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Abstract

In the daily work, vast amounts of documents
are stored in pixel-based formats such as im-
ages and scanned PDFs, posing challenges for
efficient database management and data pro-
cessing. Existing methods often fragment the
parsing process into the pipeline of separated
subtasks on the layout element level, result-
ing in incomplete semantics and error propa-
gation. Even though models based on multi-
modal large language models (MLLMs) miti-
gate the issues to some extent, they also suffer
from absent or sub-optimal grounding ability
for visual information. To address these chal-
lenges, we introduce the Intelligent Document
Parsing (IDP) framework, an end-to-end docu-
ment parsing framework leveraging the vision-
language priors of MLLMs, equipped with an
elaborately designed document representation
and decoding mechanism to decouple the con-
tent parsing and layout grounding to fully acti-
vate the potential of MLLMs for document pars-
ing. Experimental results demonstrate that the
IDP method surpasses existing methods, sig-
nificantly advancing MLLM-based document
parsing.

1 Introduction

In contemporary settings, a substantial volume of
information is produced daily and stored within
pixel-based representations, such as images and
scanned PDFs, rather than arranged in machine-
understandable structured formats, such as JSON
and HTML. This scenario presents considerable
challenges in practice, as structured formats are
indispensable for efficient database storage and
standardized data processing (Johnson et al., 2003;
Clifton and Garcia-Molina, 2000), as well as for
downstream applications, including information re-
trieval and natural language processing (Wilkinson,
1994; Dasigi et al., 2021; Saad-Falcon et al., 2023;
Mo et al., 2025).
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Figure 1: The comparison between different document
parsing paradigms.

Document parsing (Yao, 2023; Zhang et al.,
2024; Wang et al., 2024a) aims at extracting the
content of unstructured documents. The task is
challenging due to the diversity of the layout and
logical structures (Li et al., 2024), incorporating a
plethora of plain text, visual elements, such as im-
ages and icons, and multi-modal information, such
as tables and charts. This diversity and complexity
require document parsing technologies to possess
strong adaptability and generalization capabilities
to handle various types of documents effectively
(Xing et al., 2024; Ouyang et al., 2024).

Most existing document parsing methods lever-

19987



age the pipelines of separated subtasks, as shown
in fig. 1 (a), including document layout analysis
(Zhong et al., 2019; Cheng et al., 2023), reading
order prediction (Wang et al., 2021), and document
hierarchy parsing (Li et al., 2024; Xing et al., 2024).
The main drawbacks of the pipeline methods are:
1) By encoding fragmented layout elements inde-
pendently, these methods fail to capture the holistic
information of documents, and thus result in seman-
tic loss. 2) The pipeline framework suffers from
the error propagation problem. Recently, some
research (Wang et al., 2024b; Chen et al., 2025;
Wang et al., 2025) is dedicated to designing end-to-
end frameworks based on task-specific models to
mitigate this issue. However, they are also based
on local clues such as text lines, and without ef-
fective pre-training. Thus, they suffer from the
over-segmented and ineffective semantic represen-
tations, especially when handling the sophisticated
logical structure of documents.

There have also been attempts to apply advanced
large language models (LLMs) to conduct end-to-
end document parsing (Wei et al., 2024; Hu et al.,
2024; Bai et al., 2025; Zhu et al., 2025a) as an
image-to-markdown task, as shown in fig. 1 (b);
however, the Markdown representation of these
methods fails to explicitly capture the multi-modal
elements such as images, icons and charts. Bai
et al. (2025); Feng et al. (2025) introduce the layout
grounding task to mitigate this issue, as shown in
fig. 1 (c). But the method results in suboptimal
performance in both content parsing and layout
grounding tasks, due to the distractions between
the two heterogeneous tasks (Rasheed et al., 2024;
Surís et al., 2023; Jiang et al., 2024), significantly
affecting the document parsing performance.

To address this issue, in this paper, we propose
an end-to-end framework, Intelligent Document
Parsing (IDP), which leverages the powerful vision-
language priors of MLLMs to build an effective
document parsing method that possesses exceed-
ing effectiveness. As illustrated in fig. 1 (d), the
IDP framework decouples the content parsing and
layout grounding tasks, allowing different decoder
modules to focus on the tasks they excel at. This
approach fully unleashes the potential of MLLMs
in the document parsing situation. Specifically, on
one hand, we developed the IDP representation
format, akin to HTML sequences and integrating
information of layout elements, their reading or-
der, and logical relationships. On the other hand,
we addressed the issue of conflicts between con-

tent parsing and layout grounding by introducing
the decoupled decoding mechanism. Experimen-
tal results show that this model outperforms lead-
ing MLLMs and shows advantages compared to
pipelines composed of task-specific models.

Our main contributions can be summarized as
follows:

• We propose the IDP, an end-to-end document
parsing framework which effectively lever-
ages the generalized vision-language priors
of MLLMs to recognize and organize the text
content of documents.

• We equip the model with a decoupled decod-
ing mechanism to disentangle the content pars-
ing and layout grounding tasks, which helps
the MLLMs to focus on extracting and or-
ganizing the text content while enabling the
framework to obtain multi-modal content.

• Experimental results validate the effectiveness
of the IDP framework. The model shows ob-
vious performance boost and provides a sig-
nificant baseline for parsing real-world docu-
ments.

2 Related Work

2.1 Document AI
Document AI involves automated reading, extract-
ing information from documents, and understand-
ing documents with rich typesetting (Cui et al.,
2021). As the world is going digital, it has received
a heightened focus on its impact and significance
(Sarkhel and Nandi, 2019, 2021; Zhu et al., 2025b;
Shao et al., 2024). The document parsing sub-
tasks (Zhang et al., 2024; Xing et al., 2023) refer to
converting unstructured and semi-structured docu-
ments into structured information. Document pars-
ing extracts elements like text, equations, tables,
and images from various inputs while preserving
their structural relationships. Document parsing
is crucial for document understanding sub-tasks,
reshaping how information is stored, shared, and
applied across numerous applications.

2.2 Document Parsing Methods
Currently, most document parsing methods decom-
pose the processings into multiple separated sub-
tasks (mainly including document layout analysis
(Zhong et al., 2019; Cheng et al., 2023; Wang et al.,
2024a; Li et al., 2025), reading order prediction
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<html>
# header
<p id="1" class="header" level="4"> content </p>
# table
<p id="2" class="table" level="4"> table content 
</p>
…
# section title
<p id="6" class= "title" level="3"> content </p>
<p id="7" class= "para" level="4"> content </p>
# formula
<p id="8" class="formula" level="4"> content </p>
…
</html>

IDP Structured Content Parsing IDP Layout Grounding

[
 {
  "id" : 1,

"box" : [x1, y1, x2, y2]
 },
 {
  "id" : 2,

"box" : [x1, y1, x2, y2]
 },
 …
 {
  "id" : 16,

"box" : [x1, y1, x2, y2]
 }
]

Input Image

Figure 2: An overview of the proposed document representation IDP format, which decouples the content parsing
and layout grounding results. The comments are for illustration only.

(Wang et al., 2021) and document hierarchy pars-
ing (Li et al., 2024; Xing et al., 2024)), and then
compose the components of different subtasks in
a pipeline to predict the final structured machine-
understandable document. The main drawbacks of
these methods are that the pipeline framework suf-
fers from the error propagation problem and fails to
leverage the powerful visual-language models (Bai
et al., 2025; Zhu et al., 2025a). Some researchers
(Wang et al., 2024b; Chen et al., 2025; Wang et al.,
2025) are dedicated to designing an end-to-end
document parsing framework to mitigate this issue.
However, they also suffer from the over-segmented
and ineffective semantic representations, especially
when handling the sophisticated logical structure
of documents.

2.3 MLLMs for Document AI

Application of MLLM in document AI is a rapidly
growing research area driven by increasing indus-
trial demand (Luo et al., 2024; Hu et al., 2024; Bai
et al., 2025; Zhu et al., 2025a). Most of them are fo-
cused on Document Question Answering (Mathew
et al., 2021) and Document Information Extraction
(Jaume et al., 2019) tasks, which achieve remark-
able performance boosts of application systems.
The extensive knowledge of large language mod-
els is highly beneficial for advanced understanding
tasks in document parsing, such as determining
the reading order and logical relationships of dif-
ferent sections. However, the capabilities of large
language models in document parsing have not
been fully exploited. Most existing work (Blecher
et al., 2023; Wei et al., 2024) treats document pars-

ing as markdown sequence generation, which has
limited expressive power for capturing document
hierarchy and multi-modal information. Bai et al.
(2025) design a HTML-like document representa-
tion to mitigate this issue. However, the constrained
grounding ability of the sequence decoder results
in sub-optimal performance.

3 IDP Document Rerpresentation

Previous LLM-based document parsing methods
(Blecher et al., 2023; Wei et al., 2024) often follow
the markdown generation paradigm. However, im-
portant multi-modal information, such as images
and charts, is omitted in this format. Therefore, in
recent studies (Bai et al., 2025), researchers still
prefer using parsing results that include bounding
boxes of layout elements. In this paper, we con-
sider the document parsing task as recognizing the
layout elements and organizing them in an ordered
and hierarchical structure. Specifically, the input is
given as a document as image I . The output is the
extracted layout elements E = {E1, E2, ..., EM}
in traversal order, along with their hierarchical
depth predicted. Each layout elements Ei is rep-
resented by the corresponding bounding boxes
Bi = [xi1, yi1, xi2, yi2], categories ci, depth li in
the document structure tree and the contents.

In order to empower an end-to-end model with
comprehensive capabilities for parsing and extract-
ing both text and multi-modal content from docu-
ments, we propose the document representation of
IDP format, as shown in fig. 2. It decomposes the
content-inferred task and the visual grounding task.
Specifically, the layout elements are uniformly for-
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Figure 3: The illustration of the proposed MLLM-based document parsing framework. The LLM is focused on the
content parsing task. The decoupled layout grounding module is triggered when a layout element is completely
parsed to locate the element.

matted as HTML tags, which integrates reading or-
ders (sequential order of tags), categories (attribute
‘class’), and hierarchical depth (attribute ‘level’).
The tag contents of textual layout elements are the
extracted text, while those of multi-modal elements
are corresponding place holders. The positional
information of layout elements is stored in an aux-
iliary data item, which is a list of bounding boxes.
The correspondence between layout elements and
bounding boxes is maintained through a one-to-one
mapping based on unique IDs.

In this way, the IDP format caters better to the
prior knowledge of MLLMs. It addresses the chal-
lenge faced by the markdown format in preserving
multi-modal information. Additionally, it avoids
coupling layout grounding results within the pre-
diction sequence, thereby allowing MLLM to focus
more effectively on document content parsing and
organization.

4 IDP Model

In order to avoid conflicts among content-inferred
and visual-spatial tasks (Zhu et al., 2022; Wu et al.,
2024) and fully activate the potential of MLLMs,
we propose a decoupled decoding mechanism to
disentangle the task into two simultaneous sequen-
tial and spatial decoding processes. The overall
architecture of the IDP model is depicted in fig. 3.
It consists of 3 parts: (1) an image encoder for
encoding the document images; (2) an LLM that
models the multi-modal inputs and generates doc-

ument contents organized in HTML; (3) a spatial
decoder for the layout grounding task. In the decod-
ing process, the layout grounding process is trig-
gered by a generated layout element by the LLM,
and it predicts grounding results based on layout
queries from the LLM. The following subsections
specify these crucial components and the decoding
process, respectively.

4.1 Model Architecture
4.1.1 Image Encoder
To equip the IDP model with sufficient perception
capabilities, we adopt an efficient high-resolution
vision encoder for image encoding following Bai
et al. (2025), which incorporates 2D-RoPE and
window attention to support high-resolution input
while accelerating the computation.

4.1.2 LLM Decoder
We use the LLM component of Qwen2.5-VL-3B
Bai et al. (2025) for its basic document parsing abil-
ity and the compatibility with the image encoder.
The LLM decoder is responsible for extracting and
organizing content in the document. For multi-
modal information, such as images and charts, it
predicts the corresponding placeholders to properly
activate the spatial decoder.

4.1.3 Spatial Decoder
The spatial decoder Ds is designed to predict the
layout grounding of document parsing. The spa-
tial decoder is a DETR-like framework based on
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enhanced object queries from the LLM (Liu et al.,
2024) to obtain the corresponding boxes for the
layout elements generated by the LLM.

4.2 Decoupled Decoding Mechanism

In the decoupled decoding process, the LLM de-
coder focuses on parsing, sorting, and structuring
document content. It also generates the query rep-
resentations for layout grounding. When a layout
element is completely parsed, the layout grounding
process is activated, and the spatial decoder pre-
dicts the grounding results based on layout queries
from LLM. The layout queries and the prediction
of grounding results are detailed in the following
sections.

4.2.1 Layout Element Quries
We extend the vocabulary of LLM by incorporating
specialized tokens for pooling, including k query
tokens <emb-0>, <emb-1>, ..., <emb-k>. When-
ever the LLM predicts the opening tag of a layout
element, the query tokens would be automatically
appended after the predicted tokens. After the pre-
diction of the endding tag, the last-layer hidden
states Hq ∈ Rk×d of the layout queries are ex-
tracted and passed into an MLP projection to obtain
hq ∈ Rd′ , where d and d′ are the hidden size of the
LLM and the spatial decoder respectively. Finally,
hq is sent into the spatial decoders as a condition
to perform the grounding tasks.

4.2.2 Layout Grounding Prediction

The spatial decoder is activated when the layout el-
ement queries come, which are pooled from the
LLM hidden states of the generated layout ele-
ments. Then the spatial decoder enhances its initial
box queries following (Liu et al., 2024) and pre-
dicts the bounding box. To be specific, it predicts
the corresponding boxes for layout element queries
as :

{Bi}1,2,...,n = {Ds(I, h
q
i )}1,2,...,n (1)

4.3 Training Strategies

To create a generalist model capable of parsing
documents of various layout and structure, we
propose a three-stage training strategy. The first
stage focuses on building an MLLM with a strong
awareness of content-oriented document parsing
results. The subsequent stages aim to develop lay-
out grounding capabilities for the IDP model while

ensuring its content parsing abilities remain unaf-
fected.

Stage 1: Multi-modal Training. In the first stage,
we follow the typical instruction tuning settings
with the LLM unfreezed on about 210,000 elabo-
rately annotated document parsing data of paired
visual documents and textual parsing results. This
phase aims to establish the vision-language align-
ment on document images and enhance the content
extraction and organization capability of the foun-
dation MLLMs.

Stage 2: Joint Training of Decoders. At this
stage, we integrate the spatial decoder into the
model and perform multi-task joint training. Dur-
ing this stage, both the LLM decoder and the spatial
decoder undergo one epoch of training on 80,000
manually annotated document parsing data with
IDP format. In this way, the model learns to gen-
erate a structured document with the grounding
results of layout elements.

Stage 3: Spatial decoder-only Fine-tuning. Since
the spatial decoders cannot converge within a single
epoch, we further train the decoders for three more
epochs with an additional 100,000 synthesized data
only for the grounding task. In this stage, the spatial
decoder and query embeddings are trained while
all other components are frozen.

5 Experiments

5.1 Implementation Details

5.1.1 Dataset
We conduct experiments on the following datasets:
1) HRDoc (Ma et al., 2023), which contains two
subsets: HRDoc-Simple (HRDS) dataset with 1000
documents (10224 pages) from ACL and HRDoc-
Hard (HRDH) dataset with 1500 documents (21427
pages) from arXiv. 2) DocHieNet (Xing et al.,
2024), consisting of 1673 documents (15610 pages)
from various types of documents in both English
and Chinese. 3) OmniDocBench (Ouyang et al.,
2024), including 981 pages from multiple sources
of documents for zero-shot evaluation.

5.1.2 Model Details
We adopt the Qwen2.5-VL-3B (Bai et al., 2025) as
the basic MLLM. A Grounding-DINO (Liu et al.,
2024) with Swin-T (Liu et al., 2021) backbone
is employed as the spatial decoder. All the com-
ponents of Qwen2.5-VL are loaded from the pre-
trained weights, while the spatial decoder is ini-
tialized from the pre-trained layout analysis model.
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Method Format
HRDoc-Simple HRDoc-Hard DocHieNet

G-F1 ARD R-F1 G-F1 ARD R-F1 G-F1 ARD R-F1

GOT md - 1.80 83.21 - 2.54 70.54 - 4.83 57.44
InternVL3-8B md - 0.76 93.61 - 1.72 86.23 - 2.13 74.13
InternVL3-8B grd 97.45 0.96 91.06 91.23 1.76 83.41 84.67 2.34 72.61
Qwen2.5-VL-7B qwen 96.20 0.87 94.15 87.16 1.82 87.62 78.74 2.45 76.74

Qwen-VL-Max - 61.90 1.04 91.23 56.52 1.89 84.80 59.84 2.52 64.32
GPT-4o - - 0.87 95.72 - 1.25 88.56 - 1.87 58.13

Ours IDP 98.64 0.24 97.45 96.11 0.70 90.32 93.75 1.01 79.45

Table 1: Summary of performance of IDP model on different datasets compared to both open-source and closed-
source baseline MLLMs. ’md’, ’grd and ’qwen’ refer to Markdown, InternVL-grounding and QwenVL-HTML
format.

The IDP modal contains 3.2B parameters in gen-
eral. The number k of query embeddings is set to
4. The dynamic resolution strategy is employed
following Bai et al. (2025) with max pixel as
1,204,224. In stage 1, we adopt the AdamW opti-
mizer (Loshchilov and Hutter, 2017) with the peak
learning rate of 1e-3 and weight decay of 0. The
training involves a total batch size of 16 across 8
A100 GPUs. In stage 2, we add the task-specific
decoders and perform the multi-task fine-tuning.
The image encoder and LLM decoder are trained
with the peak learning rate of 1e-5, while the spatial
decoder is trained with the peak learning rate of 1e-
4. The model is also trained on 8 A100 GPUs with
a batch size of 2 per GPU. In stage 3, we freeze
all the components except for the spatial decoders
and query embeddings to enhance the grounding
capability of the IDP model. The model undergoes
three training epochs on 8 A100 GPUs with a peak
learning rate of 1e-4 and a total batch size of 32.

5.2 Evaluation Metric

The IDP model is responsible solely for layout
grounding, ordering, and hierarchical structuring.
Content parsing can be performed based on the
results of the layout detection with external mod-
ules. So our evaluations primarily focus on layout-
related metrics.

5.2.1 Layout Grounding

In task-specific layout analysis work (Zhong et al.,
2019; Pfitzmann et al., 2022), the evaluation metric
is the mean Average Precision (mAP). Since the
grounding results based on LLM methods do not
include confidence scores, we employ the F-1 with
Intersection over Union (IoU) threshold of 0.75 as

the evaluation metric, denoted as G-F1.

5.2.2 Reading Order
The ARD score (Wang et al., 2021) is proposed
to evaluate the difference between reordered se-
quences. We extend the ARD score into a relative
version to stabilize fluctuations caused by different
paragraph splitting, denoted as RARD. The com-
putation of RARD is detailed in section A.1.1.

5.2.3 Document Structure
We employ F1 of relation triplets (R-F1) to mea-
sure the correctness of document structure (Rausch
et al., 2023). The structure relation is reconstructed
from the depth of layout elements (Li et al., 2024).
Details are provided in section A.1.2.

5.3 Comparison with LLM-based Methods
5.3.1 Open-source Baselines with SFT
When compared to open-source MLLMs with SFT,
we evaluate several state-of-the-art models with pri-
ors about document parsing tasks, including GOT
(Wei et al., 2024), InternVL3 (Zhu et al., 2025a),
and Qwen2.5-VL (Bai et al., 2025). These models
use different annotation schemes during pretrain-
ing: GOT and InternVL employ markdown output,
while Qwen2.5-VL utilizes the QwenVL-HTML
format to simultaneously obtain document parsing
and grounding results. Since InternVL also sup-
ports grounding of the parsed content, we prepared
document parsing data that includes grounding re-
sults following the format of InternVL, denoted as
InternVL-grounding. All the models undergo SFT
on the same corpus for one epoch.

The comparison results are detailed in table 1.
The grounding results obtained by the IDP method
significantly surpass those of other MLLMs. The
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Method
HRDoc-Simple HRDoc-Hard DocHieNet

G-F1 ARD R-F1 G-F1 ARD R-F1 G-F1 ARD R-F1

DocXChain 97.57 1.17 91.39 93.75 1.25 86.54 88.62 2.46 69.85
MinerU 98.37 0.83 - 96.39 1.08 - 85.82 2.83 -
Tencent 98.85 1.02 94.96 95.13 1.13 86.81 90.82 2.16 72.54
Mathpix - 0.77 94.55 - 0.98 85.16 - 1.62 76.33

Ours 98.64 0.24 97.45 96.11 0.70 90.32 93.75 1.01 79.45

Table 2: Summary of performance of IDP model on different datasets compared to pipline-based document parsing
methods.

Encoder G-F1 ARD

DocXChain 66.23 5.25
Qwen-VL-Max 74.63 3.06
IDP 86.36 1.95

Table 3: Evaluation of zero-shot performance on the
OmniDocBench dataset.

comparison between the IDP method and Qwen2.5-
VL highlights the benefits of the decoupling
paradigm and the training strategy of IDP. Addi-
tionally, markdown-based InternVL outperforms
the grounding-based InternVL, despite markdown
representation omitting multi-modal information
such as images. This phenomenon further validates
the contradiction between content parsing and lay-
out grounding. The IDP method decouples the two
tasks, allowing the MLLM to focus on recogniz-
ing and organizing textual content while retriev-
ing multi-modal information through grounding
tasks. Consequently, it achieves superior results
over other MLLMs on different datasets.

5.3.2 Closed-source Baselines
We conducted tests on leading closed-source mod-
els GPT-4o1 and the closed-source model with
specifically priors for document parsing tasks
Qwen-VL-Max (Bai et al., 2025). During the eval-
uation, we observe that the granularity of the para-
graphs generated by the closed-source models may
deviate from that of the annotations, making di-
rect evaluation imprecise. Therefore, we combine
overly segmented layout elements using rules fol-
lowing Ouyang et al. (2024). The post-processed
evaluation results are presented in table 1.

It can be observed that the performance of
the Qwen-VL-Max is inferior to that of smaller

1https://platform.openai.com/

Qwen2.5-VL-7B which have undergone SFT, par-
ticularly in the grounding task, despite its param-
eter scale being much larger at 72B. The perfor-
mance decline is partly due to severe shifted bound-
ing boxes during grounding and approximately 5%
failures at instructions following. The GPT-4o per-
forms better, especially on datasets composed of
scientific papers. However, there is a noticeable
decline on the DocHieNet dataset, which consists
of multi-type documents, particularly in the evalua-
tion of hierarchical relationships.

5.4 Comparison with Pipeline Systems

In this section, we compare the IDP model with
pipeline-based methods, DocXChain (Yao, 2023)
and MinerU (Wang et al., 2024a), also with com-
mercial APIs provided by Tencent2 and Mathpix3.
In addition, we augmented the DocXChain pipeline
with a module for predicting document hierar-
chy (Ma et al., 2023), which was trained using
DocHieNet and HRDoc datasets. The aforemen-
tioned matching strategy is also employed for eval-
uation.

It can be observed that the pipeline based on
task-specific models performs well in layout ele-
ment analysis, but shows no advantage in reading
order and document structure results compared to
the IDP approach due to error propagation. In fact,
recent focus in the document parsing has been pri-
marily on layout analysis (Chen et al., 2025), with
only a few studies addressing order prediction and
document structure parsing. The IDP approach con-
structs an effective end-to-end strategy to facilitate
the progress of this part of research.

2https://cloud.tencent.com/document/product/
1759/107506

3https://mathpix.com/
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k G-F1 ARD R-F1

IDP 4 93.75 1.01 79.45

w/o decouple 4 83.26 1.17 77.80
w/o stage3 4 87.82 1.01 79.14

IDP 3 91.59 1.02 79.44
IDP 1 79.73 1.01 79.47

Table 4: The ablation studies about key designs of the
IDP model on the DocHieNet dataset.

5.5 Experiment on Zero-shot Benchmarks
We tested the zero-shot capability of different meth-
ods on a comprehensive multi-type document pars-
ing benchmark, OmniDocBench. As shown in ta-
ble 3, the MLLM-based models, such as Qwen
and IDP, achieve better performance. Whereas
the DocXChain method degrades in this zero-shot
scenario, since the out-of-domain document types,
such as newspapers and sides. Thanks to a specifi-
cally designed model and training stages, IDP out-
performs the powerful Qwen-VL-Max in terms of
zero-shot performance in the document parsing sce-
nario.

5.6 Ablation Study
In this section, we analyze the key designs in IDP
through ablation experiments. We first attempt a
model without the decoupled decoding process. As
observed, the metrics for both tasks show signif-
icant declines compared to the decoupled format,
validating the effectiveness of IDP’s core concept.
We also conduct control experiments without stage
3 training. It was evident that the grounding abil-
ity decreases. The transformer-based architectures
impose high demands on convergence (Li et al.,
2022), so the stage 3 is crucial for enhancing IDP’s
grounding capability.

Furthermore, we performed ablation experi-
ments on the number of query tokens k, as shown
in table 4. Insufficient k limits the representation
capabilities of layout queries, affecting the accu-
racy of DLGM. As the number of query tokens
increases, the marginal benefit decreases.

5.7 Qualitative Comparison of Layout
Grounding Results

In fig. 4, the layout grounding inference results of
the SFT-enhanced Qwen2.5-VL-7B and the IDP
model are presented. Although the quantity of lay-
out elements generated by Qwen-VL is mostly cor-

(a) QwenVL Result (b) IDP Result

Figure 4: Comparison of layout grounding results gen-
erated by spatial and sequential decoders.

G-F1 ARD R-F1

DocXChain-S - - 92.10
DocXChain 93.75 1.25 86.54
IDP 96.11 0.70 90.32

Table 5: The comparison among task-specific model
(DocXChain-S), pipeline model (DocXChain) and IDP
model on HRDH dataset.

rect, there is a drifting phenomenon in the ground-
ing results. These shifted boxes can significantly
impact the parsing of multi-modal information,
such as images, in the document. In contrast, the
grounding results produced by the IDP method ex-
hibit a high degree of alignment, addressing the
issues observed with the sequence decoder. The
appendix provides more qualitative results for a
comprehensive comparison.

5.8 Further Discussion on Pipeline Methods

In this section, we further compare the pipeline
method DocXChain with the IDP model on the
HRDH dataset in table 5. Specifically, by using the
ground truth layout grounding information as input,
we evaluate the model performance on the hierar-
chy parsing subtask, denoted as ’DocXChain-S’.
The comparison with DocXChain with the whole
pipeline quantifies the error propagation. It can be
seen that the performance of DocXChain-S is better
than the end-to-end results of IDP; however, the ac-
cumulated errors lead to a significant performance
drop of DocXChain.
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6 Conclusion

In this paper, we introduce the Intelligent Docu-
ment Parsing (IDP) framework, an end-to-end doc-
ument parsing framework leveraging the vision-
language priors of MLLMs, equiped with elabo-
rately designed IDP representation and fully acti-
vates the MLLMs ability on content parsing while
generates the layout grounding results in a decou-
pled module. Experimental results demonstrate
that IDP method effectively boosts the MLLM-
based methods, and illustrate advantage to the
pipeline methods in terms of end-to-end and zero-
shot performance, providing a significant advance-
ment in MLLM-based document parsing.

Limitations

Although IDP provides a powerful baseline for
MLLM-based document parsing models, it does
not consider the inter-page relationships in multi-
page documents. In fact, information such as doc-
ument layout style and hierarchical structure is re-
lated across pages. Moreover, in real-world sce-
narios, document parsing tasks typically involve
multi-page document inputs. Expanding the IDP
model to support joint inference across multiple
pages is a potential area for future research.
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A Appendix

A.1 Evaluation Metric
A.1.1 Reading Order
The ARD score (Wang et al., 2021) is proposed
to evaluate the difference between reordered se-

quences. We extend the ARD score into a relative
version to stabilize fluctuations caused by different
paragraph splitting, denoted as RARD.

Given a sequence A = [e1, e2, . . . , en] and the
prediced sequence B = [ei1 , ei2 , . . . , eim ], where
{i1, i2, . . . , im} ⊆ {1, 2, . . . , n}, the ARD score
is calculated as follows:

s(ek, B) = |k
n
− I(ek, B)

m
|

RARD(A,B) =
1

n

∑

ek∈A
s(ek, B)

where ek is the k-th element in sequence A;
I(ek;B) is the index of ek in sequence B; n is
the length of sequence A.

A.1.2 Document Structure
We employ F1 of relation triplets (R-F1) to mea-
sure the correctness of document structure (Rausch
et al., 2023). The structure relation is reconstructed
from the depth of layout elements (Li et al., 2024).

Suppose Rgt = {(Eparent, Echild, rgt)} and
Rpred = {(Êparent, Êchild, r̂pred)}, then the F1-
score is computed from the precision pscore and
recall rscore as following:

pscore =
|Rgt ∩Rpred|

|Rpred|
,rscore =

|Rgt ∩Rpred|
|Rgt|

A.2 Qualitative Results
In this section, we present more qualitative compar-
ison of grounding results between MLLM-based
method, Qwen-VL with SFT and the IDP method.
As depicted in fig. 5, the bounding boxes generated
by QwenVL exhibit hallucinations. Specifically,
QwenVL perceives and parses the header informa-
tion on the page, but the predicted header box is
positioned far from the actual header on this page,
likely due to Qwen-VL hallucinating based on the
typical location of headers in the data.

In the sample shown in fig. 6, the boundaries on
the left, top, and bottom sides are reasonable, yet
the right boundary shows an overall displacement.
The sequential inference mechanism of MLLM
may cause errors that influence the subsequent
grounding results of other layout elements.
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(a) QwenVL Result (b) IDP Result

Figure 5: Visualization of the hallucinations grounding
results generated by MLLM compared to IDP.

(a) QwenVL Result (b) IDP Result

Figure 6: Visualization of the shifted grounding results
generated by MLLM compared to IDP.
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