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Abstract

Cross-lingual alignment of nuanced sociolog-
ical concepts is crucial for comparative cross-
cultural research, harmonising longitudinal
studies, and leveraging knowledge from social
science taxonomies (e.g., ELSST). However,
aligning these concepts is challenging due to
cultural context-dependency, linguistic varia-
tion, and data scarcity, particularly for low-
resource languages. Existing methods often fail
to capture domain-specific subtleties or require
extensive parallel data. Grounded in a Vector
Decomposition Hypothesis—positing separa-
ble domain and language components within
embeddings, supported by observed language-
pair specific geometric structures—we propose
DLIR (Dual-Branch LoRA for Invariant Repre-
sentation). DLIR employs parallel Low-Rank
Adaptation (LoRA) branches: one captures
core sociological semantics (trained primarily
on English data structured by the ELSST hi-
erarchy), while the other learns language in-
variance by counteracting specific language
perturbations. These perturbations are mod-
eled by Gaussian Mixture Models (GMMs)
fitted on minimal parallel concept data using
spherical geometry. DLIR significantly outper-
forms strong baselines on cross-lingual socio-
logical concept retrieval across 10 languages.
Demonstrating powerful knowledge transfer,
English-trained DLIR substantially surpasses
target-language (French/German) LoRA fine-
tuning even in monolingual tasks. DLIR learns
disentangled, language-robust representations,
advancing resource-efficient multilingual un-
derstanding and enabling reliable cross-lingual
comparison of sociological constructs.

1 Introduction

Cross-lingual comprehension of specialized do-
mains is a long-standing challenge in natural lan-
guage processing, particularly for sociological
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texts, where concepts are culturally bound and sen-
sitive to contextual cues. For example, terms such
as “unemployment,” “social inequality,” and “eco-
nomic stagnation” can have significantly different
cross-cultural interpretations despite similar termi-
nology.

Multilingual pre-trained language models have
advanced the state of the art in cross-lingual
tasks but display significant limitations in cap-
turing domain-specific nuances. Even when text
segments appear lexically similar, they may in-
voke different theoretical frameworks in varying
socio-political contexts. For instance, consider
an English—Spanish pair: “Income inequality re-
flects structural economic factors” and “La de-
sigualdad de ingresos refleja factores economicos
estructurales.” Although lexically aligned, one text
may emphasize market-driven disparities, while the
other refers to class-related structures regulated by
the state. This divergence highlights the inadequacy
of conventional similarity metrics for specialized
applications.

The situation worsens in low-resource languages
that lack large-scale, domain-specific corpora, mak-
ing fine-tuning or extensive parallel training im-
practical. Basic alignment methods overlook cru-
cial conceptual distinctions, particularly within
complex sociological frameworks where hierarchi-
cal and interlinked concepts create a specialized
knowledge graph (Li et al., 2025).

To address these limitations, we propose an ap-
proach grounded in a vector decomposition hy-
pothesis: embeddings of domain-specific texts in
high-resource languages can be decomposed into a
domain knowledge vector and a language-specific
feature vector. We suggest that a representation
A includes a core domain component (sociologi-
cal semantics) and a language-specific component.
By learning perturbation vectors on a unit hyper-
sphere from a small set of parallel concept pairs, we
transform high-resource embeddings into approxi-
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mations of low-resource counterparts, preserving
domain-level semantics.

We implement this hypothesis using a dual-
branch low-rank adaptation (LoRA) design,
with one branch capturing domain knowledge
and the other introducing language perturbations.
Spherical geometric operations yield perturbations
that realign high-resource embeddings with low-
resource counterparts.

Our contributions are: (i) positing and providing
empirical evidence for Vector Decomposition Hy-
pothesis, demonstrating effective disentanglement
of domain and language features with limited paral-
lel data; (ii) introducing Spherical Noise Injection,
utilizing logarithmic and exponential mappings on
the unit hypersphere with Gaussian mixture mod-
eling for cross-lingual alignment; (iii) develop-
ing a Dual-Branch LoRA mechanism to effec-
tively separate domain knowledge from language-
specific perturbations; and (iv) showing through
rigorous experimentation on sociological corpora
that our method surpasses standard baselines in
cross-lingual concept alignment.

As illustrated in Figure 1, the proposed DLIR
framework offers a resource-efficient and linguisti-
cally grounded solution to align sociological con-
cepts between languages, particularly benefiting

low-resource and specialized domains ! .

2 Related Work

Multilingual Text Embeddings. Early research
on multilingual embeddings often focuses on re-
moving language-specific artifacts to obtain uni-
fied representations. For instance, Tiyajamorn et al.
(2021) extract language-agnostic embeddings by
filtering out language-specific signals, while Feng
et al. (2022) combine translation and masked lan-
guage modeling objectives to reduce parallel data
requirements. More recent models adopt large-
scale contrastive pre-training to enhance cross-
lingual alignment: Multilingual E5 (Wang et al.,
2024) leverages a billion multilingual text pairs,
NV-Embed (Lee et al., 2025) removes causal masks
to improve encoder-based embeddings, and M3-
Embedding (Chen et al., 2024) extends retrieval
functionality across more than one hundred lan-
guages. Although these efforts produce state-of-
the-art performance in general multilingual tasks,
fine-grained alignment of specialized concepts

!To facilitate reproducibility, the code and data for this
research will be made available upon acceptance.

(e.g., sociological or biomedical terminologies) re-
mains a persistent challenge.

Progress in LoRA. To address computational
bottlenecks in adapting large language models, a
variety of parameter-efficient fine-tuning (PEFT)
methods have emerged, with LoRA serving as
a prominent example. Building on its low-rank
decomposition approach, recent work has ex-
plored new dimensions of LoRA. Zhang et al.
(2023) dynamically allocate rank across layers,
LoRETTA (Yang et al., 2024) employs tensor-train
decomposition, and DoRA (Liu et al., 2024) distin-
guishes weight magnitude and direction for better
adaptability. Sparse adjustments have also been
introduced, as seen in SORA (Ding et al., 2023),
while VeRA (Kopiczko et al., 2024) further reduces
trainable parameters by sharing low-rank matrices
across layers. Dettmers et al. (2023) complement
LoRA with quantization to achieve full-scale fine-
tuning on single-GPU setups. Despite these in-
novations, most LoRA-based methods focus on
generic downstream tasks without explicitly sep-
arating domain-specific concepts from language-
inherent features.

Cross-Lingual Knowledge Transfer. Tech-
niques for cross-lingual alignment range from
classical geometric mappings (Jawanpuria et al.,
2019) to more recent strategies that adjust
pretrained models using parallel corpora or
dictionaries (Kulshreshtha et al., 2020). Some
approaches incorporate alignment signals in model
pre-training (Li et al., 2024), while others merge
adapters for distinct languages and tasks (Zhao
et al., 2024). Prompt-tuning has also been
applied to multilingual dialogues (Tu et al., 2024).
Although these methods demonstrate promising
zero-shot capabilities, they often rely on large
bilingual resources or fail to isolate the conceptual
domain from underlying linguistic variations.
In contrast, our proposed framework unifies
dual-branch LoRA with spherical noise modeling
to achieve domain-sensitive concept alignment
using only minimal parallel data. This design
explicitly disentangles domain knowledge from
language perturbations, addressing key limitations
in existing cross-lingual solutions.

3 Methodology

This section details DLIR (Dual-Branch LoRA
for Invariant Representation), targeting effective
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Linguistic Structural Divergence via Spherical GMM

English(en): Social inequality refers o the uneven distribution of resources,
opportunities, and outcomes among different groups in society.
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Figure 1: Overview of the DLIR framework. Top: linguistic divergence is modeled by projecting multilingual
embeddings onto a hypersphere and learning geodesic deltas via Gaussian Mixture Models (GMMs). Bottom: a
dual-branch LoRA encoder with GMM-based perturbations enforces semantic consistency under language variation.

cross-lingual knowledge transfer in specialized do-
mains like sociology, where concept alignment is
challenged by nuance and cultural context. DLIR
achieves robust transfer by explicitly disentangling
domain semantics from language features. This
approach is grounded in the Vector Decomposi-
tion Hypothesis—that embeddings contain separa-
ble domain and language components, empirically
supported via Gaussian Mixture Model (GMM)
analysis of parallel concept differences on a hy-
persphere. DLIR implements this using a Dual-
Branch LoRA architecture: one branch captures
domain structure (primarily from English), while
the other, guided by GMMs, counteracts language
variations. This yields language-invariant domain
representations trained via a composite objective
combining domain ranking and spherical invari-
ance learning.

3.1 Task Formulation and Evaluation Scope

Evaluation is conducted via a cross-lingual concept
retrieval task within sociology. Given a source text
ce in a target language ¢ (e.g., Spanish, French,
Greek) describing a sociological concept, the goal
is to retrieve the corresponding English text t* from
a candidate set {t1,to,...,t,}; note that the set
contains one correct match (¢*) and n—1 distractors
(related but distinct concepts). Both ¢, and the

English texts ¢; are detailed descriptions that go
beyond simple keyword matching.

The task is cast as semantic matching on the unit
hypersphere S?~!, where d is the dimensionality
of the embedding space. An embedding function

E: Text — 8% 1

maps texts into a shared space, and prediction is
performed using cosine similarity:

t* = arg max SIM(E(ce), E(t:)).

While primary evaluation is target-language-to-
English retrieval, the ultimate goal is to build a
language-invariant space facilitating bidirectional
transfer. The training leverages the European Lan-
guage Social Science Thesaurus (ELSST) hierar-
chy? to structure the semantic space. ELSST is a
broad-based, multilingual thesaurus for the social
sciences, covering core disciplines such as poli-
tics, sociology, and economics, and is designed to
facilitate access to data resources across Europe.

3.2 Vector Decomposition Hypothesis

The core hypothesis asserts that the embedding h
of a domain-specific text can be decomposed into

2https://elsst.cessda.eu/index.html
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two primary components: Vdomain, fepresenting the
language-agnostic semantic core (e.g., the socio-
logical theory), and Vianguage, Capturing language-
specific features (such as lexical or syntactic pat-
terns). For two texts .4 (English) and B (French)
conveying the same concept, their embeddings
a = E(A) and b = E(B) should share the same
Vdomain While differing in viapguage. Our objec-
tive is to learn transformations (parameterized by
language-pair specific offsets) so that

b ~ Transform (a; zEN%FR)

a ~ Transform (b; zFR_>EN)

3.3 Empirical Support via GMM on Spherical
Differences

To validate the hypothesis, we analyze the differ-
ences between embeddings of parallel concepts.
Since text embeddings are L2-normalized, they re-
side on the surface of a unit hypersphere—a curved
manifold. Standard Euclidean subtraction inade-
quately measures differences in this space. There-
fore, we employ principles from Riemannian ge-
ometry to capture these differences accurately. For
a parallel pair (A;, B;) with embeddings (a;, b;)
on the hypersphere, we use the Logarithmic Map
(log) to project a; onto the tangent space at b;. This
yields a tangent vector u; (representing the true
geometric difference in a locally flat space), which
is computed as:

u; = —
sin 6;

The collection {u;} is then modeled with a GMM:

p(u]©) =fjam(u b B,

k=1

where the parameters © = {(ay, py, Xg) }5_, are
estimated via Expectation-Maximization (EM) al-
gorithm (Dempster et al., 1977). The resulting clus-
ters (as visualized in Figure 2, which shows distinct
groupings of difference vectors based on the lan-
guage pair) reveal systematic, language-dependent
shifts, which both validate our hypothesis and pro-
vide a generative model of language perturbations
(denoted M) for subsequent training.

We specifically chose GMMs because they pro-
vide a generative model necessary for sampling
perturbations in our invariance loss, and they can
capture multi-modal distributions (i.e., multiple

<ai—cos 0; bi>, 0; = arccos (aini).

systematic shifts between a language pair), bal-
ancing expressive power with the constraints of
minimal parallel data.

PCA Visualization of Language Difference Vectors
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Figure 2: PCA visualization of difference vectors u; =
Logy,, (a;) colored by language pair, supporting the ex-
istence of systematic, language-dependent offsets.

3.4 DLIR: Dual-Branch LoRA for Invariant
Representation

DLIR operationalizes the hypothesis via a dual-
branch LoRA design. Standard LoRA adapts a
model M (-; W) with low-rank updates AW =
BAT. Here, we introduce two parallel updates:

AVVinv = BinVAA'—r

mv*

T
AWiask = BtaskAtask7

The Task Branch (AW,) learns the domain-
specific structure from the ELSST hierarchy (us-
ing predominantly English data), targeting vomain-
The Invariance Branch (AW,,,) learns to neu-
tralize Vianguage Dy counteracting language-specific
offsets. The final representation is computed as

Mboth(x) = M(.’L’, W+ %(AVVtask + AI/va)) )

where 7 is the LoRA rank and « is the scaling fac-
tor used to adjust the magnitude of the adaptation.
while a task-only representation is given by

«
Mtask(x) = M<CU§ W+ ;Amask> .

During training, language perturbations are simu-
lated by sampling z ~ M and applying the spheri-
cal exponential map:

sin ||z]|2
1z][2

so that an embedding h is perturbed as h/ =
Expy, (2).

Expg(2) = cos|[z]2q + (z # 0),
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3.5 Learning Objectives: Domain Structure
and Invariance

DLIR is trained by optimizing a composite loss that
combines domain structure learning and invariance:

Hierarchical Ranking Loss (Lsk) For an an-
chor t,,cnor and texts ¢, tr, with ¢, closer than
tr,, we define the margin-based loss as:

ATLTQ = SIM(hanchor, By, ) — SIM(hancnor, hry)

Liask = Z max{0, m — A; -}
(11,m2)€P

where ‘P represents the set of all ranking pairs de-
rived from the ELSST hierarchy (e.g., comparing
a narrower concept ¢, vs. a broader concept ¢,
relative to the anchor £4,,c50r), and m is a margin hy-
perparameter. This standard margin-based ranking
loss encourages the model to learn representations
reflecting the underlying semantic hierarchy.

Spherical Invariance Loss (Lj,y) Defining the
contribution of the invariance branch as d; =
hpotm,j — hiask,j and perturbing the full embedding
to obtain hy, ; = Expy, , (2;) (with z; ~ M),
the loss is given by

1
Liny = E;.
"™ " |Batch| Z %
j€EBatch

The intuition behind minimizing this loss is
as follows: §; represents the learned language-
specific vector added by the invariance branch.
h{mm ; 1s the embedding perturbed by realistic
language noise sampled from M. Minimizing
the squared difference between the original off-
set ; and the offset remaining after perturbation
(h,’aoth’ i hy, ;) forces the invariance branch to
counteract the effects of language variations mod-
eled by the GMM, thus encouraging the task branch
embedding hy,g ; to become invariant to these spe-
cific linguistic shifts. Minimizing this loss thus
encourages the task branch embedding hy,gy ; to
represent the stable, language-invariant semantic
core, while the invariance branch learns to dynam-
ically counteract the specific language variations
modeled by M.

Overall Training Objective The final loss is a
linear combination:

»Ctotal = ['task + B ['inw

with £ balancing domain fidelity and invariance.

2
!
0;— (hboth, j —htask,j) H .

Training starts with offline fitting of the GMM
M using limited parallel data. The dual LoRA
branches (Ask, Brask, Ainv, Biny) are then itera-
tively updated (keeping the base model fixed) on
English hierarchical text data to minimize Lo,

This framework thus achieves effective cross-
lingual transfer: the task branch captures domain
structure while the invariance branch, guided by
GMM-modeled perturbations, factors out language-
specific features. The resulting embedding space
Epom(-) clusters texts describing the same socio-
logical concept regardless of language, facilitating
robust cross-lingual alignment with high parameter
efficiency and minimal reliance on parallel data.

4 Experiments

In this section, we empirically evaluate the ef-
fectiveness of our proposed DLIR. We detail the
dataset derived from sociological resources, the
baseline models and ablation studies conducted for
comparison, the evaluation tasks and metrics em-
ployed, and the specific implementation settings.

4.1 Experimental Setup

Datasets and Tasks. Our experiments leverage
the European Language Social Science Thesaurus
(ELSST) hierarchy, complemented by synthetic
data for realistic training and evaluation scenarios.
Minimal parallel data (concept labels/definitions)
from ELSST was used only for offline GMM fitting
(M) for all 13 language pairs listed in Appendix Ta-
ble 7. The primary cross-lingual concept retrieval
evaluation (results in Tables 2, 3, 4) was performed
on the 10 target languages with sufficient test data
(more than 50 samples, excluding Czech, Icelandic,
and Slovenian).

* Core Training Data (English Hierarchical
Ranking). We created a core English train-
ing set using ELSST concepts. To ensure
the model learns robust semantic representa-
tions beyond simple keyword matching, for
each concept, diverse descriptive texts were
generated via DeepSeek-V3. The generation
process employed varied prompts designed to
elicit nuanced expressions of sociological con-
cepts. We utilized a template-based strategy
varying context (e.g., academic, applied), per-
spective (e.g., researcher, policymaker), and
style to maximize diversity (See Appendix
A.3 for specific prompt templates and gener-
ation details). These prompts incorporated
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hypothetical scenarios (e.g., "Describe a situ-
ation where social stratification is clearly ev-
ident in a modern city"), different personas
(e.g., "Explain youth unemployment from the
perspective of a recent graduate"), and diverse
linguistic styles, all aimed at encouraging im-
plicit referencing of the core concept with-
out its direct naming. This approach aimed
to create training data that reflects the com-
plexity and contextual dependency of socio-
logical terms. This synthetic dataset, struc-
tured by ELSST’s hierarchy (e.g., sampling
broader/narrower relations for ranking pairs
(71, 72)), was exclusively used to optimize the
hierarchical ranking loss L (§3.5) for all
model variants (DLIR, LoRA, Gaussian).

Synthetic Data Quality Assurance. To val-
idate the quality of the generated texts, we
conducted a human evaluation with domain
experts. A random sample of 40 concept-
text pairs (focusing on the crucial ’self’ re-
lation) was evaluated for Accuracy (1-5 scale,
measuring alignment with the ELSST defini-
tion) and Fluency (1-3 scale). The evaluation
yielded a high average Accuracy score of 3.95
(out of 5) and a Fluency score of 2.71 (out of
3), confirming the data’s suitability for train-
ing nuanced conceptual representations. (See
Appendix A.3 for detailed results and the eval-
uation protocol).

GMM Training Data (Parallel Concept
Pairs). To model language-specific pertur-
bations (§3.3) for the invariance loss Ly
(§3.5), minimal parallel data was extracted
from ELSST: pairs of English concept la-
bels/definitions (.4;) and their counterparts
(B;) in 10 target languages (incl. Spanish,
French, Romanian). The number of pairs per
language ranged from 73 to 843 (details in
Appendix Table 7). This data was used only
for the offline fitting of language-pair specific
Gaussian Mixture Models (GMMs, M) and
was not involved in parameter gradient up-
dates during main model training.

Evaluation Task 1: Cross-Lingual Concept
Retrieval. Our primary benchmark (results
in Table 2) evaluates retrieving the correct
English synthetic text t* for a given target-
language synthetic query ¢, from a candidate
set {t1,...,t,}. Distractors t; (i # %) rep-

resent other ELSST concepts. The candidate
set size n varied per query, reflecting a dy-
namic negative sampling strategy designed to
enhance evaluation realism: distractors pri-
oritized semantically related concepts (hard
negatives) based on ELSST structure den-
sity (e.g., siblings, parent/child concepts rel-
ative to t*), supplemented by a smaller num-
ber of randomly selected, unrelated concepts.
Consequently, the number of candidates n
per query ranged from 2 to 7 (mean=3.08,
mode=2). Evaluation metrics (R@1, MRR,
NDCG) were computed based on the rank
within each query’s specific candidate list, ac-
commodating the variable list size.

* Evaluation Task 2: Monolingual Concept
Ranking. We assessed representation quality
and transferability via monolingual concept
ranking (Table 1) in English, French, and Ger-
man. The English data is the core training
set (§ 4.1); French/German data are its trans-
lations via the ByteDance service. Crucially,
this translated data was used only for train-
ing the monolingual LoRA-FR/DE baselines
and for this specific evaluation task; the DLIR
model itself never encounters this translated
data during training. Given an anchor text,
models rank other texts describing related con-
cepts (per ELSST hierarchy: self, narrower,
related, broader, see §3.5) within the same
language. The number of texts to rank per
anchor (i.e., list size) varied slightly, rang-
ing from 9 to 12 (mode=11), primarily due to
the differing density of concepts within spe-
cific relationship categories (e.g., ‘related’ or
‘broader’ neighbors) in the ELSST hierarchy
relative to the anchor concept. This task cru-
cially compares English-trained DLIR against
LoRA models fine-tuned directly on the target
language (LoRA-FR/DE), highlighting knowl-
edge transfer capabilities.

Evaluation Metrics. We evaluate performance
using standard retrieval and ranking metrics: Re-
call@1 (R@1), Mean Reciprocal Rank (MRR), and
Normalized Discounted Cumulative Gain (NDCQG).

Base Model. We employ multilingual e5
small as the base model for all fine-tuning experi-
ments.

Compared Methods. We compare our proposed
method, DLIR, against several baselines and state-
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of-the-art models:

* ESs (Base Model): The zero-shot perfor-
mance of multilingual e5 small without
any fine-tuning.

* LoRA: Standard single-branch LoRA fine-
tuning, optimized only on the English syn-
thetic descriptive text data using the task
loss Lask. This baseline assesses the effective-
ness of basic domain adaptation.

¢ LoRA-FR / LoRA-DE (for Table 1 only):
Standard single-branch LoRA models fine-
tuned monolingually, only on the translated
French or German synthetic descriptive
text data, respectively, using L. These
serve as strong baselines to evaluate the cross-
lingual transfer capabilities of DLIR against
models trained directly on the target language
data.

* Gaussian: This baseline utilizes the same
dual-branch LoRA architecture as DLIR
and is trained with the identical composite loss
Liotal = Liask + BLiny. The crucial difference
lies in the invariance training: the perturbation
vectors z for the spherical noise injection step
h' = Expy,(z) are sampled from a standard
isotropic Gaussian distribution (A (0, 021)
with 0 = 0.01), subsequently projected onto
the tangent space at h), instead of the learned
GMM M. This baseline isolates the effect of
using language-pair-specific GMM modeling
versus employing generic random noise for
promoting invariance. The task loss L is
trained on the English synthetic data.

* DLIR (Proposed Method): Our complete
proposed method. It employs the dual-
branch LoRA architecture, trains the task
branch using L,k on the English synthetic
descriptive text data, and simultaneously
trains the invariance branch using Li,y. The
perturbation vectors z for the spherical noise
injection are sampled from the GMM M
learned offline from limited parallel ELSST
concept pairs.

* SOTA Models: We compare against publicly
available state-of-the-art multilingual embed-
ding models in a zero-shot setting:

— KaLM: KalLM embedding multilingual mini
vl is a multilingual embedding model

developed by HITsz-TMG, leveraging
high-quality training data and advanced
training techniques to achieve superior
performance across multiple languages
(Hu et al., 2025).

— OpenAl: text embedding ada 002 is
OpenAl’s state-of-the-art embedding
model designed to capture deep se-
mantic meanings, widely used for
tasks such as semantic search and text
similarity https://platform.openai.
com/docs/guides/embeddings.

— ESI: multilingual e5 large is a large-scale
multilingual embedding model from the
ES family, supporting 100 languages and
excelling in tasks like passage retrieval
and semantic similarity (Wang et al.,
2024).

4.2 Results and Analysis

This section presents the quantitative results of our
experiments and provides analysis comparing our
proposed method against baselines and ablations.

Overall Performance in Cross-Lingual Retrieval.
Table 2 summarizes the overall average perfor-
mance across 10 languages on the cross-lingual
concept retrieval task. Our proposed method,
DLIR, achieves the best performance among
all compared models (R@1 0.821, MRR 0.902,
NDCG 0.928), surpassing strong zero-shot base-
lines like ES1 (R@1 0.794), KaLM (R@1 0.713),
and Ada-002 (R@1 0.695). While not a direct
apples-to-apples comparison (as DLIR utilizes min-
imal parallel data for GMM fitting), this compar-
ison highlights the practical efficiency of our ap-
proach. DLIR attains this SOTA performance by
adapting the significantly smaller E5-small model
(110M parameters) with minimal LoRA updates
(approx. 0.3M parameters, <0.3% of base model),
demonstrating high parameter efficiency compared
to the larger ES1 (560M).

Ablation Study: Deconstructing DLIR’s Gains.
The ablation study (Table 2 bottom, Appendix Ta-
ble 3) shows clear gains from each component. Ba-
sic LoRA improves substantially over ESs (+0.135
R@1), confirming the benefits of domain adap-
tation. Adding dual-branch and generic Gaus-
sian noise (Gaussian baseline) yields further gains
(+0.023 R @ 1), suggesting that encouraging in-
variance is beneficial. This improvement may also
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Model English French German

R@1 MRR NDCG R@1 MRR NDCG R@1 MRR NDCG
E5 small 0407 0.587 0.686 0.533 0.676 0.753 0.359 0.531 0.640
LoRA 0.680 0.788 0.839 0.630 0.747 0.808 0.532 0.660 0.740
%71 vs ESs (+67.0)  (+34.2) (+22.3) (+182)  (+10.5) (+7.3) (+48.0)  (+24.3) (+15.6)
DLIR 0.884 0.922 0941 0.806 0.865 0.897 0.680 0.778 0.831
%71 vs E5s (+117.2) (+57.1) (+37.2) (+51.1) (+27.9) (+19.1) (+89.2) (+46.6) (+29.8)

Table 1: Performance on monolingual concept ranking tasks in English, French, and German. DLIR (trained only
on English data) is compared against the ESs baseline and standard LoRA fine-tuning. High performance of DLIR
in French and German demonstrates effective cross-lingual knowledge transfer. Metrics: R@1, MRR, and NDCG.

Percentage gains are relative to ES baseline.

Model R@1 MRR NDCG
Comparison with State-of-the-Art Models
KaLM 0.713  0.840 0.881
OpenAl  0.695 0.831 0.875
ESI 0.794 0.891 0.919
DLIR 0.821 0.902 0.928
Ablation Study for DLIR

ESs 0.647 0.803 0.853
LoRA 0.782 0.879 0.910
Gaussian  0.805 0.893 0.921

Table 2: Overall average performance on the cross-
lingual concept retrieval task. Best scores within each
section are in bold, second best are underlined. Detailed
per-language results are in Appendix Tables 3 and 4.

indicate that the invariance objective inherently en-
hances model robustness by introducing noise dur-
ing training, a phenomenon worthy of future inves-
tigation. Crucially, replacing Gaussian noise with
GMM-sampled perturbations (full DLIR) gives the
largest final boost (+0.016 R@1). This strongly
supports our hypothesis: explicitly modeling sys-
tematic, geometric language differences via GMMs
enables more effective disentanglement than un-
structured noise, validating the Vector Decompo-
sition Hypothesis and our GMM-guided spherical
invariance mechanism.

Monolingual Performance and Knowledge
Transfer. Table 1 presents additional evidence
for the effectiveness of DLIR in the transfer of
knowledge between languages. This evaluation as-
sesses performance on monolingual concept rank-
ing tasks in English, French, and German. The
key comparison is between DLIR (trained only on

English synthetic data) and the LoORA-FR/LoRA-
DE baselines (trained directly on the corresponding
translated French/German synthetic data). Remark-
ably, DLIR significantly outperforms the mono-
lingual LoRA baselines on their respective lan-
guages. For instance, on French, DLIR achieves
an R@1 of 0.806, far exceeding LoORA-FR’s 0.630
(a relative improvement of 27.9%). Similarly, on
German, DLIR achieves an R@1 of 0.680 com-
pared to LoRA-DE’s 0.532 (a relative improve-
ment of 27.8%). DLIR also shows massive gains
over the zero-shot baseline ESs across all three
languages (e.g., a 117.2% R@1 gain in English,
51.2% in French and 89.4% in German). These re-
sults demonstrate that knowledge about the concep-
tual structure of the sociological domain, primarily
learned from English data, is effectively transferred
to French and German through the invariant repre-
sentation learned. The disentanglement mechanism
enables DLIR to apply this domain knowledge
more successfully in new languages than standard
fine-tuning directly performed on translated data,
highlighting DLIR’s ability to learn truly transfer-
able, language-robust representations. Collectively,
these results strongly back the Vector Decompo-
sition Hypothesis and demonstrate the practical
efficacy of our GMM-guided spherical adaptation
for robust cross-lingual knowledge transfer in spe-
cialized domains.

4.3 Qualitative Analysis

To illustrate how DLIR captures domain-specific
nuances more effectively than baselines, we present
case studies from the cross-lingual retrieval task.

Case 1: Disambiguating Related Concepts (Ger-
man to English). Consider a German query de-
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scribing structural unemployment (strukturelle Ar-
beitslosigkeit)—unemployment resulting from in-
dustrial reorganization, rather than fluctuations in
demand. The ES5I baseline (strongest zero-shot
model) incorrectly prioritized an English text dis-
cussing cyclical unemployment, likely misled by
high lexical overlap in general economic terms
(e.g., “recession,” “layoffs”). In contrast, DLIR
correctly retrieved the corresponding structural un-
employment text. This suggests that the invariance
training successfully suppressed language-specific
lexical signals, allowing the core conceptual dis-
tinction (structural vs. cyclical causes) learned by
the task branch to dominate.

Failure Analysis. DLIR still faces challenges
when concepts exhibit significant cultural diver-
gence not fully captured by the GMM. For example,
aligning the French concept of Laicité (a specific
form of state secularism) with English concepts
of Secularism remains difficult. DLIR sometimes
fails to prioritize the nuance of strict state—religion
separation inherent in the French term, indicating
that capturing highly specific cultural-political con-
structs may require modeling more complex pertur-
bations than our current GMM approach allows.

5 Conclusion

This paper introduces DLIR, a novel framework
for aligning nuanced sociological concepts cross-
lingually, directly addressing the challenge of se-
mantic heterogeneity prevalent in longitudinal so-
ciological studies. Such studies, including national
surveys from diverse institutions and temporal pe-
riods, often see identical concepts manifesting
through varied expressions, creating significant bar-
riers to robust longitudinal and cross-sectional anal-
yses. Our work is particularly pertinent given that
longitudinal population and cross-sectional studies
form the backbone of empirical research in the so-
cial, economic, and behavioural sciences, as well
as in epidemiology and health research, providing
the basis for evidence-based policy advice.

The architecture of DLIR, grounded in the Vec-
tor Decomposition Hypothesis, effectively disen-
tangles domain-specific semantics from language-
specific features. By modeling language perturba-
tions with Gaussian Mixture Models (GMMs) on
spherical geometry using minimal parallel data, it
learns language-invariant representations. This is
crucial for overcoming the scarcity of manually
tagged multilingual concepts, especially in low-

resource languages, which currently renders many
cross-national study comparisons unviable.

Our experiments demonstrate DLIR’s state-of-
the-art performance in cross-lingual sociological
concept retrieval and its remarkable ability for
knowledge transfer to new languages, even out-
performing models fine-tuned directly on target
language data. This suggests that DLIR can be a
significant step change in how natural language pro-
cessing techniques are applied to comparative so-
cial science. By enabling more reliable alignment
of sociological constructs across linguistic and cul-
tural divides, DLIR offers a promising, parameter-
efficient approach that can serve as an enabler for
the automated harmonisation of longitudinal sur-
veys.

While acknowledging limitations such as GMM
fitting with sparse data and reliance on synthetic
text for core training, DLIR significantly advances
cross-lingual understanding in culturally rich fields
like sociology. Future work will focus on enhanc-
ing robustness and extending the framework to
other specialized domains, further paving the way
for more reliable and scalable multilingual NLP
applications in interdisciplinary research contexts.
In essence, DLIR contributes to the recontextual-
ization of natural language processing by provid-
ing tools that can directly support and enhance
established methodologies within the social sci-
ences, facilitating deeper and more comparable
cross-cultural insights.

Limitations

While DLIR demonstrates promising results, sev-
eral limitations should be acknowledged:

* GMM Fitting Dependency and Robustness:
The effectiveness of the invariance branch re-
lies on the quality of the GMM:s fitted on min-
imal parallel data (§3.3). While our results
show efficacy even with as few as 73 pairs
(for en-is, see Table 7), the stability and rep-
resentativeness of GMMs learned from such
sparse data, especially for capturing complex
language divergences, might be limited. This
could explain some performance variations
across languages (Appendix Table 3, 4), par-
ticularly for the lowest-resource pairs, and
warrants further investigation into more robust
density estimation techniques for extremely
low-data scenarios. The selection of GMM
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components (K) also introduces a hyperpa-
rameter.

Reliance on Synthetic Data: Both the
core training (L) and the primary evalu-
ation tasks heavily rely on synthetic descrip-
tive texts generated by DeepSeek-V3 (§4.1).
While designed for diversity and implicit ref-
erencing, this data may not fully capture the
nuances, complexities, or potential biases
present in authentic sociological discourse.
Performance on naturally occurring sociologi-
cal texts might differ.

Translation Quality for Baselines: The
strong LoRA-FR/DE baselines in Task 2
were trained on machine-translated data
(ByteDance service). While standard prac-
tice, the quality of these translations could
potentially influence the upper bound of their
performance compared to DLIR trained solely
on original English data.

Scope of Evaluation and Analysis: Our eval-
uation covers 10 European languages, primar-
ily dictated by the coverage of ELSST. It does
not include typologically distant languages
(e.g., East Asian languages). Furthermore, it
focuses on Target-to-English transfer rather
than direct transfer between non-English pairs.
The analysis of cross-language performance
variation (§4.2) is preliminary and doesn’t
deeply correlate results with factors like lin-
guistic typology or concept ambiguity. A com-
prehensive qualitative error analysis across all
languages was beyond the scope of this work
but would be valuable.
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A Appendix

A.1 Performance

Table 3: Ablation study results on the cross-lingual concept retrieval task. The table compares the baseline ES-small
(ESs), standard LoRA fine-tuning (LoRA), dual-branch LoRA with generic Gaussian noise (Gaussian), and our
proposed method (DLIR). Languages with fewer than 50 concept test samples (en-is: 9, en-cs: 16, en-sl: 45) have
been excluded. Best results within each row are in bold, second best are underlined. Group and overall averages are
recalculated based on the 10 languages shown.

ES5s LoRA Gaussian DLIR
Languages
R@1 MRR NDCG R@1 MRR NDCG R@1 MRR NDCG R@1 MRR NDCG
8 Spanish 0.779 0.885 0915 0.900 0946 0960 0914 0.954 0966 0.900 0.948 0.962
g French 0.752 0.869 0903 0.904 0946 0960 0.888 0.939 0955 0912 0.952 0.964
& Romanian 0.743 0.861 0.897 0.886 0940 0956 0.871 0.925 0944 0.886 0.937 0.953
., Dutch 0.594 0.768 0.827 0.820 0.904 0928 0.820 0.905 0.930 0.797 0.895 0.923
€ German 0.592 0.775 0.833 0.782 0.882 0912 0.838 0916 0.938 0.810 0.900 0.926
§ Norwegian 0.573 0.751 0.814 0.750 0.862 0.897 0.823 0.903 0.928 0.831 0.906 0.930
©  Swedish 0.627 0.798 0.850 0.761 0.868 0902 0.799 0.888 0917 0.806 0.897 0.924
. Greek 0.717 0.836 0.878 0.717 0.846 0.886 0.772 0.876 0.908 0.804 0.894 0.921
<= Finnish 0.566 0.747 0.812 0.614 0.775 0.832 0.627 0.791 0.844 0.711 0.830 0.873
©  Lithuanian 0.529 0.736 0.804 0.686 0.824 0.869 0.700 0.839 0.880 0.750 0.863 0.898
Romance Languages 0.758 0.872  0.905 0.897 0.944 0.959 0.891 0.939 0.955 0.899 0.946 0.960
Germanic Languages 0.597 0.773 0.831 0.778 0.879 0.910 0.820 0.903 0.928 0.811 0.900 0.926
Other Languages 0.604 0.773 0.831 0.672 0.815 0.862 0.700 0.835 0.877 0.755 0.862 0.897
Overall Average 0.647 0.803 0.853 0.782 0.879 0910 0.805 0.893 0921 0.821 0.902 0.928

Table 4: Comparison of DLIR with state-of-the-art multilingual embedding models. The table includes results for
10 languages, excluding those with fewer than 50 concept test samples (en-is: 9, en-cs: 16, en-sl: 45). Best results
within each row are in bold, second best are underlined. Group and overall averages are recalculated based on the

10 languages shown.

L DLIR KaLM OpenAl E5I1
anguages
R@1 MRR NDCG R@1 MRR NDCG R@1 MRR NDCG R@1 MRR NDCG

g Spanish 0.900 0948 0.962 0.864 0.931 0949 0.836 0914 0.936 0.857 0.926 0.945
g French 0912 0952 0.964 0.856 0.923 0.943 0.824 0.905 0.930 0.832 0.907 0.931
& Romanian 0.886 0.937 0.953 0.886 0.940 0.956 0.771 0.879 0.910 0.829 0912 0.935
. Dutch 0.797 0.895 0.923 0.767 0.872 0905 0.759 0.872 0.905 0.782 0.882 0.913
E German 0.810 0.900 0.926 0.775 0.879 0910 0.761 0.873 0.906 0.782 0.883 0.913
£ Norwegian 0.831 0906 0.930 0.718 0.841 0.882 0.685 0.827 0.871 0.750 0.870 0.904
©  Swedish 0.806 0.897 0.924 0.769 0.869 0.902 0.709 0.838 0.880 0.791 0.892 0.920
. Greek 0.804 0.894 0.921 0.337 0.624 0.720 0.413 0.668 0.753 0.750 0.871 0.905
< Finnish 0.711 0.830 0.873 0.590 0.770 0.829 0.590 0.767 0.827 0.783 0.882 0.912
©  Lithuanian 0.750 0.863 0.898 0.621 0.785 0.840 0.600 0.769 0.828 0.786 0.880 0.911
Romance Languages  0.899 0.946 0.960 0.850 0.921 0.941 0.810 0.899 0.925 0.839 0.915 0.937
Germanic Languages 0.811 0.900 0.926 0.757 0.865 0.900 0.729 0.853 0.891 0.776 0.882 0.913
Other Languages 0.755 0.862 0.897 0.516 0.726 0.796 0.534 0.735 0.803 0.773 0.878 0.909
Overall Average 0.821 0.902 0.928 0.713 0.840 0.881 0.695 0.831 0.875 0.794 0.891 0.919
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A.2 Dataset Details

Table 5: Relation Type and Length Statistics in the Training and Development Sets

Relation Type #Train Avg. Words (Train) #Dev  Avg. Words (Dev)
self 6,236 338.21 1,556 336.12
related 5,264 333.92 1,340 334.29
broader 5,154 336.79 1,332 341.28
narrower 2,046 332.46 440 331.72

Table 6: Word Count Statistics for the Multilingual Test Set

Text Field #Samples  Avg. Median Min Max

Source Concept 1,253 1.94 2.16 1.51 2.69

Source Definition 1,253 15.58 15.15 10.19 18.61

Correct Candidate 1,253 333.25 332.69 328.31 344.33

Incorrect Candidates 2,601 35090 350.81 341.44 354.46

Table 7: Parallel Corpus Statistics Across Language Pairs

Lang. Pair #Sent. Tokens (EN) Tokens (XX) Vocab (EN) Vocab (XX)
en—cs 118 2,181 1,951 783 977
en—de 828 15,147 15,616 3,006 4,080
en—el 582 10,294 11,271 2,294 3,173
en—es 830 15,381 17,637 3,041 3,329
en—fi 503 9,609 6,418 2,249 3,036
en—fr 768 14,066 17,150 2,856 3,413
en—is 73 1,277 1,169 501 520
en—It 843 15,453 13,415 3,046 4,658
en—nl 807 14,922 15,232 2,997 3,341
en—no 803 14,731 13,284 2,950 3,394
en—-ro 511 9,548 11,087 2,265 3,193
en—sl 193 3,367 2,986 1,087 1,374
en—sv 812 14,831 13,965 2,982 3,558

A.3 Synthetic Data Generation and Human Validation

To train and evaluate DLIR on nuanced sociological concepts, we required a dataset of descriptive texts
that accurately reflect the ELSST hierarchy while exhibiting linguistic diversity. This appendix details
the pipeline used to generate this synthetic dataset using DeepSeek-V3 and the human validation study
conducted to ensure its quality.

A.3.1 A.3.1 Synthetic Data Generation Pipeline

Objective. The primary goal of the generation pipeline was to create varied and context-rich descriptions
for each concept. Crucially, the pipeline was designed to generate implicit references—where the
text describes the concept without explicitly naming it. This forces the model to learn deep semantic
representations rather than relying on superficial keyword matching.

Generation Strategy. We employed a highly structured, template-based prompting strategy defined in a
YAML configuration. To ensure diversity, we systematically varied the prompts across several dimensions:

* Roles and Perspectives: We defined 16 distinct roles (see Table 8), categorized into Professional
Sociology Roles and Social Practice Roles. Each role was associated with specific focus areas (e.g.,
"power relations" for a critical theorist) and linguistic styles (e.g., "technical”, "practical").
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* Templates: A combination of role-specific templates (70% probability) and common templates (30%
probability) were used to structure the prompt, guiding the LLLM on how to integrate the role, focus,

and style.

¢ Instruction and Implicitness: A core instruction block was prepended to every prompt, explicitly
forbidding the LLM from mentioning the concept name or using obvious referring terms (e.g., "this

concept").

Table 8: Roles utilized in the prompt generation strategy to ensure diverse perspectives.

Professional Sociology Roles

Social Practice Roles

Theoretical Sociologist

Empirical Social Researcher

Applied Sociologist
Cultural Sociologist
Social Policy Specialist
Critical Social Theorist

Social Worker

Social Studies Educator
Community Organizer
Social Affairs Journalist
Social Impact Consultant
Sociology Student
Public Administrator
Healthcare Professional
NGO Practitioner
Engaged Citizen

Pipeline Implementation.

For each concept and its ELSST definition, the pipeline randomly selected

a unique role and a template. The system prompt established the LLM’s persona, and the user prompt
combined the core instruction with the specific analysis task. We generated up to 24 unique descriptions
per concept. An example of a constructed prompt is shown in Figure 3.

System Prompt:

naming it.

You are a critical social theorist. Your task is to analyze a sociological concept without explicitly

User Prompt (Example):

an analysis text.

Important requirements:

naming it.
4. Use plain text format, not Markdown.

understanding.

Based on the concept "Social Stratification" and its definition "The classification of persons into
groups based on shared socio-economic conditions; a relational set of inequalities...", generate

1. DO NOT mention the concept name "Social Stratification" directly in your response.
2. DO NOT use obvious referring terms like "this concept”,
3. Write your description so readers can understand what concept you’re discussing without

5. Ensure you analyze from the perspective of your assigned role.
Task: As a critical social theorist, examine relationships to power structures and social inequal-

ity. Analyze power relations, social inequalities, systemic critique, transformative potential
using critical and transformative analysis, citing critical analyses and social critiques to deepen

non

this theory", etc.

Figure 3: Example of a constructed prompt for the concept "Social Stratification" under the role of "Critical Social
Theorist". The prompt combines role assignment, strict constraints on implicit expression, and specific analytical

focus.

A.3.2 Human Validation Study

To ensure the reliability of the synthetic dataset, we conducted a rigorous human evaluation study with

domain experts.
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Objective and Scope. The evaluation focused specifically on the quality of the "self" relation examples.
These examples are critical as they represent different expressions of the core concept definition and form
the foundation of the model’s semantic understanding.

Methodology. We randomly sampled 40 concept-text pairs from the generated dataset. These pairs
were evaluated by [2] independent annotators with expertise in sociology. The evaluators were provided
with the concept name and its official ELSST definition (serving as the ground truth). They assessed each
generated text based on two criteria: Accuracy and Fluency.

Evaluation Criteria. The criteria were defined as follows:

* Accuracy (1-5 Scale): Measures how accurately and unambiguously the generated text represents
the core definition of the concept.

— 5 (Highly Accurate): Perfect, clear application or explanation.

— 4 (Basically Accurate): Consistent core idea, minor extraneous info or suboptimal phrasing.
— 3 (Partially Accurate): Related, but misses the core point or shows concept confusion.

— 2 (Misleading): Appears related but misrepresents the definition.

— 1 (Completely Wrong): Irrelevant or factually incorrect.

* Fluency (1-3 Scale): Measures the linguistic quality of the text, independent of accuracy.

— 3 (Excellent): Natural, grammatically correct.
— 2 (Acceptable): Generally fluent, minor errors or signs of machine generation.
— 1 (Poor): Incoherent, difficult to understand.

Results. The results of the human validation study are summarized in Table 9. The dataset achieved a
high average accuracy score of 3.950 (out of 5) and an average fluency score of 2.712 (out of 3). The
inter-annotator agreement (IAA), measured using Krippendorff’s Alpha (Ordinal), was 0.85 for Accuracy
and 0.72 for Fluency, indicating substantial to high agreement among the experts. These results confirm
that the synthetic data generation pipeline successfully produced high-quality, nuanced, and accurate
representations of the sociological concepts, suitable for training our DLIR framework.

Table 9: Summary of Human Validation Results for Synthetic Data Quality (N=40).

Metric Mean Median Std. Dev. Scale

Accuracy  3.950 4.0 0.967 1-5
Fluency  2.712 3.0 0.482 1-3

TAA: 0.85 (Accuracy), 0.72 (Fluency)
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