TurnBench-MS: A Benchmark for Evaluating Multi-Turn, Multi-Step Reasoning in Large Language Models

Yiran Zhang¹, Mo Wang¹, Xiaoyang Li¹, Kaixuan Ren¹, Chencheng Zhu², Usman Naseem¹

¹Macquarie University ²University of New South Wales {yiran.zhang,kaixuan.ren,usman.naseem}@mq.edu.au

Abstract

Despite impressive advances in large language models (LLMs), existing benchmarks often focus on single-turn or single-step tasks, failing to capture the kind of iterative reasoning required in real-world settings. To address this limitation, we introduce TurnBench, a novel benchmark that evaluates multi-turn, multi-step reasoning through an interactive code-breaking task inspired by the "Turing Machine Board Game." In each episode, a model must uncover hidden logical or arithmetic rules by making sequential guesses, receiving structured feedback, and integrating clues across multiple rounds. This dynamic setup requires models to reason over time, adapt based on past information, and maintain consistency across steps—capabilities underexplored in current benchmarks. TurnBench includes two modes: Classic, which tests standard reasoning, and Nightmare, which introduces increased complexity and requires robust inferential chains. To support fine-grained analysis, we provide ground-truth annotations for intermediate reasoning steps. Our evaluation of state-of-the-art LLMs reveals significant gaps: the best model achieves 84% accuracy in Classic mode, but performance drops to 18% in Nightmare mode. In contrast, human participants achieve 100% in both, underscoring the challenge TurnBench poses to current models. By incorporating feedback loops and hiding task rules, TurnBench reduces contamination risks and provides a rigorous testbed for diagnosing and advancing multi-step, multi-turn reasoning in LLMs¹.

1 Introduction

Reasoning is central to human cognition and a key benchmark for evaluating the capabilities of artificial intelligence (AI) systems (Wason and Johnson-Laird, 1972; Dunbar and Klahr, 2012). In the context of large language models (LLMs), assessing reasoning ability is especially critical as these

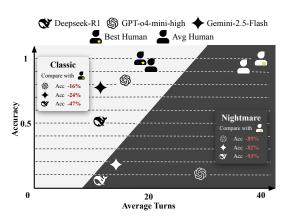


Figure 1: Accuracy versus average turns for leading LLMs and human evaluators (Best, Average) on Turn-Bench in both "Classic" and "Nightmare" modes. Insets show the relative accuracy drop of LLMs compared to the Best Human. Results highlight that LLMs remain substantially less accurate than humans, especially under the "Nightmare" setting, underscoring current limitations in complex multi-turn reasoning.

models are increasingly deployed in complex, real-world tasks. While a growing body of work has proposed datasets and evaluation methods for probing LLM reasoning (Zeng et al., 2024; Wang et al., 2023a; Welleck et al., 2022), such as Table 1, significant gaps remain in how we measure and interpret this ability—particularly in multi-step, multi-turn settings.

First, most existing evaluations focus on singleturn or single-step reasoning tasks, overlooking the iterative and interactive nature of real-world problem-solving. Human reasoning often involves cycles of information gathering, hypothesis testing, and adaptation to feedback. This is especially true in scenarios where information is incomplete or distributed across multiple interactions. While recent benchmarks attempt to assess multi-step reasoning (Tang et al., 2025; Zeng et al., 2024), they rarely simulate settings that require reasoning across multiple turns.

¹Our code and data is available at: https://github.com/grantzyr/TurnBench-MS

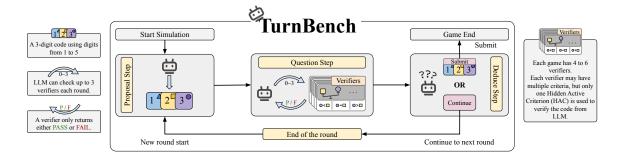


Figure 2: Overview of the TurnBench game framework. The LLM's objective is to deduce a secret 3-digit code composed of digits from 1 to 5. The game proceeds in iterative rounds, each comprising: 1) **Proposal Step**: The LLM submits a candidate 3-digit code. 2) **Question Step**: The LLM queries up to three verifiers, each providing Pass/Fail feedback based on its unique Hidden Active Criterion (HAC). 3) **Deduce Step**: The LLM analyzes the collective feedback to either **Submit** the final code if confident in its correctness, or 4) **Continue (End of the round** to the next round with a revised proposal. This iterative process continues until the LLM successfully deduces and submits the correct code.

Second, current evaluation metrics typically emphasize final-answer correctness, with little insight into the model's intermediate reasoning process (Zhuang et al., 2023; Hao et al., 2024). As complex reasoning often admits multiple valid paths, simply scoring final outputs fails to distinguish between genuine inference and lucky guesses. Though some methods attempt process-level evaluation via manual annotation or automated proxies (Zeng et al., 2024; Tang et al., 2025), these are limited by subjectivity and the absence of reliable ground truth for intermediate reasoning.

Third, data contamination poses a serious concern. Static benchmarks—often sourced from public datasets or templated questions—can overlap with pretraining corpora, making it difficult to disentangle memorization from actual reasoning (Yang et al., 2025; Jain et al., 2024; Li et al., 2023). This undermines the reliability of benchmark results and inflates perceived model performance.

To address these gaps, we introduce **TurnBench**, a novel benchmark designed to evaluate multi-turn, multi-step reasoning through an interactive codebreaking task inspired by the *Turing Machine* board game. In this game, a model must uncover a hidden three-digit code by engaging in multiple rounds of interaction with logical verifiers. Each verifier is governed by a hidden rule; only one rule per verifier is active in a given instance. To succeed, the model must iteratively guess codes, select verifiers, analyze feedback, and gradually infer the underlying logical or arithmetic constraints—mirroring how humans perform exploratory reasoning.

TurnBench explicitly addresses key shortcom-

ings in existing benchmarks. First, it evaluates multi-turn, multi-step reasoning by requiring LLMs to adapt dynamically to feedback across multiple rounds and integrate partial clues to formulate and revise hypotheses over time. Second, it enables process-level evaluation through a rulebased mechanism that compares models' intermediate inferences—i.e., their identification of active rules in each verifier—against ground truth, allowing structured analysis of reasoning steps beyond final answer correctness. Finally, TurnBench offers strong contamination resistance due to its dynamic rule configurations: even under fixed game setups, varying rule activations lead to distinct reasoning trajectories, minimizing the risk of data leakage from LLM pretraining corpora. Our work makes the following key contributions:

- We propose TurnBench, the novel benchmark designed to evaluate *multi-turn*, *multi-step* reasoning in LLMs through dynamic, interactive tasks. TurnBench includes 540 game instances across two modes—*Classic* and *Night-mare*—with three difficulty levels each.
- We introduce a novel, automated evaluation method that leverages rule-based feedback to analyze intermediate reasoning steps, offering a grounded way to assess the internal thinking of LLMs.
- We benchmark a range of open-source and proprietary models, including GPT-o4-mini and Gemini-2.5-Flash, alongside human participants. Results show a significant perfor-

Dataset	Multi-Turn	Multi-Step	No Knowledge	Ground true	Intermediate Eval	Reasoning	Domain
Avalonbench	•	•	•	0	0	•	Game
Multi-LogiEval	0	•	0	•	0	•	Narrative
BoardgameQA	0	•	•	•	0	•	Game
MuSR	0	•	0	•	0	•	Narrative
AIME 2024	0	•	•	•	0	•	Math
DSGBench	•	\circ	0	0	•	•	Game
MR-Ben	0	•	•	•	•	•	Science
LOGICGAME	0	•	•	•	0	•	Game
MastermindEval	•	•	•	•	0	•	Game
LMAct	•	•	•	0	0	•	Game
Ours	•	•	•	•	•	•	Game

Table 1: Comparison of multi-round reasoning benchmarks across six key criteria. A ●indicates presence of the feature, a ○means no presence of the feature, and a € indicates partial. The "Domain" column shows the task type of each benchmark.

mance gap between humans (100%) and models (as low as 18% in Nightmare mode), highlighting the challenge TurnBench presents (Figure 1).

 We release a new dataset comprising not only game settings and final answers, but also detailed interaction logs and reasoning steps for both models and humans, providing a valuable resource for future research.

2 Related Work

LLMs in Interactive Game Environments: Recent work has explored the use of LLMs as agents in interactive games to assess their planning, reasoning, and decision-making capabilities across diverse domains such as board games, card games, and social deduction settings (Schultz et al., 2024; Xu et al., 2023; Akata et al., 2023; Light et al., 2023; , FAIR; Wang et al., 2023b; Zhuang et al., 2025; Tang et al., 2025). These benchmarks typically present the game state in textual or structured formats and prompt LLMs to make the next move using natural language generation. For instance, PokerBench (Zhuang et al., 2025) adopts classification-based decision scenarios, while AvalonBench (Light et al., 2023) and BALROG (Paglieri et al., 2025) evaluate agents through multi-turn, interactive gameplay. More recently, LMAct (Ruoss et al., 2025) and MastermindEval (Golde et al., 2025) extend this line of work by framing game-based reasoning as multistep, multi-turn interaction tasks. Unlike benchmarks focused on win rate or action legality, these settings emphasize the process of rule discovery and iterative hypothesis testing in constrained domains. Common evaluation metrics include win

rate, legality of actions, strategy optimality, and task completion.

Benchmarks for Multi-Step and Logical Reasoning: To more directly evaluate reasoning capabilities, recent studies have proposed benchmarks focused on multi-step logical and mathematical inference. LogiEval (Patel et al., 2024), Belief-R1 (Wilie et al., 2024), MuSR (Sprague et al., 2023), and AIME (AoPS, 2024) test multi-step reasoning in logical and mathematical domains, often revealing that even advanced LLMs struggle with deep inference. Complementary efforts such as CriticBench (Lin et al., 2024) and MR-Ben (Zeng et al., 2024) explore multi-round self-reflective prompting to enhance reasoning through critique and correction.

Rule-Based Inference and Tool-Augmented **Reasoning:** Several benchmarks focus on rulebased or structured inference tasks. GridPuzzle and PuzzleEval (Tyagi et al., 2024) utilize logic grid puzzles, while ZebraLogic (Lin et al., 2025) frames reasoning as constraint satisfaction problems (CSPs). RuleArena (Zhou et al., 2024) evaluates models on dynamic policy reasoning. Toolaugmented frameworks like LINC (Olausson et al., 2023) and MATHSENSEI (Das et al., 2024) enable LLMs to perform formal reasoning through external tools. Meanwhile, self-reflection strategies such as Self-Refine (Madaan et al., 2023) and ReFlexion (Shinn et al., 2023) allow models to iteratively revise incorrect or incomplete outputs via internal critique loops.

While the above efforts have made significant strides in evaluating LLM reasoning, several important gaps remain. First, few benchmarks explicitly evaluate *multi-step reasoning across multiple interaction rounds*—a critical feature of real-world

problem-solving. Most logic and tool-based tasks are static, single-shot evaluations that do not require models to gather and integrate information over time. Second, existing benchmarks often lack ground truth for intermediate reasoning steps, limiting analysis to final-answer accuracy. This makes it difficult to determine whether a correct answer results from genuine reasoning or chance. Third, many datasets are vulnerable to data contamination due to overlap with pretraining corpora. Finally, while game-based settings are promising, they rarely focus on rule-discovery and hypothesis refinement under feedback constraints.

TurnBench is designed to fill these gaps by offering a dynamic, interactive benchmark that simulates real-world multi-turn reasoning. It provides ground-truth for intermediate reasoning, minimizes contamination risk through dynamic rule configurations, and emphasizes logical consistency and rule inference across turns.

3 TurnBench

3.1 Turing Machine Game Mechanics

Turing Machine is a logic-based deduction game where the player's objective is to identify a unique three-digit code (digits 1–5), each digit associated with a distinct color (e.g., blue, yellow, purple). The challenge lies in interacting with a set of 4–6 verifiers, each governed by a single, hidden active criterion selected from a predefined rule pool. Players must deduce these hidden criteria and submit a code that satisfies all of them. The game rule and detailed example provided in Appendix A.

Each game unfolds in multiple rounds with four key phases: First, the player composes a proposed code (e.g., BLUE=2, YELLOW=4, PURPLE=3), which remains fixed for the current round. Next, the player queries up to three verifiers sequentially, each returning a binary judgment (PASS/FAIL) based on the verifier's active rule. Then, using this feedback, the player can either attempt a final answer or skip and continue to the next round for further testing. The game ends once a final answer is submitted.

TurnBench supports two game modes: **Classic** and **Nightmare**, each with Easy, Medium, and Hard difficulty levels. In Classic mode, verifier responses correspond directly to the selected verifier's criterion. In Nightmare mode, verifiers are secretly remapped; the player queries one verifier, but the response corresponds to another verifier's

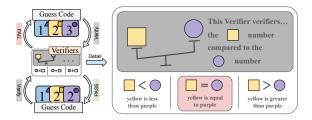


Figure 3: Example of verification process. This verifier (Right) compares the values assigned to yellow and purple. There are three possible criteria: less than, equal to, or greater than. The Hidden Active Criterion (HAC) (Red) represents the specific constraint activated by a verifier in a given game setup. When a tested code satisfies this criterion, the verifier returns "PASS"; otherwise, it returns "FAIL" (Left).

logic, unknown to the player. This mapping must be deduced as part of the reasoning process. The mode details provided in Appendix A.1.

3.2 TurnBench Construction

3.2.1 Game Setups

Each TurnBench game instance consists of a specific verifier combination, one hidden active rule per verifier, and the unique correct code. For Nightmare mode, each game additionally includes a fixed or dynamically generated hidden mapping between verifiers. We curated 270 Classic and 270 Nightmare game setups (90 per difficulty level), sourced from official materials². All setups are reproducible, and Nightmare mappings are pre-fixed or regenerated at runtime to reduce memorization risk.

3.2.2 Verifier Design

Verifiers are central to TurnBench and encode simple numerical rules (e.g., Figure 3). We incorporate 48 official verifier types, each associated with 2 to 9 potential rules. Since the physical game's verifier logic isn't directly compatible with a simulation environment, we designed a Hidden Condition Selection Algorithm that selects one active rule per verifier to align with the game's design and balance.

3.2.3 LLM Interaction Flow

At game start, the system presents the LLM with the full game context: background, rules, objective, and all verifier definitions. The model then interacts turn-by-turn as described in Section 3.1 (e.g. Figure 2), adhering to a strict output protocol. In each round:

²https://www.turingmachine.info/

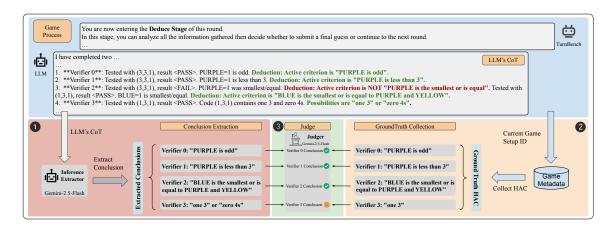


Figure 4: The Reasoning Process Evaluation Pipeline in TurnBench. This pipeline analyzes the LLM's Chain-of-Thought (CoT) generated as it deduces verifier properties during game process (blue). The evaluation proceeds in three steps: 1) **Inference Extraction** (red): The LLM's CoT, detailing its reasoning for each verifier's Hidden Active Criterion (HAC), is processed by the Inference Extractor. This yields "Extracted Conclusions" – the LLM's inferred HAC for each verifier. 2) **Ground Truth Collection** (orange): Simultaneously, the "Current Game Setup ID" is used to retrieve the definitive "Ground Truth HAC" for each verifier from the "Game Metadata". 3) **Judge** (green): The Judger then semantically compares the "Extracted Conclusions" from Step 1 with the corresponding "Ground Truth HAC" from Step 2. Each inferred HAC is categorized as: Correct (semantically equivalent to the ground truth), Incorrect (completely wrong), or Include (the conclusion contains the correct answer but is not yet fully refined to the precise ground truth).

- In the Proposal step, the LLM outputs a code in the format <CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z.
- In the **Verifier Query** step, it selects verifiers with <CHOICE>: [num]. Each verifier returns PASS or FAIL.
- In the **Deduce** step, the LLM either submits the code again using the same format as Proposal step or skips the round via <CHOICE>: SKIP.
- In Chain-of-Thought (CoT) mode, the LLM also outputs reasoning before decisions using <REASONING>.

If the LLM produces malformed output or illegal actions (e.g., invalid verifier ID), a retry mechanism prompts re-generation, while tracking error frequency. Detailed prompts and retry protocols are in the Appendix E.

3.2.4 Evaluating Model Reasoning Process

While existing benchmarks focus solely on final answers, TurnBench introduces an automated method for evaluating intermediate reasoning. Specifically, in Classic mode, a model's reasoning involves two phases: (1) inferring each verifier's hidden criterion, and (2) using these to deduce the final code.

Since both ground truths (criteria and final code) are known, we can semantically compare model inferences with them.

Our evaluation pipeline (Figure 4) involves two LLM-based components. First, an **Inference Extractor** (Gemini-2.5-Flash (Google, 2025)) parses the model's <REASONING> output to identify its explicit claim about a verifier's hidden rule. Second, a **Judger**, also Gemini-2.5-Flash, compares the extracted rule to the ground truth and classifies it as: **Correct** (semantically equivalent), **Incorrect** (completely wrong or missing the correct rule), or **Include** (partial overlap with the ground truth).

We validated this automated process through manual inspection. Stratified sampling selected 120 outputs (5% of total), prioritizing failed games for robustness. Manual checks revealed the inference extractor missed 13.7% of applicable conclusions, but achieved 99.7% precision. The Judger reached 99.4% classification accuracy. These results confirm that TurnBench provides a reliable mechanism for process-level evaluation of LLM reasoning.

4 Experiment

4.1 Experiment Setup

To comprehensively explore the limitations of current large language models (LLMs) in multi-turn

		Average Accuracy							Win Avg Turn		Win Avg VER		
Models	To	Total		Easy		Medium		Hard		WIII AVg Turii		WIII AVg VEK	
	OA	CoT	OA	CoT	OA	CoT	OA	CoT	OA	CoT	OA	CoT	
gpt-o4-mini-high (Thinking)	0.64	0.84	0.80	0.93	0.73	0.93	0.40	0.67	15	16	7	6	
gemini-2.5-flash (Thinking)	0.64	0.76	0.87	0.87	0.73	0.93	0.33	0.47	14	13	6	6	
deepseek-r1 (Thinking)	0.49	0.53	0.80	0.80	0.33	0.53	0.33	0.27	12	14	6	6	
gpt-4.1	0.09	0.69	0.20	0.80	0.07	0.73	0.00	0.53	46	15	23	7	
llama-4-maverick	0.04	0.36	0.13	0.60	0.00	0.40	0.00	0.07	32	18	12	8	
qwen-2.5-7b-instruct	0.04	0.04	0.00	0.13	0.13	0.00	0.00	0.00	42	7	21	3	
mistral-8b	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.07	-	<u>6</u>	-	3	
llama-3.1-8b-instruct	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-	-	-	-	
Random Guess	0.0085 0.0079		0.0098		0.0077		-		-				
Best Human		1 1		1	1			1		18		8	
Human Average	0.	0.96 0.98		0.95		0.95		20		11			

Table 2: Performance of different models on the Classic Game setting (45 Games). Metrics include total, easy, medium, and hard average accuracy, as well as average number of turns and average number of verifiers used in successfully won games. Fewer average turns and verifier uses in winning games suggest greater reasoning efficiency. Human and random guess baselines are included for comparison. We evaluated two prompting strategies: Only Answer (OA) and Chain of Thought (CoT). The **bold text** represents the best results in LLM, the <u>underline text</u> represents the best-performing result in the non-thinking model. Full test results for 270 setups are in Table 6.

and multi-step reasoning tasks, we selected both commercial and widely-used open-source models for evaluation, employing different prompting methods. The commercial models include gemini-2.5-flash-preview-04-17 (thinking) (Google, 2025), gpt-o4-mini-high-0416 (thinking) (OpenAI, 2025), and gpt-4.1-2025-04-14. The open-source models tested are deepseek-r1 (thinking) (DeepSeek-AI, 2025), llama-4-maverick (Meta, 2025), mistral-8b (team, 2025), llama-3.1-8b-instruct (Grattafiori et al., 2024), and qwen-2.5-7b-instruct (Yang et al., 2024). We also evaluated two prompting strategies: Only Answer (OA) and Chain of Thought (CoT) (Wei et al., 2022). All models were evaluated through their publicly available APIs.

To thoroughly test the reasoning abilities of the state-of-the-art models, all "Thinking" models had their reasoning effort set to "high." Additionally, to compare the reasoning gap between the most advanced LLMs and humans, we invited five human participants with no prior experience with the game to take part in the experiment.

We evaluated two game modes: Classic and Nightmare. Each mode's scenarios were divided equally into three difficulty levels: easy, standard, and hard. For Classic mode, we constructed 270 benchmark scenarios (90 per difficulty). For Nightmare mode, 45 scenarios were selected (15 per difficulty). Human participants played 45 Classic mode games (15 per difficulty), with the Nightmare mode evaluation set matching the models'.

All models and human participants were tested under identical conditions, with the same task prompts and problem setups (Appendix F). To ensure parity in information access, we developed a user interface for humans that displayed exactly the same text as the models saw at each step. Humans were also asked to record their reasoning and thought processes throughout. Accuracy is calculated using scikit-learn (Pedregosa et al., 2018).

To specifically analyze the impact of model size on performance, we conducted a targeted follow-up experiment. We sampled 45 game setups from the Classic mode (15 from each difficulty level) and evaluated two additional large-scale open-source models: Llama-3.3-70B-instruct (Grattafiori et al., 2024) and Mistral-3.2-small (MistralAI, 2025). This allows for a more direct comparison across a range of model parameters.

4.2 Results and Findings

Finding 1: LLMs significantly lag behind humans in multi-turn, multi-step reasoning.

We analyzed overall performance using average accuracy metrics segmented by difficulty (overall, easy, medium, hard), as well as the average number of turns and verifier uses in games won successfully. Fewer turns and verifier uses indicate stronger reasoning ability.

First, we discuss Classic mode results (Table 2). Smaller standard models struggled significantly despite understanding game rules and response format. They had difficulty leveraging verifier feedback to make effective inferences. Because Turn-Bench requires no external knowledge and relies

		Average Ac	curacy (CoT)		Win Avg Turn (CoT)	Win Avg VER (CoT)
	Total	al Easy Medium Hard		Will Avg Tulli (COT)	WIII AVg VER (COI)	
gpt-o4-mini-high (Thinking)	0.11	0.13	0.20	0.00	21	8
gemini-2.5-flash (Thinking)	0.18	013	0.27	0.13	16	8
deepseek-r1 (Thinking)	0.07	0.07	0.07	0.07	12	6
Random Guess	0.0076	0.0074	0.0079	0.0075	=	=
Best Human	1	1	1	1	40	20
Human Average	0.94	0.96	0.93	0.93	38	17

Table 3: Performance of different thinking models on the Nightmare Game setting (45 Games). Same metrics as Table 2, but exclusively featuring the Chain of Thought (CoT) prompting strategy. Compared to Classic mode, accuracy drops significantly. Human players maintain robust performance, while models struggle to generalize under this challenging scenario.

solely on numerical rules, this suggests that complex reasoning needs models of a certain size and capacity.

Chain of Thought (CoT) prompting consistently improved performance across accuracy metrics and helped "Thinking" models as well. For example, the best-performing gpt-o4-mini-high increased its overall accuracy from 64% (OA) to 84% (CoT). Larger standard models also showed notable gains, e.g., gpt-4.1 rose from 9%(OA) to 69% (CoT), and llama-4 from 4% to 36%.

CoT prompting also helped models succeed with fewer turns and verifier uses (e.g., gpt-4.1) dropped from 41 to 15 turns and from 23 to 7 verifiers). However, "Thinking" models showed little difference between OA and CoT for turns and verifier use, possibly because they internally perform stepwise reasoning. CoT may mainly help them articulate their reasoning process more clearly and use it as memory for subsequent steps.

Despite improvements, a significant gap remains between LLMs and humans. The "Best Human" achieved 100% accuracy across all metrics, whereas gpt-o4-mini-high (CoT) reached only 84%. But models outperformed human in average turns (20) and verifier uses (11). Analysis of reasoning logs showed that while models sometimes integrated more clues, humans tended to take more turns (especially on hard tasks) but maintained near-perfect accuracy.

To further test limits, we compared "Thinking" models with CoT against humans in the more challenging Nightmare mode (Table 3). All LLMs' accuracy dropped drastically compared to Classic mode. For example, gpt-o4-mini-high fell from 84%to 11% overall, and failed completely on Hard difficulty (0 accuracy). The best performing gemini-2.5-flash only reached 13%. Humans maintained extremely high performance, with the

"Best Human" at 100% accuracy and the average human still achieving 94.2%.

These results clearly demonstrate that although "Thinking" models and CoT prompting improve performance, LLMs still lag far behind humans in complex multi-turn, multi-step reasoning tasks, especially under high difficulty. This highlights the substantial gap remaining between current models and human reasoning capabilities.

Finding 2: Once LLMs make a mistake in multi-turn reasoning, they struggle to recover.

In this experiment, we conducted an in-depth analysis of the persistence and evolution of error states in LLMs during multi-turn reasoning. This analysis is based on the thinking process evaluation method described in Section 3.2.4. The results clearly demonstrate that in complex multi-turn reasoning chains, once current LLMs make an initial error, they tend to "lose their way" and struggle to recover autonomously, significantly reducing their final task success rate.

Path Divergence after Initial Errors. Using a Sankey diagram (Figure 6), we tracked model behavior following the First Incorrect Conclusion (FIC). The diagram shows that a large proportion of error paths led directly to "No Subsequent Conclusion," indicating that models often cease reasoning along that path after an initial mistake; indeed, as detailed in Table 4, the rate of "Ended with no final conclusion" ranged from 34.85% (gpto4-mini-high) to a striking 96.23% (qwen-2.5-7b) across various models. Another substantial fraction continued producing incorrect conclusions; for instance, the "Next-turn still incorrect" metric in the same table varied from 3.14% (qwen-2.5-7b) to 38.82% (mistral-8b). In contrast, paths that quickly

	llama-3.1-8b	gemini-2.5-flash	gpt-o4-mini-high	gpt-4.1	mistral-8b	llama-4-maverick	qwen-2.5-7b	deepseek-r1
Initial verifier errors	368	96	66	141	255	142	318	144
Persistence of initial errors (%)	89.94	91.67	53.03	86.52	90.20	63.38	99.06	93.06
Ended with no final conclusion (%)	74.18	71.87	34.85	54.61	53.33	45.77	96.23	86.11
Next-turn still incorrect (%)	17.66	19.79	27.27	33.33	38.82	25.35	3.14	6.94
Success despite persistent errors (%)	1.08	12.72	32.14	13.41	0.66	8.11	0.54	7.87
Success when no / fixed errors (%)	1.75	95.34	87.55	84.57	3.13	41.75	8.00	90.56

Table 4: Comparison of large language models on their ability to handle verifier errors during multi-turn reasoning. Metrics include the number of initial verifier errors, error persistence rate, likelihood of remaining incorrect in the next turn, and task success rates depending on error persistence or correction.

shifted to "Include" or "Correct" were relatively rare. Examining how these paths evolved to the Final Conclusion State Before Submission (CSBS), we found that those with either "No Subsequent Conclusion" or "Subsequent Incorrect Conclusion" overwhelmingly ended in an incorrect final conclusion. Consequently, these error paths almost always resulted in "Game Lost." Only a small minority of paths that rapidly adjusted to correct or partially correct conclusions after the first error were associated with a higher likelihood of "Game Won." This divergence visually confirms that after the first mistake, models rarely self-correct and tend either to halt reasoning or perpetuate errors—an initial indication of "losing their way." The detailed definitions and examples are provided in Appendix C.

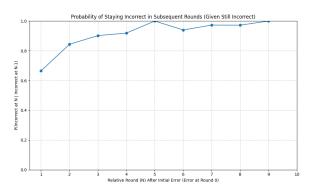


Figure 5: Probability of a model remaining incorrect in each subsequent round after its initial error, conditioned on it being incorrect in the previous round. The likelihood of continuing in an incorrect state increases with each turn, approaching near certainty beyond the fifth round. This trend highlights the models' limited capacity for self-correction once they enter an error state.

Solidification and Persistence of Error States.

To further investigate error dynamics, we analyzed model behavior after making an error. Error states proved extremely "sticky." Figure 5 depicts the probability that a model continues to produce incorrect conclusions in subsequent relative rounds,

given that it is currently incorrect. In the first relative round after the initial error (X=1), if the model outputs a conclusion, there is already approximately a 65–70% chance it is incorrect. Alarmingly, this probability rises sharply with additional rounds, nearing 100% by the fifth relative round. This suggests that once a model enters several consecutive rounds of incorrect reasoning, it almost completely loses the ability to break the error cycle.

4.3 Further Analysis of Reasoning Failures

To better understand the sources of the performance gaps and the persistence of errors documented in Findings 1 and 2, we conducted additional analyses on both the qualitative nature of LLM errors and the quantitative effect of model scale.

4.3.1 Qualitative Error Analysis

We examined failure cases across different models and difficulty levels to investigate the causes of the performance gaps identified in Finding 1 and the error persistence highlighted in Finding 2. This analysis revealed five recurring categories of reasoning errors that illustrate the challenges LLMs face in multi-turn, multi-step tasks. Illustrative examples are provided in Appendix D.

Reasoning Biases. These errors occur when a model attempts to make inferences from insufficient evidence. In our setting, verifier rules often share implicit relationships. Some models, seeking efficiency, try to deduce the hidden criteria of untested verifiers based on already verified conditions or by exploiting the uniqueness of the final answer. While such "shortcut" strategies can be effective, they frequently lead to mistakes when models fail to account for alternative logical paths or conditions.

Task Misconception. A small subset of models fail to fully grasp the core game mechanics or specific requirements, leading to misinterpretation of

clues and ultimately to erroneous conclusions. This type of error is more common in smaller models, and is rarely observed in larger ones, pointing to limitations in complex instruction following and sustained task comprehension.

Information Hallucination. Here the model fabricates unverified information or erroneously assumes that a verification step has been completed. For instance, a model may conclude that a certain verifier's criterion is active simply because its current solution happens to satisfy it, despite never explicitly testing that verifier. This highlights LLMs' difficulties in managing uncertainty and preserving factual correctness.

Overconfident Inference. In some cases, models display unwarranted certainty in their final predictions even without completing all required verification steps. They submit premature answers based on partial or speculative reasoning, revealing a tendency toward overconfidence.

Long-term Memory Decay. In extended multiturn reasoning, certain models struggle to retain and integrate crucial information across turns. This often results in forgotten or confused clues from earlier steps, which compromises downstream reasoning. Such cases point to ongoing challenges in maintaining contextual coherence and reliable recall in multi-turn interactions.

4.3.2 The Impact of Model Scale

Our main experiments (Table 2) showed a stark contrast in performance, particularly with smaller open-source models failing completely. To systematically investigate this, we analyzed the performance of several open-source models across a spectrum of sizes on a representative subset of 45 Classic mode games.

Model Size	Avg Acc
671B (37B)	0.53
400B (17B)	0.36
70B	0.36
24B	0.27
8B	0.00
8B	0.02
7B	0.04
	671B (37B) 400B (17B) 70B 24B 8B 8B

Table 5: A Comparative Analysis of Large Language Models at Various Scales.

The results (Table 5) reveal a strong positive correlation between model size and accuracy on TurnBench. Our key observations are as follows:

Significant Performance Gap for Smaller Models els Models in the 7B–8B parameter range consistently achieve near-zero accuracy (0–4%). This suggests that smaller LLMs largely lack the capacitation of the consistency of

suggests that smaller LLMs largely lack the capacity for the complex, multi-turn reasoning required by TurnBench, possibly due to limitations in maintaining complex contexts, performing intricate deductions, or recovering from early errors.

Improved Performance with Increasing Scale

As model size increases to 24B (Mistral 3.2 Small) and 70B (Llama 3.3 70B), we observe a substantial improvement in average accuracy, reaching 27% and 36%, respectively. This indicates that larger models are better equipped to handle the game's complexities, benefiting from increased capacity for reasoning, memory, and instruction following.

Effectiveness of Large-Scale MoE Architectures

The Mixture-of-Experts (MoE) models, deepseek-r1 and llama-4-maverick, achieve high accuracies of 53% and 36%. Notably, deepseek-r1, with its massive 671B total parameters, is the top performer among this set, demonstrating that large-scale architectures, particularly those leveraging MoE, possess superior capabilities for this type of reasoning task.

This analysis supports the conclusion that scaling effects play a crucial role in LLM performance on complex, multi-turn reasoning tasks. It provides deeper insight into the current limitations of smaller models and underscores the benefits of larger model architectures for tackling such challenges.

5 Conclusion

In this paper, our investigation using TurnBench has clarified the capabilities and limitations of Large Language Models (LLMs) in multi-turn, multi-step reasoning. TurnBench addresses several key limitations of current benchmarks and offers an effective method for automatically analyzing the reasoning processes of LLMs. Using this framework, we evaluated multiple standard chat models and thinking models, uncovering key findings that highlight the limitations of existing models. In summary, TurnBench fills a gap in the evaluation of LLMs' multi-turn, multi-step reasoning capabilities and provides a novel solution for assessing model reasoning processes. We hope that our work will inspire further research into multi-turn reasoning.

Limitation

Effectively and accurately measuring a model's thinking process has always been a challenge. The automated evaluation of model thinking processes proposed in this paper requires an evaluation framework built on rules, which lacks generality. Furthermore, using Gemini 2.5 Flash for model inference extraction still has certain limitations. Although the extracted results have shown high accuracy after manual evaluation, further research and optimization are still needed. In addition, since our work involves benchmarking large language models, there are potential risks such as the models producing biased outputs, which should be carefully considered when interpreting the results.

References

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge, and Eric Schulz. 2023. Playing repeated games with large language models. *arXiv* preprint arXiv:2305.16867.

AoPS. 2024. Aime 2024. https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions.

Debrup Das, Debopriyo Banerjee, Somak Aditya, and Ashish Kulkarni. 2024. Mathsensei: a toolaugmented large language model for mathematical reasoning. *arXiv preprint arXiv:2402.17231*.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning.

Kevin N. Dunbar and David Klahr. 2012. 701 scientific thinking and reasoning. In *The Oxford Handbook of Thinking and Reasoning*. Oxford University Press.

Meta Fundamental AI Research Diplomacy Team (FAIR)†, Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty, Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu, et al. 2022. Human-level play in the game of diplomacy by combining language models with strategic reasoning. *Science*, 378(6624):1067–1074.

Jonas Golde, Patrick Haller, Fabio Barth, and Alan Akbik. 2025. Mastermindeval: A simple but scalable reasoning benchmark.

Google. 2025. Gemini 2.5 flash preview. https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash-preview.pdf.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur

Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso,

Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd of models.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma, Adithya Samavedhi, Qiyue Gao, et al. 2024. Llm reasoners: New evaluation, library, and analysis of step-by-step reasoning with large language models. arXiv preprint arXiv:2404.05221.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando Solar-Lezama, Koushik Sen, and Ion Stoica. 2024. Live-codebench: Holistic and contamination free evaluation of large language models for code. *arXiv* preprint arXiv:2403.07974.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023. Starcoder: may the source be with you! *arXiv* preprint arXiv:2305.06161.

Jonathan Light, Min Cai, Sheng Shen, and Ziniu Hu.

- 2023. Avalonbench: Evaluating Ilms playing the game of avalon. *arXiv preprint arXiv:2310.05036*.
- Bill Yuchen Lin, Ronan Le Bras, Kyle Richardson, Ashish Sabharwal, Radha Poovendran, Peter Clark, and Yejin Choi. 2025. Zebralogic: On the scaling limits of llms for logical reasoning. *arXiv* preprint *arXiv*:2502.01100.
- Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo, Haowei Liu, and Yujiu Yang. 2024. Criticbench: Benchmarking Ilms for critique-correct reasoning. arXiv preprint arXiv:2402.14809.
- Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. 2023. Self-refine: Iterative refinement with self-feedback. *Advances in Neural Information Processing Systems*, 36:46534–46594.
- Meta. 2025. llama models. https://github.com/meta-llama/llama-models.
- MistralAI. 2025. Mistral-small-3.2-24b-instruct-2506. https://huggingface.co/mistralai/Mistral-Small-3.2-24B-Instruct-2506. Accessed: 2025-09-09.
- Theo X Olausson, Alex Gu, Benjamin Lipkin, Cedegao E Zhang, Armando Solar-Lezama, Joshua B Tenenbaum, and Roger Levy. 2023. Linc: A neurosymbolic approach for logical reasoning by combining language models with first-order logic provers. arXiv preprint arXiv:2310.15164.
- OpenAI. 2025. Openai o3 and o4-mini system card. https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf.
- Davide Paglieri, Bartłomiej Cupiał, Samuel Coward, Ulyana Piterbarg, Maciej Wolczyk, Akbir Khan, Eduardo Pignatelli, Łukasz Kuciński, Lerrel Pinto, Rob Fergus, Jakob Nicolaus Foerster, Jack Parker-Holder, and Tim Rocktäschel. 2025. Balrog: Benchmarking agentic llm and vlm reasoning on games.
- Nisarg Patel, Mohith Kulkarni, Mihir Parmar, Aashna Budhiraja, Mutsumi Nakamura, Neeraj Varshney, and Chitta Baral. 2024. Multi-logieval: Towards evaluating multi-step logical reasoning ability of large language models. *arXiv preprint arXiv:2406.17169*.
- Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. 2018. Scikit-learn: Machine learning in python.

- Anian Ruoss, Fabio Pardo, Harris Chan, Bonnie Li, Volodymyr Mnih, and Tim Genewein. 2025. Lmact: A benchmark for in-context imitation learning with long multimodal demonstrations.
- John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, et al. 2024. Mastering board games by external and internal planning with language models. *arXiv preprint arXiv:2412.12119*.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2023. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36:8634–8652.
- Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. 2023. Musr: Testing the limits of chain-of-thought with multistep soft reasoning. *arXiv preprint arXiv:2310.16049*.
- Wenjie Tang, Yuan Zhou, Erqiang Xu, Keyan Cheng, Minne Li, and Liquan Xiao. 2025. Dsgbench: A diverse strategic game benchmark for evaluating llmbased agents in complex decision-making environments. arXiv preprint arXiv:2503.06047.
- Mistral AI team. 2025. Un ministral, des ministraux. https://mistral.ai/news/ministraux.
- Nemika Tyagi, Mihir Parmar, Mohith Kulkarni, Aswin Rrv, Nisarg Patel, Mutsumi Nakamura, Arindam Mitra, and Chitta Baral. 2024. Step-by-step reasoning to solve grid puzzles: Where do llms falter? *arXiv* preprint arXiv:2407.14790.
- Boshi Wang, Xiang Yue, and Huan Sun. 2023a. Can chatgpt defend its belief in truth? evaluating llm reasoning via debate. *arXiv preprint arXiv:2305.13160*.
- Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. 2023b. Describe, explain, plan and select: Interactive planning with large language models enables open-world multi-task agents. *arXiv preprint arXiv:2302.01560*.
- Peter Cathcart Wason and Philip Nicholas Johnson-Laird. 1972. *Psychology of Reasoning: Structure and Content*. Harvard University Press, Cambridge, MA, USA.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information processing systems, 35:24824–24837.
- Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. 2022. Naturalprover: Grounded mathematical proof generation with language models. Advances in Neural Information Processing Systems, 35:4913–4927.

- Bryan Wilie, Samuel Cahyawijaya, Etsuko Ishii, Junxian He, and Pascale Fung. 2024. Belief revision: The adaptability of large language models reasoning. *arXiv preprint arXiv:2406.19764*.
- Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu. 2023. Exploring large language models for communication games: An empirical study on werewolf. *arXiv* preprint arXiv:2309.04658.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. 2024. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115.
- Yue Yang, Shuibo Zhang, Kaipeng Zhang, Yi Bin, Yu Wang, Ping Luo, and Wenqi Shao. 2025. Dynamic multimodal evaluation with flexible complexity by vision-language bootstrapping. In *The Thirteenth International Conference on Learning Representations*.
- Zhongshen Zeng, Yinhong Liu, Yingjia Wan, Jingyao Li, Pengguang Chen, Jianbo Dai, Yuxuan Yao, Rongwu Xu, Zehan Qi, Wanru Zhao, et al. 2024. Mr-ben: A meta-reasoning benchmark for evaluating system-2 thinking in llms. *arXiv preprint arXiv:2406.13975*.
- Ruiwen Zhou, Wenyue Hua, Liangming Pan, Sitao Cheng, Xiaobao Wu, En Yu, and William Yang Wang. 2024. Rulearena: A benchmark for rule-guided reasoning with llms in real-world scenarios. *arXiv* preprint arXiv:2412.08972.
- Richard Zhuang, Akshat Gupta, Richard Yang, Aniket Rahane, Zhengyu Li, and Gopala Anumanchipalli. 2025. Pokerbench: Training large language models to become professional poker players. *arXiv preprint arXiv:2501.08328*.
- Yuchen Zhuang, Yue Yu, Kuan Wang, Haotian Sun, and Chao Zhang. 2023. Toolqa: A dataset for llm question answering with external tools. *Advances in Neural Information Processing Systems*, 36:50117–50143.

A Game Explanation

This appendix provides detailed explanation includes Game mode explanation, Game Example,

A.1 Mode Explanation

In **Classic mode**, there's a direct, one-to-one correspondence between the verifier a player selects and the actual verifier that processes the code. If a player tests Verifier 1 and receives a "PASS" result, they can confidently conclude that their code passed Verifier 1's specific validation.

In **Nightmare mode**, a "verifier mapping" is generated at the start of the game. This mapping randomly shuffles the verifier numbers and their actual underlying verifiers. This means that if a player tests "Verifier 1" in Nightmare mode and receives a "PASS" result, that result could have come from any of the active verifiers, not necessarily the one labeled "Verifier 1."

In Nightmare mode, players must first infer the correspondence between the verifier results and the actual verifiers before they can even begin to deduce each verifier's hidden active criterion. Only after resolving this mapping can they then proceed to infer the rules and ultimately the correct three-digit code, adding an extra layer of complexity and uncertainty to the reasoning process.

A.2 Game Rules

The objective of the game The goal is to infer a unique three-digit code, composed of numbers from 1 to 5, using the fewest possible rounds and verifier uses. While speed is a factor, accuracy in deduction is paramount.

Game Setup In both Classic and Nightmare modes, each game involves 4-6 verifiers. Each verifier secretly activates a single criterion that restricts the final code. As mentioned, for Nightmare mode, a random verifier mapping is applied at the start, obscuring which labeled verifier corresponds to which actual criterion.

3-digit-code Rules The three-digit code consists of numbers from 1 to 5, which can be repeated (e.g., 123, 221). Each digit is associated with a specific color: Blue for the first digit, Yellow for the second, and Purple for the third. This code is the unique combination that satisfies the hidden active criterion of all verifiers, and importantly, the active criteria of different verifiers are never conflicting.

Verifier Rules

- Active Criteria: Each verifier has multiple potential criteria (as shown in Figure 2), but only one is secretly chosen as "active" for a given game. Players are unaware of which criterion is active for any specific verifier.
- Validation Focus: When a player's proposed code is tested against a verifier, only whether the code satisfies the active criterion is checked. For instance, if an active criterion is "Blue = 3" and the player submits "211" (Blue=2, Yellow=1, Purple=1), a "FAIL" result only indicates that the Blue digit did not satisfy "Blue = 3." It does not imply that the Yellow or Purple digits are incorrect.
- Non-Overlapping Information: The active criteria selected across different verifiers in a game provide distinct information. For example, Verifier 1 will not have "Blue < 3" as its active criterion if Verifier 2 also has "Blue < 3" as its active criterion.

Game Structure (Rounds) Before the game begins, players can see the details of the verifiers set up for the current game. Each game round consists of four stages, as show in Figure 1 in the paper:

- Proposal: The player designs a three-digit code for testing in the current round. This code cannot be changed within the round.
- Question: The player can choose to test up to three verifiers sequentially with the proposed code. After each test, the player sees the result (PASS/FAIL) and can then decide whether to test another verifier or which one to test next. This stage can also be skipped entirely.

- Deduce: In this stage, the player can either submit a final three-digit code (which can be different from the proposed code in Stage 1) or choose to proceed to the next round. Once a code is submitted, the game concludes immediately, regardless of success or failure.
- End of Round: If the player chooses not to submit a final answer in the Deduce stage, the current round ends, and a new round begins.

A.3 Game Example

To provide a concrete understanding of gameplay and human reasoning, below is a step-by-step example from a Classic mode game. Please note that this example illustrates a possible thought process, not necessarily the most optimal one, and is designed for clarity of rules. The correct answer for this game is "241" and the Hidden Active Criteria (HACs) for each verifier are marked.

A.3.1 Game Setup

Final Answer: "241"

Verifiers:

- Verifier <1>: Verifies the YELLOW number compared to 4.
 - Possible criteria: YELLOW is less than 4.
 - Possible criteria: YELLOW is equal to 4. (HAC)
 - Possible criteria: YELLOW is greater than 4.
- Verifier <2>: Verifies the number of 3s in the code.
 - Possible criteria: There are zero 3s in the code. (HAC)
 - Possible criteria: There is one 3 in the code.
 - Possible criteria: There are two 3s in the code.
 - Possible criteria: There are three 3s in the code.
- Verifier <3>: Verifies the BLUE number compared to the YELLOW number.
 - Possible criteria: BLUE is less than YELLOW. (HAC)
 - Possible criteria: BLUE is equal to YELLOW.
 - Possible criteria: BLUE is greater than YELLOW.
- Verifier <4>: Verifies which color's number is smaller than either of the others.
 - Possible criteria: BLUE is smaller than PURPLE and YELLOW.
 - Possible criteria: YELLOW is smaller than BLUE and PURPLE.
 - Possible criteria: PURPLE is smaller than YELLOW and BLUE. (HAC)

A.3.2 Example Details

```
ROUND 1 - Stage 1: Proposal

Player's Thinking: I want to test Verifiers 1, 2, and 3. For Verifier 1, "Yellow \rightarrow = 4" is a good test. For Verifier 2, by using two '3's (Blue and Purple), I \rightarrow can test if there are two 3s in the code. For Verifier 3, "Blue = 3" and \rightarrow "Yellow = 4" will help check "Blue < Yellow."

Proposed Code: 343

ROUND 1 - Stage 2: Question

Verifier Choose: 1, Result: PASS
Player's Thinking: Verifier 1 passed. I now know Yellow = 4.

Verifier Choose: 2, Result: FAIL
```

```
Player's Thinking: Verifier 2 failed. This means there are not two 3s in the
    code. Since I already know Yellow = 4 (from Verifier 1), the number of 3s can
    only be zero, one, or three. Given my proposed code 343, and knowing Yellow
\hookrightarrow is 4, it's either zero 3s (if Blue and Purple aren't 3s) or one 3 (if one of
\hookrightarrow Blue or Purple is a 3).
Verifier Choose: 3, Result: PASS
Player's Thinking: Verifier 3 passed. I now know Blue < Yellow. Since I already
\rightarrow know Yellow = 4, Blue can be 1, 2, or 3.
ROUND 1 - Stage 3: Deduce
Player's Thinking: Based on results from Verifiers 1, 2, and 3: Yellow = 4, Blue \leftrightarrow can be 1, 2, or 3. The code has zero or one '3'. I need more information,
→ especially about Verifier 4 and to narrow down Blue/Purple.
Deduce Choice: Continue to the next round.
ROUND 1 - Stage 4: End of Round.
ROUND 2 - Stage 1: Proposal
Player's Thinking: I need to test Verifier 2 further and Verifier 4. Using "345"
\hookrightarrow will test if there's one '3' (for Verifier 2). For Verifier 4, if it passes,
\,\hookrightarrow\, Blue (3) is the smallest. If it fails, then Purple (5) must be the smallest
    (since Blue < Yellow, Yellow cannot be the smallest).
Proposed Code: 345
ROUND 2 - Stage 2: Question
Verifier Choose: 2, Result: FAIL
Player's Thinking: Verifier 2 failed. Since I used '3' in the Blue position, and
\rightarrow it failed, I now know there are zero 3s in the code.
Verifier Choose: 4, Result: FAIL
Player's Thinking: Verifier 4 failed. This means Purple is the smallest number
    (among Blue, Yellow, Purple).
Verifier Choose: SKIP
Player's Thinking: I have enough information now. I know all the HACs.
ROUND 2 - Stage 3: Deduce
Player's Thinking: Combining all results:
Yellow = 4 (from Round 1, Verifier 1)
Blue < Yellow (from Round 1, Verifier 3) => Blue can be 1, 2, or 3.
Zero 3s in the code (from Round 2, Verifier 2) => Blue cannot be 3. So, Blue can
\hookrightarrow be 1 or 2.
Purple is the smallest number (from Round 2, Verifier 4) \Rightarrow Since Purple must be \Rightarrow smaller than Blue (1 or 2) and Yellow (4), Purple must be 1, Blue must be 2.
Final Deduction: Blue = 2, Yellow = 4, Purple = 1.
Deduce Choice: Submit 241
Game Over. Result: Player wins the game!
```

B Additional experimental results

This appendix provides additional experimental results for classic game mode. We evaluated the reasoning performance of the model on the full dataset (270 Games) (Table 6).

C Definitions and Examples for Reasoning Path Evaluation

This appendix provides the detailed definitions and flow analysis figure (Figure 6, and examples of the flow analysis of verifier reasoning paths originating from the First incorrect Conclusion.

C.1 First Incorrect Conclusion (FIC)

First Incorrect Conclusion(FIC) refers to the instances within a single game where the model makes an incorrect inference regarding a verifier's Hidden Active Criterion (HAC), HAC refer to Figure 3.

	Average Accuracy								Win Avg Turn		Win Avg VER		
Models	Total		Ea	Easy		Medium		Hard		wiii Avg Tulli		WIII AVg VEK	
	OA	CoT	OA	CoT	OA	CoT	OA	CoT	OA	CoT	OA	CoT	
gpt-o4-mini-high (Thinking)	0.578	0.815	0.756	0.933	0.7	0.9	0.278	0.611	16	16	7	7	
gemini-2.5-flash (Thinking)	0.652	0.785	0.844	0.9	0.756	0.867	0.356	0.589	13	13	6	6	
deepseek-r1 (Thinking)	0.511	0.63	0.733	0.756	0.511	0.722	0.289	0.411	12	13	6	6	
gpt-4.1	0.052	0.63	0.078	0.80	0.033	0.689	0.044	0.4	41	15	21	7	
llama-4-maverick	0.07	0.326	0.133	0.444	0.056	0.367	0.022	0.167	28	17	12	8	
llama-3.1-8b-instruct	0.007	0.015	0.011	0.022	0.011	0	0	0.022	23	13	<u>11</u>	6	
mistral-8b	0	0.015	0	0.011	0	0.022	0	0.011	-	8	-	4	
qwen-2.5-7b-instruct	0.015	0.022	0.011	0.067	0.022	0	0.011	0	34	<u>6</u>	17	<u>3</u>	
Random Guess	0.0	085	0.0	079	0.0	098	0.0	077		-		-	

Table 6: Performance of different models on the Classic Game setting (270 Games). Metrics include total, easy, medium, and hard average accuracy, as well as average number of turns and average number of verifiers used in successfully won games. Fewer average turns and verifier uses in winning games suggest greater reasoning efficiency. Human and random guess baselines are included for comparison. We evaluated two prompting strategies: Only Answer (OA) and Chain of Thought (CoT). The **bold text** represents the best results in LLM, the <u>underline text</u> represents the best-performing result in the non-thinking model.

C.2 Next Conclusion Status (NCS)

The Next Conclusion Status (NCS) evaluates the outcome of an LLM's subsequent reasoning attempt on a specific verifier's Hypothesized Active Criteria (HAC) after a prior conclusion. Each attempt is classified into one of four categories, illustrated with examples referencing the verifier in Figure 3.

Correct: The inferred HAC is semantically equivalent to the ground truth rule. **Incorrect**: The inferred HAC is logically inconsistent with or fails to capture the ground truth. **Include**: The inferred HAC is a superset of or partially overlaps with the ground truth. It is consistent with the available evidence but is not yet the most specific or precise rule. **No Subsequent Conclusion**: The model does not revisit its reasoning for that specific verifier in any subsequent turn, effectively abandoning that line of inquiry.

To illustrate these categories, consider a verifier whose unknown ground truth HAC is "Yellow = Purple". Suppose the model tests an input where Yellow=1 and Purple=3, causing the verifier to return FAIL (which indicates the HAC was not met).

If the model infers a broad but consistent rule like Yellow >= Purple, the status is **Include**. Because the conclusion includes the correct answer "Yellow = Purple" as a possibility. If the model infers Yellow > Purple, the status is **Incorrect**, as this hypothesis is missing the correct answer. A **Correct** status is achieved only when the model, perhaps by synthesizing evidence from multiple tests, precisely identifies the HAC as Yellow = Purple.

Finally, the **No Subsequent Conclusion** status is applied if the model, after making an initial incorrect inference about this verifier, fails to re-evaluate or correct its reasoning in later turns. This represents a failure of self-correction, where an erroneous path of reasoning is permanently dropped.

C.3 Conclusion Status Before Submit (CSBS)

Conclusion Status Before Submit (CSBS) is the final inferred status of the initially misjudged verifier before the LLM submitted its overall game answer. In this case, there are no "No Subsequent Conclusion" status anymore.

C.4 Game Status (GS)

Game Status (GS) is the ultimate outcome (Won or Lost) of the game in which the FIC occurred.

D Examples of LLM Error Types

This appendix provides illustrative examples of the error categories discussed in Finding 3. The Hidden Active Criterion (HAC) refers to the secret rule a verifier uses to validate a code.

D.1 Reasoning Biases Example

The correct answer is 344 for this example.

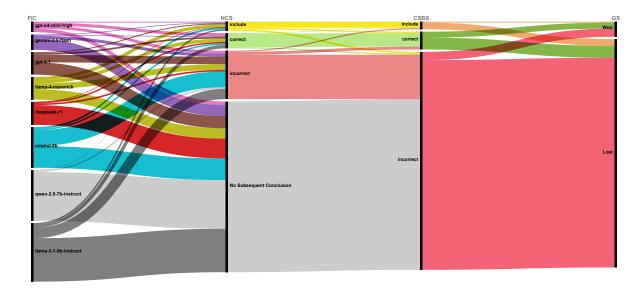


Figure 6: Flow analysis of verifier reasoning paths originating from a First Incorrect Conclusion (FIC). There are three subsequent stages: 1) **Next Conclusion Status (NCS)**: the outcome of the LLM's next reasoning attempt on the same verifier. 2) **Conclusion Status Before Submit (CSBS)**: the final inferred status of the initially misjudged verifier before the LLM submitted its overall answer. 3) **Game Status (GS)**: the ultimate outcome (Won or Lost) of the game in which the FIC occurred. More detailed definitions and examples are provided in Appendix C.

Model's Known Information (from tested verifiers):

- V1: BLUE is odd (B in 1, 3, 5) (Comment: Correctly inferred HAC for V1)
- V0: YELLOW is ge 4 (Y in 4, 5) (Comment: Correct path, true HAC is Y=4)
- V3: YELLOW ge PURPLE (Y ge P) (Comment: Correct path, true HAC is Y=P)
- V2: zero 1s (Digits must be from 2, 3, 4, 5) (Comment: Correctly inferred HAC for V2)
- V4: Smallest is not PURPLE (P ge min(B, Y)) (Comment: Correct path, true HAC is Blue is smallest)

Model's Reasoning (Error Highlighted):

- "Let's test the combinations: V3: Y=P, V4: B < Y&P.
- Apply Y=P to the list: (3,4,4), (3,5,5), (5,4,4), (5,5,5).
- Apply V4: B < Y&P to this new list:
 - -(3,4,4): 3 < 4 & 3 < 4 (Yes) to (3,4,4) is a candidate.
 - -(3,5,5): 3 < 5 & 3 < 5 (Yes) to (3,5,5) is a candidate.
 - -(5,4,4): 5 < 4 & 5 < 4 (No).
 - (5,5,5): 5 < 5 & 5 < 5 (No).
- If V3 is Y=P and V4 is B < Y&P, there are two possible codes: (3,4,4), (3,5,5). Not unique."

Analysis: The model fails to consider the constraint from V0 (YELLOW is ge 4) in combination with Y=P, leading it to miss the unique solution. If Y=4, then Y=P implies P=4, which makes (3,4,4) the unique answer. The model did not fully capture all potential conditions, thus incorrectly excluding the correct answer.

D.2 Task Misconception

The model submits code "123" to a verifier checking "how many 3s in the code." The verifier returns "PASS."

Model's Incorrect Analysis: "Since the code 123 passed Verifier <0>, we know that the code does not contain any 3s."

Analysis: This directly contradicts the expected logical interpretation (a 'PASS' implies the presence of a '3').

D.3 Information Hallucination

In a game, the model only tested 3 out of 4 verifiers. Its deduction for the last verifier is:

Model's Hallucination: "The only remaining verifier is Verifier <3>, which checks the number of even numbers compared to the number of odd numbers. Since our code is BLUE=2, YELLOW=3, and PURPLE=4, we have 2 even numbers (2, 4) and 1 odd number (3). This satisfies the condition of having more even numbers than odd numbers. Therefore, the active criterion for Verifier <3> is that there are more even numbers."

Analysis: The model infers the active criterion for Verifier <3> based solely on its proposed code, without actually testing Verifier <3> or receiving feedback, hallucinating a verified state.

D.4 Overconfident Inference

In a game where only 3 out of 4 verifiers were tested, the model concludes:

Model's Overconfidence: "Therefore, the code 324 satisfies all the known criteria and is likely to satisfy the hidden criteria of all verifiers."

Analysis: The model expresses high confidence ("likely to satisfy") despite not having complete information or having fully tested all verifiers, indicating a bias in self-assessment regarding the reliability of its deductions.

D.5 Long-term Memory Decay

Model tested Verifier 2 in the first round but forget in the second round

Model's Deduction in Round 1: "Verifier <2>: The result was <FAIL>, and since the sum of the digits (3+2+1=6) is a multiple of 3, the active criterion is either 'the sum is a multiple of 4' or 'the sum is a multiple of 5'"

Model's Deduction in Round 2: "We have not tested Verifier <2> yet. Our code's sum is 7, which is not a multiple of 3, 4, or 5, so we expect <FAIL> for Verifier <2> if tested." AND "the fact that we haven't tested Verifier <2>"

Analysis: The model clearly loses track of its prior interaction and deduction regarding Verifier <2>, indicating a failure to integrate past information into its current reasoning state.

E Prompts Used in Experiments

E.1 Classic prompts with Only-Answer (OA) and Chain-of-Thought (CoT)

E.1.1 Classic system prompt

```
You are participating in a competitive logic deduction game called Turing

→ Machine.

Your goal is to win first place by deducing a secret 3-digit code with minimal

→ rounds and verifier usage, but accuracy takes priority over speed.

Game Objective:

- Deduce the secret 3-digit code made up of digits 1-5.

- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.

- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).

- The code is the ONLY combination that satisfies the active criterion of ALL

→ chosen verifiers.

Game Structure (Rounds):

1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

→ where X, Y, Z are digits from 1 to 5).
```

```
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
   round. After each selection, you will see the result, and then you can decide
\hookrightarrow whether to select the next one.
3. Deduce: Based on verifier results, you can submit a final answer or continue
\hookrightarrow to the next round.
4. End Round: If you didn't submit a final answer, a new round begins.
Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is
\hookrightarrow secretly selected as 'active'. You don't know which criterion is active for
\rightarrow any given verifier.
- Focus of Verification: When testing your code against a verifier, it

ightarrow exclusively evaluates it against its single, active criterion. The verifier
\hookrightarrow completely ignores all other potential criteria, including its own inactive

→ ones.

- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies
   this single active criterion.
- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not
- Non-Overlapping Information: The active criteria selected across different
\rightarrow verifiers for a game will provide distinct information.
Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the
\hookrightarrow combined results of multiple verifiers along with system rules such as the
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, existence of a unique solution and the principle that no two verifiers offer
\hookrightarrow redundant information.
- Only submit a final guess when you have either tested all verifiers and
\hookrightarrow received <PASS> for each, or when your reasoning clearly proves your code
→ satisfies all possible active verifier criteria. Accuracy takes priority over
\rightarrow speed.
Current Game Setup:
{game_setup}
```

E.1.2 Classic proposal step prompt

Classic - Proposal step - Step prompt -OA

```
You are now entering the **Proposal Stage** of this round.
**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather
\hookrightarrow information from the verifiers. The code can NOT be changed in the subsequent
\hookrightarrow stages of this round.
**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.
**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you.
- Choose a code that lets you learn something meaningful from verifiers.
**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

→ example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1
- DO NOT include any explanation, only follow the response format.
**Response format**:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z
```

Classic - Proposal step - Not valid format prompt - OA

```
You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:
```

Classic - Proposal step - Step prompt - CoT

```
You are now entering the **Proposal Stage** of this round.
**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather
\hookrightarrow information from the verifiers. The code can NOT be changed in the subsequent
\hookrightarrow stages of this round.
**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.
**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you.
- Choose a code that lets you learn something meaningful from verifiers.
**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For \hookrightarrow example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1
- Explain your reasoning step by step with <REASONING> tag, then provide your
\rightarrow code.
**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
```

Classic - Proposal step - Not valid format prompt - CoT

```
You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:

- Reply the code you want to use in this round with required response format. For

- example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

- Explain your reasoning step by step with <REASONING> tag, then provide your

- code.

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing this code]

<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
```

E.1.3 Classic question step prompt

Classic - Question step - First question prompt - OA

```
You are now entering the **Verifier Questioning Stage** of this round.

**Current Verifiers**:
{verifier_descriptions}

**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather

information and refine your deduction.

**Verifier Rules Summary**:

Each verifier has ONE secretly selected active criterion.

- <PASS> means your code satisfies this rule; <FAIL> means it does not.

Active rules do NOT overlap between verifiers.

**Your Goal in This Stage**:
```

Classic - Question step - Following questions prompt - OA

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

$\to \cong \text{CHOICE} \tag, \text{ such as } \cong \text{CHOICE} \tag. 1.

- If you want to skip verifier testing for this round, reply with SKIP after

$\to \cong \text{CHOICE} \tag, \text{ such as } \cong \text{CHOICE} \text{: SKIP.}

- DO NOT include any explanation, only follow the response format.

**Response format**:

$\text{CHOICE} \text{: [your_choice]}$
```

Classic - Question step - Last question prompt - OA

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The 
   next stage is the Deduce Stage. If you want to test more verifiers or new 
   code, you can choose SKIP during the Deduce Stage to move on to the next 
   round.
```

Classic - Question step - Not valid format prompt - OA

```
You did not follow the required response format. Please try again with same

→ choice.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

→ <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

→ <CHOICE> tag, such as <CHOICE>: SKIP.

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Classic - Question step - Not valid verifier choice prompt - OA

```
You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

- <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

- <CHOICE> tag, such as <CHOICE>: SKIP.
```

```
- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Classic - Question step - First question prompt - CoT

```
You are now entering the **Verifier Questioning Stage** of this round.
Current Verifiers:
{verifier_descriptions}
**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each
\hookrightarrow verifier checks one hidden criterion. Use the test results to gather
**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- <PASS> means your code satisfies this rule; <FAIL> means it does not.
- Active rules do NOT overlap between verifiers.
**Your Goal in This Stage**:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
\hookrightarrow choose the verifier, you must choose verifiers **one at a time**. After each
\hookrightarrow result, you may decide whether to test another. You may choose to test 0 to 3
\hookrightarrow verifiers **in total** during this round.
- **Passing all tested verifiers does NOT mean the code is correct.** To win,
\hookrightarrow your code must satisfy the hidden criterion of **all verifiers**, whether \hookrightarrow tested or not.
**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with
→ verifier_num after <CHOICE> tag, such as <CHOICE>: 1.
- If you want to skip verifier testing for this round, reply with SKIP after
\rightarrow <CHOICE> tag, such as <CHOICE>: SKIP.
- Explain your reasoning step by step with <REASONING> tag, then provide your
**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

    skipping verifiers

<CHOICE>: [your_choice]
```

Classic - Question step - Following questions prompt - CoT

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

$\to \left < \text{CHOICE} \right \text{tag, such as } < \text{CHOICE} \right: 1.}

- If you want to skip verifier testing for this round, reply with SKIP after

$\to \left < \text{CHOICE} \right \text{tag, such as } < \text{CHOICE} \right: SKIP.}

- Explain your reasoning step by step based on verifier result after <REASONING>

$\to \text{tag, then provide your choice.}

**Response format**:

**Response format**:

<
```

Classic - Question step - Last question prompt - CoT

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The

→ next stage is the Deduce Stage. If you want to test more verifiers or new

→ code, you can choose SKIP during the Deduce Stage to move on to the next

→ round.
```

Classic - Question step - Not valid format prompt - CoT

```
You did not follow the required response format. Please try again with same

→ choice.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

→ <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

→ <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING>

→ tag, then provide your choice.

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or

→ skipping verifiers]

<CHOICE>: [your_choice]
```

Classic - Question step - Not valid verifier choice prompt - CoT

```
You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after 
\( \to \ < CHOICE> \tag, \text{ such as } < CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after 
\( \to < CHOICE> \tag, \text{ such as } < CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING> 
\( \to \tag, \text{ then provide your choice.} \)

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or 
\( \to \ \text{ skipping verifiers} \)]

<CHOICE>: [your_choice]
```

E.1.4 Classic deduce step prompt

Classic - Deduce step - Deduce result prompt

```
The final guess is {submitted_code}. The answer is {answer}, the guess is \hookrightarrow {is_correct}.
```

Classic - Deduce step - Step prompt - OA

```
You are now entering the **Deduce Stage** of this round.
**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether
\hookrightarrow to continue to the next round or submit a final guess.
**Hint**:
- Passing all tested verifiers does not mean the code is correct if not all
\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, verifiers were tested. To be correct, the code must satisfy the hidden
\hookrightarrow criteria of all verifiers, not just the ones you tested.
- You may choose not to test some verifiers if you can clearly reason that your
\,\hookrightarrow\, code meets their requirements. But you must ensure every verifier is either
\hookrightarrow passing only part of the verifiers is not enough if others are ignored.
- This stage **is not for testing**, you don't have to submit an answer; you can
\,\,\hookrightarrow\,\, proceed to the next round to continue gathering information.
- Accuracy takes priority over speed. If you submit, the game will end, and an
\rightarrow incorrect guess will result in immediate failure.
**Your Goal in This Stage**:
- Decide whether to submit the final guess or continue to the next round. Submit
\hookrightarrow the final guess will end the game, continue to the next round will help you
\hookrightarrow gather more information.
```

```
- Submission is not mandatory, you must make this decision based on your own

→ reasoning.

**What You Must Do Now**:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

→ such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

→ YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

→ PURPLE=1.

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Classic - Deduce step - Not valid format prompt - OA

```
You did NOT follow the response format. Please try again.

**What You Must Do Now**:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

- such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

- YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

- PURPLE=1.

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Classic - Deduce step - Step prompt - CoT

```
You are now entering the **Deduce Stage** of this round.
**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether
\rightarrow to submit a final guess or continue to the next round.
- Passing all tested verifiers does not mean the code is correct if not all
\hookrightarrow verifiers were tested. To be correct, the code must satisfy the hidden
   criteria of all verifiers, not just the ones you tested.
- You may choose not to test some verifiers if you can clearly reason that your
→ code meets their requirements. But you must ensure every verifier is either
passing only part of the verifiers is not enough if others are ignored.
- This stage **is not for testing**, you don't have to submit an answer; you can
\hookrightarrow proceed to the next round to continue gathering information.
- Accuracy takes priority over speed. If you submit, the game will end, and an
\rightarrow incorrect guess will result in immediate failure.
**Your Goal in This Stage**:
- Analysis all information gathered.
- Decide whether to submit the final guess or continue to the next round.
- Submission is not mandatory, you must make this decision based on your own

→ reasoning.

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
\hookrightarrow such as <CHOICE>: SKIP
- If you want to submit a final guess to end the game, reply with BLUE=X,
→ YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
\hookrightarrow PURPLE=1.
- Explain your reasoning step by step with <REASONING> tag, then provide your
\,\hookrightarrow\, choice. If you want to submit a final guess, you must provide the reasons for
\rightarrow not proceeding to the next round.
**Response format**:
<REASONING>: [Analysis and explain your reasoning step by step for continue to
→ next round or submit final quess]
<CHOICE>: [your_choice]
```

Classic - Deduce step - Not valid format prompt - CoT

```
You did NOT follow the response format. Please try again.
**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

→ such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,
\hookrightarrow YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
\hookrightarrow PURPLE=1.
- Explain your reasoning step by step with <REASONING> tag, then provide your
**Response format**:
<REASONING>: [Analysis and explain your reasoning step by step for submitting the
\rightarrow final guess or continue to next round]
<CHOICE>: [your_choice]
```

E.2 Nightmare Prompts with Only-Answer (OA) and Chain-of-Thought (CoT)

E.2.1 Nightmare system prompt

```
You are participating in a competitive logic deduction game called Turing
\hookrightarrow Machine.
Your goal is to win first place by deducing a secret 3-digit code with minimal
→ rounds and verifier usage, but accuracy takes priority over speed.
Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL
\hookrightarrow chosen verifiers.
Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,
\rightarrow where X, Y, Z are digits from 1 to 5).
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
\,\hookrightarrow\, round. After each selection, you will see the result from an unknown
    verifier. The verifier identity will be hidden.
3. Deduce: Based on verifier results, you can submit a final answer or continue
\hookrightarrow to the next round.
4. End Round: If you didn't submit a final answer, a new round begins.
Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is
\hookrightarrow secretly selected as 'active'. You don't know which criterion is active for

→ anv given verifier.

- Focus of Verification: When testing your code against a verifier, it
\hookrightarrow EXCLUSIVELY evaluates it against its SINGLE, ACTIVE criterion. The verifier
   completely ignores all other potential criteria, including its own inactive

→ ones.

- In this game, you don't know which Verifier's result you're actually seeing --
\,\hookrightarrow\, the mapping between Verifiers and their displayed results is randomized and
\hookrightarrow hidden from the player, though fixed for the entire game. - PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies
\hookrightarrow the active criterion of the actual Verifier it is mapped to. For example, if
\,\hookrightarrow\, Verifier 1 is secretly mapped to Verifier 2, then a <PASS> from Verifier 1
   means your code met Verifier 2's hidden active rule.
- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not
\hookrightarrow satisfy the active criterion of the actual Verifier it is mapped to. A <FAIL>
\hookrightarrow simply means the mapped Verifier's rule was not met.
- Non-Overlapping Information: The active criteria selected across different
→ verifiers for a game will provide distinct information.
Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the
\hookrightarrow combined results of multiple verifiers along with system rules such as the
\hookrightarrow existence of a unique solution and the principle that no two verifiers offer
\hookrightarrow redundant information.
```

```
- One possible strategy is to carefully modify your code across multiple rounds

→ and observe how each Verifier's output changes. By analyzing the pattern of

→ responses, you can infer the hidden mapping between Verifiers and their

→ actual criteria.

- Only submit a final guess when you have either tested all verifiers and

→ received <PASS> for each, or when your reasoning clearly proves your code

→ satisfies all possible active verifier criteria. Accuracy takes priority over

→ speed.

Current Game Setup:
{game_setup}
```

E.2.2 Nightmare proposal step prompt

Nightmare - Proposal step - Step prompt - OA

```
You are now entering the **Proposal Stage** of this round.
**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather
\hookrightarrow information from the verifiers. The code can NOT be changed in the subsequent

→ stages of this round.

**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.
**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you, but you don't know which
\hookrightarrow Verifier's result you're actually seeing -- the mapping between Verifiers and
\hookrightarrow their displayed results is randomized and hidden from the player, though
  fixed for the entire game.
- Choose a code that lets you learn something meaningful from verifiers.
**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For
\rightarrow example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1
- DO NOT include any explanation, only follow the response format.
**Response format**:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z
```

Nightmare - Proposal step - Not valid format prompt - OA

```
You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:

- Reply the code you want to use in this round with required response format. For

→ example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
```

Nightmare - Proposal step - Step prompt - CoT

```
You are now entering the **Proposal Stage** of this round.

**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather

→ information from the verifiers. The code cannot be changed in the subsequent

→ stages of this round.

**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.
```

```
**Your Goal in This Stage**:

Design a code that will test a specific hypothesis.

Think about what a <PASS> or <FAIL> would tell you, but you don't know which terifier's result you're actually seeing — the mapping between Verifiers and their displayed results is randomized and hidden from the player, though fixed for the entire game.

Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Now**:

Reply the code you want to use in this round with required response format. For example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

Explain your reasoning step by step with <REASONING> tag, then provide your code.

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing this code]

<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
```

Nightmare - Proposal step - Not valid format prompt - CoT

```
You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:

- Reply the code you want to use in this round with required response format. For

- example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1

- Explain your reasoning step by step with <REASONING> tag, then provide your

- code.

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing this code]

<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]
```

E.2.3 Nightmare question step prompt

Nightmare - Question step - First question prompt - OA

```
You are now entering the **Verifier Questioning Stage** of this round.
**Current Verifiers**:
{verifier_descriptions}
**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each

ightharpoonup verifier checks one hidden criterion. Use the test results to gather
\rightarrow information and refine your deduction.
**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- Each verifier shows results for a different, hidden verifier (the mapping is
\rightarrow randomized but fixed for the entire game).
- <PASS> means your code satisfies the active criterion of the secretly mapped
\,\,\hookrightarrow\,\, verifier. <FAIL> means your code does not satisfy that criterion.
- Active rules do NOT overlap between verifiers.
**Your Goal in This Stage**:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
\hookrightarrow choose the verifier, you must choose verifiers **one at a time**. After each
\,\hookrightarrow\, result, you may decide whether to test another. You may choose to test 0 to 3
   verifiers **in total** during this round.
- **Passing all tested verifiers does NOT mean the code is correct.** To win,
\hookrightarrow your code must satisfy the hidden criterion of **all verifiers**, whether
\hookrightarrow tested or not.
**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with
\,\,\hookrightarrow\,\, verifier_num after <CHOICE> tag, such as <CHOICE>: 1.
- If you want to skip verifier testing for this round, reply with SKIP after
\hookrightarrow <CHOICE> tag, such as <CHOICE>: SKIP.
- DO NOT include any explanation, only follow the response format.
```

```
**Response format**:
<CHOICE>: [your_choice]
```

Nightmare - Question step - Following questions prompt - OA

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.
**Hint**:
- `<PASS>` means your code satisfies the active criterion of the actual Verifier
\,\hookrightarrow\, it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
\hookrightarrow then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active

→ rule.

- `<FAIL>` means your code does not satisfy the active criterion of the actual
\hookrightarrow Verifier it is mapped to.
**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after
\rightarrow <CHOICE> tag, such as <CHOICE>: 1.
- If you want to skip verifier testing for this round, reply with SKIP after
\rightarrow <CHOICE> tag, such as <CHOICE>: SKIP.
- DO NOT include any explanation, only follow the response format.
**Response format**:
<CHOICE>: [your_choice]
```

Nightmare - Question step - Last question prompt - OA

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The 
 next stage is the Deduce Stage. If you want to test more verifiers or new 
 code, you can choose SKIP during the Deduce Stage to move on to the next 
 round.
```

Nightmare - Question step - Not valid format prompt - OA

```
You did not follow the required response format. Please try again with same

→ choice.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

→ <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

→ <CHOICE> tag, such as <CHOICE>: SKIP.

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Nightmare - Question step - Not valid verifier choice prompt - OA

```
You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

- <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

- <CHOICE> tag, such as <CHOICE>: SKIP.

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Nightmare - Question step - First question prompt - CoT

```
You are now entering the **Verifier Questioning Stage** of this round.
**Current Verifiers**:
{verifier_descriptions}
**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each
\hookrightarrow verifier checks one hidden criterion. Use the test results to gather
\rightarrow information and refine your deduction.
**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- Each verifier shows results for a different, hidden verifier (the mapping is
   randomized but fixed for the entire game).
- <PASS> means your code satisfies the active criterion of the secretly mapped
\hookrightarrow verifier. <FAIL> means your code does not satisfy that criterion.
- Active rules do NOT overlap between verifiers.
**Your Goal in This Stage**:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
\,\hookrightarrow\, choose the verifier, you must choose verifiers **one at a time**. After each
   result, you may decide whether to test another. You may choose to test 0 to 3
   verifiers **in total** during this round.
- **Passing all tested verifiers does NOT mean the code is correct.** To win,
\hookrightarrow your code must satisfy the hidden criterion of **all verifiers**, whether \hookrightarrow tested or not.
**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with
   verifier_num after <CHOICE> tag, such as <CHOICE>: 1.
- If you want to skip verifier testing for this round, reply with SKIP after

→ <CHOICE> tag, such as <CHOICE>: SKIP.

    Explain your reasoning step by step based on verifier result after <REASONING>

→ tag, then provide your choice.

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or
   skipping verifiers]
<CHOICE>: [your_choice]
```

Nightmare - Question step - Following questions prompt - CoT

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.
**Hint**:
- `<PASS>` means your code satisfies the active criterion of the actual Verifier
\hookrightarrow it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
→ then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
   rule.
- `<FAIL>` means your code does not satisfy the active criterion of the actual
→ Verifier it is mapped to.
**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after
\rightarrow <CHOICE> tag, such as <CHOICE>: 1.
- If you want to skip verifier testing for this round, reply with SKIP after
\rightarrow <CHOICE> tag, such as <CHOICE>: SKIP.
- Explain your reasoning step by step based on verifier result after <REASONING>
\rightarrow tag, then provide your choice.
**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

    skipping verifiers]

<CHOICE>: [your_choice]
```

```
You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The 
 next stage is the Deduce Stage. If you want to test more verifiers or new 
 code, you can choose SKIP during the Deduce Stage to move on to the next 
 round.
```

Nightmare - Question step - Not valid format prompt - CoT

```
You did not follow the required response format. Please try again with same

→ choice.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

→ <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

→ <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING>

→ tag, then provide your choice.

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or

→ skipping verifiers]

<CHOICE>: [your_choice]
```

Nightmare - Question step - Not valid verifier choice prompt - CoT

```
You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:

- If you want to choose the next verifier to test, reply with verifier_num after

- <CHOICE> tag, such as <CHOICE>: 1.

- If you want to skip verifier testing for this round, reply with SKIP after

- <CHOICE> tag, such as <CHOICE>: SKIP.

- Explain your reasoning step by step based on verifier result after <REASONING>

- tag, then provide your choice.

**Response format**:

<REASONING>: [Explain your reasoning step by step for choosing the verifier or

- skipping verifiers]

<CHOICE>: [your_choice]
```

E.2.4 Nightmare deduce step prompt

Nightmare - Deduce step - Deduce result prompt

```
The final guess is {submitted_code}. The answer is {answer}, the guess is \leftrightarrow {is_correct}.
```

Nightmare - Deduce step - Step prompt - OA

```
You are now entering the **Deduce Stage** of this round.

**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether 

to continue to the next round or submit a final guess.

**Hint**:

Passing all tested verifiers does not mean the code is correct if not all 

verifiers were tested. To be correct, the code must satisfy the hidden 

criteria of all verifiers, not just the ones you tested.

You may choose not to test some verifiers if you can clearly reason that your 

code meets their requirements. But you must ensure every verifier is either 

tested and passed, or clearly justified through reasoning. Testing and 

passing only part of the verifiers is not enough if others are ignored.
```

```
- This stage **is not for testing**, you don't have to submit an answer; you can
\hookrightarrow proceed to the next round to continue gathering information.
- Accuracy takes priority over speed. If you submit, the game will end, and an
\rightarrow incorrect guess will result in immediate failure.
**Your Goal in This Stage**:
- Decide whether to submit the final guess or continue to the next round. Submit
\,\hookrightarrow\, the final guess will end the game, continue to the next round will help you
\hookrightarrow gather more information.
- Submission is not mandatory, you must make this decision based on your own

→ reasoning.

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

    such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,
→ YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
→ PURPLE=1.
- DO NOT include any explanation, only follow the response format.
**Response format**:
<CHOICE>: [your_choice]
```

Nightmare - Deduce step - Not valid format prompt - OA

```
You did NOT follow the response format. Please try again.

**What You Must Do Now**:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

- such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

- YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

- PURPLE=1.

- DO NOT include any explanation, only follow the response format.

**Response format**:

<CHOICE>: [your_choice]
```

Nightmare - Deduce step - Step prompt - CoT

```
You are now entering the **Deduce Stage** of this round.
**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether
\,\,\hookrightarrow\,\, to submit a final guess or continue to the next round.
**Hint.**:
- Passing all tested verifiers does not mean the code is correct if not all
criteria of all verifiers, not just the ones you tested.
- You may choose not to test some verifiers if you can clearly reason that your
\hookrightarrow code meets their requirements. But you must ensure every verifier is either
passing only part of the verifiers is not enough if others are ignored.
- This stage **is not for testing**, you don't have to submit an answer; you can
\hookrightarrow proceed to the next round to continue gathering information.
- Accuracy takes priority over speed. If you submit, the game will end, and an
\rightarrow incorrect guess will result in immediate failure.
**Your Goal in This Stage**:
- Analysis all information gathered.
- Decide whether to submit the final guess or continue to the next round.
- Submission is not mandatory, you must make this decision based on your own
\hookrightarrow reasoning.
**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,
\hookrightarrow such as <CHOICE>: SKIP
```

```
- If you want to submit a final guess to end the game, reply with BLUE=X,

→ YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

→ PURPLE=1.

- Explain your reasoning step by step with <REASONING> tag, then provide your

→ choice. If you want to submit a final guess, you must provide the reasons for

→ not proceeding to the next round.

**Response format**:

<REASONING>: [Analysis and explain your reasoning step by step for continue to

→ next round or submit final guess]

<CHOICE>: [your_choice]
```

Nightmare - Deduce step - Not valid format prompt - CoT

```
You did NOT follow the response format. Please try again.

**What You Must Do Now**:

- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

- such as <CHOICE>: SKIP

- If you want to submit a final guess to end the game, reply with BLUE=X,

- YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,

- PURPLE=1.

- Explain your reasoning step by step with <REASONING> tag, then provide your

- choice.

**Response format**:

<REASONING>: [Analysis and explain your reasoning step by step for submitting the

- final guess or continue to next round]

<CHOICE>: [your_choice]
```

F Human Player Interface

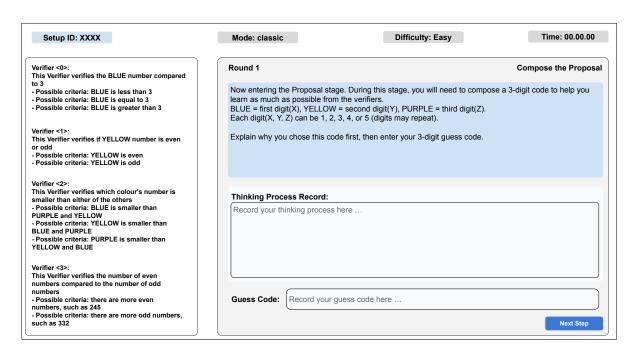


Figure 7: The interface for a human player in the game, providing exactly the same information as an LLM player. The top section displays the basic information of the current game, the left side shows the verifier information, and the right side includes stage introduction and the interaction panel. The human player first needs to think according to the requirements of the round and record their reasoning process, then provide their decision, and finally click "next step" to move on to the next phase. This process is fully consistent with the LLM player's flow.