appendix
A  Models

The Phi-4 series (Microsoft et al., 2025) includes
a model with 3.8 billion parameters. Despite its
compact size, it has been reported to surpass larger
models on a wide selection of tasks including rea-
soning, general-purpose and coding.

The Olmo-2-1124 series (Walsh et al., 2024) in-
cludes models with 7 billion and 13 billion param-
eters (OLMo-2-1124-*-Instruct). Both models
are designed for a variety of tasks, including chat,
mathematics, and reasoning. They have undergone
supervised fine-tuning on the Tiilu 3 dataset and
further training using DPO techniques.

The Qwen2.5 series (Yang et al., 2024; Team,
2024) includes models with 7B, 32B, and 72B pa-

rameters (Qwen2.5-*-Instruct). They are multi-
lingual, supporting over 29 languages, and excel in
coding, mathematics, and instruction following.

The Llama-3 series (Grattafiori et al., 2024) in-
cludes models with 8B (L1ama3.1-8B-Instruct)
and 70B parameters (Llama3.3-70B-Instruct).
These models are optimized for multilingual dia-
logue and support various languages. They use
an optimized transformer architecture and are fine-
tuned for instruction following.

The Falcon3 series (Falcon Team, 2024) includes
a model with 10 billion parameters. It achieves
state-of-the-art results in reasoning, language un-
derstanding, instruction following, code, and math-
ematics tasks. It supports four languages (English,
French, Spanish, Portuguese) and a context length
of up to 32K.

Model Implementations All the models used in
this study have been made available by Hugging-
face, and have been accessed through the transform-
ers (Wolf et al., 2020) library. For text generation,
we have been applying the default chat template
specified by the models’ Hugginface implementa-
tions.

B Taxonomy of Cognitive Abilities

EXECUTIVE FUNCTIONS:

e Core abilities

Working Memory: Hold and manipulate infor-
mation in mind over short periods;

Inhibitory Control: Suppress automatic, inap-
propriate, or impulsive responses and resist
distractions;

Cognitive Flexibility: Adapt to new situations,
switch between tasks, and think about mul-
tiple concepts simultaneously;

* Higher-order abilities

Planning: Set goals, develop steps to achieve
them, and anticipate potential obstacles;

Causal Reasoning: Understand  cause-and-

effect relationships;

Logical Reasoning : Deductive and inductive
reasoning;

Common-sense Reasoning: Apply  general
common knowledge to everyday scenarios,
including understanding basic physical
properties, such as gravity, solidity, and
object interaction;
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SOCIO-EMOTIONAL SKILLS:

Social Common-sense Reasoning: Understand
social norms and expectations;

Social Problem-Solving: Analyze social situa-
tions, generate solutions, and make decisions
that foster positive interactions;

Emotional Intelligence: Recognize, interpret,
and manage one’s own and others’ emotions.

Emotion Regulation: Manage and modify one’s
emotional responses in appropriate ways;

Self-Awareness: Recognize and understand one’s
own emotions, thoughts, and behaviors;

Empathy: Share and understand the feelings of
others, both emotionally and cognitively;

Theory of Mind: Understand that others have
thoughts, beliefs, desires, and intentions dif-
ferent from one’s own;

Attribution and Judgment: Interpret the causes
of others’ behavior, distinguishing between
intentional and unintentional actions.

Pragmatics: Aspects of communication that go
beyond formal language competence: con-
sidering communicative intentions, the com-
municative context of the utterance, shared
knowledge between speakers, manners, social
and cultural norms.

C Interactive Games

We leverage clembench (Chalamalasetti et al.,
2023), a benchmark that assesses models’ game-
play ability in well-defined dialogue games such
as:

Taboo: A game where one player tries to get the
other player to guess a word without using
certain ‘taboo’ words in their clues;

Wordle: A game where one player thinks of a 5-
letter word and the other player tries to guess
it. At each turn, the guesser receives feedback
regarding whether each letter of the tentative
word is present in the target word, and whether
it is also in the same position in such word;

Wordle (Clue): A variant of Wordle where the
guesser is given more clue to help them guess
the target word;

Wordle (Critic): A variant of Wordle where the
guesser’s suggestions are evaluated by a third
player, who provides feedback on their accu-
racy;

Reference Game: A game where one player is
presented with three textual grids and is tasked
to make another player—who is also pre-
sented with the same three grids, but poten-
tially in a different order—identify the one it
has in mind based on its textual description;

Private/Shared: A game where a customer agent
goes through a form with a service agent and,
after each turn, a third agent,® probes the cus-
tomer on what they believe that the service
agent already knows;

Image Game: A game where given a certain grid
structure similar to those in Reference Game,
a player has to instruct a second one (who
can’t see the it) about how to reconstruct it
step by step.

D Interactive Games: Samples

In this section we provide samples for the interac-
tive games, and discuss their nature and links with
cognitive abilities, as they are shown by the corre-
lation analysis displayed in Figure 8. We provide
samples deriving from our our evaluations however,
as a reference, the clembench benchmark’s main-
tainers made available a repository of transcripts
for the conversations obtained by evaluating several
models on the games.*

D.1 Taboo

Figure 10 shows an episode of Taboo played by
Llama-3.1-70B-Instruct. In this case, the word
to guess is clear, and the Describing player (on
the left) is instructed to generate a description for
the other player without using the taboo words
crystal, obvious and confident. The description is
then delivered to the guesser who guesses the word
glass at first. Since this was not the correct word,
the game proceeds for another round, when the
guesser gets the right word.

As shown in Figure 8, this game presents a
higher correlation with working memory, common-
sense and logical reasoning among the executive

3In clembench, all interactions are mediated by a “Game
Master”. This agent plays a particularly active role in Pri-
vate/Shared.

*https://github.com/clembench/clembench-runs
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functions, as well as pragmatics and Theory of
Mind among the socio-emotional skills.

We can observe from the example interaction
that the correlation results are quite compatible
with the abilities required for being successful at
the game. Common-sense reasoning is exercised
for guessing the appropriate word from the descrip-
tions, and for the generation of descriptions them-
selves, along with Theory of Mind which is neces-
sary for tuning the descriptions with the guesser’s
knowledge that can be inferred from its answers.
Logical reasoning can be instead exercised along
with common-sense reasoning for guessing. Work-
ing memory can be used to avoid repeating the
same answer and being able to remember useful
information from the conversation, while the role
of pragmatics remains less clear.

D.2 Wordle (and its variants)

Figure 11 shows an episode of Wordle. The model
here is asked to guess the word whine. At each turn,
the model receives letter-level feedback which has
to exploit in order to get to the solution. We have
evaluated models also on the variants providing ad-
ditional clue (Figure 12) and the support of a critic
model judging every guess (Figure 13). While cor-
relation has not been measured on the classic Wor-
dle variant due to the excessively low performance
of models, we can interestingly observe differences
in the correlation between the two variants and the
cognitive capabilities. Results suggest that the pres-
ence of an external model stimulates the use of
social capabilities.

D.3 Image Game

Figure 14 shows a match of Image Game, where a
describer player has to describe a certain grid step
by step to a second player which has to draw it by
following the instruction. The describer has then to
decide when the grid is complete. Given the high
difficulty of the game for most of the models in this
study, inferring links with cognitive capabilities
appears complicated.

D.4 Reference Game

In Figure 15 is displayed an episode of Reference
Game where a describer model has to describe
a given grid with a empty cross-like shape. The
other player has to guess the grid by following the
description.

In our study, this task has been shown to corre-
late with Planning more than other cognitive ca-

pabilities. This connection appears reasonable: in
order to build the best description a model may
either describe the grid cell by cell, or it may look
at the task as a constrain resolution problem where
it has to resolve conflicts in order to provide the
the simplest description that does not overlap with
that of other grids. In this case, it is possible to ob-
serve analogies with schedule planning tasks such
as those present in our planning benchmarks. In the
case of other executive functions, working mem-
ory may be involved to remember the information
regarding the grids within the context, and logical
reasoning for guessing the appropriate grid.

Less clear are the correlations with social func-
tions.

D.5 Private/Shared

Private/Shared is a game where two parallel con-
versations occur at the same time. Figure 16 shows
the main conversation of an episode simulating a
travel-agency interaction. Among the games taken
into consideration, it is the most conversational
task. At each turn, in a parallel conversation the
player is questioned regarding its understanding of
the state (private or public) of information.

The low correlation of this task with Theory of
Mind is quite surprising and would be worth fur-
ther investigations. On the contrary, it appears un-
derstandable its correlation with working memory
superior to that of any other tasks, as conversations
are generally longer and require more explicit re-
calling of information shared in prior messages.

E Benchmarks for Cognitive Abilities

Working Memory (Gong et al., 2024) (referred
as WM in this work) is a set of verbal and spa-
tial n-back tasks presented with three levels of
difficulties from n = 1 to n = 3. The model
has to identify whether the current stimulus (a
letter in a string or a spatial location in a grid)
is the same as the stimulus shown n messages
back or not. Size: 50 blocks of 24 instances
each, total: 1200;

Cognitive Flexibility (Kennedy and Nowak,
2024) (referred as LLM-Cognitive-Flexibility
in this work) aims to test to what degree LLMs
can rapidly switch tasks within a single con-
text window. To this end, it employs two
neuropsychological tests, the Wisconsin Card
Sorting Test (WCST) (Grant and Berg, 1948)
and the Letter-Number Test (LNT) (Rogers
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and Monsell, 1993) commonly used to mea-
sure cognitive flexibility in humans. Size: 8
runs by 25 instances each. Total: 200;

Logical Reasoning LogiQA 2.0 (Liu et al., 2023)
This dataset evaluates logical reasoning us-
ing the same data both in NLI and Machine
Reading Comprehension format (text, ques-
tion, multiple-choice) for each of the follow-
ing (deductive) reasoning types: categorical,
sufficient condition, necessary condition, dis-
junctive, conjunctive reasoning. Size: 1572
data points;

Causal Reasoning CLADDER (Jin et al., 2023) fo-
cuses on formal causal reasoning (causal in-
ference), as opposed to common-sense causal
reasoning. The dataset is constructed from
formal logic-based templates that are then ver-
balised into natural language as binary ques-
tions. Size: 10112 data points;

Common-sense Reasoning WinoGrande (Sak-
aguchi et al., 2021) A large-scale dataset of
common-sense reasoning problems consisting
of pairs of nearly identical questions with
two answer choices (as in the original
Winograd Schema Challenge (Morgenstern
and Ortiz, 2015), from which this dataset
takes inspiration but aims to make larger and
more complex. Size: 1267 data points;

Planning NATURAL PLAN (Zheng et al., 2024)
is a realistic planning benchmark consisting
of three tasks expressed in natural language:
Trip Planning, Meeting Planning and Calen-
dar Scheduling. Models are given a situation
and a problem to solve (e.g. find a trip plan
that satisfies some constraints given the situa-
tion described). Each task contains problems
of different levels of complexity based on the
number of cities, people or days involved. The
problems are often based on numerical rea-
soning too. We evaluate models on the Trip
Planning and the Calendar Scheduling tasks.
Size: 2600 data points;

Emotional Intelligence EQ-Bench (Paech, 2023)
the model is given an emotionally charged
short dialogue (generated by GPT-4) and has
to score the four possible emotions felt by a
given character. Scores are compared against
a reference score. Size: 171 data points;

Pragmatics (Hu et al., 2023) (referred as LM-
Pragmatics in this work) is a benchmark evalu-
ating LLMs’ understanding of seven pragmat-
ics phenomena: deceit, indirect speech, irony,
maxims, metaphor, humour, and coherence.
Scenarios are grounded into social situations,
requiring LL.Ms to interpret utterances. The
task is designed as a multi-choice question-
naire with 2-5 questions based on the subtask.
Size: 845 data points;

Social Common-sense SOCIAL IQA (Sap et al.,
2019) a dataset for evaluating social common-
sense reasoning and emotional intelligence.
Each sample includes a short scenario and
three multiple-choice questions across six cat-
egories: intentions, reactions, descriptions,
motivations, needs, and consequences. Trans-
fer learning on this dataset has shown strong
performance on other common-sense reason-
ing benchmarks. Size: 1954 data points;

Attribution and Judgment/Theory of Mind
SimpleToM(Gu et al., 2025) contains concise,
diverse stories each with questions that ask
models to predict behavior ("Will Mary
pay for the chips or report the mold?"),
judgment ("Mary paid for the chips. Was
that reasonable?") or mental states ("Is Mary
likely to be aware that *The can of Pringles
has moldy chips in it.’? Yes or No?") The first
two subtasks have been taken as a reference
for the Attribution and Judgment cognitive
ability, while the last as a reference for Theory
of Mind. Size: 3450 data points.

F Benchmark Implementations

For the majority of the static benchmarks evaluated
in this work we relied on the popular framework for
the evaluation of LLMs LM Evaluation Harness®
(ver. 0.4.7), which already made available many of
the selected benchmarks, and enabled a common
interface for the implementation of most of the
remaining ones.

The benchmarks which were already present
within the framework are: SOCIAL IQA (Sap et al.,
2019), WinoGrande (Sakaguchi et al., 2021), EQ-
Bench (Paech, 2023), LogiQA 2.0 (Liu et al., 2023),
MMLU (Hendrycks et al., 2021), BBH (Suzgun
et al., 2023). The benchmarks which have been

Shttps://github.com/EleutherAl/
LMEvaluationHarnessuation-harness
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implemented in the framework over the course of
the study are: CLADDER (Jin et al., 2023), LM-
Pragmatics (Hu et al., 2023), SimpleToM (Gu et al.,
2025), NATURAL PLAN (Zheng et al., 2024), IFE-
val (Zhou et al., 2023).

As for the interactive games, we have used
the implementation provided by version 1.6 of
the clembench (Chalamalasetti et al., 2023). The
remaining benchmarks (WM, LLM-Cognitive-
Flexibility) have been implemented outside of the
framework, as LM Evaluation Harness did not pro-
vide support for the multi-turn nature of the tasks.

F.1 Zero-shot and Few-shot Tasks

The majority of the tasks have been evaluated in a
zero-shot setting with the exception of MMLU (5-
shot), BBH (3-shot) (following common practices
in model evaluation, e.g. in the Open Leaderboard
26 for BBH) and NATURAL PLAN (5-shot). In the
case of NATURAL PLAN, our models performed re-
ally poorly when evaluated in a zero-shot fashion—
resulting in scores close to 0. Given that the task
relies on the models producing answers in a strict
format for parsing, we opted for using the 5-shot
version provided by the benchmark’s authors.

F.2 Metrics

Evaluation For the evaluation of models, we fol-
lowed the original works’ implementations as well
as associated metrics. However, it may be the case
that for a certain benchmark more metrics were
defined, or that the original work did not aggregate
results across subtasks. For this reason, we report
here the metrics we used for evaluating models.

In the case of Clembench games, we computed
performance by computing the ratio between the
quality score (a number from 0 to 100) and the
percentage of played games (a number between 0
and 1) divided by 100.

In the case of IFEval, following what was done
in the Open Leaderboard 2, we averaged the re-
sults obtained on prompt-level and instruction-level
strict accuracy.

As for EQ-Bench, we computed the task-specific
score as it was implemented in the LM Evaluation
Harness.

Regarding WM, we only considered the subtask
Verbal N-3, and we computed the accuracy for the
results obtained across the 50 trials defined in the
original work.

6https ://huggingface.co/docs/leaderboards/
open_l1lm_leaderboard/about

In the case of LLM-Cognitive-Flexibility, we ran
each subtask 8 times with 25 trials each, and com-
puted the average of the accuracy obtained in each
run. In this case, the accuracy was computed only
on the trials for which response parsing was suc-
cessful. We then averaged the accuracy obtained
on both subtasks to compute the final score.

In the case of CLADDER, we followed the origi-
nal work which treated the task as generative and
probed for the presence of the substrings "yes"/"no"
at the beginning of the model’s answer.

In NATURAL PLAN, the original work defined
a rule-based procedure to parse specific data from
the generated plan (e.g., dates). We reuse their
parsing procedure and verify whether the expected
elements are all present in the parsed plan.

For the remaining tasks (LogiQA 2.0, Wino-
Grande, LM-Pragmatics, SOCIAL 1QA, MMLU,
BBH, SimpleToM), we treated them as a multiple-
choice question answering task that is evaluated
based on the likelihood of the correct answer for
the task.

In the case of BBH, the Open Leaderboard
2’s evaluation code excludes three of the original
tasks from the overall score’s computing: dyck
languages, navigate and word sorting. The perfor-
mances on these subtasks are therefore also ignored
in the performance reported in this study.

In the case multiple subtasks were present
(LM-Pragmatics, MMLU, BBH, NATURAL PLAN,
LLM-Cognitive-Flexibility), we computed the
micro-average over the results achieved on each
subtask. In the specific case of SimpleToM, since
the subtasks were associated with two different
Cognitive Abilities, we’ve aggregated the score of
the subtasks behaviour and judgment into a single
score (under Attribution and Judgment), and con-
sidered the mental state subtask separately (under
Theory of Mind).

Correlation For measuring the pair-wise corre-
lation between benchmarks, we’ve computed the
Kendall rank correlation coefficient (or Kendall’s
Tau) (Tau-b version). It measures rank correlation
according to this formula:

P-Q
VP+Q+T)(P+Q+Ty)

Ty =

20063


https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about
https://huggingface.co/docs/leaderboards/open_llm_leaderboard/about

where:

P = number of concordant pairs,
) = number of discordant pairs,
T, = tie correction for variable X,

T, = tie correction for variable Y.

This method was preferable over others given
its robustness in case of few data points, as it was
in our case. We have also experimented with the
Pearson correlation coefficient and observed that
in the majority of the cases, the correlation pat-
terns were similar, however with larger positive as
well as negative correlations compared to Kendall.
We’ve relied on the implementation provided by
the pingouin Python package (Vallat, 2018).

F.3 Generation Settings

The tasks which required the models to generate
text are: EQ-Bench, WM, BBH, IFEval, the clem-
bench games, LLM-Cognitive-Flexibility, NATU-
RAL PLAN, CLADDER. With the exception of
Working Memory and LLM-Cognitive-Flexibility,
all tasks have been evaluated by applying a temper-
ature of 0. Following the original implementation,
we have applied a temperature of 1 to WM and
0.7 to LLM-Cognitive-Flexibility. In these cases,
however, the increased randomness caused by the
higher temperature was mitigated by averaging the
results obtained over multiple trials.

As for the other generation settings, we also
have followed what was prescribed in the original
works regarding the tokens for the termination of
the generation, the maximum or minimum number
of tokens. In the case of NATURAL PLAN, the
original work did not provide specific information
regarding the settings they have adopted for the
evaluation. Given the highly challenging nature of
the task, we have set the minimum and maximum
number of tokens to 90 and 350, respectively. This
was derived based on the minimum and maximum
number of tokens in the gold plans.

G Limitations in the Evaluations

In certain cases, results have not been computed on
all the subtasks available for that benchmark. In the
case of NATURAL PLAN, we have not considered
results coming from the meeting subtask, while for
WM we have only considered those coming from
the Verbal (Base) N-3 subtask. In the first case, the
high amount of resources required for evaluating

the task, especially for the larger models prevented
us from doing so. As for the second, we’ve only
considered the base version of the verbal subtask
and excluded its variations as they would not pro-
vide meaningful information for this study.

H Computational Resources

As a reference, we provide the time required for
running through all the benchmarks for the Llama-
3.1-8B-Instruct model on 1 A100 GPU with batch
size set to auto’ in the LM Evaluation Harness (i.e.
it automatically fits into the memory the maximum
batch size possible for each task). For the Clem-
bench games, LLM-Cognitive-Flexibility and WM,
the batch size is 1. The time also includes that re-
quired for procedures performed by the LM Evalua-
tion Harness prior to the actual evaluation (relevant
only for those datasets included in this framework)
and for loading the model into the memory (all
tasks).

* LLM-Cognitive-Flexibility: ~1:50 min
* LogiQA 2.0: ~5 min

* CLADDER: ~19:30 min

* WinoGrande: ~1 min

* NATURAL PLAN: ~4:50 hours
* WM ~2:40 min

* EQ-Bench: ~3 min

* LM-Pragmatics: ~6:30 min

e SOCIAL IQA: ~1:30 min

* SimpleToM: ~2:40 min

e MMLU: ~14 min

* BBH: ~24 min

e IFEval: ~1:19 min

e Taboo: ~3:30 min

* Reference Game: ~3:00 min

* Image Game: ~2.40 min

* Wordle: ~7:50 min

* Wordle (Critic): ~2:50 min

* Wordle (Clue): ~2:15 min

* Private/Shared: ~17:30 min

I Additional Results

Table 3 includes the scores achieved by every
model on each benchmark. Figure 4, Figure 5
and Figure 6 show the supplementary plots for the
results in Section 3 (comparing models of different
size but same family and models of similar size
but coming from different families, respectively).
Moreover, we provide supplementary plots for the
results in Section 4. Figure 7 presents a direct
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comparison of models based on our selected cog-
nitive tests. Figure 8 reports an extended version
of Figure 3. Finally, Figure 9 reports two scatter
plots exemplifying, respectively, situations of high
and low correlation between two benchmarks (a
game-based one and a cognitive ability one).
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Metric OLMo-2-7B  OLMo-2-13B Llama-3.1-8B Llama-3.3-70B Qwen2.5-7B Qwen2.5-32B Qwen2.5-72B  Falcon3-10B  Phi-4-mini
Cognitive Flexibility 0.2821 0.1500 0.4438 0.4339 0.2265 0.2008 0.4318 0.3615 0.3217
Working Memory 0.6383 0.3383 0.6692 0.8475 0.7175 0.7683 0.7900 0.3292 0.2125
Causal Reasoning 0.5034 0.4997 0.5035 0.5635 0.5329 0.5654 0.5856 0.5343 0.5489
Logical Reasoning 0.3181 0.3766 0.3391 0.4905 0.4027 0.4701 0.5592 0.4001 0.3384
Planning 0.0708 0.0613 0.0482 0.2666 0.0993 0.3428 0.3079 0.2147 0.0894
Commonsense Reasoning 0.5193 0.5193 0.5328 0.5754 0.5375 0.5793 0.5983 0.5107 0.5201
Social Reasoning 0.5404 0.5701 0.5000 0.5302 0.4458 0.4667 0.4672 0.5174 0.5015
Emotional Intelligence 0.6456 0.6484 0.6614 0.8290 0.5504 0.7949 0.7752 0.6405 0.6776
Theory of Mind 0.6085 0.9093 0.9503 0.8326 0.7742 0.9364 0.9538 0.8361 0.4708
Attribution/Judgment 0.5803 0.3710 0.3444 0.4795 0.2602 0.4207 0.2847 0.2642 0.4429
Pragmatics 0.5951 0.6634 0.6463 0.8402 0.6707 0.8146 0.8500 0.6646 0.5146
Taboo 0.1611 0.3167 0.4694 0.6944 0.3056 0.7028 0.7056 0.2806 0.2750
Reference Game 0.3833 0.3278 0.4944 0.7778 0.4444 0.7222 0.7167 0.4944 0.3889
Private/Shared 0.0067 0.0100 0.4292 0.8985 0 0.4851 0.4799 0 0
Image Game 0 0 0.0708 0.4710 0 0 0.1625 0 0
Wordle 0 0 0 0.0300 0 0.0500 0 0 0
Wordle (Clue) 0 0.0222 0.2678 0.2994 0.0167 0.3000 0.3833 0.0083 0.0667
Wordle (Critic) 0 0.0667 0.0833 0.2500 0.0333 0.3167 0.3583 0.0333 0.0333
MMLU 0.5973 0.6332 0.6305 0.7761 0.6651 0.7408 0.8264 0.7198 0.6627
BBH 0.3980 0.4588 0.5013 0.6915 0.5369 0.6874 0.7256 0.6148 0.5662
IFEval 0.7378 0.8114 0.7758 0.9098 0.7344 0.8322 0.8644 0.7878 0.7485

Table 3: Scores obtained by models on each benchmark. The "Instruct" has been omitted from the column names

for stylistic purposes.
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#A Game Master
[A(GM] [initial prompt
(describer)]
This is the target word that
you need to describe and that #lA _ GameMaster
the other player needs to 1 ta(eM1 [instruction prompt..]
guess: [AGMl guess: house
explanation: this is a common
cllear five-letter English word, and
2I am starting my guess with
1 Relsied werds are: this word because it contains
a mix of vowels and consonants
- crystal that are frequently used in
- albvieus many words.
- confident [A(GM] guess_feedback:
h<yellow> o<red> u<red>
Important: You are under s<red> e<green>
time pressure, give short 3 . .
descriptions that are to the Provide your response only in
point! this format.
guess: word
5 [wen  CLUE: Transparent and explanation: details
easy to see through. 4 oo [...]
[GM)B] [initial prompt e guess: whine )
(guesser)] explanation: I’m replacing the
"t" with a "w" to form a
3 new word, as the letters "h",
CLUE: Transparent and easy to 5("i", “"n", and "e” were all
see through. marke.-d green, 1nd1cat1n.g .they
4 ton(s] GUESS: Glass are in the correct positions,
5 ta(v] GUESS: Glass and "whine” .is a v.alid English
a1 CLUE: Not a material, but ord that fits this pattern.
6la state of something, like air CaM[GH
b wetar. 6 game_result
teM)e] CLUE: Not a material, but = Ll
7 a state of something, like air . .
or water. Figure 11: An example of an episode of Wordle played
8 rem(81 GUESS: Clear by Llama-3.3-70B-Instruct. The player’s messages are

in green, while the grey-colored text comes from the

Figure 10: An example of an episode of Taboo played  environment itself, represented by the Game Master.

by Llama-3.3-70B-Instruct on both roles. The two play-
ers’ messages are in green and orange, while the grey-
colored text comes from the environment itself, repre-
sented by the Game Master.
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# A Game Master #| A Game Master B
e |t S e [(iEe o] ta(eM1  [instruction prompt..]
1 e compllesn o 1 clue: complain
[A)GM] gUESS: moans (e guess: moans
explanation: The clue /3 ghes " T D
"complain” makes me think of gxplanatlon. Vi worq _moans
ores related e @rsrEseins is related to complaining, as
- . . . 2 |people often moan when they
2 |dissatisfaction or discomfort, . e
and "moans"” is a word that e unhappy. or dlssa.tlsf}ed
fits this description and t:\ZhS—sloemtettehrlnlgeyn :Ed S i
has 5 letters, making it a ENeth.
plausible initial guess. 3 e LUTSEAEEE (PO, od
ta(eM1  guess_feedback: m<red> [GM(e] agrgement: yes
explanation: the guess

o<red> a<red> n<green> s<red> . .
g "moans” is a plausible match

for the clue "complain”
because moaning is a way of
expressing dissatisfaction
or unhappiness, which is a
form of complaining, and it

3 Provide your response only in

this format. 4
guess: word

explanation: details

4 oo [..] meets the 5-letter length
el guess: whine requirement
explanation: The clue 5 oMMy [..] '

"complain” and the feedback
that both "i"” and "n" are in
the correct positions suggest
a word related to expressing
5 |dissatisfaction, and "whine”

[A)eM] guess: whine
explanation: The word "whine"”
is a form of complaining,
often through a high-pitched
is a word that fits this or Wasal sound, ,,é?d .lt
description, incorporating 6 cont§1n§ eie LadEsr - e
e correcily sesitiemze Vi as indicated by the feedback
to be in the word, making it a

;gsing ,i:ndahagllanfsfbllsttneerxst, potential match for the clue

"complain” with a b5-letter
guess. Length
Latlal = [GM|GM]
6 aniﬁrGSU1t 7 game_result
= WIN

Figure 12: An example of an episode of Wordle (vari-
ant with Clue) played by Llama-3.3-70B-Instruct. The
player’s messages are in green, while the grey-colored
text comes from the environment itself, represented by
the Game Master.

Figure 13: An example of an episode of Wordle (vari-
ant with Critic) played by Llama-3.3-70B-Instruct on
both roles. The two players’ messages are in green
and orange, while the grey-colored text comes from the
environment itself, represented by the Game Master.
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#| A Game Master B
[A(GM] [instruction prompt
(describer)..]
#|A Game Master B Target grid:
[A(GM] [instruction prompt X X O X X
(describer)..] Ok. Please X x O X X
do this for the following g DI:ID oo
; : X x O XX
g);igple, which is a 5 by 5 = 72 [0 52
Distractor grid 1:
1 VVVVYV
ooovo - g -
govoo . X X X X X
Oovooaod X x O XX
VVVVYV X x O X X
Distract id 2:
What is your next command? RIS HrE
X X X X X
raysv1 Command: Fill the first X X XXX
2 [row with V and fill the last SO
row with V. X X X X X
[GM)B] [instruction prompt
(drawer)..] Instruction: Describe the target grid.
3 Command: Fill the first row SgperEde  die (RS  efpressien
ith V d fill the 1 starting with the tag "Expression:
W}t an 1 the last row for the given target grid. Omit any
with V. other text.
eM@1 VVV VYV [A)oM] Expression: The grid with an
OoOooo empty row in the middle.
[6M)B] [instruction prompt (guesser)..]
4 oooogd
Ooo0o00gao First:
VVVVYV
wh ; X x O X X
5 [A(GM] at 1s your next % 5% 5 5% 5%
command? X X X X X
rayeml Command: Put a V in the X x O X X
second row, fifth column, and X x O xx
6 [put a V in the third row, third
. Second
column, and put a V in the
fourth row, second column. X x O X X
temys] Command: Put a V in the X x O xx
second row, fifth column, and )I(:'XDDDXE‘ u
7 put a V in the third row, third 3 X X O X X
column, and put a V in the
fourth row, second column. Third:
M@l VVV VYV
X X X X X
ooogyv X X X X X
8 Ooovoo OooOxoog
ovooo X X X X X
VVVVYV X X X X X
9 [A(GM] What is your next Expression: The grid with an empty row
command? in the middle.
10 [cayeM1 Command: DONE Question: Which grid does the
expression refer to?
. . Start with the tag "Answer: ", followed
Figure 14: An example of an episode of Image Game by your selection. Omit any other text.
played by Llama-3.3-70B-Instruct on both roles. The 4 [GM(B] Answer: Second

two players’ messages are in green and orange, while

the grey-colored text comes from the environment itself, Figure 15: An example of an episode of Reference

represented by the Game Master. Game played by Llama-3.3-70B-Instruct on both roles.
The two players’ messages are in green and orange,
while the grey-colored text comes from the environment
itself, represented by the Game Master.
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# A Game Master
1 [GM|GM] Begin
probing
a(gm1 ME: Do you think the
travel agent knows where you
2 depart from? Answer this
question with yes or no and
then stop.
# A Game Master B 3 |rayem1 ASIDE: Yes
1 ta(eM1 [instruction prompt..J] 4 [GMeM] yes
2 temye] What is the next request? [GM|GM] Answer
3 teMe] Where do you want to go? 5 for FROM valid
ta(eM1  TRAVEL-AGENT: Where do after 1 tries.
4 you want to go? Answer only 6 [eMiaM1 Answer is
this question in one short correct.
sentence and then stop. a1 ME: Do you think the
5 [ta)ev1 ANSWER: Dresden 7 travel agent knows where you
6 eM)8] Dresden want to go to? [..]
7 teM)s] What is the next request? 8 |tayeM1 ASIDE: Yes
8 teM(e] How do you want to reach 9 [GM|GM] Yes
your destination? [GM|GM] Answer
ta(M]  TRAVEL-AGENT: How do 10 for TO wvalid
9 you want to reach your after 1 tries.
destination? [..] 1 reMeM1 Answer is
10 [aye1 ANSWER: By overnight bus. correct.
11 teM)B1 By overnight bus. agMl1  ME: Is the travel
12 teM)8] What is the next request? 12 agent aware of your means of
13 (1 Where are you departing transportation? [..]
from? 13 [tayem1 ASIDE: Yes
14 ta(eM1 TRAVEL-AGENT: Where are 14 [GM|GM] yes
you departing from? [..] [GM|GM] Answer
15 [cayeM1 ANSWER: Hamburg. 15 for BY wvalid
16 teM)8] Hamburg. after 1 tries.
17 teM)s1 What is the next request? 16 [eMieM] Answer is
18 e8] What kind of class do you correct.
wish? (Ml ME: Have you informed the
19 ta(eM] TRAVEL-AGENT: What kind 17 travel agent about your class
of class do you wish? [..] preference? [..]
20 [A)GM] ANSWER : The most 18 [tayeM1 ASIDE: Yes
comfortable. 19 [GM|cM] yes
21 teM)e] The most comfortable. [GM|GM] Answer
22 teM)B] What is the next request? 20 for CLASS valid
23 Ml  When does your trip after 1 tries..
begin? 21 [eMjcMl Answer is
24 ta(eM1 TRAVEL-AGENT: When does correct.
your trip begin? [..] [a(m1 ME: Is the travel agent
25 rayeMl  ANSWER: Third week of 22 aware of the dates of your
June. trip? [..]
26 temyel Third week of June. 23 |tayeM1 ASIDE: Yes
24 [eM|cM] yes
Figure 16: An example of the main interaction of a Pri- [GM|6M] Answer
vate/Shared episode played by Llama-3.3-70B-Instruct 2 f?r WH1EN valid
with a programmatic player. The two players’ messages - e trles.'
[eMiaM1 Answer is
are in green and orange, while the grey-colored text 26 correct.
comes from the environment itself, represented by the 7 roM|oM] End
Game Master. probing

Figure 17: An example of the final turn’s probing in-
teraction of a Private/Shared episode played by Llama-
3.3-70B-Instruct with a programmatic player. The two
players’ messages are in green and orange, while the
grey-colored text comes from the environment itself,
represented by the Game Master.
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