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Abstract

Scientific paper retrieval is essential for
supporting literature discovery and research.
While dense retrieval methods demonstrate ef-
fectiveness in general-purpose tasks, they often
fail to capture fine-grained scientific concepts
that are essential for accurate understanding of
scientific queries. Recent studies also use large
language models (LLMs) for query understand-
ing; however, these methods often lack ground-
ing in corpus-specific knowledge and may gen-
erate unreliable or unfaithful content. To over-
come these limitations, we propose SemRank,
an effective and efficient paper retrieval frame-
work that combines LLM-guided query un-
derstanding with a concept-based semantic in-
dex. Each paper is indexed offline using multi-
granular scientific concepts, including general
research topics and detailed key phrases. At
query time, an LLM identifies core concepts
derived from the corpus to explicitly capture
the query’s information need. These identi-
fied concepts enable precise semantic match-
ing, significantly enhancing retrieval accuracy.
Experiments show that SemRank consistently
improves the performance of various base re-
trievers, surpasses strong LLM-based baselines,
and remains highly efficient.!

1 Introduction

Scientific paper retrieval is a crucial task to facili-
tate literature discovery and accelerate scientific
progress (Kang et al., 2024b). Unlike general-
purpose information retrieval, scientific paper re-
trieval is more challenging because queries often
involve theme-specific intent and specialized ter-
minology. In addition, acquiring labeled query-
passage pairs for supervised fine-tuning is costly
and requires domain expertise, making it impracti-
cal to continuously annotate more data to adapt the
fast-evolving scientific domains.

'Code can be found at:
yzhan238/SemRank.

https://github.com/

seongkukang@korea.ac.kr

Recently, dense passage retrieval methods
have been widely studied in various ad-hoc
searches (Karpukhin et al., 2020; Izacard et al.,
2021). These methods encode the overall seman-
tics of queries and passages into the same vector
space and measure relevance using vector similar-
ity. Although being effective in different general
domain applications, they still face challenges in
scientific paper retrieval.

Specifically, general-purpose semantic represen-
tations learned by dense retrievers often fail to cap-
ture fine-grained scientific concepts that are cru-
cial for accurately understanding and satisfying
a scientific query (Chen et al., 2022; Shavarani
and Sarkar, 2025). For example, the query “Can
you point me to studies discussing methods for
evaluating text generation models on various di-
mensions?” involves not only general topics like
“natural language generation” and “automatic eval-
uation” that need to be inferred from the text, but
also specific details like “multidimensional evalua-
tion”. A dense retriever, however, only encodes the
text in a holistic view, while it lacks the ability and
controllability to focus on the scientific concepts
which are the core need of the query.

With the advancements of large language mod-
els (LLM) such as GPT (OpenAl, 2023) and
Claude (Anthropic, 2024), recent studies also ex-
plore how to utilize LLMs in query understanding
to help retrieval tasks. For example, HyDE (Gao
etal.,2023) uses an LLM to generate a hypothetical
passage for encoding, and CSQE (Lei et al., 2024)
prompts an LLM to select a set of relevant sen-
tences to expand the original query. However, these
methods still rely on a pre-trained dense retriever to
encode overall semantics on the document or sen-
tence levels, lacking the ability to explicitly capture
what the query is asking for. In addition, LLMs are
not inherently retrieval models. They do not have
the vast and dynamic knowledge in the scientific
literature necessary to understand scientific queries.
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[Query]: "Can you point me to studies discussing methods for evaluating
text generation models on various dimensions? I’m particularly interested
how to assess their performance on summary-level and turn-level tasks."

@ Retrieve

e

Infer Query Concepts: natural language generation, evaluation

metrics, multi-dimensional evaluation, automatic
evaluation, summarization, dialogue response generation

t Semantic Matching

[Passage Al: Multi-dimensional evaluation is the dominant paradigm
for human evaluation in Natural Language Generation (NLG)...we propose
a unified multi-dimensional evaluator UNIEVAL for NLG...correlation on
text summarization...dialogue response generation... SemRank: Top 1

Base Retriever: Top 30

Topic Labels: natural language generation, question

answering, summarization, coherence, consistency, relevance

Key Phrases: UNIEVAL, multi-dimensional evaluation,

Boolean Question Answering, NLG evaluation, dialogue response generation

X [Passage Bl: Story generation is an open-ended and subjective task,
which poses a challenge for evaluating story generation models... a
collaborative writing setup for pairwise model evaluation... The setup
also allows further analysis based on the revisions... SemRank: Top 50
Base Retriever: Top 10

Topic Labels: natural language generation, story generation,
collaborative writing, pairwise comparison
Key Phrases: story generation, story generation models, paired

suggestions, collaborative writing setup, pairwise model evaluation

Figure 1: An illustrative example from LitSearch with SPECTER-v2 as base retriever. By capturing the scientific
concepts for corpus and query, SemRank substantially improves the ranking results.

Therefore, when used in a zero-shot manner, LL.Ms
cannot identify domain-specific terminology and
may generate hallucinated content. Thus, how to ef-
fectively augment LLMs with corpus-based knowl-
edge while capturing specific query information
remains a challenge.

To overcome these limitations, we propose to
utilize LLMs’ text understanding ability in the sci-
entific retrieval task with the help of a scientific
concept-based semantic index. Unlike earlier stud-
ies which construct domain-specific semantic in-
dex at topic level (Tsatsaronis et al., 2015), we
build concept-based semantic index at various gran-
ularities: from broad research topics such as “nat-
ural language generation” to specific terms such
as “multidimensional evaluation metrics”. These
multi-granular concepts capture the essential con-
tent of the paper. Then, we use the semantic index
to improve any existing retrievers with the help of
LLMs. Specifically, we prompt an LLM to identify
a set of core concepts to explicitly represent what
the scientific query is asking for. We augment the
prompt with candidate concepts derived from the
corpus, which helps the LLM to reduce hallucina-
tion and ensure the generated content align with the
semantic index of corpus. Figure 1 shows an exam-
ple that, by accurately capturing the multi-granular
concepts of the corpus and query, we can improve
the scientific paper retrieval results by focusing on
the core need of the query.

We propose the SemRank, LLM-Guided
Semantic-Based Ranking, a plug-and-play frame-
work for scientific paper retrieval. First, during the
indexing time, we build scientific concept-based se-
mantic index for the corpus by identifying a set of
research topics and key phrases for each paper. To
ensure the topic labels in their canonical forms, we
train an auxiliary topic classifier model to identify

a set of candidate topics from a large label space?.
Then, we prompt an LLM to select the core topic
labels and extract key phrases to build the semantic
index. Then given a query during retrieval, we first
construct a set of candidate concepts from the cor-
pus using a base retriever, from which an LLM can
be augmented with corpus-based knowledge and
identify a set of core concepts for the query. These
concepts, serving as an explicit guidance on what
the query is asking for, will be used for concept-
level semantic matching to improve the retrieval
results.

Our method can be easily integrated with any
dense retriever and improve their retrieval quality
without relying on any annotated query data. Ex-
periments show that our method is both effective
and efficient. During retrieval time, SemRank only
needs one LLM prompting per query, no additional
call to the base retriever, and all computation can
be done easily on CPUs. Yet it can significantly
improve the ranking performance of a wide range
of base retrievers and outperforms various LLM-
based baselines.

The contributions of this paper are as follows:

* We propose SemRank, a plug-and-play frame-
work for scientific paper retrieval, which utilizes
concept-based semantic index and LLM guid-
ance to explicit capture the information need for
scientific queries.

* We develop a light-weighted method which aug-
ments an LLM with semantic index of corpus to
accurately identify a set of core scientific con-
cepts for the query, which are then used to im-
prove the retrieval performance through concept-
level semantic matching.

* Through extensive experiments, we show that

%An academic label space is widely available such as ACM
CCS and Microsoft Academic Graph (Sinha et al., 2015)
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Figure 2: Overview of the SemRank framework.

SemRank consistently improves the base retriev-
ers’ performance and outperforms existing base-
lines while being more efficient.

2 Problem Formulation

Given a corpus D of scientific papers, our goal is
to retrieve and rank the papers according to their
relevance to a given query q. Specifically, we will
build concept-based semantic index for the corpus
by identifying a set of scientific concepts represent-
ing the core information of each paper. We assume
a scientific topic label space 7, which is widely
available and normally contains a large number of
research topics. In this work, we use Microsoft
Academic Graph (Sinha et al., 2015), which con-
tains 13,613 Computer Science topics. Then, we
utilize LLMs and the semantic index to improve
the scientific paper retrieval performance.

3 Methodology

In this section, we will present our SemRank frame-
work. We first introduce the offline semantic index
construction module (Sect. 3.1), then we introduce
the LLM-guided semantic-based ranking for scien-
tific paper retrieval (Sect. 3.2). Figure 2 shows an
overview of SemRank.

3.1 Semantic Index Construction

To capture the core research concepts at various
granularities for scientific papers, we propose to
build a semantic index of the corpus that contains
general research topics and specific key phrases.
The broad topics aim to cover the overall themes of
the papers that are not explicitly mentioned such as
“natural language generation” and ‘““‘automatic eval-
uation,” while the key phrases aim to capture the
detailed information specific to the paper such as
“multidimensional valuation metrics”. Such a well-
structured corpus foster flexible query matching at
different granularities.

While directly prompting LLMs could be a vi-
able solution to assign each document a set of top-
ics and key phrases, it is hard to ensure the faithful-
ness of the LLM-generated content. Besides, the
research topics are often not explicitly mentioned
in the text and LLMs can generate topics at random
granularity, which is less controllable and hard to
match during retrieval. Therefore, we propose to
first fine-tune a multi-label topic classifier for sci-
entific papers with a domain-specific topic label
space, from which we can obtain a set of candidate
topics for each scientific paper.

Candidate Topic Prediction We first fine-tune a
multi-label text classifier to estimate the likelihood
of a paper belonging to a research topic. We use a
simple log-bilinear text matching network as our
model architecture (Zhang et al., 2025). We initial-
ize the paper encoder with a pre-trained scientific
domain language model (e.g., SPECTER-v2 (Singh
et al., 2022)). We also get the topic embeddings
using the same pre-trained model and detach them
from the encoder. This ensures only the embed-
dings are updated without back-propagating to the
backbone for saving cost. Then, the classifier pre-
dicts the probability of document d; belonging to
topic ¢; € 7 with log-bilinear matching:

p(t;lds) = o(exp (t] Wd;)),

where o is the sigmoid function, W is a learnable
interaction matrix, and t; and d; are the encoded
topic and document.

We fine-tune the multi-label topic classifier using
the binary cross entropy loss. Given the positive
topics of paper d; € D in the label space 7; C T,
we train the classifier with:

£==3 (X toglt;l)

d; €D t; e7T;

+a Y log (1-p(t;ld)) )

ti¢Ti
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where the coefficient « is a small constant number
to counter the imbalanced numbers of positive and
negative labels in a large label space.

Core Concepts Identification With the fine-
tuned scientific topic classifier, we first predict a
set of candidate topics likely relevant to each paper
in the retrieval corpus. Then, we prompt an LLM
to perform two tasks: (1) select a set of topics from
the candidate list that are not too broad or irrele-
vant, and (2) extract a set of key phrases from the
paper. By providing a candidate topic list, we turn a
generation task (of zero-shot prompting) to a selec-
tion and extraction task for LLMs, which reduces
the chance of hallucination and also ensures the
selected topics following a label space. Figure 4
shows our prompt.

By first predicting candidate topic labels with
a text classifier, not only can we resolve the issue
of LLMs’ poor performance on a large structured
label space (U et al., 2023; Zhang et al., 2025), but
also reduce the cost of prompting LLMs by 98%. A
more detailed cost analysis is in Section 4.4. Also
note that we only need to train one topic classifier
for a domain and use it for all corpora in the same
domain (e.g., Computer Science).

In summary, for each scientific paper d; € D,
we identify a set of research topics belonging to a
label space, denoted as 7; € T, and a set of key
phrases extracted from it, denoted as P;.

3.2 LLM-Guided Semantic-Based Retrieval

With the constructed semantic index capturing the
core concepts discussed in the corpus, we now
present how SemRank leverages it to enhance re-
trieval by explicitly modeling a query’s information
need. Given a base retriever, SemRank first iden-
tifies a set of candidate concepts relevant to the
query and prompts an LLM to analyze the retrieval
context and select the most salient core concepts.
These core concepts are then used to refine the
initial retrieval results, yielding a concept-aware
ranking that better aligns with the query intent.

Candidate Concepts Construction for Query
Directly prompting an LLM to assign a set of scien-
tific concepts to a query is not optimal, because the
generated content may not align with the semantic
index structure of the corpus and thus make it dif-
ficult to match between the query and the papers.
Therefore, we propose to first construct a set of
candidate concepts for a query from the corpus.

Inspired by the idea of pseudo relevance feed-
back, given a base retriever s**¢ and its initial
ranking results, we collect a set of topics and key
phrases that are frequently mentioned in the top-
ranked papers. Specifically, for a query ¢, we col-
lect lists of top-k most frequent topics and key
phrases mentioned by the top-ranked papers using
their pre-constructed semantic index 7; and P;, and
denote the lists as T%(q) and P°(q). These con-
cepts, being frequently mentioned by top-ranked
papers, are likely relevant to the initial query.

LLM-Guided Core Concept Identification
With the constructed candidate concepts of the
query, we can now prompt an LLM to identify
a set of core concepts for the query that can most
likely identify its relevant papers. Given the topic
and key phrases lists T%(q) and P°(q) as well as
the top-k papers in the current ranking D°(q), we
instruct an LLM to select a set of concepts from
the candidate lists in order to improve the current
ranking results. Figure 5 shows our prompt.

Because the candidate concepts are collected
from the semantic index, they contribute to two ad-
vantages: (1) they serve as a high-level summary of
the current retrieval results to help the LLM inter-
pret the query and current results; (2) they provide
a high-quality candidate list for the LLM, ensuring
the faithfulness and reducing hallucination.

After prompting the LLM, we get a set of core
concepts selected from the candidate lists, which
we denote as C'(q). This set contains the most im-
portant concepts relevant to the original query and
thus explicitly represents the information need of
the query. Also, the concepts are in different granu-
larities, proper for matching at the needed level of
details. For example, for the query shown in Fig 1,
the LLM identifies general topics like “natural lan-
guage generation” and “automatic evaluation”, and
specific terms like “multidimensional evaluation”
and “dialogue response generation”.

Core Concept-Based Ranking Finally, with the
identified set of core concepts of the query, we can
use the semantic index of the corpus to re-evaluate
the ranking. Specifically, given the core concepts
of the query C'(¢) and the the concepts of a paper
C; = T; U F;, we calculate their similarity with a
multi-vector similarity matching score.

1
s* (g, di) = 7 max sim(c,c’),
Cll 2 P
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Table 1: Datasets overview.

Dataset corpus size # test query doc/query
CSFCube 4,207 34 13.32
DORISMAE 8,482 90 19.49
LitSearch 64,183 597 1.07

where c denotes the embedding of a concept by a
semantic encoder (e.g., SPECTER-v2) and sim/()
represents the cosine similarity function. This
embedding-based soft matching process identifies
the most similar concept in a paper for each query’s
concept, which accounts for the situation where
similar concepts are expressed slightly differently
(e.g., “hallucination” and “hallucinated content”).
Then, we combine this semantic-based score with
the base retriever’s score by z-score normalization
(denoted by z(-)), based on which we can re-rank
the papers to get a new ranked list.

s(q, di) = 2(s"*(g,dy)) + 2(5°™ (g, d;)).-

Efficiency of SemRank Retrieval Given the
ranking results of a base retriever, our LLM-guided
semantic-based ranking process is highly efficient.
First, it only requires one LLM call, and the output
length is minimal because it is highly-structured
with a list of scientific concepts. Second, because
all the query’s concepts are selected from the se-
mantic index and all concept embeddings can be
pre-computed offline, we only need the cosine sim-
ilarity computation (i.e., dot product with normal-
ized vectors) during retrieval, which is highly ef-
ficient and can be done on CPUs. Besides, the
pairwise similarities between concepts can also be
pre-computed for the maximal inference efficiency,
but it requires substantial amount of storage, so we
opt to compute the similarity during retrieval. We
conduct a detailed efficiency analysis in Sect. 4.4.

4 Experiments

4.1 Experiment Setup

Datasets We use three public datasets on sci-
entific paper retrieval: CSFCube (Mysore et al.,
2021), DORISMAE (Wang et al., 2023a), and Lit-
Search (Ajith et al., 2024), including both human-
annotated and LLM-generated relevance labels. We
use the processed version of CSFCube and DORIS-
MAE released by Kang et al. (2024b)? and Lit-
Search from its official github*. Table 1 summa-
rizes the overall statistics of the datasets.
3https://aclanthology.org/attachments/2024.emnlp-

main.407.data.zip
*https://github.com/princeton-nlp/LitSearch

Base Retrievers We use a wide range of base
retrievers in our experiments. We include a sparse
retriever BM25, an unsupervised dense retriever
SPECTER-v2 (Singh et al., 2022), and the Hybrid
of these two. We also include two instruction-tuned
dense retrievers, ES-large-v2 (Wang et al., 2022)
and GritLM-7B (Muennighoff et al., 2025).

Baselines We compare SemRank with a collec-
tion of retrieval methods using corpus knowledge
and/or LLMs to enhance base retrievers.

* Boudin et al. (Boudin et al., 2020) uses a seq2seq
keyphrase generation model to enrich the corpus
indexing.

* BERT-QE (Zheng et al., 2020) expands the
query with relevant text chunks selected from
top-ranked papers returned by the base retriever.

* ToTER (Kang et al., 2024a) improves the re-
trieval performance with a topical taxonomy by
comparing the topic distributions of the query
and documents predicted by a text classifier.

* HyDE (Gao et al., 2023) prompts an LLM to
generate hypothetical document that answers the
query and encode it as the query vector.

* GRF (Mackie et al., 2023) generates relevant
context by an LLM. We choose to generate sci-
entific concepts for fair comparison.

¢ CSQE (Lei et al., 2024) uses an LLM to select
relevant sentences from top-ranked documents of
the base retriever, which are then used to expand
the query together with a hypothetical document.

Evaluation Metrics We use Recall@K (R@K)
as our evaluation metric. Following previous stud-
ies, we use K = 50, 100 for CSFCube and DORIS-
MAE, and K = 5,20, 100 for LitSearch.

Implementation Details For building seman-
tic index, we train our text classifier using
MAPLE (Zhang et al.,, 2023b) which con-
tains topic labels from Microsoft Academic
Graph (Sinha et al., 2015). We initialize it with
SPECTER-v2-base and fine-tune it with learning
rate at Se-5 for 10 epochs. The balancing factor «
is set to le-2. We also use SPECTER-v2-base for
concept encoding. During retrieval, the number of
candidate topics and key phrases is £k = 50. We
use GPT-4.1-mini as the LLM for SemRank and
all LLM-based baselines for fair comparison. The

SWe also experiment with other retrievers such as NV-
Embed-v2 (Lee et al., 2025). GritLM achieves the strongest
performance on scientific paper retrieval, potentially because
it specifically includes scientific corpora in its training data.
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Table 2: Performance of baselines in Recall @K, with the best score boldfaced and the second best underlined.

Base Methods | CSFCube | DORISMAE | LitSearch
| R@50 R@100 | R@50 R@100 | R@5 R@20 R@100
Retriever | 0.5331  0.6860 | 0.5305 0.7208 | 0.3931 0.5551  0.7205
o Boudinetal. | 0.5088 0.6739 | 0.4695 0.6040 | 04345 05671 0.7250
e BERT-QE | 0.5243 0.6689 | 0.5284 0.6942 | 0.3959 0.5551 0.7364
£ ToTER 05443 0.7131 | 05319 0.7234 | 0.3948 0.5568 0.7239
S HyDE 0.5879 0.7473 | 0.5110 0.6789 | 0.4241 0.5923 0.7682
% GRF 05599 0.6758 | 0.5442 0.7283 | 0.4319 0.5830 0.7604
CSQE 05586 0.7149 | 0.5022 0.6491 | 0.4366 0.5747 0.7223
SemRank | 0.6222 0.7601 | 0.5894 0.7451 | 0.5028 0.6316 0.7746
Retriever | 0.6111  0.7362 | 0.5548 0.7162 | 0.5137 0.6573 0.7765
« BERT-QE | 0.6399 0.7589 | 0.5943 0.7451 | 0.4906 0.6361 0.7881
7 ToTER 0.6134  0.7553 | 0.5596 0.7120 | 0.4981 0.6627 0.7951
2 HyDE 0.6203  0.7255 | 0.5559 0.7236 | 0.4854 0.6592 0.8149
~ GRF 0.6183 07797 | 0.6025 0.7501 | 0.5347 0.6984 0.8319
M CSQE 0.6416 0.7549 | 0.4787 05977 | 0.5503 0.6389 0.7719
SemRank | 0.6661 0.8177 | 0.6286 0.7754 | 0.5807 0.7042 0.8312

Table 3: Performance of SemRank on three datasets with different base retrievers, with the best score boldfaced.

Methods | CSFCube

| DORISMAE |

LitSearch

| R@50

R@100 | R@50

R@lOO‘ R@5 R@20 R@100

SPECTER-v2
+ SemRank

0.5331
0.6222

0.6860
0.7601

0.5305
0.5894

0.7208 | 0.3931
0.7451 | 0.5028

0.5551
0.6316

0.7205
0.7746

BM25
+ SemRank

0.4651
0.5840

0.5966
0.7076

0.5721
0.6507

0.7441 | 0.4381
0.8104 | 0.5126

0.5794
0.6612

0.7362
0.7920

Hybrid
+ SemRank

0.5855
0.6434

0.7131
0.7673

0.6743
0.6779

0.8297 | 0.5397
0.8358 | 0.5835

0.6877
0.7161

0.7881
0.7922

ES-large-v2
+ SemRank

0.6111
0.6661

0.7362
0.8177

0.5548
0.6286

0.7162 | 0.5137
0.7754 | 0.5807

0.6573
0.7042

0.7765
0.8312

GritLM-7B
+ SemRank

0.6732
0.7290

0.7742
0.8466

0.6415
0.6743

0.8037 | 0.6908
0.8187 | 0.6955

0.8001
0.8171

0.9149
0.9221

experiments are run on one NVIDIA RTX A6000
when a GPU is needed.

4.2 Retrieval Performance Comparison

Table 2 shows the results of compared baselines
with two retrievers, SPECTER-v2 and ES5-large.
We clearly see that SemRank overall outperforms
the compared baselines on all datasets. Specifically,
we observe that methods using LLMs for query
understanding achieves better performance, show-
ing the strength of text understanding ability of
LLMs in the retrieval task. Comparing with previ-
ous methods, SemRank uses the LLLM for concept-
based query understanding and matching, which
captures the query’s need more explicitly and thus
achieves stronger performance.

Table 3 additionally shows the results of

SemRank on different base retrievers.

We can

see that SemRank consistently improves the perfor-
mance of all kinds of retrievers. Even for GritLM-
7B, the SOTA model reported in Ajith et al. (2024)
and trained with scientific data, SemRank still im-
proves its performance on all datasets. Besides,
SemRank also improves the performance of Hy-
brid model, showing that concept-level semantic
matching is not a combination of typical sparse and
dense features, but in another intermediate level
that really captures scientific knowledge.

4.3 Ablation Studies

We conduct ablation studies to show the effective-
ness of each component of SemRank. We include
the following ablated versions:

* No Topic: excludes topics in semantic index.
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Table 4: Ablation studies of SemRank on LitSearch.

| R@5 R@20 R@100
SPECTER-v2 | 03931 0.5551 0.7205
Indexing
No Topic 04331 0.6040 0.7687
No Phrase 04160 05682 0.7447
Retrieval
No Corpus 04060 05557  0.7260
No LLM (class) | 0.4079 0.5459 0.7320
No LLM (freq) | 0.3897 0.5497 0.7267
SemRank | 0.5028 0.6316 0.7746

* No Phrase: excludes phrases in semantic index.

* No Corpus: excludes the candidate scientific
concepts from the corpus and thus prompts the
LLM to directly generate scientific concepts
based on its own knowledge.

¢ No LLM (class): excludes the LLM and selects
scientific concepts for the query using the fine-
tuned topic classifier.

* No LLM (freq): excludes the LLM and uses
the top-20 most frequent concepts mentioned by
top-ranked papers returned by the base retriever.

Table 4 shows the results of ablation studies on
the LitSearch dataset with SPECTER-v2 as the
base retriever. First, we observe that either ablat-
ing topics or phrases from the semantic index will
degrade the performance, with phrases affecting
more because of its capturing more detailed infor-
mation. Second, removing the augmented corpus
knowledge from LLM prompting will greatly af-
fect the final performance, because LLMs tend to
generate terms not matched with the corpus. Fi-
nally, removing LLM but using topic classifier or
statistic-based metric for query concept identifi-
cation also drastically decreases the performance,
showing the power of LLM on query understanding
when augmented with corpus knowledge.

4.4 Efficiency Analysis

We show the efficiency of SemRank by comparing
it with other LLM-based baselines. Specifically,
we report the following factors of each method: the
number of base retriever calls per query (# RET),
the number of LLM calls per query (# LLM), the
average number of tokens generated by the LLM
per query (LLM Output Len), and the average
running time per query (Running Time). As stated
in Sect. 4.1, we use the same LLM checkpoint
for all baselines for a fair comparison. Table 5
shows the detailed comparison results on LitSearch.
We can clearly see that SemRank takes the least

Table 5: Efficiency analysis of LLM-based methods.

‘ #RET #LLM LLM Output Len Running Time

HyDE 1 1 169.39 tok 4.02 sec
GRF 2 1 79.72 tok 2.78 sec
CSQE 2 2 462.21 tok 11.27 sec
SemRank 1 1 18.92 tok 1.82 sec

inference time among the compared methods, with
1.5 x faster than the second fast method. Not only
does SemRank call the retriever and LLM only
once, it also expects minimal number of tokens
responded by the LLM because of the concept-
based structured input and output format.

Additionally, the offline indexing part of
SemRank is efficient as well. For semantic index
construction on CSFCube, to get the candidate top-
ics, the text classifier inference time is 52 seconds,
and to prompt LLLM for topic and keyphrase selec-
tion, it takes 84 seconds and $1.74 dollars. In com-
parison, directly prompting LLMs to build such se-
mantic index on CSFCube will take approximately
42 minutes and $85 dollars.

4.5 Combination with LLM-based Reranking

Recent studies also use LLM for reranking retrieval
results by prompting it to provide a new ranked
list of top documents. To show that SemRank
can naturally integrate with such a method, we
compare the performance of LLM-based reranking
with and without SemRank. Following (Ajith et al.,
2024), we provide top-100 papers to the LLM and
use the prompt from Sun et al. (2023). Table 6
shows the results on LitSearch with 3 base retriev-
ers. We can see SemRank does not conflict with
LLM-based reranking by consistently improving
its performance. While typical reranking only im-
proves recall within provided number of papers
(R@100 unchanged), SemRank can brings more
relevant papers and also improves R@ 100.

4.6 Parameter Studies

We study the influence of setting different number
of candidates provided to LLM for query concept
identification, i.e., k£ in Sect. 3.2 for prompt in Fig-
ure 5. We set the value of £ = 5, 10, 25, 50, 75, 100
and report their performance on LitSearch with
base retriever SPECTER-v2 and GritLM. Results
in Figure 3 show that SemRank overall is not very
sensitive to the value of k£ for k¥ > 25. We notice
slightly increased performance for smaller & in the
R @5 measures, which shows that an incomplete
query concept set may not be sufficient to affect
top-ranked documents that are hard to distinguish.
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Table 6: Further analysis of SemRank by combining
with LLM-based reranking.

| R@5 R@20 R@100

SPECTER-v2 0.3931 0.5551 0.7205
+ Reranking 0.6636  0.7038  0.7205

+ SemRank | 0.6705 0.7435 0.7746
ES-large-v2 0.5137 0.6573  0.7765
+ Reranking | 0.6989 0.7480 0.7765

+ SemRank | 0.7108 0.7963 0.8312
GritLM-7B 0.6908 0.8001 0.9149
+ Reranking 0.7575 0.8470 0.9149

+ SemRank | 0.7774 0.8520 0.9221

5 Related Works

Dense Retrieval Dense retrieval has become
a core paradigm in modern information re-
trieval. Early models like Dense Passage Re-
trieval (DPR) (Karpukhin et al., 2020) and ME-
BERT (Luan et al., 2021) leveraged in-batch and
BM25-based hard negatives to improve training ef-
ficiency. Subsequent methods refined negative sam-
pling: ANCE (Yu et al., 2021) used asynchronously
updated indices; RocketQA (Qu et al., 2021) in-
troduced cross-batch and denoised negatives; and
ADORE (Zhan et al., 2021) adopted dynamic sam-
pling for greater stability. PAIR (Ren et al., 2021)
incorporated passage-level similarity signals, while
FiD-KD (Izacard and Grave, 2021) distilled knowl-
edge from reader models.

In academic domains, specialized models like
SciBERT (Beltagy et al., 2019) pre-trained on
scientific texts laid the groundwork. Parisot
and Zavrel (2022) proposes a multi-objective ap-
proach that uses general-domain document rele-
vance and scientific domain citation network and
self-supervised data. Mandikal and Mooney (2024)
presents a hybrid approach that combines sparse
and dense retrievers with a weighting parameter.
MixGR (Cai et al., 2024) matches queries and doc-
uments additionally at subquery and proposition
levels and merge them with rank fusion. Recent in-
novations also focus on knowledge distillation from
cross-encoder rankers (Huang and Chen, 2024;
Tao et al., 2024; Zhang et al., 2023a). Despite
the progress and varied strategies for improving
dense retrieval, these methods inherently rely on
representing entire documents or queries with sin-
gle dense embeddings, restraining them to capture
fine-grained details crucial for accurately interpret-
ing complex scientific queries. In contrast, our
approach explicitly models the multi-granular sci-
entific concepts within both queries and documents.

LLM-Enhanced Retrieval Recent works show
that LLMs can boost retrieval quality even when
little or no human supervision is available. In zero-
shot settings, HyDE (Gao et al., 2023) prompts
an instruction-tuned LLM (e.g., InstructGPT) to
imagine a hypothetical answer document, then en-
codes this synthetic text with an unsupervised dual-
encoder; the dense representation guides nearest-
neighbor search and already outperforms Con-
triever (Izacard et al., 2021) without any task
data. At inference time, LLMs refine the query
itself. Rewrite-Retrieve-Read pipeline (Ma et al.,
2023) trains a lightweight rewriter with RL from
the downstream reader LLM, consistently top-
ping standard retrieve-then-read QA. For expan-
sion, HyDE’s hypothetical-document trick under-
pins GenRead (Yu et al., 2023), which sometimes
matches or beats retrieval-based pipelines by gen-
erating context first. CSQE (Lei et al., 2024) tem-
pers hallucinations by mixing LLM expansions
with sentences extracted from top-ranked corpus
hits, outperforming fine-tuned neural expanders on
tough TREC queries. CCQGen (Kang et al., 2025)
leverages an LLM to select topical concepts de-
rived from a predefined top-down taxonomy. In our
work, SemRank leverages an LLM to select core
concepts directly from candidate sets of both broad
research topics and specific key phrases derived
from the corpus, which augment LL.Ms with multi-
granular knowledge to help query understanding
and reduce hallucination.

Retrieval with Corpus Knowledge Recent work
has explored leveraging corpus-based knowledge
to enhance retrieval accuracy through query ex-
pansion and refinement techniques. Methods such
as BERT-QE (Zheng et al., 2020) select corpus-
contextualized text chunks to alleviate vocabu-
lary mismatches, while GAR (Mao et al., 2021)
generates pseudo-passages for semantic enrich-
ment of queries, demonstrating substantial gains.
Query2doc (Wang et al., 2023b) further utilizes
LLMs to create entire pseudo-documents, captur-
ing external knowledge from web-scale training
corpora. Similarly, classical pseudo-relevance feed-
back (PRF) (Wang et al., 2021; Lei et al., 2024) has
been adapted to dense retrieval, reducing halluci-
nations and improving effectiveness. Graph-based
methods such as (MacAvaney et al., 2022; Kulkarni
et al., 2023) utilize document similarity graphs to
dynamically expand search results. TOTER (Kang
et al., 2024a) designs taxonomy-based retrieval to
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Figure 3: Parameter analysis on LitSearch by varying &,
the number of candidate query concepts.

identify the central topic classes and exploit their
topical relatedness to supplement PLM-based re-
trievers. TaxoIndex (Kang et al., 2024b) constructs
a semantic index guided by an academic taxon-
omy, extracting and organizing concepts from doc-
uments, and then trains an indexing module to
match these concepts with queries. In contrast, our
proposed SemRank framework avoids supervision,
utilizing corpus-derived concepts in an unsuper-
vised manner to build semantic index and perform
pseudo-relevance feedback, thereby enhancing re-
trieval without additional training.

6 Conclusion

We present SemRank, a novel scientific paper re-
trieval method that integrates LLM-guided query
understanding with a concept-based semantic index.
To overcome the limitations of existing methods,
SemRank identifies multi-granular scientific con-
cepts to explicitly understand scientific queries at
the concept level. By augmenting LLMs with cor-
pus knowledge, SemRank also facilitates LLM’s
understanding of query and context while reduc-
ing hallucination. Experiments demonstrate that
SemRank consistently improves retrieval perfor-
mance across various base retrievers and outper-
forms various baseline methods while remaining
highly efficient.

Limitations

While SemRank shows strong performance and
efficiency in scientific paper retrieval, it also has
several limitations. First, our current studies limit
to scientific paper retrieval dataset with only title
and abstract, while retrieving full scientific papers
could be more challenging due to the difficulties
of effectively understanding long structured text.
Second, SemRank only considers scientific con-
cepts as a set, while not considering their internal
relationship which could bring more insights to pa-
per and query understanding. Third, although our
use of LLMs is efficient, the reliance on prompt-

ing still introduces sensitivity to prompt design and
model behavior, which may require tuning for dif-
ferent domains. Fourth, our experiments are done
mainly on Computer Science domain corpora, be-
cause there is limited high-quality retrieval dataset
available from other disciplines. We would like to
argue that there is still a big gap in constructing
paper retrieval benchmarks for different disciplines,
which could be a research opportunity for future
studies. Finally, we only focus on English scien-
tific paper retrieval in the work, while it remains
a challenge on multilingual or multi-modal (e.g.,
figures, tables) paper retrieval.
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{ Query Core Concept Identification Prompt }

You will receive a paper abstract along with a set of candidate topics for the paper.

Your first task is to select the topics that best align with the core theme of the paper. Exclude topics
that are too broad or less relevant.

Only use the topic names in the candidate set.

Your second task is to generate a complete list of key phrases extracted from the paper.

Do some rationalization before outputting the list of relevant topics and key phrases.

Output format: ‘<top> topic 1, topic 2, ... </top> <kp>key phrase 1, key phrase 2, ... </kp>’.

Paper: {d}

Figure 4: Prompts given to the LLM for building semantic index.

{ Query Core Concept Identification Prompt }

You will receive a query for research papers and a ranked list of papers returned by a retriever.
You will also be provided a list of research topics and key terms with their frequencies that are
frequently mentioned by the top-ranked papers returned by the retriever.

Your task is to improve the provided retrieval results by selecting a list of topics and terms that can
accurately identify the relevant papers of the query.

Make sure your selection is strictly based on the original query and does not contain repeated
concepts.

Output format: ‘<ans>selection 1, selection 2, ...</ans>’.
Retriever result: {D%(q)}

Candidate topics: {T°(q)}

Candidate key terms: {P°(q)}

Original Query: {q}

Figure 5: Prompts given to the LLM for query core concept identification.
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