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Abstract

We introduce MAIA (Multimodal AI Assess-
ment), a native-Italian benchmark designed
for fine-grained investigation of the reasoning
abilities of visual language models on videos.
MAIA differs from other available video bench-
marks for its design, its reasoning categories,
the metric it uses, and the language and culture
of the videos. MAIA evaluates Vision Lan-
guage Models (VLMs) on two aligned tasks: a
visual statement verification task, and an open-
ended visual question-answering task, both on
the same set of video-related questions. It
considers twelve reasoning categories that aim
to disentangle language and vision relations
by highlighting the role of the visual input.
Thanks to its carefully taught design, it evalu-
ates VLMs’ consistency and visually grounded
natural language comprehension and genera-
tion simultaneously through an aggregated met-
ric revealing low results that highlight models’
fragility. Last but not least, the video collection
has been carefully selected to reflect the Italian
culture, and the language data are produced by
native-speakers.1

1 Introduction

Vision and Language models entered the Com-
puter Vision and NLP scenes more than a decade
ago pushed by theoretical (e.g., Baroni, 2015) and
application-oriented (e.g., Bigham et al., 2010) mo-
tivations. Their success on combining image and
text has been monitored and summarized in various
surveys, from the earlier ones on Visual Question
Answering (Bernardi and Pezzelle, 2021) to the
more recent ones focusing on Visually grounded
LLMs (e.g., Caffagni et al., 2024; Li et al., 2024b).
Researchers have always felt the need to target Vi-
sion and Language Models (VLMs) shortcomings,
developing carefully designed benchmarks consist-
ing of a suit of VL tasks to evaluate a variety of

1Data available at GitHub.

Figure 1: Structure of the MAIA benchmark. For each
video there are two questions related to 12 reasoning cat-
egories. For each question there is a pool of 8 answers,
each forming a question–answer pair associated with its
own True–False statement pair. The example reported
in the Figure is related to OUT-OF-SCOPE reasoning
category.

capabilities (Kushal et al., 2019). The minimal pair
task, contrasting a caption with its foil (Shekhar
et al., 2017) has been applied to large-scale lin-
guistic phenomena (Parcalabescu et al., 2022) and
extended to highlight weakness of VLMs on Video
QA (Kesen et al., 2023). This trend focuses on visu-
ally grounded natural language understanding (Ke-
sen et al., 2023).
Today VLMs are trained to generate text and are
known to excel at it. We argue that the evalua-
tion of Natural Language Generation (NLG) and
Natural Language Understanding (NLU) compe-
tence should always be pursued together: An agent
that can answer questions about an event must un-
derstand it too. Yet, existing benchmarks tend to
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treat comprehension and generation separately, of-
ten relying on independent datasets and evaluation
protocols. This fragmented design prevents an as-
sessment of a model’s robustness, in other words,
its ability both to understand and generate visu-
ally grounded text. Moreover, success in NLU
should be claimed only through evaluation regimes
that monitor models’ consistency across answers,
showing they are insensitive to surface variations.

To address these limitations, we present MAIA:
a competence-oriented benchmark consisting of
two paired tasks – multiple-choice Visual State-
ment Verification (VSV) and Open-Ended Vi-
sual Question Answering (OEVQA) – containing
aligned datapoints. For instance, in the example in
Figure 1, for the video showing a pizza cooking in
a wood-fired oven, the VSV contains the True and
False statements (TS and TF) A: There is no cake
in the video and B: There is a cake in the video,
and the OEVQA contains the (aligned) question
What is the cake made of?. Such interleaved data
let us evaluate models’ robustness: we evaluate a
model positively, only if it performs correctly both
on the visual statement verification task (NLU) – it
selects There is no cake in the video – and on the
Open-ended VQA (NLG) by generating something
like There is a pizza, not a cake; while we evaluate
it negatively, if it performs correctly only on one of
the two tasks. Moreover, the VSV is organized in
pools containing 8 TS-FS pairs that differ only on
the surface, letting us evaluate the model’s consis-
tency. We categorize questions based on the reason-
ing they elicit; for instance, the question in Figure 1
is Out-of-Scope. MAIA spans twelve reasoning
categories, helping highlight the role of language
and visual modalities across them. Finally, it im-
plements an all-in-one evaluation philosophy that
lets us evaluate both models’ robustness and con-
sistency through its Aggregate Metric. Last but
not least, MAIA is based on native Italian videos
with language data obtained through human anno-
tations and complemented by semi-automatic data
augmentation. To the best of our knowledge, this
is the first benchmark for the Italian language on
videos.

Contributions. In the paper, we: (i) present
MAIA, the first Italian benchmark specifically de-
signed to assess the reasoning abilities of VLMs
on video data; (ii) evaluate multiple VLMs, high-
lighting how their performance and their reliance
on linguistic or visual cues varies across reasoning

categories; (iii) demonstrate the importance of eval-
uating models from multiple perspectives, not only
in terms of their competencies, but also their robust-
ness and consistency; (iv) propose a novel metric
for evaluating visually grounded comprehension
and generation simultaneously.

2 Related Work

Diagnostic benchmarks for VLMs. Various
types of benchmarks have been proposed since
the raise of VLMs. From the single task-oriented
benchmarks (e.g., Antol et al. (2015); Das et al.
(2017); Croce et al. (2021)), attention has now
moved to task collections (Xu et al., 2024; Lee
et al., 2024b) in which models show impressive
performance. As in the early phase (Johnson et al.,
2017; Shekhar et al., 2017; Suhr et al., 2017),
such success is mitigated by the use of diagnos-
tic benchmarks, such as Parcalabescu et al. (2022);
Thrush et al. (2022); Chen et al. (2023); Bugliarello
et al. (2023); Bianchi et al. (2024) and carefully
curated benchmarks such as Xiao et al. (2024);
Tong et al. (2024). The third type of benchmarks
available focus on the VLMs competence in a holis-
tic fashion, evaluating advanced perception and
reasoning with domain-specific knowledge (Yue
et al., 2024b). A similar picture emerges for video-
based VLMs. Here as well, early surveys call
for careful evaluation (e.g., Zhong et al. (2022)),
task-oriented benchmarks show impressive perfor-
mance (Grunde-McLaughlin et al., 2021; Yu et al.,
2023), while fine-grained ones pinpoint important
weaknesses (Kesen et al., 2023), and competence-
based analysis highlight there is significant room
for improvement in multimodal video understand-
ing (Patraucean et al., 2023). Finally, both Tong
et al. (2024) for images and Kesen et al. (2023) for
videos manage to highlight VLMs shortcomings
by imposing a more stringent task-accuracy met-
ric that account for model consistency across very
similar data or correlated competencies. Thanks
to the richness of MAIA data collection, we adopt
such severe, and hence robust, evaluation code and
propose a novel aggregate metric. Building on
prior work, MAIA targets a low-resource language
and the underexplored video domain. While some
benchmarks (Das et al., 2024; Zhang et al., 2023)
include limited Italian multiple-choice tasks, none
focus on high-level reasoning in Italian video con-
texts or analyze distributional biases in VLMs.

20031



Video Reasoning Benchmarks. Widely used
benchmarks, such as AGQA (Grunde-McLaughlin
et al., 2021) and MVBench (Li et al., 2024c) fo-
cus on explicit visual elements (e.g., entity, action,
and the spatio-temporal reasoning involving them),
instead MAIA’s categories focus on the interplay
between language and vision, especially when this
relation is implicit or must be inferred, a dimen-
sion largely neglected in prior Video QA bench-
marks. Yue et al. (2024a) includes multiple-choice
and open-ended data points from entirely indepen-
dent data sets with different origins and content,
and reports the average performance across dis-
tinct tasks. Instead, MAIA’s NLU and NLG data
points are aligned, a unique feature of MAIA frame-
work, as such it introduce an Aggregate Accuracy
metric specifically designed to ensure that the per-
formance of the model is evaluated consistently
across multiple-choice and open-ended questions
derived from the same underlying data. There are
few other video-text benchmarks including both
these formats (e.g., Zhou et al. (2025); Peng et al.
(2024)), however, to the best of our knowledge,
none of them attempt to define a unifying metric,
as we do in MAIA.

3 The MAIA Benchmark

MAIA (Multimodal AI Assessment) is an evalua-
tion framework designed to assess the reasoning
capabilities of VLMs in video-based contexts.

3.1 Dataset

We outline here the steps involved in creating the
MAIA dataset while a comprehensive description
of its construction, characteristics, as well as the
validation and revision procedures can be found in
Testa et al. (2025). Validation steps consists in a
qualitative analysis and revision of the data, when
necessary.2

Video Collection. We gathered 100 short (ca.
30s) videos from YouTube Italy. The selection
covers various aspects of Italian culture, includ-
ing cities, art, food, sports, and daily activities (e.g.,
cooking pasta, having coffee, or watching a soccer
match). Preference was given to videos featuring
people and close-up shots. An automated script
retrieved videos using thematic keywords and en-
sured Creative Commons compliance.

Reasoning Categories. We defined 12 reason-
ing categories aiming to probe the cognitive and lin-

2Examples here are in English for readability.

guistic skills of multimodal models and to explore
the relation between language and vision, while
forming the core of the benchmark for evaluating
reasoning and grounding in an Italian context.

Questions and Answers Collection. The anno-
tation process was carried out in two phases. In
the first phase (question creation), 12 qualified an-
notators wrote 2 open-ended questions3 per video
for each category, ensuring diversity in entities and
events.4 A manual review verified adherence to
guidelines and semantic categories. In the sec-
ond phase (answer collection), we used Prolific5 to
solve the task, targeting Italian-native participants
with specific cultural criteria (aged 25–80, born and
raised in Italy, and Italian native speakers). Each an-
notator answered 12 out of 24 questions per video6,
focusing on detailed, visually grounded responses.
Each question was answered by eight annotators
to guarantee both accuracy and variability within
the pool. 7 Two semi-automatic validation checks
were applied to the collected answers: (1) seman-
tic consistency with the corresponding question,
and (2) contradiction tests across answers in the
same pool.8 After validation, the dataset consists
of 2,400 questions, each paired with a pool of 8
high-quality answers, for a total of 19,200 vali-
dated responses. Through a post-processing of the
lexicon, we made sure that the final 8-answer pools
are lexical diverse.9

Statement Collection. As shown in Figure 2,
TSs are descriptive declarative sentences that accu-
rately align with the visual content of videos. TSs
describe videos from different semantic perspec-
tives, according to MAIA semantic categories. TSs
were generated using GPT-4o (prompt in Figure
4A of the Appendix): for each question, it is given
the 8 human generated answers and it is prompted

3Yes/No and audio-based questions were prohibited.
4Annotators were paid C100 for their work.
5https://www.prolific.com/
6Annotators were paid £7 per hour.
7This choice is supported by Mañas et al. (2024), who

show that up to 8 demonstrations provide a good balance
between diversity, accuracy, and efficiency when talking about
in-context learning with LLMs for VQA evaluation.

8We found that 90.25% of the 8-answer pools exhibit full
agreement, as they do not contain any contradictions. The re-
maining 9.75% was manually reviewed by an additional anno-
tator to resolve inconsistencies. This shows agreement among
annotators, that cannot be measured through standard annota-
tor agreement metrics (e.g., Inter-Annotator Agreement) due
to the open-ended nature of the task.

9The lexical overlap within the 8-answers pool is 21.90%,
similarly to the overlap between pairs randomly extracted
from each pool (22.21%). In addition, the average Type-Token
Ratio (TTR) for content words within each pool is 0.55.
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CATEGORY QUESTION ANSWER (1/8) TRUE STATEMENT (1/8) FALSE STATEMENT (1/8)

CAUSAL

SPATIAL

IMPLICIT

PLANNING

TEMPORAL

SENTIMENT

UNCERTAINTY

OUT-OF-SCOPE

COUNTERFACTUAL

When does the pizzaiolo
take the pizza out of the

oven?

Why is mozzarella melted?

What attitude does the pizza
maker show while taking the

pizza out of the oven?

What would happen if the
pizza chef dropped the pizza

on the floor? 

On average, how many
pizzas does the pizza chef

bake each day? 

What is the cake made of?

What steps should the pizza
maker take to revive the fire?

I do not have enough
data to know. 

The pizza is placed on a
plate.

I cannot see any cake.

He should stir up the
embers a bit and throw

some new wood.

When he considers it
cooked, towards the end of

the video.

The pizzaiolo looks focused.

The heat from the wood
oven has melted it

He would dirty the floor and
would have to remake the pizza. 

Mozzarella is melted by the
heat of the wood oven

If the pizza chef dropped the
pizza, he would dirty the floor and
would have to remake the pizza. 

There is not enough data to
determine the average number of
pizzas a pizza maker cooks daily.

To revive the fire, the pizza
maker should stir the embers

and add new wood.

In the video, the pizza maker
looks focused while taking
the pizza out of the oven.

The pizzaiolo takes the pizza out of
the oven towards the end of the

video when he considers it cooked.

To revive the fire, the pizza maker
should stir the embers and add

new water.

In the video, the pizza maker looks
distracted while taking the pizza

out of the oven.

After being taken out of the
oven, the pizza is placed on

the table.

There is sufficient data to determine
the average number of pizzas that

the pizza maker cooks daily.

There is a cake in the video.

The pizzaiolo takes the pizza out of
the oven towards the beginning of

the video when he considers it
cooked.

Mozzarella is melted by the
heat generated by the sun.

If the pizza maker dropped the pizza,
he would not dirty the floor and

would not have to remake the pizza.

Where is the pizza
placed after being

taken out of the oven?

Total

Partial

What is the function of all the
wooden planks under the

wood oven?

They have to feed the fire. The wooden planks under the
wood oven are for feeding the

fire.

The wooden planks under
the wood oven are for

decoration.

Is the person who rolls out
the pizza the same one
who puts it in the oven?

No, they are two
different people.

In the scene, the person who rolls
out the pizza dough and the one
who puts it in the oven are two

distinct figures.

In the scene, the person who rolls
out the pizza dough and the one

who puts it in the oven are the
same person.

There is no cake in the video.

Partial

Total
Where is the pizza

maker?
In the pizzeria in front

of the oven
In the scene, the pizza maker
is in the pizzeria in front of the

oven

In the scene, the pizza chef is
in the pizzeria by the counter

Partial

Duration How long does it take to
cook the pizza in the video?

Pizza baking time is
approximately 30 seconds

The baking of the pizza in the
video takes approximately 30

seconds

The baking of the pizza in the
video takes approximately 30

seconds

After being taken out of
the oven, the pizza is
placed on a plate.

Figure 2: Overview of MAIA reasoning categories. For each of the 100 videos, it contains 2 questions for each of
the 12 categories; for each question, it has 8 answers, and each of these answers has a corresponding TS-FS pair.

to produce 8 TSs by combining the content of the
question with the one of the corresponding answer.
Again, post-processing techniques ensured high
lexical variability within each pool reducing lexical
overlap. FSs are incorrect descriptions automati-
cally generated by prompting GPT-4o (Figure 4B)
and created by minimally modifying elements of a
TS related to a reasoning category while maintain-
ing the original sentence structure, thus forming
minimal pairs. FSs were validated through two
semi-automatic checks (GPT-4o): (1) a structural
verification to ensure that each FS was a minimal
but incorrect variation consistent with its semantic
category, and (2) an NLI-based contradiction test
to confirm that each FS contradicted its correspond-
ing TS. This process produced 19, 200 high-quality

FSs aligned with their corresponding TSs.

3.2 Reasoning Categories

We report the reasoning categories in MAIA.10 Fig-
ure 2 provides examples of aligned question, an-
swer, TS, and FS.

Causal. Focuses on questions about the cause or
effect of an event. It provides a comprehensive test
of a model’s ability to infer and describe causality
within events. It can address either explicit (ob-
servable in the video) or implicit (inferred from the
visible effect) causes/effects.
Counterfactual. Focuses on hypothetical events
that do not occur in the video but could happen

10More details in Appendix A.1.
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under certain conditions. It tests a model’s ability
to reason about plausible scenarios grounded in the
video’s context.
Implicit. Involves questions about entities or
events that are either not explicitly visible in the
video (Total Implicit) or no longer visible (Partial
Implicit), but can still be reasonably inferred. It
evaluates a model’s ability to deduce implicit de-
tails based on context.
Out-of-Scope. Assumes the presence of entities or
events not actually shown in the video, asking about
properties of these nonexistent elements. It tests the
model’s ability to handle multimodal hallucinations
and its tendency to make assertive, yet incorrect,
responses.
Planning. Inquires about the sequence of actions
needed to achieve a specific goal related to the
video. It assesses the model’s ability to infer and
plan the necessary steps based on the visual cues.
Sentiment. Focuses on sentiment, mood, attitude,
or emotions of characters towards other entities or
events in the video. It evaluates the model’s ability
to recognize and identify the emotional cues.
Spatial. Focuses on the location of entities in
space, either applicable to the entire video (Total
Spatial) or specific moments and events (Partial
Spatial). It assesses the model’s ability to infer sta-
ble and time-dependent spatial relationships, deter-
mine relative positioning, and demonstrate ground-
ing competencies.
Temporal. Relies on when something happens, ei-
ther in relation to other events (Partial Temporal)
or the duration of an event (Duration). It evaluates
the model’s ability to infer temporal relationships,
event sequences, and durations from visual content.
Uncertainty. Arises when insufficient information
is provided in the video to give a precise answer.
It tests model’s ability to handle situations with
ambiguous or incomplete information, assessing its
tendency to make assertive (rather than uncertain)
responses.

4 Experimental Setting

We run several experiments to test modern VLMs
on the MAIA benchmark in a zero-shot setting. To
capture different VLM behaviors, strengths and
limitations, we defined two tasks, aligned on the
same datapoints: a multiple choice task, Visual
Statement Verification (VSV), and a generative task,
Open-ended Visual Question Answering (OEVQA).

4.1 Task1: Visual Statement Verification
VSV is a multiple-choice task where a model is pre-
sented with a true-false statement pair related to a
MAIA question (see section 3.1) for a given video,
and has to select the true option. The two state-
ments are randomly assigned to two labels, A and
B, and the model is asked to generate only the label.
We chose the prompt through an extensive evalua-
tion of 32 variants (16 in Italian and 16 in English),
with the best-performing Italian prompt ultimately
selected. Performance for VSV is measured with
accuracy, i.e., the proportion of correctly selected
true statements over the total statement pairs.

4.2 Task2: Open-ended VQA
OEVQA is a generative task, where models are
tested on their ability to provide correct open-ended
answers to a question related to video content. The
model receives as input a prompt question and a
video, and is tasked with generating a correct an-
swer. The prompt used in the experiments was
selected as the best-performing among 10 tested
variants (5 in Italian and 5 in English). Generated
responses are then evaluated according to the fol-
lowing approaches.

Similarity-based metrics. It compares a response
against the pool of 8 reference answers available in
MAIA. We used five token-level metrics: ROUGE
(Lin, 2004), BLEU (Papineni et al., 2002), BERT-
Score (Zhang et al., 2020), METEOR (Lavie and
Agarwal, 2007) and CIDEr (Vedantam et al., 2015).
LLM-as-a-judge. While similarity metrics help
rank VLMs, they fail in assessing answer correct-
ness. To address this, we adopt an LLM-as-a-judge
approach (Gu et al., 2025), using GPT-4o to eval-
uate whether an answer is semantically consistent
with at least one of the eight MAIA references,
prioritizing meaning over surface-level structure
(Appendix B.2). Following Bavaresco et al. (2024),
we validate this method on 100 samples: annota-
tions by two human raters and GPT-4o show strong
agreement, with a Fleiss’ Kappa of 0.82.

4.3 Baselines
We implemented three baselines for our tasks.

Unimodal. This baseline applies only to Task 1
and selects the most probable statement in a TS-FS
pair. It serves as a unimodal language baseline,
reflecting the distributional biases of LLMs. Prob-
abilities of TS and FS are first estimated on five

20034



Causal

Counterfactual

Out-of-Scope

Planning

Sentiment

Uncertainty

Implicit-Partial

Implicit-Total

Spatial-Partial

Spatial-Total

Temporal-Duration

Temporal-Partial

0.2

0.4

0.6

0.8

Qwen-2.5-VL 72B
Most Probable
Black Video
1-Frame
32-Frames

(a) Task 1: VSV
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Qwen-2.5-VL 72B
Most Probable
Black Video
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32-Frames

(b) Task 1: VSV (pool-based)

Causal

Counterfactual

Out-of-Scope

Planning

Sentiment

Uncertainty

Implicit-Partial

Implicit-Total

Spatial-Partial

Spatial-Total

Temporal-Duration

Temporal-Partial

0.2

0.4

0.6

0.8

Qwen-2.5-VL 72B
Black Video
1-Frame
32-Frames

(c) Task 2: OEVQA

Figure 3: Fingerprint of Qwen2.5-VL 72B through MAIA’s reasoning categories: (a) illustrates model performance
in NLU, Task 1, when TS-FS pairs are independent, while (b) reports performance on the same task when the
model correctly identify all TS-FS pairs within each 8-item pool, thereby penalizing inconsistency; (c) visualizes
the performance on NLG, Task 2.

Models Avg. Causal Counterfactual Out-of-Scope Planning Sentiment Uncertainty Implicit Spatial Temporal
Partial Total Partial Total Duration Partial

Unimodal 0.05 0.01 0.12 0.04 0.04 0.02 0.17 0.04 0.04 0.01 0.01 0.03 0.04

Black video

InternVL2 8B 0.18 0.07 0.40 0.43 0.08 0.06 0.73 0.03 0.03 0.03 0.02 0.20 0.05
InternVL3 78B 0.30 0.35 0.44 0.04 0.28 0.41 0.92 0.10 0.17 0.08 0.12 0.29 0.40

Llava-Next-Video 7B 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.01 0.01
Llava-oneVision 7B 0.14 0.01 0.04 0.59 0.04 0.00 0.83 0.04 0.04 0.01 0.01 0.06 0.01

Qwen-2.5-VL 7B 0.22 0.11 0.36 0.41 0.17 0.16 0.87 0.04 0.06 0.09 0.07 0.15 0.16
Qwen-2.5-VL 72B 0.22 0.17 0.31 0.72 0.17 0.02 0.92 0.03 0.08 0.01 0.03 0.11 0.08

1-Frame

InternVL2 8B 0.28 0.32 0.41 0.32 0.11 0.33 0.47 0.17 0.33 0.15 0.39 0.11 0.21
InternVL3 78B 0.42 0.53 0.50 0.46 0.37 0.47 0.69 0.31 0.53 0.23 0.44 0.20 0.36

Llava-Next-Video 7B 0.08 0.12 0.23 0.01 0.03 0.21 0.01 0.06 0.11 0.03 0.14 0.01 0.03
Llava-oneVision 7B 0.32 0.35 0.29 0.64 0.14 0.32 0.65 0.21 0.35 0.12 0.36 0.15 0.20

Qwen-2.5-VL 7B 0.36 0.36 0.28 0.64 0.16 0.44 0.81 0.25 0.39 0.14 0.39 0.21 0.24
Qwen-2.5-VL 72B 0.40 0.40 0.32 0.72 0.22 0.34 0.81 0.34 0.49 0.21 0.47 0.15 0.25

32-Frames

InternVL2 8B 0.31 0.41 0.35 0.38 0.12 0.42 0.39 0.28 0.38 0.18 0.43 0.11 0.30
InternVL3 78B 0.25 0.44 0.42 0.14 0.21 0.22 0.20 0.24 0.36 0.17 0.20 0.06 0.26

Llava-Next-Video 7B 0.03 0.04 0.04 0.01 0.03 0.09 0.00 0.01 0.06 0.01 0.04 0.01 0.01
Llava-oneVision 7B 0.38 0.51 0.21 0.61 0.19 0.51 0.45 0.39 0.47 0.26 0.48 0.11 0.33

Qwen-2.5-VL 7B 0.44 0.53 0.29 0.63 0.23 0.50 0.67 0.43 0.56 0.28 0.55 0.28 0.32
Qwen-2.5-VL 72B 0.54 0.67 0.41 0.80 0.39 0.59 0.75 0.56 0.65 0.39 0.65 0.13 0.46

Table 1: VSV (Task 1): accuracy of correct pools (8/8) across reasoning categories, penalizing models’ inconsis-
tency.

open-weight LLMs that have shown good perfor-
mance on a variety of Italian tasks (Magnini et al.,
2025): Llama-3.1 (8B-Instruct), LLaMAntino-2
(7B), LLaMAntino-3-ANITA (8B-Instruct), Gemma
(7B) and Qwen2.5 (7B-Instruct). For each TS-FS
pair, we selected the item with the highest proba-
bility among the five models.
Black video. It replaces MAIA videos with a fully
black clip, used as a proxy for a no-video condi-
tion. This setup minimizes access to visual features,
pushing the model to rely mainly on the language
component, while the true unimodal evaluation re-
mains the previous one.
1-Frame. This baseline considers only the first
frame for each MAIA video, this way reducing
the capacity of a VLM to capture visual features
and facing the one-frame “static appearance bias”
(Lei et al., 2023).

4.4 Vision-Language-Models

We benchmarked six recent VLMs sourced from
the Hugging Face Hub, representing state-of-the-
art approaches in Vision-Language tasks:11 In-
ternVL2 (8B, Chen et al. (2024)), InternVL3 (78B,
Zhu et al. (2025)) LLaVA-NeXT-Video (7B, Zhang
et al. (2024b)), LLaVa-OneVision (7B, Li et al.
(2024a)), and Qwen2.5-VL (both 7B and 72B,
Qwen et al. (2025)). All models accept a [video,
text] pair as input, and uniformly sample 32 frames
from the video.12

11More details about VLMs are reported in Appendix B.1
12During the experiments with InternVL3, we found that,

for about ten videos, 32 frames exceeded the model’s context
capacity, and in these cases we reduced them to 16 to ensure
proper processing.
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5 Results

This section reports the results obtained in our ex-
periments for Task 1 and Task 2 independently.

5.1 Results on Visual Statement Verification
Table 1 shows VLM accuracy across the three set-
tings (black video, 1-Frame, 32-Frames) and rea-
soning categories when models consistently an-
swers correctly (i.e., by choosing 8/8 the TSs
within the 8-item pool). Qwen2.5-VL 72B achieves
the highest accuracy in the 32-Frames setup with
an average score of 0.54, marking a 14-point im-
provement over the correspondent 1-Frame setting.
Llava-Next-Video shows the weakest performance
across all three configurations, likely due to its un-
derlying Vicuna-7B LLM, weakly trained in Italian.
All other models outperform the unimodal baseline
(0.05): in the 32-Frames setting, gains go from
+26 points (InternVL2) to +49 (Qwen2.5-VL 72B),
confirming the use of visual cues to counteract
language-driven biases. Notably, InternVL3 78B,
despite being a high-performing model, exhibits an
opposite trend in the 32-Frames setting, where its
accuracy drops by 0.05 and 0.17 compared to the
Black Video and 1-Frame configurations, instead
of improving as observed for the other models.13

As a complement, Figure 3 helps visualizing the
comparison across reasoning categories. Here we
report results only for Qwen-2.5-VL 72B, our best
model, while similar figures for the other mod-
els are in Appendix B (Figure 6, 7 and 8). The
most difficult categories are COUNTERFACTUAL,
PLANNING, IMPLICIT Partial, SPATIAL Partial,
and TEMPORAL Duration. In addition, CAUSAL,
SENTIMENT, IMPLICIT Partial and Total, and SPA-
TIAL Partial and Total are the categories for which
the model profits the most from visual clues, by
leveraging the broader visual window provided in
the 32-Frames setting, as shown by the larger area
covered by the red curve compared to the green
and blue ones.

Models’ consistency. Figure 3a vs. 3b highlights
the role of the consistency check in MAIA by using
a pool of 8 TS-FS pairs. When pairs are consid-
ered independently, as it is usually done in VLM
benchmarks, the model’s performance increases
significantly, showing that it relies on spurious cor-
relation, effects that is strongly mitigated by the
MAIA’s severe evaluation regime. In our case, such

13One possible explanation is that the model has not been
trained to process 32-frame inputs at the resolution we provide.

trend is even much more visible in the black video
setting than in the 32-Frames one with a gain of +47
vs. +34 for Qwen2.5-VL 72B (see Appendix, Table
5). By systematically comparing models’ perfor-
mance in the independent and pool-based settings,
we see that this is a general finding across models.
Moreover, we find that Qwen-2.5-VL 72B is not
only the best-performing model, but also the most
consistent, with a lower drop in the pool-based ac-
curacy (Table 1) with reference to the indipendent
one (Table 5), particularly in the 32-Frames setting
(i.e., 34 points).

5.2 Results on Open-ended Generation

Table 2 reports the results on Task 2. The best per-
forming model is again Qwen2.5-VL 72B, reach-
ing 0.81 accuracy in the 32-Frames setting. Un-
like in Task 1, here InternVL3 78B shows a posi-
tive incremental trend, with performance progres-
sively improving from Black Video to 1-Frame and
reaching its best results with 32 frames. In the
latter configuration, across models, the hardest cat-
egories are UNCERTAINTY, OUT-OF-SCOPE, IM-
PLICIT Partial, TEMPORAL Duration and Partial,
and SPATIAL Partial, while COUNTERFACTUAL

and PLANNING appear less challenging in this con-
text. This overall tendency is also confirmed for
our best model. In particular, Figure 3c shows
that the model benefits from 32 frames in all cat-
egories but OUT-OF-SCOPE and UNCERTAINTY,
where it instead excels with black videos, though
in most other cases performance in this setting is
poor. Surprisingly, for COUNTERFACTUAL and
PLANNING, a relatively high accuracy is obtained
already with black videos. Interestingly, differ-
ences also emerge when comparing the 1-Frame vs.
32-Frames settings. In the majority of cases, the
1-Frame is not enough, while 32 frames increase
performance. This difference is less pronounced
or does not hold for PLANNING, COUNTERFAC-
TUAL and UNCERTAINTY. For example, in the
IMPLICIT Total category, the 32-Frames model an-
swers correctly to How does the vehicle move?14

with The vehicle moves in a swinging way, with
back-and-forth movements, while the 1-Frame set-
ting hallucinates with The vehicle moves slowly
along the amusement park route.
Table 4 highlights how similarity-based metrics
(e.g., ROUGE, BLEU) often do not align with se-
mantic correctness. InternVL2 scores highest on

14Referring to a pirate ship in the amusement park
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Models Avg. Causal Counterfactual Out-of-Scope Planning Sentiment Uncertainty Implicit Spatial Temporal
Partial Total Partial Total Duration Partial

Black video

InternVL2 8B 0.37 0.42 0.60 0.30 0.68 0.43 0.08 0.21 0.23 0.36 0.25 0.55 0.25
InternVL3 78B 0.52 0.77 0.96 0.00 0.83 0.74 0.09 0.33 0.35 0.50 0.54 0.49 0.62

Llava-Next-Video 7B 0.27 0.43 0.47 0.30 0.40 0.33 0.51 0.21 0.12 0.16 0.04 0.12 0.16
Llava-oneVision 7B 0.40 0.66 0.68 0.29 0.60 0.60 0.28 0.26 0.24 0.36 0.18 0.37 0.23

Qwen-2.5-VL 7B 0.35 0.36 0.69 0.08 0.54 0.74 0.23 0.24 0.19 0.30 0.19 0.41 0.20
Qwen-2.5-VL 72B 0.38 0.36 0.73 0.97 0.86 0.12 0.90 0.15 0.17 0.14 0.03 0.04 0.04

1-Frame

InternVL2 8B 0.44 0.57 0.65 0.21 0.65 0.60 0.10 0.33 0.38 0.39 0.47 0.53 0.35
InternVL3 78B 0.68 0.88 0.97 0.44 0.91 0.83 0.56 0.55 0.70 0.57 0.77 0.44 0.56

Llava-Next-Video 7B 0.32 0.30 0.56 0.20 0.46 0.60 0.29 0.18 0.32 0.24 0.27 0.20 0.19
Llava-oneVision 7B 0.50 0.59 0.78 0.15 0.66 0.74 0.37 0.39 0.54 0.39 0.51 0.54 0.33

Qwen-2.5-VL 7B 0.51 0.56 0.76 0.32 0.60 0.79 0.40 0.35 0.50 0.38 0.53 0.55 0.38
Qwen-2.5-VL 72B 0.70 0.80 0.97 0.75 0.92 0.75 0.64 0.50 0.74 0.54 0.75 0.40 0.65

32-Frames

InternVL2 8B 0.49 0.54 0.68 0.28 0.64 0.62 0.11 0.45 0.48 0.47 0.51 0.57 0.46
InternVL3 78B 0.77 0.86 0.96 0.54 0.77 0.85 0.64 0.73 0.81 0.50 0.54 0.49 0.62

Llava-Next-Video 7B 0.33 0.37 0.38 0.16 0.42 0.48 0.27 0.24 0.37 0.29 0.39 0.32 0.29
Llava-oneVision 7B 0.53 0.67 0.79 0.11 0.65 0.79 0.23 0.55 0.56 0.51 0.62 0.40 0.46

Qwen-2.5-VL 7B 0.61 0.71 0.80 0.43 0.60 0.85 0.55 0.55 0.60 0.50 0.70 0.54 0.53
Qwen-2.5-VL 72B 0.81 0.93 0.99 0.72 0.94 0.87 0.59 0.74 0.84 0.71 0.91 0.72 0.79

Table 2: OEVQA (Task 2): accuracy of correct answers with LLM-as-a-judge.

Model Avg. Causal Counterfactual Out-of-Scope Planning Sentiment Uncertainty Implicit Spatial Temporal
Partial Total Partial Total Duration Partial

Black video Qwen-2.5-VL 72B 0.18 0.08 0.30 0.69 0.15 0.01 0.84 0.02 0.02 0.00 0.00 0.00 0.00

1-Frame Qwen-2.5-VL 72B 0.33 0.39 0.32 0.59 0.20 0.32 0.53 0.27 0.43 0.15 0.42 0.09 0.24

32-Frames Qwen-2.5-VL 72B 0.47 0.64 0.41 0.61 0.37 0.56 0.49 0.48 0.58 0.35 0.62 0.10 0.40

Table 3: Aggregate accuracy on Task 1 (NLU) and Task 2 (NLG) (consistency and robustness) on Qwen-2.5-VL
72B across reasoning categories.

Models ROUGE BertScore BLEU METEOR CIDEr

InternVL2 0.61 0.84 0.38 0.59 1.18
InternVL3 78B 0.50 0.80 0.26 0.47 0.67
LLaVa-NeXT-Video 0.46 0.79 0.21 0.45 0.65
LLava-oneVision 0.58 0.83 0.40 0.55 1.08
Qwen-2.5-VL 0.58 0.83 0.38 0.61 0.98
Qwen-2.5-VL 72B 0.62 0.84 0.37 0.65 1.07

Table 4: VLM performance (32-Frames setting) for
OEVQA (Task 2) according to similarity-based metrics.

surface-level similarity (e.g., BERTScore: 0.84,
CIDEr: 1.18) – as well as Qwen2.5-VL 72B –
but lower when considering the LLM-as-a-judge
metric (0.49), while Qwen2.5-VL 72B and In-
ternVL3 78B offer more (semantic) accurate an-
swers. LLaVA-NeXT-Video underperforms across
all evaluations.

5.3 Discussion

The results presented for Task 1 and 2 clearly high-
light two key findings. First, within each task, the
role of the information extracted from videos is
unequally distributed across reasoning categories.
The star-shaped Figure 3b illustrates such differ-
ences: the star’s picks highlight the categories that
profit from the visual input the most: SPATIAL To-
tal, IMPLICIT Total, CAUSAL, OUT-OF-SCOPE,
and UNCERTAINTY. On the other hand, and quite
surprisingly, Qwen2.5-VL 72B handles OUT-OF-

SCOPE and UNCERTAINTY better when provided
the black videos, which are expected to be uninfor-
mative, than with the full 32 frames. This calls for
a deeper analysis of the reason behind such a re-
sult, as the more visual context the model receives,
the more it hallucinates, reducing OUT-OF-SCOPE

scores, and becomes overly assertive, reducing UN-
CERTAINTY scores. Overall, this shows that MAIA
categories are extremely useful to factorize the con-
tribution of the visual vs. linguistic components of
VLMs, favoring a more nuanced analysis of their
actual abilities. Finally, among the most challeng-
ing categories – discussed in 5.1 and 5.2 – several
(e.g., SPATIAL Partial, IMPLICIT Partial, and TEM-
PORAL Duration) share a temporal dimension, re-
inforcing the evidence that temporal reasoning still
remains a fundamental issue of current models.
A second noteworthy fact is the effect of the task
design. By comparing Table 1 and Table 2, we
see that overall accuracy is higher in Task 2 than
in Task 1, even though the underlying information
the model has to exploit to perform the tasks is
the same, given the alignment between their data
points. Such an increase is found across models:
+0.26 increase on average – in line with the Gen-
erative AI Paradox – they are better at generating
than at understanding text (West et al., 2024). Fig-
ure 3b vs. Figure 3c illustrates such a difference
for Qwen2.5-VL 72B. Interestingly, the difference
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is more pronounced for some categories, as shown
by the fact that Figure 3c no longer has the shape
of a star; for instance, PLANNING, COUNTERFAC-
TUAL, SPATIAL Partial and TEMPORAL Duration
improve the most. On the other hand, UNCER-
TAINTY and OUT-OF-SCOPE accuracy drops in the
NLG task; from a qualitative analysis, we saw that
this is mostly due to the generation of hallucina-
tions (Appendix B.3).

However, models’ size proved to be a crucial
factor: larger models consistently achieve higher
accuracy, even within the same family, suggesting
that scaling provides apparent advantages on indi-
vidual tasks, although this picture changes when
considering MAIA’s broader scope (as discussed
in the next section).

6 Aggregating Understanding and
Generation

A distinctive feature of MAIA is the alignment
between the VSV and OEVQA tasks: both are
grounded in the same question and the same video.
While Section 5 reported their results separately,
we now combine them into a unified evaluation
framework that jointly tests comprehension and
generation abilities in VLMs. We introduce Ag-
gregate Accuracy (Agg-Acc), a metric rewarding
models that: (i) consistently select the correct state-
ment (TS) over all 8 TS-FS pairs in Task 1, and (ii)
generate a correct answer to the same question in
Task 2, according to our LLM-as-a-judge evalua-
tion. The idea is to capture overlapping abilities
(i.e. knowledge and reasoning) for the two aligned
tasks, evaluating models’ robustness. Aggregate
Accuracy is defined as follow:

Agg-Acc(M, q) =





1 if ∀(TS, FS) ∈ Sq,

aM (TS, FS) = TS

and aM (q) is correct
0 otherwise

where M is the model, q a question, Sq the set of
TS-FS pairs, and aM the model’s answers. Intu-
itively, given a question q on a video v, we reward
the ability of a VLM to both select a correct an-
swer TF from a TF − FS pair related to q, and
to generate a correct answer a to q, as discussed in
Section 1 when commenting the question What is
the cake made of? and the aligned data of the NLU
and NLG tasks in Figure 1.

Table 3 reports Agg-Acc for our best model
Qwen2.5-VL 72B: 0.47 with 32-frames, 0.33 with

1-frame, and only 0.18 with black video; this shows
the more challenging nature of the aggregate task,
and that a single frame is not that robust. PLAN-
NING, SPATIAL Partial, and TEMPORAL Dura-
tion remain challenging even with 32-Frames, de-
spite their notable improvements from Task 1 to
Task 2. Results confirm that MAIA’s aggregated
understanding&generation task creates a harder
benchmark, laying the ground toward a more objec-
tive VLM evaluation, even when considering larger
models that apparently achieve high accuracy and
appear to perform well.

7 Conclusion

We introduce MAIA, a benchmark designed for
fine-grained investigation of the reasoning abili-
ties of VLMs on videos. MAIA has two aligned
tasks: a visual statement verification task (NLU),
and a open-ended visual question answering task
(NLG), both on the same set of video related ques-
tions. First, we provided a in-depth analysis of the
two tasks independently, showing the importance
of evaluating model with answer-pools to account
for model consistency. Then, we couple compre-
hension and generation in an aggregated evaluation
framework, arguing that the aggregated "all-in-one"
understanding&generation task is a challenging
and natural setting toward a more objective VLM
evaluation, as it reveals inconsistencies within the
same task and a lack of robustness across aligned
tasks, even in larger models. As for the future, it
would be interesting to see whether our framework
promote models that undergo learning paradigms
tightly integrating these two capabilities, as in Gul
and Artzi (2024).

Limitations and Future Directions

We acknowledge that the number of videos in
MAIA may seem relatively small, with only 100
samples. However, their combination with 12 rea-
soning categories results in 19,200 samples for
Task 1 and an equal number of question-answer
pairs, providing a robust evaluation set, not in-
tended for any kind of training. Still, these 100
videos constitute only the initial core of a broader
evaluation framework planned for future develop-
ment. Moreover, we are aware that our most prob-
able baseline, constructed using probabilities de-
rived from our set of LLM’s logits, poses a limita-
tion that we intend to address in future work. We
plan to compare each VLM with its correspond-

20038



ing LLM to obtain more reliable results for proper
comparisons and analyses of potential statistical
biases. Regarding Task 2, we aim to dive deep
into the comparison between the similarity metrics
used and the emerging topic of LLMs as judges.
Additionally, we intend to further investigate this
latter approach to assess its actual validity as a re-
liable evaluation method. This direction will help
us refine accuracy metrics, ultimately enhancing
our ability to rigorously test model robustness and
consistency across our two specular tasks. Further-
more, we acknowledge that our evaluation did not
include large-scale proprietary models (e.g., Chat-
GPT). Our focus was primarily on testing the per-
formance of open-source and easily exploitable lan-
guage models to provide a comprehensive overview
of their capabilities on the benchmark. Finally,
we are also aware that our benchmark has not yet
been compared with existing ones to assess its rela-
tive difficulty and challenge level. This limitation
comes from the lack of comparable resources in
Italian. As a future direction, we plan to translate
MAIA into English and replicate our experiments,
enabling more meaningful comparisons with simi-
lar English-language benchmarks.
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A MAIA:Benchmark Details

A.1 Semantic Categories Definition
We report here the definition of the twelve reason-
ing categories included in MAIA.

CAUSAL. This category15 includes two subtypes:
Implicit Causal and Explicit Causal, both aimed
at reasoning about the causes or effects of events
depicted in the video. Thus, it includes reasoning
tasks involving both visible and inferred causal
relationships, offering a comprehensive test of
a model’s ability to infer and describe causality
within events.

• Implicit Causal: This type of question targets
the inferred cause of an event, object, or
human action visible in the video. The focus
is on an implicit cause that cannot be directly
observed but must be deduced from the effect
presented in the scene. Typical responses
involve a logical inference explaining the
implicit cause behind the visible effect.
Example: Suppose a video shows a person at
home grabbing an umbrella while going out.

Italian:
Q: Per quale motivo la persona
prende l’ombrello?
A: Perchè potrebbe piovere fuori.

English:
Q: Why does the person take the
umbrella?
A: Because it might be raining outside.

In this example, the action of grabbing the um-
brella is visible, but the reason (bad weather)
is not explicit in the video and must be in-
ferred.

• Explicit Causal: This type of question ad-
dresses direct cause-and-effect relationships
visible within the video. The focus is on
identifying a specific event, object, or human
action (the cause) that led to another event,
situation, or state (the effect) or vice versa.
Typical responses clearly describe either the

15Note that in MAIA there are four macro-categories with
two fine-grained specifications (i.e., subcategories). The only
exception is the Causal category, in which explicit and im-
plicit items are equally represented (100 each). However, we
do not consider them subcategories in the same way as the
others, since in those cases, the subcategories express entirely
different aspects of the same domain.

20042

https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913
https://doi.org/10.1109/CVPR52733.2024.00913
https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/2407.12772
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2306.05179
https://arxiv.org/abs/2306.05179
https://arxiv.org/abs/2306.05179
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/
https://llava-vl.github.io/blog/2024-04-30-llava-next-video/
https://doi.org/10.18653/v1/2022.emnlp-main.432
https://doi.org/10.18653/v1/2022.emnlp-main.432
https://arxiv.org/abs/2406.04264
https://arxiv.org/abs/2406.04264
https://arxiv.org/abs/2504.10479
https://arxiv.org/abs/2504.10479


cause or the effect based on what is directly
observable in the video.
Example: Suppose a video shows an angry
person throwing a glass on the floor, which
subsequently shatters.

Italian:
Q: Perchè il bicchiere si è rotto?
A: Perchè la persona lo ha gettato a
terra.

English:
Q: Why did the glass break?
A: Because the person threw it on the
ground.

Here, both the cause (throwing the glass) and
the effect (the glass breaking) are visible in
the video and can be used to provide a direct
response.

COUNTERFACTUAL. This category focuses on
questions about hypothetical scenarios that do not
actually occur in the video but could take place
under specific conditions. These questions explore
the consequences of an event or situation that might
happen in the video if a certain condition were met.
A key requirement is that the hypothetical condi-
tion must be based on entities or events visible
in the video. Consequently, this category tests a
model’s ability to reason about hypothetical sce-
narios grounded in the context of the video while
deriving logical and plausible outcomes from such
scenarios.
Example: Suppose a video shows an outdoor con-
cert.

Italian:
Q: Cosa succederebbe al concerto se
arrivasse un forte temporale?
A: Il concerto verrebbe interrotto
all’istante.

English:
Q: What would happen to the concert if
a violent thunderstorm started?
A: The concert would be immediately
interrupted.

In this example, the focus of the question (the con-
cert) is visible in the video, while the condition (a
violent thunderstorm) is not. The consequence (the

concert being interrupted) is not shown in the video
but can be reasonably inferred .
IMPLICIT. The implicit category includes ques-
tions about entities, events, or their attributes that
are not explicitly visible in the video. However,
their presence or properties can be reasonably in-
ferred from the context. This category evaluates
a model’s ability to infer implicit details based on
context, whether the target information was never
shown or was previously visible but later obscured.

• Total Implicit: These questions focus on en-
tities or events that are never directly visible
in the video but can be inferred from observ-
able details. A typical answer provides the
requested information based on logical infer-
ence.
Example: Suppose a video shows the interior
of a house, and suddenly the front door opens,
revealing a person soaking wet with a dripping
closed umbrella.

Italian:
Q: Che tempo fa fuori?
A: Piove molto forte.

English:
Q: What’s the weather like outside?
A: It’s raining heavily.

In this case, the focus of the question (the
weather outside) is not visible at any point
in the video. However, details such as the
wet person and dripping umbrella allow for a
reasonably confident inference (heavy rain).

• Partial Implicit: These questions address en-
tities or events that were visible earlier in the
video but are no longer visible due to a shift
in the scene or because they have moved out
of the frame.
Example: Suppose a video shows a man plac-
ing a pen in a drawer and then closing it.

Italian:
Q: Dove si trova la penna?
A: La penna è nel cassetto.

English:
Q: Where is the pen?
A: The pen is inside the drawer.

In this example, the focus of the question (the
pen) is no longer visible in the video. How-
ever, earlier information (the man placing the
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pen in the drawer) allows for a logical and
confident answer (the pen is in the drawer).

OUT-OF-SCOPE. Such a category involves ques-
tions about entities or events that are not present
in the video at all, asking for properties or details
about these non-existent entities or events. A typi-
cal response to an out-of-scope question is a nega-
tion, stating that the entity or event in question
is not present. This category tests the ability of
a model to identify and handle irrelevant or non-
existent entities within the video content, appro-
priately responding with a negation when the re-
quested object or event is absent. Thus, it repre-
sents an indirect way to test the models on possible
multimodal hallucinations and their tendency to be
assertive in their responses.
Example: Suppose a video shows a dog and its
owner playing in the park, but there are no cars in
the scene.

Italian:
Q: Di che colore è la macchina?
A: Non ci sono auto (nella scena).

English:
Q: What color is the car?
A: There is no car (in the scene).

In this example, the focus of the question (the car)
is not physically present in the video, nor can its
presence be reasonably inferred. When trying to
answer the question, no useful information about a
car can be found, and the expected response would
be a negation, such as "There is no car."
PLANNING. This category involves questions
that request the actions needed to achieve a spe-
cific goal related to the video. The typical response
to a planning question is a sequence of actions that
someone should perform, based on the situation
presented in the video, in order to reach the desired
outcome. Such a category assesses the model’s
ability to infer and plan the necessary steps to ac-
complish a goal based on the visual cues provided
in the video.
Example: Suppose a video shows a dog and its
owner playing with a ball in a park, and the owner
throws the ball onto a bench.

Italian:
Q: Cosa dovrebbe fare il cane per
continuare a giocare col padrone?
A: Dovrebbe correre verso la palla,
saltare sulla pacchina, prendere la palla

e riportarla al padrone.

English:
Q: What should the dog do to continue
playing with its owner?
A: The dog should run toward the ball,
jump onto the bench, grab the ball, and
bring it back to the owner.

In this example, the focus of the question (the dog)
is visible in the video. To answer the question,
one can use the information in the video (the ball
on the bench) to deduce the series of actions the
dog should take (running, jumping, grabbing, and
returning the ball) in order to continue the game.
SENTIMENT. The category involves questions
that focus on the sentiment, mood, attitude, or emo-
tion displayed by one or more characters in the
video (i.e., animated beings) toward other entities
or events in the scene, throughout the entire video.
A typical response to a sentiment question may
describe a specific sentiment, attitude, or emotion,
or it may reflect a neutral stance. This category
represents a tool for evaluating model’s ability to
recognize and identify the emotional state or atti-
tude of characters based on visual cues, reflecting
their reaction or feelings toward the events and
other entities in the video.
Example: Suppose a video shows children who
appear bored at a birthday party.

Italian:
Q: Che atteggiamento hanno i bimbi?
A: Sono annoiati.

English:
Q: What is the attitude of the children?
A: They are bored.

In this example, the focus of the question (the chil-
dren) is visible in the video. To answer the question,
one can use the visual cues present in the video (ex-
pressions and behaviors of the children) to infer the
sentiment (boredom) displayed by the characters.
SPATIAL. Such a category involves questions re-
lated to the spatial relationships between entities,
objects, or events depicted in the video. It aims at
assessing the model’s ability to infer both stable
and time-dependent spatial relationships, as well
as the ability to determine relative positioning in
space and to rely on grounding competencies.

• Total Spatial: This question asks about the
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position of entities in space (including their
relation to other entities) that remains constant
throughout the entire video, disregarding any
temporal variations or minimal movements of
the entity at different moments in the video. A
typical response to this type of question pro-
vides specific spatial information valid for the
entire duration of the video.
Example: Suppose a video shows a school
lesson with a teacher and students in a class-
room.

Italian:
Q: Dov’è l’insegnante?
A: L’insegnante è in classe.

English:
Q: Where is the teacher?
A: The teacher is in the classroom.

In this example, the focus of the question (the
teacher) is visible throughout the video. To
answer the question, one can use visible in-
formation from the video (classroom, desk) to
provide the entity’s spatial position (behind
the desk) throughout the video’s duration.

• Partial Spatial: This question asks about the
position of entities in space, but in relation
to the time and/or other events occurring in
the scene. It may also request the position of
one entity relative to another, with a temporal
aspect taken into account. A typical response
provides spatial information that is specific
only to the requested time range in the video.
Example: Suppose a video shows a school
lesson with a teacher and students in a class-
room.

Italian:
Q: Dove si trova l’insegnante
all’inizio del video?
A: All’inizio del video, l’insegnante è
di fronte la cattedra.

English:
Q: Where is the teacher at the
beginning of the video?
A: At the beginning of the video, the
teacher is standing in front of the desk.

In this example, the focus of the question (the
teacher) is visible in the video. To answer the
question, one would use the visual informa-

tion visible in the specific part of the video
(classroom, desk) to provide the spatial po-
sition (in front of the desk) relative to the
time frame requested (at the beginning of the
video).

TEMPORAL. The category includes questions
that focus on temporal information. This category
studies the model’s ability to infer temporal rela-
tionships, sequence of events, and durations from
visual content in a coherent manner.

• Partial Temporal: This question focuses on
the temporal properties and relationships of
events in the video. The questions may re-
quest any type of temporal information about
the events or their temporal relationships, ex-
cept for their duration. For example, asking
when something happens or if something hap-
pens before or after another event. A typical
response provides the event with the specific
temporal information requested by the ques-
tion.
Example: Suppose a video shows a rock band
concert.

Italian:
Q: Che succede dopo che il chitarrista
inizia a suonare?
A: Il cantante inizia a cantare.

English:
Q: What happens after the guitarist
starts playing?
A: The singer starts singing.

In this example, the focus of the question
(what happens after the guitarist starts play-
ing) is visible at a specific moment in the
video. To answer the question, one can use the
visible information in that portion of the video
(the singer starts singing) to provide the event
(the singer starting to sing) as a response.

• Duration Temporal: This question focuses on
a specific property of events in the video: their
duration. A typical response provides the
specific temporal information required by the
question regarding the event’s duration.
Example: Suppose a video shows a room with
a light on and a person switching it off.

Italian:
Q: Per quanto tempo la luce rimane
accesa?
A: Per circa 15 secondi.
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English:
Q: How long was the light on?
A: For about 15 seconds.

In this example, the focus of the question (the
light on) is visible in the video. To answer the
question, one can use the temporal informa-
tion visible in the video (the person switching
the light off) to provide a duration (about 15
seconds) as response.

UNCERTAINTY. This question refers to entities
and events that are part of the situation represented
in the video, but the scene does not provide enough
information to give a precise answer. Therefore,
uncertainty questions involve a certain degree of
ambiguity in the response, which cannot be fully
derived from the video content. The answer may
refer to a range of values, state that a precise an-
swer cannot be given, or mention that the answer
is a guess and might not be correct. This category
tests the model’s ability to recognise and deal with
situations in which the available information is in-
sufficient or ambiguous, leading to a response that
reflects the uncertainty of the scene and indirectly
testing the hypothetical assertive behaviour of such
models in answering.
Example: Suppose a video shows a dog.

Italian:
Q: Quanti anni ha il cane?
A: Difficile da dire. / Il cane è probabil-
mente giovane, ma non si può esserne
certi.

English:
Q: How old is the dog?
A: It’s hard to say. / The dog is probably
young, but it’s not certain.

In this example, the focus of the question (the dog)
is visible in the video. However, if one tries to
answer the question, only partial information about
the dog’s age is available in the video. As a result,
an uncertain answer (e.g., “It’s difficult to tell”) is
expected.

A.2 True and False Statement Generation
Figure 4 illustrates the prompts used to generate
True Statements (A) from the questions and the
corresponding responses in the 8-answer pools and
the False Statements (B) starting from the true ones.

B Experiments

This appendix section will contain additional de-
tails on our experimental settings, including a de-
scription of the VLMs used, as well as graphs and
tables summarizing the results for Tasks 1 and 2 of
MAIA.
In contrast to the initial experiments for creating
and validating the synthetic data of the MAIA
dataset, where we used OpenAI’s GPT-4o API, the
experiments on MAIA were conducted using A100
GPUs (40GB). Overall, the total computational
budget was on the order of ∼1,000 GPU hours.

B.1 Models tested
Vision-Language Models We benchmarked six
recent VLMs. Both experiments and related quan-
titative evaluation have been done using lmms-eval
(Zhang et al., 2024a), a framework for the evalua-
tion of multimodal models.

InternVL2. (Chen et al., 2024): 8B param-
eter transformer-based multimodal model em-
ploying advanced cross-attention; pre-trained on
large-scale image-text and video datasets for
diverse multimodal tasks and instruction-tuned.
It uses InternLM2.5 as open-sourced-7B pa-
rameter chat model. Hugging Face model:
OpenGVLab/InternVL2-8B.
InternVL3. (Zhu et al., 2025): 78B parameter
multimodal model trained with a native multimodal
pre-training paradigm, integrating linguistic and vi-
sual capabilities from the start. It employs Variable
Visual Position Encoding (V2PE) and advanced
post-training strategies, achieving state-of-the-art
performance among open-source VLMs. Hugging
Face model: OpenGVLab/InternVL3-78B.
LLaVA-NeXT-Video. (Zhang et al., 2024b): 7B
parameter model built on the LLaVA framework,
optimized for video understanding with mecha-
nisms to capture temporal dynamics; fine-tuned
on video instruction data. Base LLM: Vicuna-7B
(v1.5). Hugging Face model: llava-hf/LLaVA-
NeXT-Video-7B-hf.
LLaVa-OneVision. (Li et al., 2024a): 7B param-
eter model that builds on the LLaVA framework
with a Qwen2 LLM backbone to serve as a general-
purpose vision-language assistant; pre-trained on
extensive multimodal data to deliver robust cross-
modal reasoning. Hugging Face model: lmms-
lab/llava-onevision-qwen2-7b-ov.
Qwen2.5-VL. (Qwen et al., 2025): 7B and 72B
parameter VLMs of the Qwen family using the
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Given an Italian question Q and an answer A concerning a video, you must create a statement S based on A.  
While generating S, try not to alter the words composing A. If A includes first-person verbs or phrases  
(e.g., 'I think,' 'I believe'), rephrase S to be impersonal, avoiding a first-person perspective. 
The statement should be a concise, declarative sentence. 
 
 
Given an Italian caption (TS) regarding the position or location of someone or something, your task is to create its 
foil (FS) by changing only the spatial information.  
Don't add other information respect to what is stated in TS. Here is an example to guide you: 
TS: La donna nel video è in un campo di papaveri. 
FS: La donna nel video è in una classe. 
 
 
 
 
 
Given an Italian caption (C) dealing with temporal information about events and its foil (F), your task is to assess 
the correctness of F based on C.  
To be valid, F should express a diOerent temporal information with reference to the one expressed in C. 
If F is a valid foil, generate 'correct' otherwise 'not correct'. 
 
Your task is to determine the natural language inference (NLI) relationship between S1 and S2. The possible 
labels are: 
- Entailment: S2 logically follows from S1. 
- Contradiction: S2 contradicts S1. 
- Neutral: S2 and S1 are related but do not entail or contradict each other.  
Provide only one label as output (Entailment, Contradiction, or Neutral). 
 
 
 
 
 
Given a question (Q), a candidate answer (A), and a set of 8 reference answers (R1–R8), your 
task is to determine whether A is correct. A is considered correct if it aligns with at least one of 
the reference answers.  
Return only one label as output: 'Correct' or 'Incorrect. 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

A 

B 

Figure 4: Prompts used for True (A) and False (B) Statements generation with GPT-4o. Prompt B is representative
of the 12 different prompts used to generate False Statements, each tailored to a specific semantic category.

 

 
Given a question (Q), a candidate answer (A), and a set of 8 reference answers (R1–R8), your task is to determine 
whether A is correct. A is considered correct if it aligns with at least one of the reference answers.  
Return only one label as output: 'Correct' or 'Incorrect’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Prompt used for automatic evaluation of VLMs’ answers in Task2 (i.e., for LLM-as-a-judge evaluation
metric)

Qwen2.5 LLM decoder; key enhancements are re-
lated to grounding, working with longer videos and
capturing events. It was pre-trained on compre-
hensive visual and textual datasets and fine-tuned
for detailed, context-aware responses. Hugging
Face model: Qwen/Qwen2.5-VL-7B-Instruct and
Qwen/Qwen2.5-VL-72B-Instruct.
Unimodal models. As described in Section 4we
used five open-weight LLMs which have shown
good performance on a variety of tasks on Italian
(Magnini et al., 2025). For conducting these exper-
iments, we used Minicons library (Misra, 2022), a
high-level wrapper around Hugging Face for inves-
tigating predictive behavior of transformer models.
Specifically, probabilities were computed adding
a normalization parameter to take into account
the different length of sentences in terms of to-
kens. Models used in the Hugging face Hub are:
Llama-3.1 (8B-Instruct), LLaMAntino-2 (7B),
LLaMAntino-3-ANITA (8B-Instruct), Gemma
(7B) and Qwen2.5 (7B-Instruct).

B.2 Tasks Details

Table 5 provide details with respect to the results
obtained in Task 1 without considering any form of
aggregation into pools (i.e. single-accuracy). Fig-
ures 6, 7, and 8 represent the fingerprint of models
through MAIA’s reasoning categories. Specifically,
Figure 6 reports results for Task 1, Figure 7 for Task

1 when models make 8/8 correct choices within the
8 TS-FS pairs that make up the pools, and Figure 8
for Task 2.
As regards the generation task, we combined
similarity-based metrics with an LLM-as-a-judge
approach, the latter being more suitable for han-
dling open-ended responses. Using 8 reference an-
swers for evaluating the generation correctness of
VLMs allowed us to prioritize semantic alignment
over surface similarity, following (Lee et al., 2024a)
and (Mañas et al., 2024). GPT-4o was adopted as
evaluation model, and its judgments showed high
agreement with human annotators (Fleiss’ Kappa:
0.82). Figure 5 shows the prompt used for this
evaluation.

B.3 Case study: Multimodal Hallucinations

As part of a preliminary error analysis focusing
on the OUT-OF-SCOPE CATEGORY, we observed
that a significant portion of the errors made by the
model could be attributed to multimodal halluci-
nations. Particularly interesting was the discovery
of counterintuitive clashes between the two tasks
in our benchmark. In several instances, the model
successfully solved Task 1 (i.e., True Statement
Selection), in some cases achieving also full consis-
tency within the pools (e.g., 8/8 correct selections),
yet failed Task 2 (i.e., open-ended NLG), gener-
ating hallucinated content. For example, given a
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Models Avg. Causal Counterfactual Out-of-Scope Planning Sentiment Uncertainty Implicit Spatial Temporal
Partial Total Partial Total Duration Partial

Unimodal 0.56 0.45 0.73 0.55 0.68 0.53 0.79 0.50 0.51 0.48 0.51 0.53 0.48

Black video

InternVL2 8B 0.68 0.64 0.88 0.89 0.69 0.61 0.96 0.52 0.59 0.54 0.55 0.67 0.60
InternVL3 78B 0.77 0.81 0.88 0.60 0.80 0.84 0.99 0.64 0.71 0.68 0.71 0.78 0.82

Llava-Next-Video 7B 0.50 0.49 0.52 0.48 0.51 0.52 0.45 0.50 0.51 0.51 0.49 0.51 0.48
Llava-oneVision 7B 0.59 0.54 0.48 0.92 0.61 0.38 0.97 0.52 0.53 0.50 0.52 0.60 0.51

Qwen-2.5-VL 7B 0.73 0.68 0.86 0.87 0.75 0.72 0.98 0.56 0.62 0.61 0.65 0.73 0.70
Qwen-2.5-VL 72B 0.69 0.71 0.78 0.95 0.75 0.57 0.99 0.53 0.62 0.54 0.57 0.67 0.63

1-Frame

InternVL2 8B 0.75 0.80 0.87 0.69 0.71 0.77 0.89 0.65 0.80 0.65 0.82 0.67 0.69
InternVL3 78B 0.81 0.86 0.88 0.81 0.83 0.84 0.93 0.74 0.87 0.68 0.84 0.70 0.77

Llava-Next-Video 7B 0.61 0.68 0.76 0.49 0.63 0.75 0.40 0.59 0.65 0.59 0.70 0.56 0.53
Llava-oneVision 7B 0.76 0.79 0.78 0.89 0.74 0.76 0.91 0.68 0.81 0.64 0.81 0.70 0.67

Qwen-2.5-VL 7B 0.79 0.81 0.81 0.91 0.75 0.82 0.70 0.82 0.96 0.67 0.82 0.69 0.73
Qwen-2.5-VL 72B 0.79 0.81 0.81 0.92 0.79 0.74 0.97 0.73 0.84 0.67 0.85 0.70 0.70

32-Frames

InternVL2 8B 0.79 0.83 0.85 0.77 0.75 0.84 0.84 0.75 0.83 0.69 0.86 0.66 0.76
InternVL3 78B 0.64 0.81 0.87 0.55 0.71 0.59 0.62 0.61 0.76 0.67 0.71 0.79 0.82

Llava-Next-Video 7B 0.52 0.56 0.57 0.42 0.57 0.61 0.32 0.52 0.59 0.52 0.56 0.51 0.48
Llava-oneVision 7B 0.81 0.87 0.78 0.88 0.76 0.88 0.85 0.80 0.85 0.71 0.87 0.65 0.80

Qwen-2.5-VL 7B 0.84 0.89 0.80 0.89 0.78 0.86 0.92 0.82 0.88 0.83 0.90 0.75 0.81
Qwen-2.5-VL 72B 0.88 0.93 0.86 0.95 0.85 0.89 0.95 0.88 0.92 0.80 0.92 0.69 0.84

Table 5: Visual statement verification (Task 1): accuracy of correct choices across reasoning categories (without
aggregation).

video in which a young girl is frightened by an
insect in her home and seeks her mother’s help to
remove it, one of our best-performing model (i.e.,
Qwen2.5VL) consistently selected the correct true
statement in all eight pairs16:

1. • In the scene there is no dog at the door
• In the scene there is a dog at the door

2. • In the movie there are no animals at the
door

• In the movie there are animals at the door

3. • In the movie there is no doggie at the
doorway

• In the movie there is a doggie at the door-
way

4. • No pets are seen in front of the door
• Some Pets are seen in front of the door

5. • There are no dogs at the door in the video
• There are dogs at the door in the video

6. • No dog appears in the entrance area
• A dog appears in the entrance area

7. • No pets are visible in the video near the
front door of the house

• A pet is visible in the video near the front
door of the house

8. • In the video clip there is no dog at the
door

• In the video clip there is a dog at the door
16True Statements are the first in each pair

However, when prompted in Task 2 with the
question What color is the dog at the door?, the
model hallucinates by answering The dog at the
door is black, despite the fact that no dog is present
in the video. This case highlights a curious but
also dangerous misalignment between the model’s
apparent ability to correctly perform discrimina-
tive reasoning in a multiple-choice setting and its
failure to accurately generate grounded content. It
also emphasizes a lack of robustness in the model’s
competencies. These findings underscore the need
for a more in-depth error analysis, as the overall
results (see Tables 2 and 3) suggest that, for spe-
cific reasoning categories, performance in Task 1
may not reliably predict success in Task 2, with
notable performance unbalances often occurring
(e.g., UNCERTAINTY reasoning category).
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Figure 6: Task 1
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Figure 7: Task 1 pool-based
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Figure 8: Task 2
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