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Abstract
Despite impressive advances in large language
models (LLMs), existing benchmarks often fo-
cus on single-turn or single-step tasks, failing
to capture the kind of iterative reasoning re-
quired in real-world settings. To address this
limitation, we introduce TurnBench, a novel
benchmark that evaluates multi-turn, multi-step
reasoning through an interactive code-breaking
task inspired by the "Turing Machine Board
Game." In each episode, a model must un-
cover hidden logical or arithmetic rules by mak-
ing sequential guesses, receiving structured
feedback, and integrating clues across multi-
ple rounds. This dynamic setup requires mod-
els to reason over time, adapt based on past
information, and maintain consistency across
steps—capabilities underexplored in current
benchmarks. TurnBench includes two modes:
Classic, which tests standard reasoning, and
Nightmare, which introduces increased com-
plexity and requires robust inferential chains.
To support fine-grained analysis, we provide
ground-truth annotations for intermediate rea-
soning steps. Our evaluation of state-of-the-art
LLMs reveals significant gaps: the best model
achieves 84% accuracy in Classic mode, but
performance drops to 18% in Nightmare mode.
In contrast, human participants achieve 100%
in both, underscoring the challenge TurnBench
poses to current models. By incorporating feed-
back loops and hiding task rules, TurnBench
reduces contamination risks and provides a rig-
orous testbed for diagnosing and advancing
multi-step, multi-turn reasoning in LLMs1.

1 Introduction

Reasoning is central to human cognition and a key
benchmark for evaluating the capabilities of artifi-
cial intelligence (AI) systems (Wason and Johnson-
Laird, 1972; Dunbar and Klahr, 2012). In the
context of large language models (LLMs), assess-
ing reasoning ability is especially critical as these
1Our code and data is available at: https://github.
com/grantzyr/TurnBench-MS
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Figure 1: Accuracy versus average turns for leading
LLMs and human evaluators (Best, Average) on Turn-
Bench in both "Classic" and "Nightmare" modes. Insets
show the relative accuracy drop of LLMs compared
to the Best Human. Results highlight that LLMs re-
main substantially less accurate than humans, especially
under the "Nightmare" setting, underscoring current lim-
itations in complex multi-turn reasoning.

models are increasingly deployed in complex, real-
world tasks. While a growing body of work has
proposed datasets and evaluation methods for prob-
ing LLM reasoning (Zeng et al., 2024; Wang et al.,
2023a; Welleck et al., 2022), such as Table 1, signif-
icant gaps remain in how we measure and interpret
this ability—particularly in multi-step, multi-turn
settings.

First, most existing evaluations focus on single-
turn or single-step reasoning tasks, overlooking
the iterative and interactive nature of real-world
problem-solving. Human reasoning often involves
cycles of information gathering, hypothesis testing,
and adaptation to feedback. This is especially true
in scenarios where information is incomplete or dis-
tributed across multiple interactions. While recent
benchmarks attempt to assess multi-step reasoning
(Tang et al., 2025; Zeng et al., 2024), they rarely
simulate settings that require reasoning across mul-
tiple turns.
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Figure 2: Overview of the TurnBench game framework.The LLM’s objective is to deduce a secret 3-digit code
composed of digits from 1 to 5. The game proceeds in iterative rounds, each comprising: 1) Proposal Step: The
LLM submits a candidate 3-digit code. 2) Question Step: The LLM queries up to three verifiers, each providing
Pass/Fail feedback based on its unique Hidden Active Criterion (HAC). 3) Deduce Step: The LLM analyzes the
collective feedback to either Submit the final code if confident in its correctness, or 4) Continue (End of the round
to the next round with a revised proposal. This iterative process continues until the LLM successfully deduces and
submits the correct code.

Second, current evaluation metrics typically em-
phasize final-answer correctness, with little insight
into the model’s intermediate reasoning process
(Zhuang et al., 2023; Hao et al., 2024). As complex
reasoning often admits multiple valid paths, simply
scoring final outputs fails to distinguish between
genuine inference and lucky guesses. Though some
methods attempt process-level evaluation via man-
ual annotation or automated proxies (Zeng et al.,
2024; Tang et al., 2025), these are limited by sub-
jectivity and the absence of reliable ground truth
for intermediate reasoning.

Third, data contamination poses a serious con-
cern. Static benchmarks—often sourced from pub-
lic datasets or templated questions—can overlap
with pretraining corpora, making it difficult to
disentangle memorization from actual reasoning
(Yang et al., 2025; Jain et al., 2024; Li et al., 2023).
This undermines the reliability of benchmark re-
sults and inflates perceived model performance.

To address these gaps, we introduce TurnBench,
a novel benchmark designed to evaluate multi-turn,
multi-step reasoning through an interactive code-
breaking task inspired by the Turing Machine board
game. In this game, a model must uncover a hidden
three-digit code by engaging in multiple rounds of
interaction with logical verifiers. Each verifier is
governed by a hidden rule; only one rule per veri-
fier is active in a given instance. To succeed, the
model must iteratively guess codes, select verifiers,
analyze feedback, and gradually infer the under-
lying logical or arithmetic constraints—mirroring
how humans perform exploratory reasoning.

TurnBench explicitly addresses key shortcom-

ings in existing benchmarks. First, it evaluates
multi-turn, multi-step reasoning by requiring
LLMs to adapt dynamically to feedback across
multiple rounds and integrate partial clues to for-
mulate and revise hypotheses over time. Second,
it enables process-level evaluation through a rule-
based mechanism that compares models’ interme-
diate inferences—i.e., their identification of active
rules in each verifier—against ground truth, allow-
ing structured analysis of reasoning steps beyond
final answer correctness. Finally, TurnBench of-
fers strong contamination resistance due to its dy-
namic rule configurations: even under fixed game
setups, varying rule activations lead to distinct rea-
soning trajectories, minimizing the risk of data
leakage from LLM pretraining corpora. Our work
makes the following key contributions:

• We propose TurnBench, the novel benchmark
designed to evaluate multi-turn, multi-step rea-
soning in LLMs through dynamic, interac-
tive tasks. TurnBench includes 540 game in-
stances across two modes—Classic and Night-
mare—with three difficulty levels each.

• We introduce a novel, automated evaluation
method that leverages rule-based feedback to
analyze intermediate reasoning steps, offering
a grounded way to assess the internal thinking
of LLMs.

• We benchmark a range of open-source and
proprietary models, including GPT-o4-mini
and Gemini-2.5-Flash, alongside human par-
ticipants. Results show a significant perfor-
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Dataset Multi-Turn Multi-Step No Knowledge Ground true Intermediate Eval Reasoning Domain
Avalonbench    # #  Game
Multi-LogiEval #  #  #  Narrative
BoardgameQA #  G  # G Game
MuSR #  #  #  Narrative
AIME 2024 #    #  Math
DSGBench  # # # G G Game
MR-Ben #      Science
LOGICGAME #    #  Game
MastermindEval     #  Game
LMAct    # #  Game
Ours       Game

Table 1: Comparison of multi-round reasoning benchmarks across six key criteria. A  indicates presence of the
feature, a #means no presence of the feature, and a Gindicates partial. The "Domain" column shows the task type
of each benchmark.

mance gap between humans (100%) and mod-
els (as low as 18% in Nightmare mode), high-
lighting the challenge TurnBench presents
(Figure 1).

• We release a new dataset comprising not only
game settings and final answers, but also de-
tailed interaction logs and reasoning steps for
both models and humans, providing a valuable
resource for future research.

2 Related Work

LLMs in Interactive Game Environments: Re-
cent work has explored the use of LLMs as
agents in interactive games to assess their plan-
ning, reasoning, and decision-making capabili-
ties across diverse domains such as board games,
card games, and social deduction settings (Schultz
et al., 2024; Xu et al., 2023; Akata et al., 2023;
Light et al., 2023; , FAIR; Wang et al., 2023b;
Zhuang et al., 2025; Tang et al., 2025). These
benchmarks typically present the game state in tex-
tual or structured formats and prompt LLMs to
make the next move using natural language gen-
eration. For instance, PokerBench (Zhuang et al.,
2025) adopts classification-based decision scenar-
ios, while AvalonBench (Light et al., 2023) and
BALROG (Paglieri et al., 2025) evaluate agents
through multi-turn, interactive gameplay. More
recently, LMAct (Ruoss et al., 2025) and Master-
mindEval (Golde et al., 2025) extend this line of
work by framing game-based reasoning as multi-
step, multi-turn interaction tasks. Unlike bench-
marks focused on win rate or action legality, these
settings emphasize the process of rule discovery
and iterative hypothesis testing in constrained do-
mains. Common evaluation metrics include win

rate, legality of actions, strategy optimality, and
task completion.

Benchmarks for Multi-Step and Logical Rea-
soning: To more directly evaluate reasoning capa-
bilities, recent studies have proposed benchmarks
focused on multi-step logical and mathematical
inference. LogiEval (Patel et al., 2024), Belief-
R1 (Wilie et al., 2024), MuSR (Sprague et al.,
2023), and AIME (AoPS, 2024) test multi-step
reasoning in logical and mathematical domains,
often revealing that even advanced LLMs strug-
gle with deep inference. Complementary efforts
such as CriticBench (Lin et al., 2024) and MR-
Ben (Zeng et al., 2024) explore multi-round self-
reflective prompting to enhance reasoning through
critique and correction.

Rule-Based Inference and Tool-Augmented
Reasoning: Several benchmarks focus on rule-
based or structured inference tasks. GridPuzzle
and PuzzleEval (Tyagi et al., 2024) utilize logic
grid puzzles, while ZebraLogic (Lin et al., 2025)
frames reasoning as constraint satisfaction prob-
lems (CSPs). RuleArena (Zhou et al., 2024) eval-
uates models on dynamic policy reasoning. Tool-
augmented frameworks like LINC (Olausson et al.,
2023) and MATHSENSEI (Das et al., 2024) en-
able LLMs to perform formal reasoning through
external tools. Meanwhile, self-reflection strate-
gies such as Self-Refine (Madaan et al., 2023) and
ReFlexion (Shinn et al., 2023) allow models to iter-
atively revise incorrect or incomplete outputs via
internal critique loops.

While the above efforts have made significant
strides in evaluating LLM reasoning, several impor-
tant gaps remain. First, few benchmarks explicitly
evaluate multi-step reasoning across multiple in-
teraction rounds—a critical feature of real-world
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problem-solving. Most logic and tool-based tasks
are static, single-shot evaluations that do not re-
quire models to gather and integrate information
over time. Second, existing benchmarks often lack
ground truth for intermediate reasoning steps, lim-
iting analysis to final-answer accuracy. This makes
it difficult to determine whether a correct answer
results from genuine reasoning or chance. Third,
many datasets are vulnerable to data contamina-
tion due to overlap with pretraining corpora. Fi-
nally, while game-based settings are promising,
they rarely focus on rule-discovery and hypothesis
refinement under feedback constraints.

TurnBench is designed to fill these gaps by of-
fering a dynamic, interactive benchmark that simu-
lates real-world multi-turn reasoning. It provides
ground-truth for intermediate reasoning, minimizes
contamination risk through dynamic rule configura-
tions, and emphasizes logical consistency and rule
inference across turns.

3 TurnBench

3.1 Turing Machine Game Mechanics

Turing Machine is a logic-based deduction game
where the player’s objective is to identify a unique
three-digit code (digits 1–5), each digit associated
with a distinct color (e.g., blue, yellow, purple).
The challenge lies in interacting with a set of 4–6
verifiers, each governed by a single, hidden active
criterion selected from a predefined rule pool. Play-
ers must deduce these hidden criteria and submit a
code that satisfies all of them. The game rule and
detailed example provided in Appendix A.

Each game unfolds in multiple rounds with four
key phases: First, the player composes a proposed
code (e.g., BLUE=2, YELLOW=4, PURPLE=3),
which remains fixed for the current round. Next,
the player queries up to three verifiers sequentially,
each returning a binary judgment (PASS/FAIL)
based on the verifier’s active rule. Then, using
this feedback, the player can either attempt a final
answer or skip and continue to the next round for
further testing. The game ends once a final answer
is submitted.

TurnBench supports two game modes: Classic
and Nightmare, each with Easy, Medium, and
Hard difficulty levels. In Classic mode, verifier
responses correspond directly to the selected ver-
ifier’s criterion. In Nightmare mode, verifiers are
secretly remapped; the player queries one verifier,
but the response corresponds to another verifier’s
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Figure 3: Example of verification process. This verifier
(Right) compares the values assigned to yellow and pur-
ple. There are three possible criteria: less than, equal
to, or greater than. The Hidden Active Criterion (HAC)
(Red) represents the specific constraint activated by a
verifier in a given game setup. When a tested code satis-
fies this criterion, the verifier returns "PASS"; otherwise,
it returns "FAIL" (Left).

logic, unknown to the player. This mapping must
be deduced as part of the reasoning process. The
mode details provided in Appendix A.1.

3.2 TurnBench Construction
3.2.1 Game Setups
Each TurnBench game instance consists of a spe-
cific verifier combination, one hidden active rule
per verifier, and the unique correct code. For Night-
mare mode, each game additionally includes a
fixed or dynamically generated hidden mapping
between verifiers. We curated 270 Classic and 270
Nightmare game setups (90 per difficulty level),
sourced from official materials2. All setups are re-
producible, and Nightmare mappings are pre-fixed
or regenerated at runtime to reduce memorization
risk.

3.2.2 Verifier Design
Verifiers are central to TurnBench and encode sim-
ple numerical rules (e.g., Figure 3). We incorporate
48 official verifier types, each associated with 2 to
9 potential rules. Since the physical game’s verifier
logic isn’t directly compatible with a simulation
environment, we designed a Hidden Condition Se-
lection Algorithm that selects one active rule per
verifier to align with the game’s design and balance.

3.2.3 LLM Interaction Flow
At game start, the system presents the LLM with
the full game context: background, rules, objective,
and all verifier definitions. The model then inter-
acts turn-by-turn as described in Section 3.1 (e.g.
Figure 2), adhering to a strict output protocol. In
each round:
2https://www.turingmachine.info/
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2.  **Verifier 1**: Tested with (3,3,1), result <PASS>. PURPLE=1 is less than 3. Deduction: Active criterion is "PURPLE is less than 3".
3.  **Verifier 2**: Tested with (3,3,1), result <FAIL>. PURPLE=1 was smallest/equal. Deduction: Active criterion is NOT "PURPLE is the smallest or is equal". Tested with 
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Figure 4: The Reasoning Process Evaluation Pipeline in TurnBench. This pipeline analyzes the LLM’s Chain-of-
Thought (CoT) generated as it deduces verifier properties during game process (blue). The evaluation proceeds
in three steps: 1) Inference Extraction (red): The LLM’s CoT, detailing its reasoning for each verifier’s Hidden
Active Criterion (HAC), is processed by the Inference Extractor. This yields "Extracted Conclusions" – the LLM’s
inferred HAC for each verifier. 2) Ground Truth Collection (orange): Simultaneously, the "Current Game Setup
ID" is used to retrieve the definitive "Ground Truth HAC" for each verifier from the "Game Metadata". 3) Judge
(green): The Judger then semantically compares the "Extracted Conclusions" from Step 1 with the corresponding
"Ground Truth HAC" from Step 2. Each inferred HAC is categorized as: Correct (semantically equivalent to the
ground truth), Incorrect (completely wrong), or Include (the conclusion contains the correct answer but is not yet
fully refined to the precise ground truth).

• In the Proposal step, the LLM outputs a
code in the format <CHOICE>: BLUE=X,
YELLOW=Y, PURPLE=Z.

• In the Verifier Query step, it selects verifiers
with <CHOICE>: [num]. Each verifier
returns PASS or FAIL.

• In the Deduce step, the LLM either submits
the code again using the same format as Pro-
posal step or skips the round via <CHOICE>:
SKIP.

• In Chain-of-Thought (CoT) mode, the LLM
also outputs reasoning before decisions using
<REASONING>.

If the LLM produces malformed output or illegal
actions (e.g., invalid verifier ID), a retry mecha-
nism prompts re-generation, while tracking error
frequency. Detailed prompts and retry protocols
are in the Appendix E.

3.2.4 Evaluating Model Reasoning Process
While existing benchmarks focus solely on final an-
swers, TurnBench introduces an automated method
for evaluating intermediate reasoning. Specifically,
in Classic mode, a model’s reasoning involves two
phases: (1) inferring each verifier’s hidden crite-
rion, and (2) using these to deduce the final code.

Since both ground truths (criteria and final code)
are known, we can semantically compare model
inferences with them.

Our evaluation pipeline (Figure 4) involves two
LLM-based components. First, an Inference Ex-
tractor (Gemini-2.5-Flash (Google, 2025)) parses
the model’s <REASONING> output to identify its
explicit claim about a verifier’s hidden rule. Sec-
ond, a Judger, also Gemini-2.5-Flash, compares
the extracted rule to the ground truth and classifies
it as: Correct (semantically equivalent), Incorrect
(completely wrong or missing the correct rule), or
Include (partial overlap with the ground truth).

We validated this automated process through
manual inspection. Stratified sampling selected
120 outputs (5% of total), prioritizing failed games
for robustness. Manual checks revealed the infer-
ence extractor missed 13.7% of applicable conclu-
sions, but achieved 99.7% precision. The Judger
reached 99.4% classification accuracy. These re-
sults confirm that TurnBench provides a reliable
mechanism for process-level evaluation of LLM
reasoning.

4 Experiment

4.1 Experiment Setup
To comprehensively explore the limitations of cur-
rent large language models (LLMs) in multi-turn
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Models
Average Accuracy

Win Avg Turn Win Avg VER
Total Easy Medium Hard

OA CoT OA CoT OA CoT OA CoT OA CoT OA CoT
gpt-o4-mini-high (Thinking) 0.64 0.84 0.80 0.93 0.73 0.93 0.40 0.67 15 16 7 6
gemini-2.5-flash (Thinking) 0.64 0.76 0.87 0.87 0.73 0.93 0.33 0.47 14 13 6 6

deepseek-r1 (Thinking) 0.49 0.53 0.80 0.80 0.33 0.53 0.33 0.27 12 14 6 6
gpt-4.1 0.09 0.69 0.20 0.80 0.07 0.73 0.00 0.53 46 15 23 7

llama-4-maverick 0.04 0.36 0.13 0.60 0.00 0.40 0.00 0.07 32 18 12 8
qwen-2.5-7b-instruct 0.04 0.04 0.00 0.13 0.13 0.00 0.00 0.00 42 7 21 3

mistral-8b 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.07 - 6 - 3
llama-3.1-8b-instruct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 - - - -

Random Guess 0.0085 0.0079 0.0098 0.0077 - -
Best Human 1 1 1 1 18 8

Human Average 0.96 0.98 0.95 0.95 20 11

Table 2: Performance of different models on the Classic Game setting (45 Games). Metrics include total, easy,
medium, and hard average accuracy, as well as average number of turns and average number of verifiers used
in successfully won games. Fewer average turns and verifier uses in winning games suggest greater reasoning
efficiency. Human and random guess baselines are included for comparison. We evaluated two prompting strategies:
Only Answer (OA) and Chain of Thought (CoT). The bold text represents the best results in LLM, the underline text
represents the best-performing result in the non-thinking model. Full test results for 270 setups are in Table 6.

and multi-step reasoning tasks, we selected both
commercial and widely-used open-source mod-
els for evaluation, employing different prompting
methods. The commercial models include gemini-
2.5-flash-preview-04-17 (thinking) (Google, 2025),
gpt-o4-mini-high-0416 (thinking) (OpenAI, 2025),
and gpt-4.1-2025-04-14. The open-source mod-
els tested are deepseek-r1 (thinking) (DeepSeek-
AI, 2025), llama-4-maverick (Meta, 2025), mistral-
8b (team, 2025), llama-3.1-8b-instruct (Grattafiori
et al., 2024), and qwen-2.5-7b-instruct (Yang et al.,
2024). We also evaluated two prompting strate-
gies: Only Answer (OA) and Chain of Thought
(CoT) (Wei et al., 2022). All models were evalu-
ated through their publicly available APIs.

To thoroughly test the reasoning abilities of the
state-of-the-art models, all "Thinking" models had
their reasoning effort set to “high.” Additionally, to
compare the reasoning gap between the most ad-
vanced LLMs and humans, we invited five human
participants with no prior experience with the game
to take part in the experiment.

We evaluated two game modes: Classic and
Nightmare. Each mode’s scenarios were divided
equally into three difficulty levels: easy, standard,
and hard. For Classic mode, we constructed 270
benchmark scenarios (90 per difficulty). For Night-
mare mode, 45 scenarios were selected (15 per
difficulty). Human participants played 45 Classic
mode games (15 per difficulty), with the Nightmare
mode evaluation set matching the models’.

All models and human participants were tested
under identical conditions, with the same task

prompts and problem setups (Appendix F). To en-
sure parity in information access, we developed a
user interface for humans that displayed exactly
the same text as the models saw at each step. Hu-
mans were also asked to record their reasoning and
thought processes throughout. Accuracy is calcu-
lated using scikit-learn (Pedregosa et al., 2018).

To specifically analyze the impact of model size
on performance, we conducted a targeted follow-up
experiment. We sampled 45 game setups from the
Classic mode (15 from each difficulty level) and
evaluated two additional large-scale open-source
models: Llama-3.3-70B-instruct (Grattafiori et al.,
2024) and Mistral-3.2-small (MistralAI, 2025).
This allows for a more direct comparison across a
range of model parameters.

4.2 Results and Findings

Finding 1: LLMs significantly lag behind
humans in multi-turn, multi-step reasoning.

We analyzed overall performance using average
accuracy metrics segmented by difficulty (overall,
easy, medium, hard), as well as the average number
of turns and verifier uses in games won successfully.
Fewer turns and verifier uses indicate stronger rea-
soning ability.

First, we discuss Classic mode results (Table 2).
Smaller standard models struggled significantly de-
spite understanding game rules and response for-
mat. They had difficulty leveraging verifier feed-
back to make effective inferences. Because Turn-
Bench requires no external knowledge and relies

19897



Average Accuracy (CoT)
Win Avg Turn (CoT) Win Avg VER (CoT)

Total Easy Medium Hard
gpt-o4-mini-high (Thinking) 0.11 0.13 0.20 0.00 21 8
gemini-2.5-flash (Thinking) 0.18 013 0.27 0.13 16 8

deepseek-r1 (Thinking) 0.07 0.07 0.07 0.07 12 6
Random Guess 0.0076 0.0074 0.0079 0.0075 - -

Best Human 1 1 1 1 40 20
Human Average 0.94 0.96 0.93 0.93 38 17

Table 3: Performance of different thinking models on the Nightmare Game setting (45 Games). Same metrics as
Table 2, but exclusively featuring the Chain of Thought (CoT) prompting strategy. Compared to Classic mode,
accuracy drops significantly. Human players maintain robust performance, while models struggle to generalize
under this challenging scenario.

solely on numerical rules, this suggests that com-
plex reasoning needs models of a certain size and
capacity.

Chain of Thought (CoT) prompting consistently
improved performance across accuracy metrics and
helped "Thinking" models as well. For example,
the best-performing gpt-o4-mini-high increased its
overall accuracy from 64% (OA) to 84% (CoT).
Larger standard models also showed notable gains,
e.g., gpt-4.1 rose from 9%(OA) to 69% (CoT), and
llama-4 from 4% to 36%.

CoT prompting also helped models succeed with
fewer turns and verifier uses (e.g., gpt-4.1) dropped
from 41 to 15 turns and from 23 to 7 verifiers).
However, "Thinking" models showed little differ-
ence between OA and CoT for turns and verifier
use, possibly because they internally perform step-
wise reasoning. CoT may mainly help them articu-
late their reasoning process more clearly and use it
as memory for subsequent steps.

Despite improvements, a significant gap re-
mains between LLMs and humans. The "Best
Human" achieved 100% accuracy across all met-
rics, whereas gpt-o4-mini-high (CoT) reached only
84%. But models outperformed human in average
turns (20) and verifier uses (11). Analysis of rea-
soning logs showed that while models sometimes
integrated more clues, humans tended to take more
turns (especially on hard tasks) but maintained near-
perfect accuracy.

To further test limits, we compared "Thinking"
models with CoT against humans in the more chal-
lenging Nightmare mode (Table 3). All LLMs’
accuracy dropped drastically compared to Clas-
sic mode. For example, gpt-o4-mini-high fell
from 84%to 11% overall, and failed completely
on Hard difficulty (0 accuracy). The best perform-
ing gemini-2.5-flash only reached 13%. Humans
maintained extremely high performance, with the

"Best Human" at 100% accuracy and the average
human still achieving 94.2%.

These results clearly demonstrate that although
"Thinking" models and CoT prompting improve
performance, LLMs still lag far behind humans
in complex multi-turn, multi-step reasoning tasks,
especially under high difficulty. This highlights the
substantial gap remaining between current models
and human reasoning capabilities.

Finding 2: Once LLMs make a mistake
in multi-turn reasoning, they struggle to re-
cover.

In this experiment, we conducted an in-depth
analysis of the persistence and evolution of error
states in LLMs during multi-turn reasoning. This
analysis is based on the thinking process evalua-
tion method described in Section 3.2.4. The results
clearly demonstrate that in complex multi-turn rea-
soning chains, once current LLMs make an initial
error, they tend to "lose their way" and struggle to
recover autonomously, significantly reducing their
final task success rate.

Path Divergence after Initial Errors. Using a
Sankey diagram (Figure 6), we tracked model be-
havior following the First Incorrect Conclusion
(FIC). The diagram shows that a large proportion
of error paths led directly to "No Subsequent Con-
clusion," indicating that models often cease rea-
soning along that path after an initial mistake; in-
deed, as detailed in Table 4, the rate of "Ended
with no final conclusion" ranged from 34.85% (gpt-
o4-mini-high) to a striking 96.23% (qwen-2.5-7b)
across various models. Another substantial frac-
tion continued producing incorrect conclusions; for
instance, the "Next-turn still incorrect" metric in
the same table varied from 3.14% (qwen-2.5-7b) to
38.82% (mistral-8b). In contrast, paths that quickly
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llama-3.1-8b gemini-2.5-flash gpt-o4-mini-high gpt-4.1 mistral-8b llama-4-maverick qwen-2.5-7b deepseek-r1

Initial verifier errors 368 96 66 141 255 142 318 144

Persistence of initial errors (%) 89.94 91.67 53.03 86.52 90.20 63.38 99.06 93.06

Ended with no final conclusion (%) 74.18 71.87 34.85 54.61 53.33 45.77 96.23 86.11

Next-turn still incorrect (%) 17.66 19.79 27.27 33.33 38.82 25.35 3.14 6.94

Success despite persistent errors (%) 1.08 12.72 32.14 13.41 0.66 8.11 0.54 7.87

Success when no / fixed errors (%) 1.75 95.34 87.55 84.57 3.13 41.75 8.00 90.56

Table 4: Comparison of large language models on their ability to handle verifier errors during multi-turn reasoning.
Metrics include the number of initial verifier errors, error persistence rate, likelihood of remaining incorrect in the
next turn, and task success rates depending on error persistence or correction.

shifted to "Include" or "Correct" were relatively
rare. Examining how these paths evolved to the
Final Conclusion State Before Submission (CSBS),
we found that those with either "No Subsequent
Conclusion" or "Subsequent Incorrect Conclusion"
overwhelmingly ended in an incorrect final conclu-
sion. Consequently, these error paths almost always
resulted in "Game Lost." Only a small minority of
paths that rapidly adjusted to correct or partially
correct conclusions after the first error were as-
sociated with a higher likelihood of "Game Won."
This divergence visually confirms that after the first
mistake, models rarely self-correct and tend either
to halt reasoning or perpetuate errors—an initial
indication of "losing their way." The detailed def-
initions and examples are provided in Appendix
C.

Figure 5: Probability of a model remaining incorrect in
each subsequent round after its initial error, conditioned
on it being incorrect in the previous round. The likeli-
hood of continuing in an incorrect state increases with
each turn, approaching near certainty beyond the fifth
round. This trend highlights the models’ limited capac-
ity for self-correction once they enter an error state.

Solidification and Persistence of Error States.
To further investigate error dynamics, we analyzed
model behavior after making an error. Error states
proved extremely "sticky." Figure 5 depicts the
probability that a model continues to produce in-
correct conclusions in subsequent relative rounds,

given that it is currently incorrect. In the first
relative round after the initial error (X=1), if the
model outputs a conclusion, there is already approx-
imately a 65–70% chance it is incorrect. Alarm-
ingly, this probability rises sharply with additional
rounds, nearing 100% by the fifth relative round.
This suggests that once a model enters several con-
secutive rounds of incorrect reasoning, it almost
completely loses the ability to break the error cycle.

4.3 Further Analysis of Reasoning Failures

To better understand the sources of the performance
gaps and the persistence of errors documented in
Findings 1 and 2, we conducted additional analyses
on both the qualitative nature of LLM errors and
the quantitative effect of model scale.

4.3.1 Qualitative Error Analysis
We examined failure cases across different models
and difficulty levels to investigate the causes of the
performance gaps identified in Finding 1 and the
error persistence highlighted in Finding 2. This
analysis revealed five recurring categories of rea-
soning errors that illustrate the challenges LLMs
face in multi-turn, multi-step tasks. Illustrative ex-
amples are provided in Appendix D.

Reasoning Biases. These errors occur when a
model attempts to make inferences from insuffi-
cient evidence. In our setting, verifier rules often
share implicit relationships. Some models, seek-
ing efficiency, try to deduce the hidden criteria of
untested verifiers based on already verified condi-
tions or by exploiting the uniqueness of the final
answer. While such "shortcut" strategies can be
effective, they frequently lead to mistakes when
models fail to account for alternative logical paths
or conditions.

Task Misconception. A small subset of models
fail to fully grasp the core game mechanics or spe-
cific requirements, leading to misinterpretation of
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clues and ultimately to erroneous conclusions. This
type of error is more common in smaller models,
and is rarely observed in larger ones, pointing to
limitations in complex instruction following and
sustained task comprehension.

Information Hallucination. Here the model fab-
ricates unverified information or erroneously as-
sumes that a verification step has been completed.
For instance, a model may conclude that a certain
verifier’s criterion is active simply because its cur-
rent solution happens to satisfy it, despite never ex-
plicitly testing that verifier. This highlights LLMs’
difficulties in managing uncertainty and preserving
factual correctness.

Overconfident Inference. In some cases, models
display unwarranted certainty in their final predic-
tions even without completing all required verifica-
tion steps. They submit premature answers based
on partial or speculative reasoning, revealing a ten-
dency toward overconfidence.

Long-term Memory Decay. In extended multi-
turn reasoning, certain models struggle to retain
and integrate crucial information across turns. This
often results in forgotten or confused clues from
earlier steps, which compromises downstream rea-
soning. Such cases point to ongoing challenges
in maintaining contextual coherence and reliable
recall in multi-turn interactions.

4.3.2 The Impact of Model Scale
Our main experiments (Table 2) showed a stark
contrast in performance, particularly with smaller
open-source models failing completely. To sys-
tematically investigate this, we analyzed the per-
formance of several open-source models across a
spectrum of sizes on a representative subset of 45
Classic mode games.

Model Model Size Avg Acc
deepseek-r1 (Thinking) (MoE) 671B (37B) 0.53
llama-4-maverick (MoE) 400B (17B) 0.36
llama-3.3-70b-instruct 70B 0.36
mistral 3.2 small 24B 0.27
llama-3.1-8b-instruct 8B 0.00
mistral-8b 8B 0.02
qwen-2.5-7b-instruct 7B 0.04

Table 5: A Comparative Analysis of Large Language
Models at Various Scales.

The results (Table 5) reveal a strong positive
correlation between model size and accuracy on
TurnBench. Our key observations are as follows:

Significant Performance Gap for Smaller Mod-
els Models in the 7B–8B parameter range con-
sistently achieve near-zero accuracy (0–4%). This
suggests that smaller LLMs largely lack the capac-
ity for the complex, multi-turn reasoning required
by TurnBench, possibly due to limitations in main-
taining complex contexts, performing intricate de-
ductions, or recovering from early errors.

Improved Performance with Increasing Scale
As model size increases to 24B (Mistral 3.2 Small)
and 70B (Llama 3.3 70B), we observe a substantial
improvement in average accuracy, reaching 27%
and 36%, respectively. This indicates that larger
models are better equipped to handle the game’s
complexities, benefiting from increased capacity
for reasoning, memory, and instruction following.

Effectiveness of Large-Scale MoE Architectures
The Mixture-of-Experts (MoE) models, deepseek-
r1 and llama-4-maverick, achieve high accuracies
of 53% and 36%. Notably, deepseek-r1, with its
massive 671B total parameters, is the top performer
among this set, demonstrating that large-scale ar-
chitectures, particularly those leveraging MoE, pos-
sess superior capabilities for this type of reasoning
task.

This analysis supports the conclusion that scal-
ing effects play a crucial role in LLM performance
on complex, multi-turn reasoning tasks. It pro-
vides deeper insight into the current limitations
of smaller models and underscores the benefits of
larger model architectures for tackling such chal-
lenges.

5 Conclusion

In this paper, our investigation using TurnBench
has clarified the capabilities and limitations of
Large Language Models (LLMs) in multi-turn,
multi-step reasoning. TurnBench addresses several
key limitations of current benchmarks and offers
an effective method for automatically analyzing the
reasoning processes of LLMs. Using this frame-
work, we evaluated multiple standard chat models
and thinking models, uncovering key findings that
highlight the limitations of existing models. In
summary, TurnBench fills a gap in the evaluation
of LLMs’ multi-turn, multi-step reasoning capabil-
ities and provides a novel solution for assessing
model reasoning processes. We hope that our work
will inspire further research into multi-turn reason-
ing.
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Limitation

Effectively and accurately measuring a model’s
thinking process has always been a challenge. The
automated evaluation of model thinking processes
proposed in this paper requires an evaluation frame-
work built on rules, which lacks generality. Further-
more, using Gemini 2.5 Flash for model inference
extraction still has certain limitations. Although the
extracted results have shown high accuracy after
manual evaluation, further research and optimiza-
tion are still needed. In addition, since our work in-
volves benchmarking large language models, there
are potential risks such as the models producing bi-
ased outputs, which should be carefully considered
when interpreting the results.
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A Game Explanation

This appendix provides detailed explanation includes Game mode explanation, Game Example,

A.1 Mode Explanation
In Classic mode, there’s a direct, one-to-one correspondence between the verifier a player selects and the
actual verifier that processes the code. If a player tests Verifier 1 and receives a "PASS" result, they can
confidently conclude that their code passed Verifier 1’s specific validation.

In Nightmare mode, a "verifier mapping" is generated at the start of the game. This mapping randomly
shuffles the verifier numbers and their actual underlying verifiers. This means that if a player tests "Verifier
1" in Nightmare mode and receives a "PASS" result, that result could have come from any of the active
verifiers, not necessarily the one labeled "Verifier 1."

In Nightmare mode, players must first infer the correspondence between the verifier results and the
actual verifiers before they can even begin to deduce each verifier’s hidden active criterion. Only after
resolving this mapping can they then proceed to infer the rules and ultimately the correct three-digit code,
adding an extra layer of complexity and uncertainty to the reasoning process.

A.2 Game Rules
The objective of the game The goal is to infer a unique three-digit code, composed of numbers from 1
to 5, using the fewest possible rounds and verifier uses. While speed is a factor, accuracy in deduction is
paramount.

Game Setup In both Classic and Nightmare modes, each game involves 4-6 verifiers. Each verifier
secretly activates a single criterion that restricts the final code. As mentioned, for Nightmare mode, a
random verifier mapping is applied at the start, obscuring which labeled verifier corresponds to which
actual criterion.

3-digit-code Rules The three-digit code consists of numbers from 1 to 5, which can be repeated (e.g.,
123, 221). Each digit is associated with a specific color: Blue for the first digit, Yellow for the second, and
Purple for the third. This code is the unique combination that satisfies the hidden active criterion of all
verifiers, and importantly, the active criteria of different verifiers are never conflicting.

Verifier Rules

• Active Criteria: Each verifier has multiple potential criteria (as shown in Figure 2), but only one is
secretly chosen as "active" for a given game. Players are unaware of which criterion is active for any
specific verifier.

• Validation Focus: When a player’s proposed code is tested against a verifier, only whether the code
satisfies the active criterion is checked. For instance, if an active criterion is "Blue = 3" and the player
submits "211" (Blue=2, Yellow=1, Purple=1), a "FAIL" result only indicates that the Blue digit did
not satisfy "Blue = 3." It does not imply that the Yellow or Purple digits are incorrect.

• Non-Overlapping Information: The active criteria selected across different verifiers in a game provide
distinct information. For example, Verifier 1 will not have "Blue < 3" as its active criterion if Verifier
2 also has "Blue < 3" as its active criterion.

Game Structure (Rounds) Before the game begins, players can see the details of the verifiers set up
for the current game. Each game round consists of four stages, as show in Figure 1 in the paper:

• Proposal: The player designs a three-digit code for testing in the current round. This code cannot be
changed within the round.

• Question: The player can choose to test up to three verifiers sequentially with the proposed code.
After each test, the player sees the result (PASS/FAIL) and can then decide whether to test another
verifier or which one to test next. This stage can also be skipped entirely.
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• Deduce: In this stage, the player can either submit a final three-digit code (which can be different
from the proposed code in Stage 1) or choose to proceed to the next round. Once a code is submitted,
the game concludes immediately, regardless of success or failure.

• End of Round: If the player chooses not to submit a final answer in the Deduce stage, the current
round ends, and a new round begins.

A.3 Game Example

To provide a concrete understanding of gameplay and human reasoning, below is a step-by-step example
from a Classic mode game. Please note that this example illustrates a possible thought process, not
necessarily the most optimal one, and is designed for clarity of rules. The correct answer for this game is
"241" and the Hidden Active Criteria (HACs) for each verifier are marked.

A.3.1 Game Setup
Final Answer: "241"

Verifiers:

• Verifier <1>: Verifies the YELLOW number compared to 4.

– Possible criteria: YELLOW is less than 4.
– Possible criteria: YELLOW is equal to 4. (HAC)
– Possible criteria: YELLOW is greater than 4.

• Verifier <2>: Verifies the number of 3s in the code.

– Possible criteria: There are zero 3s in the code. (HAC)
– Possible criteria: There is one 3 in the code.
– Possible criteria: There are two 3s in the code.
– Possible criteria: There are three 3s in the code.

• Verifier <3>: Verifies the BLUE number compared to the YELLOW number.

– Possible criteria: BLUE is less than YELLOW. (HAC)
– Possible criteria: BLUE is equal to YELLOW.
– Possible criteria: BLUE is greater than YELLOW.

• Verifier <4>: Verifies which color’s number is smaller than either of the others.

– Possible criteria: BLUE is smaller than PURPLE and YELLOW.
– Possible criteria: YELLOW is smaller than BLUE and PURPLE.
– Possible criteria: PURPLE is smaller than YELLOW and BLUE. (HAC)

A.3.2 Example Details
ROUND 1 - Stage 1: Proposal

Player's Thinking: I want to test Verifiers 1, 2, and 3. For Verifier 1, "Yellow
= 4" is a good test. For Verifier 2, by using two '3's (Blue and Purple), I
can test if there are two 3s in the code. For Verifier 3, "Blue = 3" and
"Yellow = 4" will help check "Blue < Yellow."

↪→
↪→
↪→
Proposed Code: 343

ROUND 1 - Stage 2: Question

Verifier Choose: 1, Result: PASS
Player's Thinking: Verifier 1 passed. I now know Yellow = 4.

Verifier Choose: 2, Result: FAIL
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Player's Thinking: Verifier 2 failed. This means there are not two 3s in the
code. Since I already know Yellow = 4 (from Verifier 1), the number of 3s can
only be zero, one, or three. Given my proposed code 343, and knowing Yellow
is 4, it's either zero 3s (if Blue and Purple aren't 3s) or one 3 (if one of
Blue or Purple is a 3).

↪→
↪→
↪→
↪→

Verifier Choose: 3, Result: PASS
Player's Thinking: Verifier 3 passed. I now know Blue < Yellow. Since I already

know Yellow = 4, Blue can be 1, 2, or 3.↪→

ROUND 1 - Stage 3: Deduce

Player's Thinking: Based on results from Verifiers 1, 2, and 3: Yellow = 4, Blue
can be 1, 2, or 3. The code has zero or one '3'. I need more information,
especially about Verifier 4 and to narrow down Blue/Purple.

↪→
↪→
Deduce Choice: Continue to the next round.

ROUND 1 - Stage 4: End of Round.

ROUND 2 - Stage 1: Proposal

Player's Thinking: I need to test Verifier 2 further and Verifier 4. Using "345"
will test if there's one '3' (for Verifier 2). For Verifier 4, if it passes,
Blue (3) is the smallest. If it fails, then Purple (5) must be the smallest
(since Blue < Yellow, Yellow cannot be the smallest).

↪→
↪→
↪→
Proposed Code: 345

ROUND 2 - Stage 2: Question

Verifier Choose: 2, Result: FAIL
Player's Thinking: Verifier 2 failed. Since I used '3' in the Blue position, and

it failed, I now know there are zero 3s in the code.↪→

Verifier Choose: 4, Result: FAIL
Player's Thinking: Verifier 4 failed. This means Purple is the smallest number

(among Blue, Yellow, Purple).↪→

Verifier Choose: SKIP
Player's Thinking: I have enough information now. I know all the HACs.

ROUND 2 - Stage 3: Deduce

Player's Thinking: Combining all results:
Yellow = 4 (from Round 1, Verifier 1)
Blue < Yellow (from Round 1, Verifier 3) => Blue can be 1, 2, or 3.
Zero 3s in the code (from Round 2, Verifier 2) => Blue cannot be 3. So, Blue can

be 1 or 2.↪→
Purple is the smallest number (from Round 2, Verifier 4) => Since Purple must be

smaller than Blue (1 or 2) and Yellow (4), Purple must be 1, Blue must be 2.↪→
Final Deduction: Blue = 2, Yellow = 4, Purple = 1.
Deduce Choice: Submit 241

Game Over. Result: Player wins the game!

B Additional experimental results

This appendix provides additional experimental results for classic game mode. We evaluated the reasoning
performance of the model on the full dataset (270 Games) (Table 6).

C Definitions and Examples for Reasoning Path Evaluation

This appendix provides the detailed definitions and flow analysis figure (Figure 6, and examples of the
flow analysis of verifier reasoning paths originating from the First incorrect Conclusion.

C.1 First Incorrect Conclusion (FIC)

First Incorrect Conclusion(FIC) refers to the instances within a single game where the model makes an
incorrect inference regarding a verifier’s Hidden Active Criterion (HAC), HAC refer to Figure 3.
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Models
Average Accuracy

Win Avg Turn Win Avg VER
Total Easy Medium Hard

OA CoT OA CoT OA CoT OA CoT OA CoT OA CoT
gpt-o4-mini-high (Thinking) 0.578 0.815 0.756 0.933 0.7 0.9 0.278 0.611 16 16 7 7
gemini-2.5-flash (Thinking) 0.652 0.785 0.844 0.9 0.756 0.867 0.356 0.589 13 13 6 6

deepseek-r1 (Thinking) 0.511 0.63 0.733 0.756 0.511 0.722 0.289 0.411 12 13 6 6
gpt-4.1 0.052 0.63 0.078 0.80 0.033 0.689 0.044 0.4 41 15 21 7

llama-4-maverick 0.07 0.326 0.133 0.444 0.056 0.367 0.022 0.167 28 17 12 8
llama-3.1-8b-instruct 0.007 0.015 0.011 0.022 0.011 0 0 0.022 23 13 11 6

mistral-8b 0 0.015 0 0.011 0 0.022 0 0.011 - 8 - 4
qwen-2.5-7b-instruct 0.015 0.022 0.011 0.067 0.022 0 0.011 0 34 6 17 3

Random Guess 0.0085 0.0079 0.0098 0.0077 - -

Table 6: Performance of different models on the Classic Game setting (270 Games). Metrics include total, easy,
medium, and hard average accuracy, as well as average number of turns and average number of verifiers used
in successfully won games. Fewer average turns and verifier uses in winning games suggest greater reasoning
efficiency. Human and random guess baselines are included for comparison. We evaluated two prompting strategies:
Only Answer (OA) and Chain of Thought (CoT). The bold text represents the best results in LLM, the underline text
represents the best-performing result in the non-thinking model.

C.2 Next Conclusion Status (NCS)

The Next Conclusion Status (NCS) evaluates the outcome of an LLM’s subsequent reasoning attempt on a
specific verifier’s Hypothesized Active Criteria (HAC) after a prior conclusion. Each attempt is classified
into one of four categories, illustrated with examples referencing the verifier in Figure 3.

Correct: The inferred HAC is semantically equivalent to the ground truth rule. Incorrect: The inferred
HAC is logically inconsistent with or fails to capture the ground truth. Include: The inferred HAC is a
superset of or partially overlaps with the ground truth. It is consistent with the available evidence but
is not yet the most specific or precise rule. No Subsequent Conclusion: The model does not revisit its
reasoning for that specific verifier in any subsequent turn, effectively abandoning that line of inquiry.

To illustrate these categories, consider a verifier whose unknown ground truth HAC is "Yellow =
Purple". Suppose the model tests an input where Yellow=1 and Purple=3, causing the verifier to return
FAIL (which indicates the HAC was not met).

If the model infers a broad but consistent rule like Yellow >= Purple, the status is Include. Because
the conclusion includes the correct answer "Yellow = Purple" as a possibility. If the model infers Yellow
> Purple, the status is Incorrect, as this hypothesis is missing the correct answer. A Correct status is
achieved only when the model, perhaps by synthesizing evidence from multiple tests, precisely identifies
the HAC as Yellow = Purple.

Finally, the No Subsequent Conclusion status is applied if the model, after making an initial incorrect
inference about this verifier, fails to re-evaluate or correct its reasoning in later turns. This represents a
failure of self-correction, where an erroneous path of reasoning is permanently dropped.

C.3 Conclusion Status Before Submit (CSBS)

Conclusion Status Before Submit (CSBS) is the final inferred status of the initially misjudged verifier be-
fore the LLM submitted its overall game answer. In this case, there are no "No Subsequent Conclusion"
status anymore.

C.4 Game Status (GS)

Game Status (GS) is the ultimate outcome (Won or Lost) of the game in which the FIC occurred.

D Examples of LLM Error Types

This appendix provides illustrative examples of the error categories discussed in Finding 3. The Hidden
Active Criterion (HAC) refers to the secret rule a verifier uses to validate a code.

D.1 Reasoning Biases Example

The correct answer is 344 for this example.
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includeincludegpt-o4-mini-high Won

correctgemini-2.5-flash correct

gpt-4.1

llama-4-maverick

deepseek-r1

mistral-8b

incorrect

qwen-2.5-7b-instruct

llama-3.1-8b-instruct

No Subsequent Conclusion

incorrect

Lost

CSBSNCSFIC GS

Figure 6: Flow analysis of verifier reasoning paths originating from a First Incorrect Conclusion (FIC). There are
three subsequent stages: 1) Next Conclusion Status (NCS): the outcome of the LLM’s next reasoning attempt on
the same verifier. 2) Conclusion Status Before Submit (CSBS): the final inferred status of the initially misjudged
verifier before the LLM submitted its overall answer. 3) Game Status (GS): the ultimate outcome (Won or Lost) of
the game in which the FIC occurred. More detailed definitions and examples are provided in Appendix C.

Model’s Known Information (from tested verifiers):

• V1: BLUE is odd (B in 1, 3, 5) (Comment: Correctly inferred HAC for V1)

• V0: YELLOW is ge 4 (Y in 4, 5) (Comment: Correct path, true HAC is Y=4)

• V3: YELLOW ge PURPLE (Y ge P) (Comment: Correct path, true HAC is Y=P)

• V2: zero 1s (Digits must be from 2, 3, 4, 5) (Comment: Correctly inferred HAC for V2)

• V4: Smallest is not PURPLE (P ge min(B, Y)) (Comment: Correct path, true HAC is Blue is
smallest)

Model’s Reasoning (Error Highlighted):

• "Let’s test the combinations: V3: Y=P, V4: B < Y&P.

• Apply Y=P to the list: (3,4,4), (3,5,5), (5,4,4), (5,5,5).

• Apply V4: B < Y&P to this new list:

– (3,4,4): 3 < 4 & 3 < 4 (Yes) to (3,4,4) is a candidate.
– (3,5,5): 3 < 5 & 3 < 5 (Yes) to (3,5,5) is a candidate.
– (5,4,4): 5 < 4 & 5 < 4 (No).
– (5,5,5): 5 < 5 & 5 < 5 (No).

• If V3 is Y=P and V4 is B < Y&P, there are two possible codes: (3,4,4), (3,5,5). Not unique."

Analysis: The model fails to consider the constraint from V0 (YELLOW is ge 4) in combination with
Y=P, leading it to miss the unique solution. If Y=4, then Y=P implies P=4, which makes (3,4,4) the unique
answer. The model did not fully capture all potential conditions, thus incorrectly excluding the correct
answer.

19909



D.2 Task Misconception
The model submits code "123" to a verifier checking "how many 3s in the code." The verifier returns
"PASS."

Model’s Incorrect Analysis: "Since the code 123 passed Verifier <0>, we know that the code does not
contain any 3s."

Analysis: This directly contradicts the expected logical interpretation (a ’PASS’ implies the presence
of a ’3’).

D.3 Information Hallucination
In a game, the model only tested 3 out of 4 verifiers. Its deduction for the last verifier is:

Model’s Hallucination: "The only remaining verifier is Verifier <3>, which checks the number of
even numbers compared to the number of odd numbers. Since our code is BLUE=2, YELLOW=3, and
PURPLE=4, we have 2 even numbers (2, 4) and 1 odd number (3). This satisfies the condition of having
more even numbers than odd numbers. Therefore, the active criterion for Verifier <3> is that there are
more even numbers."

Analysis: The model infers the active criterion for Verifier <3> based solely on its proposed code,
without actually testing Verifier <3> or receiving feedback, hallucinating a verified state.

D.4 Overconfident Inference
In a game where only 3 out of 4 verifiers were tested, the model concludes:

Model’s Overconfidence: "Therefore, the code 324 satisfies all the known criteria and is likely to
satisfy the hidden criteria of all verifiers."

Analysis: The model expresses high confidence ("likely to satisfy") despite not having complete
information or having fully tested all verifiers, indicating a bias in self-assessment regarding the reliability
of its deductions.

D.5 Long-term Memory Decay
Model tested Verifier 2 in the first round but forget in the second round

Model’s Deduction in Round 1: "Verifier <2>: The result was <FAIL>, and since the sum of the digits
(3+2+1 = 6) is a multiple of 3, the active criterion is either ’the sum is a multiple of 4’ or ’the sum is a
multiple of 5’"

Model’s Deduction in Round 2: "We have not tested Verifier <2> yet. Our code’s sum is 7, which
is not a multiple of 3, 4, or 5, so we expect <FAIL> for Verifier <2> if tested." AND "the fact that we
haven’t tested Verifier <2>"

Analysis: The model clearly loses track of its prior interaction and deduction regarding Verifier <2>,
indicating a failure to integrate past information into its current reasoning state.

E Prompts Used in Experiments

E.1 Classic prompts with Only-Answer (OA) and Chain-of-Thought (CoT)
E.1.1 Classic system prompt

You are participating in a competitive logic deduction game called Turing
Machine.↪→

Your goal is to win first place by deducing a secret 3-digit code with minimal
rounds and verifier usage, but accuracy takes priority over speed.↪→

Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL

chosen verifiers.↪→

Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

where X, Y, Z are digits from 1 to 5).↪→
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2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each
round. After each selection, you will see the result, and then you can decide
whether to select the next one.

↪→
↪→
3. Deduce: Based on verifier results, you can submit a final answer or continue

to the next round.↪→
4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is

secretly selected as 'active'. You don't know which criterion is active for
any given verifier.

↪→
↪→
- Focus of Verification: When testing your code against a verifier, it

exclusively evaluates it against its single, active criterion. The verifier
completely ignores all other potential criteria, including its own inactive
ones.

↪→
↪→
↪→
- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies

this single active criterion.↪→
- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not

satisfy this single active criterion.↪→
- Non-Overlapping Information: The active criteria selected across different

verifiers for a game will provide distinct information.↪→

Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the

combined results of multiple verifiers along with system rules such as the
existence of a unique solution and the principle that no two verifiers offer
redundant information.

↪→
↪→
↪→
- Only submit a final guess when you have either tested all verifiers and

received <PASS> for each, or when your reasoning clearly proves your code
satisfies all possible active verifier criteria. Accuracy takes priority over
speed.

↪→
↪→
↪→

Current Game Setup:
{game_setup}

E.1.2 Classic proposal step prompt
Classic - Proposal step - Step prompt -OA

You are now entering the **Proposal Stage** of this round.

**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code can NOT be changed in the subsequent
stages of this round.

↪→
↪→

**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you.
- Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z

Classic - Proposal step - Not valid format prompt - OA

You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:
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- Reply the code you want to use in this round with required response format. For
example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→

- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

Classic - Proposal step - Step prompt - CoT

You are now entering the **Proposal Stage** of this round.

**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code can NOT be changed in the subsequent
stages of this round.

↪→
↪→

**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you.
- Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

Classic - Proposal step - Not valid format prompt - CoT

You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

E.1.3 Classic question step prompt
Classic - Question step - First question prompt - OA

You are now entering the **Verifier Questioning Stage** of this round.

**Current Verifiers**:
{verifier_descriptions}

**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- <PASS> means your code satisfies this rule; <FAIL> means it does not.
- Active rules do NOT overlap between verifiers.

**Your Goal in This Stage**:
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- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to
choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Classic - Question step - Following questions prompt - OA

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Classic - Question step - Last question prompt - OA

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→

Classic - Question step - Not valid format prompt - OA

You did not follow the required response format. Please try again with same
choice.↪→

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Classic - Question step - Not valid verifier choice prompt - OA

You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
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- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Classic - Question step - First question prompt - CoT

You are now entering the **Verifier Questioning Stage** of this round.

Current Verifiers:
{verifier_descriptions}

**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- <PASS> means your code satisfies this rule; <FAIL> means it does not.
- Active rules do NOT overlap between verifiers.

**Your Goal in This Stage**:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

Classic - Question step - Following questions prompt - CoT

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

Classic - Question step - Last question prompt - CoT

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→
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Classic - Question step - Not valid format prompt - CoT

You did not follow the required response format. Please try again with same
choice.↪→

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

Classic - Question step - Not valid verifier choice prompt - CoT

You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

E.1.4 Classic deduce step prompt
Classic - Deduce step - Deduce result prompt

The final guess is {submitted_code}. The answer is {answer}, the guess is
{is_correct}.↪→

Classic - Deduce step - Step prompt - OA

You are now entering the **Deduce Stage** of this round.

**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether

to continue to the next round or submit a final guess.↪→

**Hint**:
- Passing all tested verifiers does not mean the code is correct if not all

verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

**Your Goal in This Stage**:
- Decide whether to submit the final guess or continue to the next round. Submit

the final guess will end the game, continue to the next round will help you
gather more information.

↪→
↪→
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- Submission is not mandatory, you must make this decision based on your own
reasoning.↪→

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Classic - Deduce step - Not valid format prompt - OA
You did NOT follow the response format. Please try again.

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Classic - Deduce step - Step prompt - CoT
You are now entering the **Deduce Stage** of this round.

**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether

to submit a final guess or continue to the next round.↪→

**Hint**:
- Passing all tested verifiers does not mean the code is correct if not all

verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

**Your Goal in This Stage**:
- Analysis all information gathered.
- Decide whether to submit the final guess or continue to the next round.
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice. If you want to submit a final guess, you must provide the reasons for
not proceeding to the next round.

↪→
↪→

**Response format**:
<REASONING>: [Analysis and explain your reasoning step by step for continue to

next round or submit final guess]↪→
<CHOICE>: [your_choice]
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Classic - Deduce step - Not valid format prompt - CoT

You did NOT follow the response format. Please try again.

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice.↪→

**Response format**:
<REASONING>: [Analysis and explain your reasoning step by step for submitting the

final guess or continue to next round]↪→
<CHOICE>: [your_choice]

E.2 Nightmare Prompts with Only-Answer (OA) and Chain-of-Thought (CoT)
E.2.1 Nightmare system prompt

You are participating in a competitive logic deduction game called Turing
Machine.↪→

Your goal is to win first place by deducing a secret 3-digit code with minimal
rounds and verifier usage, but accuracy takes priority over speed.↪→

Game Objective:
- Deduce the secret 3-digit code made up of digits 1-5.
- BLUE = first digit, YELLOW = second digit, PURPLE = third digit.
- Each digit can be 1, 2, 3, 4, or 5 (digits may repeat).
- The code is the ONLY combination that satisfies the active criterion of ALL

chosen verifiers.↪→

Game Structure (Rounds):
1. Proposal: Design a 3-digit code to test (format: BLUE=X, YELLOW=Y, PURPLE=Z,

where X, Y, Z are digits from 1 to 5).↪→
2. Question: Sequentially choose 0 to 3 verifiers to test your proposed code each

round. After each selection, you will see the result from an unknown
verifier. The verifier identity will be hidden.

↪→
↪→
3. Deduce: Based on verifier results, you can submit a final answer or continue

to the next round.↪→
4. End Round: If you didn't submit a final answer, a new round begins.

Verifier Rules:
- Each verifier checks ONE specific property (criterion) about the code.
- Each verifier has multiple potential criteria, but for each game, only ONE is

secretly selected as 'active'. You don't know which criterion is active for
any given verifier.

↪→
↪→
- Focus of Verification: When testing your code against a verifier, it

EXCLUSIVELY evaluates it against its SINGLE, ACTIVE criterion. The verifier
completely ignores all other potential criteria, including its own inactive
ones.

↪→
↪→
↪→
- In this game, you don’t know which Verifier’s result you’re actually seeing --

the mapping between Verifiers and their displayed results is randomized and
hidden from the player, though fixed for the entire game.

↪→
↪→
- PASS Condition: A verifier returns `<PASS>` if and only if your code satisfies

the active criterion of the actual Verifier it is mapped to. For example, if
Verifier 1 is secretly mapped to Verifier 2, then a <PASS> from Verifier 1
means your code met Verifier 2's hidden active rule.

↪→
↪→
↪→
- FAIL Condition: A verifier returns `<FAIL>` if and only if your code does not

satisfy the active criterion of the actual Verifier it is mapped to. A <FAIL>
simply means the mapped Verifier's rule was not met.

↪→
↪→
- Non-Overlapping Information: The active criteria selected across different

verifiers for a game will provide distinct information.↪→

Winning Strategy:
- It is possible to deduce the solution through joint reasoning, utilizing the

combined results of multiple verifiers along with system rules such as the
existence of a unique solution and the principle that no two verifiers offer
redundant information.

↪→
↪→
↪→
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- One possible strategy is to carefully modify your code across multiple rounds
and observe how each Verifier’s output changes. By analyzing the pattern of
responses, you can infer the hidden mapping between Verifiers and their
actual criteria.

↪→
↪→
↪→
- Only submit a final guess when you have either tested all verifiers and

received <PASS> for each, or when your reasoning clearly proves your code
satisfies all possible active verifier criteria. Accuracy takes priority over
speed.

↪→
↪→
↪→

Current Game Setup:
{game_setup}

E.2.2 Nightmare proposal step prompt
Nightmare - Proposal step - Step prompt - OA

You are now entering the **Proposal Stage** of this round.

**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code can NOT be changed in the subsequent
stages of this round.

↪→
↪→

**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.

**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you, but you don’t know which

Verifier’s result you’re actually seeing -- the mapping between Verifiers and
their displayed results is randomized and hidden from the player, though
fixed for the entire game.

↪→
↪→
↪→
- Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <CHOICE>: BLUE=1, YELLOW=1, PURPLE=1↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: BLUE=X, YELLOW=Y, PURPLE=Z

Nightmare - Proposal step - Not valid format prompt - OA

You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

Nightmare - Proposal step - Step prompt - CoT

You are now entering the **Proposal Stage** of this round.

**Stage Purpose**:
In this stage, you need to compose a 3-digit code to help you to gather

information from the verifiers. The code cannot be changed in the subsequent
stages of this round.

↪→
↪→

**3-digit code rules**:
- BLUE = first digit (X), YELLOW = second digit (Y), PURPLE = third digit (Z).
- Each digit (X, Y, Z) can be 1, 2, 3, 4, or 5. Digits may repeat.
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**Your Goal in This Stage**:
- Design a code that will test a specific hypothesis.
- Think about what a <PASS> or <FAIL> would tell you, but you don’t know which

Verifier’s result you’re actually seeing -- the mapping between Verifiers and
their displayed results is randomized and hidden from the player, though
fixed for the entire game.

↪→
↪→
↪→
- Choose a code that lets you learn something meaningful from verifiers.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

Nightmare - Proposal step - Not valid format prompt - CoT

You did not follow the required response format. Please try again with same code.

**What You Must Do Now**:
- Reply the code you want to use in this round with required response format. For

example, <PROPOSAL>: BLUE=1, YELLOW=1, PURPLE=1↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

code.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing this code]
<CHOICE>: BLUE=[X], YELLOW=[Y], PURPLE=[Z]

E.2.3 Nightmare question step prompt
Nightmare - Question step - First question prompt - OA

You are now entering the **Verifier Questioning Stage** of this round.

**Current Verifiers**:
{verifier_descriptions}

**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- Each verifier shows results for a different, hidden verifier (the mapping is

randomized but fixed for the entire game).↪→
- <PASS> means your code satisfies the active criterion of the secretly mapped

verifier. <FAIL> means your code does not satisfy that criterion.↪→
- Active rules do NOT overlap between verifiers.

**Your Goal in This Stage**:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.
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**Response format**:
<CHOICE>: [your_choice]

Nightmare - Question step - Following questions prompt - OA

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

**Hint**:
- `<PASS>` means your code satisfies the active criterion of the actual Verifier

it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
rule.

↪→
↪→
↪→
- `<FAIL>` means your code does not satisfy the active criterion of the actual

Verifier it is mapped to.↪→

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Nightmare - Question step - Last question prompt - OA

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→

Nightmare - Question step - Not valid format prompt - OA

You did not follow the required response format. Please try again with same
choice.↪→

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Nightmare - Question step - Not valid verifier choice prompt - OA

You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]
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Nightmare - Question step - First question prompt - CoT

You are now entering the **Verifier Questioning Stage** of this round.

**Current Verifiers**:
{verifier_descriptions}

**Stage Purpose**:
In this stage, you can test your proposed 3-digit code using verifiers. Each

verifier checks one hidden criterion. Use the test results to gather
information and refine your deduction.

↪→
↪→

**Verifier Rules Summary**:
- Each verifier has ONE secretly selected active criterion.
- Each verifier shows results for a different, hidden verifier (the mapping is

randomized but fixed for the entire game).↪→
- <PASS> means your code satisfies the active criterion of the secretly mapped

verifier. <FAIL> means your code does not satisfy that criterion.↪→
- Active rules do NOT overlap between verifiers.

**Your Goal in This Stage**:
- Choosing verifiers is optional; testing 0 verifiers is allowed. If you want to

choose the verifier, you must choose verifiers **one at a time**. After each
result, you may decide whether to test another. You may choose to test 0 to 3
verifiers **in total** during this round.

↪→
↪→
↪→
- **Passing all tested verifiers does NOT mean the code is correct.** To win,

your code must satisfy the hidden criterion of **all verifiers**, whether
tested or not.

↪→
↪→

**What You Must Do Now**:
- If you want to choose a verifier to test your proposed code, reply with

verifier_num after <CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

Nightmare - Question step - Following questions prompt - CoT

You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

**Hint**:
- `<PASS>` means your code satisfies the active criterion of the actual Verifier

it is mapped to. For example, if Verifier 1 is secretly mapped to Verifier 2,
then a <PASS> from Verifier 1 means your code met Verifier 2's hidden active
rule.

↪→
↪→
↪→
- `<FAIL>` means your code does not satisfy the active criterion of the actual

Verifier it is mapped to.↪→

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

Nightmare - Question step - Last question prompt - CoT
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You chose Verifier <{verifier_num}> and the result is <{verifier_result}>.

You have now tested the maximum number of three verifiers for this round. The
next stage is the Deduce Stage. If you want to test more verifiers or new
code, you can choose SKIP during the Deduce Stage to move on to the next
round.

↪→
↪→
↪→

Nightmare - Question step - Not valid format prompt - CoT

You did not follow the required response format. Please try again with same
choice.↪→

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

Nightmare - Question step - Not valid verifier choice prompt - CoT

You selected Verifier <{verifier_num}>, which is not a valid verifier number.

Please choose a valid verifier or SKIP to next stage.

**What You Must Do Now**:
- If you want to choose the next verifier to test, reply with verifier_num after

<CHOICE> tag, such as <CHOICE>: 1.↪→
- If you want to skip verifier testing for this round, reply with SKIP after

<CHOICE> tag, such as <CHOICE>: SKIP.↪→
- Explain your reasoning step by step based on verifier result after <REASONING>

tag, then provide your choice.↪→

**Response format**:
<REASONING>: [Explain your reasoning step by step for choosing the verifier or

skipping verifiers]↪→
<CHOICE>: [your_choice]

E.2.4 Nightmare deduce step prompt
Nightmare - Deduce step - Deduce result prompt

The final guess is {submitted_code}. The answer is {answer}, the guess is
{is_correct}.↪→

Nightmare - Deduce step - Step prompt - OA

You are now entering the **Deduce Stage** of this round.

**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether

to continue to the next round or submit a final guess.↪→

**Hint**:
- Passing all tested verifiers does not mean the code is correct if not all

verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
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- This stage **is not for testing**, you don't have to submit an answer; you can
proceed to the next round to continue gathering information.↪→

- Accuracy takes priority over speed. If you submit, the game will end, and an
incorrect guess will result in immediate failure.↪→

**Your Goal in This Stage**:
- Decide whether to submit the final guess or continue to the next round. Submit

the final guess will end the game, continue to the next round will help you
gather more information.

↪→
↪→
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Nightmare - Deduce step - Not valid format prompt - OA

You did NOT follow the response format. Please try again.

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- DO NOT include any explanation, only follow the response format.

**Response format**:
<CHOICE>: [your_choice]

Nightmare - Deduce step - Step prompt - CoT

You are now entering the **Deduce Stage** of this round.

**Stage Purpose**:
In this stage, you can analyze all the information gathered then decide whether

to submit a final guess or continue to the next round.↪→

**Hint**:
- Passing all tested verifiers does not mean the code is correct if not all

verifiers were tested. To be correct, the code must satisfy the hidden
criteria of all verifiers, not just the ones you tested.

↪→
↪→
- You may choose not to test some verifiers if you can clearly reason that your

code meets their requirements. But you must ensure every verifier is either
tested and passed, or clearly justified through reasoning. Testing and
passing only part of the verifiers is not enough if others are ignored.

↪→
↪→
↪→
- This stage **is not for testing**, you don't have to submit an answer; you can

proceed to the next round to continue gathering information.↪→
- Accuracy takes priority over speed. If you submit, the game will end, and an

incorrect guess will result in immediate failure.↪→

**Your Goal in This Stage**:
- Analysis all information gathered.
- Decide whether to submit the final guess or continue to the next round.
- Submission is not mandatory, you must make this decision based on your own

reasoning.↪→

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
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- If you want to submit a final guess to end the game, reply with BLUE=X,
YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice. If you want to submit a final guess, you must provide the reasons for
not proceeding to the next round.

↪→
↪→

**Response format**:
<REASONING>: [Analysis and explain your reasoning step by step for continue to

next round or submit final guess]↪→
<CHOICE>: [your_choice]

Nightmare - Deduce step - Not valid format prompt - CoT

You did NOT follow the response format. Please try again.

**What You Must Do Now**:
- If you want to continue to the next round, reply with SKIP after <CHOICE> tag,

such as <CHOICE>: SKIP↪→
- If you want to submit a final guess to end the game, reply with BLUE=X,

YELLOW=Y, PURPLE=Z after <CHOICE> tag, such as <CHOICE>: BLUE=1, YELLOW=1,
PURPLE=1.

↪→
↪→
- Explain your reasoning step by step with <REASONING> tag, then provide your

choice.↪→

**Response format**:
<REASONING>: [Analysis and explain your reasoning step by step for submitting the

final guess or continue to next round]↪→
<CHOICE>: [your_choice]

F Human Player Interface

Verifier <0>:
This Verifier verifies the BLUE number compared 
to 3
- Possible criteria: BLUE is less than 3
- Possible criteria: BLUE is equal to 3
- Possible criteria: BLUE is greater than 3

Verifier <2>: 
This Verifier verifies which colour's number is 
smaller than either of the others
- Possible criteria: BLUE is smaller than 
PURPLE and YELLOW
- Possible criteria: YELLOW is smaller than 
BLUE and PURPLE
- Possible criteria: PURPLE is smaller than 
YELLOW and BLUE

Verifier <1>: 
This Verifier verifies if YELLOW number is even 
or odd
- Possible criteria: YELLOW is even
- Possible criteria: YELLOW is odd

Verifier <3>: 
This Verifier verifies the number of even 
numbers compared to the number of odd 
numbers
- Possible criteria: there are more even 
numbers, such as 245
- Possible criteria: there are more odd numbers, 
such as 332

Now entering the Proposal stage. During this stage, you will need to compose a 3-digit code to help you 
learn as much as possible from the verifiers.
BLUE = first digit(X), YELLOW = second digit(Y), PURPLE = third digit(Z).
Each digit(X, Y, Z) can be 1, 2, 3, 4, or 5 (digits may repeat).

Explain why you chose this code first, then enter your 3-digit guess code.

Next Step

Setup ID: XXXX Mode: classic Difficulty: Easy Time: 00.00.00

Round 1 Compose the Proposal

Thinking Process Record:
Record your thinking process here …

Record your guess code here …Guess Code:

Figure 7: The interface for a human player in the game, providing exactly the same information as an LLM player.
The top section displays the basic information of the current game, the left side shows the verifier information, and
the right side includes stage introduction and the interaction panel. The human player first needs to think according
to the requirements of the round and record their reasoning process, then provide their decision, and finally click
"next step" to move on to the next phase. This process is fully consistent with the LLM player’s flow.
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