
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 19794–19811
November 4-9, 2025 ©2025 Association for Computational Linguistics

MultiLingPoT: Boosting Mathematical Reasoning in LLMs through
Multilingual Program Integration

Nianqi Li1, Zujie Liang2, Siyu Yuan3, Jiaqing Liang3, Feng Wei2, Yanghua Xiao1*

1Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University
2MYbank, Ant Group 3School of Data Science, Fudan University

nqli23@m.fudan.edu.cn, shawyh@fudan.edu.cn

Abstract

Program-of-Thought, which aims to use pro-
gram instead of natural language in reason-
ing, is an important way for LLMs to solve
mathematical problems. Since different pro-
gramming languages excel in different areas,
it is natural to use the most suitable language
for solving specific problems. However, cur-
rent research only focuses on single language
PoT, ignoring the differences between program-
ming languages. Therefore, this paper proposes
a multilingual programme reasoning method,
MultiLingPoT, and deeply explores the impact
of multilingual integration in the training and
inference. This method allows the model to
answer questions using multiple languages by
fine-tuning on multilingual data and improv-
ing individual language’s reasoning accuracy
by 2.5%. Additionally, prior and posterior se-
lection methods are used to help the model
select the most suitable language during in-
ference, and achieves 8% performance gains.
Finally, our code metric analysis shows that
language differences manifest in encapsulation
levels and implementation granularity, while
strategic deviation from language conventions
can enhances code performance.1

1 Introduction

Program-of-Thought (PoT), which aims to use pro-
gramming language instead of natural language
as an intermediate step in reasoning in Large Lan-
guage Models (LLMs), is an important way for
LLMs to solve mathematical problems (Chen et al.,
2022; Gao et al., 2023). By generating programs
and running them with a code interpreter, LLMs
can not only exploit their reasoning capabilities
but also avoid the computational errors. Inspired
by mathematical tasks, nowadays, PoT is also
widely used in other domains, such as pseudo-code

*Corresponding author.
1Resources of this paper can be found at https://github.

com/Nianqi-Li/MultiLingPoT

Solve the following system of linear
equations: 2x + y = 5, 3x + y = 6

#include <Eigen/Dense>

Eigen::Vector2d b(5, 6);

Eigen::Matrix2d A;

A << 2, 1, 3, 4;

VectorXd x = A.colPivHouseholderQr().solve(b);

return x.transpose();

C++ PoT

Find the intersection point of two lines:
(1,1) to (4,4) and (1,3) to (4,1).

Java PoTWKTReader r = new WKTReader();

LineString l1 = (LineString)

r.read("LINESTRING (1 1, 4 4)");

LineString l2 = (LineString)

r.read("LINESTRING (1 3, 4 1)");

Geometry intersection = l1.intersection(l2);

A = [2 1; 3 4]; v = [1; 2];

result = A * v;

Matlab PoT

import sympy as sp

inverse = sp.mod_inverse(3, 11)

Python PoT

Find the modular inverse of 3 modulo 11.

Given the matrix A and the vector v, compute
the matrix product A⋅v.

Find the modular inverse of 3 modulo 11.

import sympy as sp

inverse = sp.mod_inverse(3, 11)

Python PoT

int a = 3, m = 11; int x, y...

while (b != 0) {

 int q = a1 / b; int temp = a1 % b;

 a1 = b; b = temp; temp = x1 - q * x2;

 x1 = x2; x2 = temp; temp = y1 - q * y2;

 y1 = y2; y2 = temp;

} int result = (x1 % m + m) % m;...

C++ PoT

Given the matrix A and the vector v, compute
the matrix product A⋅v.

for (int i = 0; i < rows; i++) {

 int sum = 0;

 for (int j = 0; j < cols; j++) {

 sum += A[i][j] * v[j];}

 result[i] = sum;...

Java PoT

A = [2 1; 3 4]; v = [1; 2];

result = A * v;

Matlab PoT

Figure 1: Examples of different programming languages
having different advantages.

graph (Skianis et al., 2024), visual inference (Surís
et al., 2023), and document understanding (Zhao
et al., 2024). Therefore, exploring the optimization
of PoT is a problem of great value.

Previous work on PoT has concentrated on en-
hancing the mathematical capabilities based on a
single language PoT, including techniques such as
data augmentation (Yue et al., 2023; Jie and Lu,
2023), PoT-CoT integration, and multi-round iter-
ation (Wang et al., 2023b; Gou et al., 2023; Qian
et al., 2023). However, we believe that different
programming languages have different special-
izations. As shown in Figure 1, matlab is better at
matrix operations than Java, while Python provides
a rich library for number theory. Therefore, it is
a better approach to use the suitable language to
solve the corresponding problem than to use one

19794

https://github.com/Nianqi-Li/MultiLingPoT
https://github.com/Nianqi-Li/MultiLingPoT

language to solve all problems. Recently, Luo et al.
(2024) also started to explore combining different
programming languages. However, by voting for
better performance, they only take different lan-
guages as a kind of diversity enhancement, and
do not deeply analyze the differences and impacts
of language characteristics. Meanwhile, their re-
search is limited to the prompt level, and lacks the
exploration of multi-language training. Therefore,
the use of multi programming languages in training
and reasoning still deserves in-depth research.

To fill the gap and further enhance the mathe-
matical reasoning ability of LLM, we explore three
questions: 1) Q1: During training, can the fine-
tuning of the multi-language improve the model’s
mathematical reasoning ability? 2) Q2: During in-
ference, does strategically selecting languages for
problem-solving enhance the model’s mathemati-
cal reasoning performance? 3) Q3: What brings
the differences between languages and what defines
language-specific code effectiveness?

To answer the above questions, we introduce
MultiLingPoT, a multilingual program reasoning
framework, which allows the model to solve mathe-
matical problems using PoT in multiple languages.
For Q1, we construct a large amount of multilin-
gual programming data using ChatGPT (OpenAI,
2022) and fine-tune the MultiLingPoT model based
on our high-quality PoT data. Compared to single
language model, we find that MultiLingPoT is able
to learn from the strengths of different languages,
showing a stable improvement of 2.5% on average.
For Q2, we design a series of prior and posterior
selection strategies, including self-consistency, in-
context learning and reward model to select a suit-
able programming language for MultiLingPoT. The
results show that the appropriate selection strategy
can further improve the math ability of MultiL-
ingPoT, with a 8% improvement compared to the
best direct output. Finally, for Q3, we analyze
differences across languages and their preferences
in accurate solutions using software code metrics.
Based on this, we provide language-specific sug-
gestions to generate more accurate result.

The main contributions of this paper are summa-
rized as follows:

• We propose MultiLingPoT, an multilingual
PoT method that enables the model to answer
mathematical questions using multiple pro-
gramming languages and select the optimal
language for each problem.

• We find that models benefit from multi-
languages training, achieving a 2.5% improve-
ment over single-language fine-tuning.

• We find that appropriate language selection
in inference is better than answering in a sin-
gle language, showing an improvement of 8%
compared to the best direct output.

• We analyze differences between correct/erro-
neous code across languages and provide prac-
tical suggestions to improve code accuracy.

2 Related Work

Program-of-Thought Program-of-Thought,
which aims to use programming language instead
of natural language in LLMs’ reasoning, is an
important way to solve mathematical problems.
By transferring the computation to code interpreter,
LLMs are able to avoid computational errors
while exploiting reasoning capabilities. In 2022,
Chen et al. (2022) introduced the use of code as
an intermediate step to assist LLMs, while Gao
et al. (2023) proposed the program-aided language
model. By building PoT data and fine-tuning,
LLMs are able to enhance their mathematical
capabilities (Yue et al., 2023; Jie and Lu, 2023;
Luo et al., 2023; He-Yueya et al., 2023). Further,
some research combine Chain-of-Thought’s(COT)
reasoning with PoT’s computation as tool use (Ma
et al., 2025a), resulting in models such as Math-
Coder (Wang et al., 2023b) and ToRA (Gou et al.,
2023). However, these studies are limited to
Python-based PoT, ignoring the differences be-
tween different programming languages. Although,
recent Luo et al. (2024) start to explore combining
different languages. They only use different
languages as an enhancement of diversity, without
deeply analyzing the impacts of different language
characteristics. Therefore, this paper proposes
MultiLingPoT, an multi-programming language
reasoning approach that explores multi-language
integration in training and inference, and analyzes
the language differences in view of the code
metrics.

Multiple Programming Languages Multi-
program languages processing is a classic research
topic in code intelligence. It has been studied
for a long time in tasks such as code repair (Luo
et al., 2025), code search (Wang et al., 2023a),
code summarization (Yang et al., 2025) and
comment generation (Ahmed and Devanbu, 2022).

19795

For instance, multilingual encoders are trained
for cross-lingual comment generation (Yang
et al., 2025), and weak-language performance is
enhanced via inter-language translation (Luo et al.,
2025). However, there are fundamental differences
between multilingual research on PoT and code
intelligence. While code intelligence focuses on
code understanding and generation (Wan et al.,
2024), PoT emphasizes problem-solving through
code execution, requiring task understanding,
reasoning, and computational planning. In
addition, multilingual code intelligence priori-
tizes cross-lingual generalization, whereas PoT
demands language-integrated problem-solving.
Therefore, although multilingual research has been
explored in code intelligence, the multi-languages
problem in PoT remains an unexplored domain.

3 MultiLingPoT

In this section, we present the construction of Mul-
tiLingPoT to answer three key questions, including
foundation language selection, data construction,
model training, model inference, and code analysis.
The illustration is shown in Figure 2.

3.1 Foundation Languages
To effectively implement and evaluate MultiLing-
PoT, foundation languages are of crucial impor-
tance. Based on heuristic thinking, the chosen
programming language should have the follow-
ing characteristics: 1) The syntactic differences
between languages should be significantly distin-
guishable so as to separate MultiLingPoT from
single-language reasoning. For example, C and
C++ are not a good choice. 2) The foundation
languages should be popular, to avoid bias due to
disparities in the model’s proficiency across lan-
guages. 3) The language should support mathe-
matical reasoning. For example, HTML, which
is designed for the web, is not a suitable choice.
Based on the above criteria and following GitHub’s
(2024) report, Python, C++, Java, and Matlab are
established as the foundation languages, providing
a solid basis for the experiments.

3.2 Data Construction
In order to teach the model to answer questions
in multilingual programs, we construct training
data across various languages. Based on related
work (Jie and Lu, 2023; Yue et al., 2023; Luo et al.,
2023), we select GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021) as the foundation

Dataset Origin Python C++ Java Matlab

GSM8K 7473 6598 6535 6615 6612

MATH 6282 3844 3737 3575 3619

Table 1: Constructed PoT data for Python, C++, Java
and Matlab based on GSM8K and MATH.

for dataset construction, and used ChatGPT (Ope-
nAI, 2022) to generate PoT data in multiple lan-
guages. Specifically, for each problem in the train-
sets, we instruct ChatGPT to generate solutions in
four programming languages: Python, C++, Java,
and Matlab. To improve ChatGPT’s ability to gen-
erate program in each language, we provide four
manually crafted solution program as examples,
which are provided in Appendix A.1. Due to the
varying difficulty of GSM8K and MATH, differ-
ent sets of examples are used for each, enabling
better generation performance. Finally, to ensure
the quality of the training set, we execute all the
generated programs using code interpreters. Only
the programs with correct results are kept.

Table 1 shows the results of our constructed
dataset. We collect 26,359 samples for GSM8K
and 14,775 samples for MATH. Since MATH is
more challenging and has more erroneous outputs,
the dataset for MATH is smaller than GSM8K.
However, as the data across different languages
is balanced in both datasets, our data is suitable
and fair for multilingual programming training.

3.3 Model Fine-Tuning

For Q1, to examine the impact of multi-language
PoT in model training, we develop the MultiLing-
PoT model based on our multilingual programming
dataset, enabling mathematical problem-solving
across various programming languages. For an in-
put query and a specified programming language,
the MultiLingPoT model outputs a function in the
corresponding language called “solution”, which
returns the result of the query. For more details,
the instruction and input templates are provided
in Appendix A.2. Parameter settings and model
selection for training are provided in Section 4.1.

3.4 Inference Language Selection

For Q2, to select the appropriate language during
inference, we design a series of different selec-
tion strategies to verify the validity of the selection.
Based on the time and input, we categorize the se-
lection strategies into prior and posterior. Figure 2

19796

Training of MultiLingPoT: Constructing multilingual program dataset and training the MultiLingPoT model

Query
MultiLingPoT

TrainSet

Solution.py

Solution.cpp

Solution.java

Solution.m

MultiLingPoT
Model

Prior Selection Strategy: Determine the language to be used before answering the LLM

Select
Module

Think: This question be suitable for
Python/C++/Java/Matlab?

Prompt: Please answer the following
question using Matlab: {query}

MultiLingPoT
Model

Solution.m

Posterior Selection Strategy: Mixing results of different languages after LLMs answer

MultiLingPoT
Model

Select
Module

Think:
This question be suitable
for Python/C++/Java/Matlab?
Which program is better?
Which answer is better?...

Answer

Solution.py

Solution.cpp

Solution.java

Solution.m

Query

Query

Prompt: Answer the question using
{Python/C++...}: {query}

Figure 2: The illustration of the implementation of the MultiLingPoT methodology, including data construction,
model training and the selection strategies. Considering the diverse implementations of selection strategies, the
“Think” part only represents the underlying logic of the selection strategy, but not its specific implementation.

illustrates these two types of selection.

Prior Selection Strategy Prior selection is a se-
lection strategy only based on the query. This
strategy determines the language to be used be-
fore the LLM generates the response, requiring
only one generation. Four specific implementa-
tions are explored under this strategy: 1) Case-
Based Choice, selecting a language based on simi-
lar queries. 2) Small Reward Model, using a small
parameter model such as Bert (Devlin, 2018) as the
reward model for programming language selection.
3) LLM Reward Model, using a large model such
as Llama3 (AI@Meta, 2024) as a reward model for
programming language selection. 4) Direct Perfer-
ence Optimization, training MultiLingPoT model
to select using preference learning.

Posterior Selection Strategy Posterior selection
is a selection strategy based on the query and gen-
erated code in four languages. It is used after Mul-
tiLingPoT generates the four language solutions
to select the best result. Compared to the prior
selection, the posterior selection has more infor-
mation. However, since each query requires four
rounds of inference to generate answers in differ-
ent programming languages, the posterior inference
requires more computation time. Four specific im-

plementations are explored under this strategy: 1)
Self-Consistency, selecting the final result by vot-
ing. 2 & 3) Reward model, using a small parameter
model or LLM as the reward model for program-
ming language selection. 4) Voting and Reward,
using LLM reward model for tie-breaking options.

More implementation details including case
quantities, reward scoring metrics, and preference
pair construction are provided in the Appendix C.2.

3.5 Code Analysis

For Q3, we move beyond surface-level accuracy
and analyze code using software metrics to ex-
plore intrinsic differences between languages. We
employ 9 metrics categorized into 3 types: Size
(length, rows, operations), Complexity (condition-
als, loops, nesting, cognitive complexity), and
Structure (encapsulation, function calls) (Riguzzi,
1996; Timóteo et al., 2008; Nuñez-Varela et al.,
2017). Base on these metrics, we analyze cross-
language metric variations to quantitatively reveal
language-specific characteristics. Further, by ana-
lyzing the dynamics of the correct code metrics, we
identify key quality features and suggest language-
specific optimizations for code generation.

19797

Method Language GSM8K SVAMP NumG Mat ASDiv Average

Python 64.06 71.70 44.58 54.07 72.60 61.40
C++ 64.97 71.50 43.30 33.08 71.83 56.93
Java 63.00 72.80 43.01 42.90 75.00 59.34
Matlab 62.62 69.70 42.30 34.55 71.83 56.20SinglePoT

Python-DA 64.36 73.80 42.45 52.50 77.54 62.13

Python 65.57 73.10 45.44 53.23 73.65 62.19
C++ 64.97 73.60 45.44 37.16 73.70 58.97
Java 67.02 75.10 44.87 45.19 73.80 61.19
Matlab 65.42 73.30 44.01 37.89 72.26 58.57MultiLingPoT

Self-Cons. 69.37 75.60 46.72 54.69 75.09 64.29

Table 2: Results of MultiLingPoT training on simple datasets. “-DA” indicates data augmentation, and “Self-Cons.”
refers to Self-Consistency. indicates in-domain testing, and indicates out-of-domain testing

Count Int. Num.Method Language Algebra Prob. Geom. Algebra Theory Prealg. Precalc. Average

Python 35.94 24.89 17.69 15.55 48.17 45.51 21.54 29.89
C++ 37.85 27.42 21.10 16.73 39.73 46.59 19.37 29.82
Java 39.30 31.85 19.61 19.21 43.76 48.38 23.24 32.19
Matlab 29.48 34.59 18.12 11.50 40.69 43.72 19.61 28.24SinglePoT

Python-DA 39.94 31.43 22.60 21.56 52.01 47.90 26.39 34.54

Python 38.85 26.16 21.10 19.86 48.94 49.58 21.54 32.29
C++ 41.12 30.80 21.53 18.95 42.80 52.56 22.03 32.82
Java 40.94 33.33 23.66 18.82 47.21 51.97 22.51 34.06
Matlab 31.11 36.70 20.89 12.28 46.06 47.55 19.85 30.63MultiLingPoT

Self-Cons. 45.04 37.76 23.88 23.13 53.16 57.34 24.21 37.78

Table 3: Results of MultiLingPoT training on complex datasets.

4 Experiments

In this section, we first explore MultiLingPoT’s
performance from both training and inference per-
spectives to answer Q1 and Q2. Then, we measure
the code metrics across language and response cor-
rectness for Q3. In addition, we test MultiLingPoT
on multiple models to examine its generalisability.

4.1 Experiments Setup

Training Setup We perform full fine-tuning of
CodeLlama-7B-hf (Roziere et al., 2023) on the
dataset constructed in Section 3.2 to obtain the
MultiLingPoT model. During training, we set the
learning rate to 2e-5, the global batch size to 128,
and the maximum sequence length to 1024 for
three epochs. To accelerate training, we use Deep-
Speed ZeRO Stage 3 (Rajbhandari et al., 2020).
All training operations are performed using Llama-
Factory (Zheng et al., 2024).

Evaluation Setup Since the difficulty of the
problem affects the training and inference of
MultiLingPoT, we test it on both simple and
complex datasets. For the simple dataset, we

train on the GSM8K variant dataset from Sec-
tion 3.2, and additionally use SVAMP (Patel et al.,
2021), NumGLUE (Mishra et al., 2022), Mathemat-
ics (Davies et al., 2021), and ASDiv (Miao et al.,
2021) for evaluation. For the complex dataset, we
train on the MATH variant dataset from Section 3.2
and test on seven categories from the MATH test-
set: Algebra, Counting & Probability, Geometry,
Intermediate Algebra, Number Theory, Prealgebra,
and Precalculus. All the evaluations use accuracy
as the metric.

4.2 A1: MultiLingPoT Training Enhances
Mathematical Reasoning

To answer Q1, we evaluate MultiLingPoT’s math-
ematical reasoning performance across languages
after fine-tuning, and compare it against single-
language PoT baselines, which are fine-tuned with
single language dataset in Section 3.2. Further, we
perform four times data augmentation of python
as a stronger baseline. Tables 2 and 3 show the
results.

Overall, we have the following conclusions: 1)
Languages exhibit distinct task-specific strengths.

19798

Method GSM8K SVAMP NumG Mat ASDiv Average

Python-DA 64.36 73.80 42.45 52.50 77.54 62.13SinglePoT Python-DA.SC 67.24 74.00 43.58 56.47 78.11 63.88

Case-Based Choice 65.35 73.40 45.01 50.93 74.23 61.78
Bert RM 66.18 74.10 44.15 42.58 73.75 60.15
CodeBert RM 65.88 73.30 44.30 37.99 72.21 58.73
Llama3 RM 64.82 73.70 45.44 36.95 72.93 58.76

MultiLingPoT
Prior

DPO 62.85 70.70 42.87 39.56 71.83 57.56

Self Consistency 69.37 75.60 46.72 54.69 75.09 64.29
Bert RM 65.65 74.20 45.01 40.81 73.22 59.77
CodeBert RM 66.86 75.30 43.87 44.78 73.27 60.81
Llama3 RM 72.55 78.00 48.43 55.53 77.59 66.42

MultiLingPoT
Posterior

Voting & Reward 70.88 77.90 47.43 56.78 76.19 65.83

Random 64.82 72.50 44.30 43.31 72.88 59.56
Upper Bound 79.37 83.70 53.84 64.61 81.09 72.52

Table 4: Results of MultiLingPoT with selection strategies on simple datasets. “RM” indicates reward model.
“Random” and “Upper Bound” are for MultiLingPoT and are provided as baselines.

Count Int. Num.Method Algebra Prob. Geom. Algebra Theory Prealg. Precalc. Average

Python-DA 39.94 31.43 22.60 21.56 52.01 47.90 26.39 34.54SinglePoT Python-DA.SC 44.94 33.54 23.02 25.22 56.04 52.80 26.63 37.45

Case-Based 43.03 33.12 22.60 21.56 48.75 52.44 24.45 35.13
Bert RM 38.76 35.65 22.60 20.39 51.24 51.73 21.54 34.55
CodeBert RM 40.40 34.59 21.74 21.30 49.71 51.85 23.97 34.79
Llama3 RM 36.94 31.22 21.10 18.56 45.48 53.64 21.54 32.64

MultiLingPoT
Prior

DPO 33.57 36.28 17.91 18.16 45.10 42.17 20.33 30.50

Self Consistency 45.04 37.76 23.88 23.13 53.16 57.34 24.21 37.78
Bert RM 43.22 35.86 22.17 23.39 51.24 52.92 23.00 35.97
CodeBert RM 39.67 35.65 23.45 23.13 49.52 53.64 23.24 35.47
Llama3 RM 41.40 41.98 24.09 25.88 55.47 59.49 24.93 39.03

MultiLingPoT
Posterior

Voting & Reward 47.95 42.40 24.52 26.01 57.00 59.73 26.15 40.53

Random 34.03 30.16 22.60 16.99 45.87 51.37 21.30 31.76
Upper Bound 58.32 53.37 34.11 34.37 68.13 68.45 33.89 50.09

Table 5: Results of MultiLingPoT with selection strategies on complex datasets.

For example, C++ is good at GSM8K, while Mat-
lab shows a clear advantage in Counting & Prob-
ability. Word cloud analysis in Figure 3 further
visualizes these linguistic divergences. And the
Appendix C.1 shows some examples. 2) Train-
ing with MultiLingPoT enhances reasoning per-
formance across all languages. Compared to Sin-
glePoT, each language in MultiLingPoT improves
about 2%, which proves that different languages
can learn from each other. 3) Compared to data-
augmented SinglePoT, MultiLingPoT still demon-
strates its superiority. Among all 12 test sets, Mul-
tiLingPoT achieves higher accuracy in 8 of them,
demonstrating that multilingual training improves
both cross-lingual generalization and accuracy en-
hancement.

Furthermore, comparing different difficulty lev-
els, we find that multilingual training provides

greater benefits on simple datasets. Since data aug-
mentation offers limited diversity for simple tasks,
while cross-language has better diversity, python
in MultiLingPoT even outperforms python PoT
with data enhancement in simple testset. On hard
datasets, by applying self-consistency, MultiLing-
PoT can still achieves better performance than data
augmentation.

4.3 A2: Inference Language Selection
Optimizes MultiLingPoT

To answer Q2, we test the performance of the lan-
guage selection strategy in Section 3.4. Tables 4
and 5 show the results. And the Appendix C.2
shows some cases.

Overall, our findings are as follows: 1) A suit-
able language selection strategy can significantly
improve model inference performance. The opti-

19799

Language Length Rows Oper. Conds. Loops Nesting Cognitive Encap. FCalls

Python 232.99 8.73 6.41 0.31 0.51 0.58 1.29 1.13 1.80
C++ 342.33 12.71 12.28 0.39 0.52 3.67 13.25 1.11 0.88
Java 282.34 12.30 7.25 0.40 0.55 3.75 14.41 1.05 1.29
Matlab 219.96 8.48 4.61 0.23 0.37 0.65 1.41 1.02 2.05

Table 6: Results of software code metrics for different programming languages in problem-solving.

Language Length Rows Oper. Conds. Loops Nesting Cognitive Encap. FCalls

Python -9.79 -5.32 -3.97 12.10 -1.58 7.79 16.12 1.82 -17.03
C++ -15.22 -9.50 -29.39 -5.58 -2.11 2.43 -5.72 2.47 8.21
Java -2.25 -1.73 -3.89 -3.95 1.08 0.19 0.36 0.19 -5.96
Matlab -2.70 -0.33 -23.60 28.36 33.77 23.61 18.85 2.35 -15.86

Table 7: Characteristic preferences of correct codes in different programming languages. All results are calculated
in percentages, indicating deviations of correct codes to the average. Differences greater than 8% are bolded.

(a) Python (b) C++

(c) Java (d) Matlab

Figure 3: Word clouds for four programming languages
show key terms in their specialized problem areas.

mal selection strategy improves average accuracy
by 8% compared to no selection inference. Even
when evaluated against data-augmented SinglePoT
with 4-path self-consistency, our strategy maintains
a 3% advantage. It shows that the language se-
lection strategy can identify areas of strength in
different languages, which is more reasonable and
effective than the integration of sampling in a sin-
gle language. 2) Posterior selection is better than
prior selection. Since posterior selection has more
information, it improves performance by about 4%
over prior selection on both simple and complex
datasets, which shows that the design of the se-
lection strategy can greatly affect the performance
of inference. 3) Difficult problems are more suit-

able for language selection. For all selection strate-
gies, the improvement in the complex dataset is
2% higher than the simple dataset. It is even more
obvious that prior selection is almost ineffective
in the simple dataset while it is significantly im-
proved in the complex dataset. This may be due to
the fact that complex queries have more language
preferences, such as matrix operations and solving
equations, which suggests that complex problems
have more potential for language selection in rea-
soning. 4) There is still room for improvement
in language selection strategies. Despite explor-
ing multiple strategies across simple and complex
datasets, the current best strategy still lags behind
the theoretical upper bound.

4.4 A3: Abstraction Levels Shape Code
Paradigms and Quality

To address Q3, we first test the performance of
different languages in problem-solving using soft-
ware code metrics in Section 3.5. The results are
presented in Table 6. Among them, C++ and Java
exhibit larger size, with longer code length, more
lines, and greater operation demands. Correspond-
ingly, these two languages demonstrate higher com-
plexity, primarily reflected in increased nesting lev-
els. For code structure, encapsulation levels vary
minimally across languages, while Python and Mat-
lab show more frequent function calls. In summary,
this reflects two distinct coding paradigms: low-
abstraction languages like C++ and Java tend to
build solutions from the ground up, whereas high-
abstraction languages like Python and Matlab often
leverage their rich library ecosystems to achieve
goals through function calls.

Furthermore, we examine characteristic prefer-

19800

Algebra
 CoProb.

 Geom.

 IntAlg.
AVG

Prealg.

Precalc.

NumThe.

(a) DeepseekCoder

Algebra
 CoProb.

 Geom.

 IntAlg.
AVG

Prealg.

Precalc.

NumThe.

(b) CodeLlama-Python

Algebra
 CoProb.

 Geom.

 IntAlg.
AVG

Prealg.

Precalc.

NumThe.

(c) Llama3

Python C++ Java Matlab SinglePoT-Python Self-Cons.

Figure 4: Results of different models using MultiLingPoT on complex datasets, including DeepseekCoder for the
code model, CodeLlama-Python for the code model in a single language, and Llama3 for the non-code model.

ences of correct code. We select medium difficulty
questions containing both incorrect and correct so-
lutions for analysis. Additionally, relative values
are adopted to eliminate inherent metric differences
across programming languages. Specifically, we
calculate the percentage deviation between correct
code and the average performance. Our findings
are presented in Table 7.

For size, correct code generally favors smaller
scales: Python benefits from shorter code, Mat-
lab from lower computational demands, and C++
shows reduced length, lines, and computational
costs. Complexity patterns vary by language.
Python and Matlab exhibit higher logical complex-
ity, while C++ or Java are less affected. Structure
also differs between languages. For Python and
Matlab, which are more encapsulated languages, it
is surprising that better code does not encourage
function calls. For C++, contrary to the above two
languages, some function calls can improve the
accuracy. Overall, correct code preferences defy
language conventions: High-abstraction languages
prioritise procedural logic over fragmented encap-
sulation, while low-abstraction languages improve
quality through modularity. Finally, Java seems to
be little affected by the above metrics, and there
is no significant difference between correct and
incorrect code.

4.5 Different Models on MultiLingPoT

To further explore the applicability of MultiL-
ingPoT, we repeat the method on other models.
Since the selection strategy is independent of the
model, we focus on the impact of different mod-
els on training. We choose three types of mod-
els: DeepseekCoder-7B-v1.5 for other code mod-
els (Zhu et al., 2024), CodeLlama-7B-Python-hf

for single-language code models (Roziere et al.,
2023) and Llama3-8B-Instruct for non-code
models (AI@Meta, 2024). Figure 4 shows the rela-
tive results and the Appendix D shows the specific
values.

Among these three types of models, MultiLing-
PoT with self-consistency consistently preserves
the best results, and the performance of each lan-
guage is generally balanced, demonstrating the
broad applicability of the MultiLingPoT in mod-
els with code capabilities. Certainly, there are
still differences between the different models. For
DeepseekCoder, both its SinglePoT and MultiL-
ingPoT perform better, indicating that the perfor-
mance of MultiLingPoT improves with the model’s
inherent capabilities. For Llama3, the performance
is only matched by CodeLlama based on Llama2,
indicating that the code capability of the model
still affects the effectiveness of MultiLingPoT. Fi-
nally, CodeLlama-Python performs slightly better
in Python, indicating that language-specific models
can improve performance in their focus language
without significantly affecting others.

5 Conclusion

In this paper, we explore the impact of multi-
language PoT in LLM mathematical reasoning dur-
ing training and inference, and propose MultiLing-
PoT, an multilingual program reasoning method.
For training, we construct multilingual PoT data to
fine-tune the MultiLingPoT model, achieving a 2%
performance improvement. For inference, we de-
sign multiple language selection strategies that in-
clude prior and posterior, and select the appropriate
language to answer during inference, improving ac-
curacy to 8% vs. the best unchosen result. Finally,
we conduct analyses using software code metrics.

19801

We find that key differences cross-languages mani-
fest in encapsulation dependency and step-by-step
logic. And controlled divergence from program-
ming language conventions can improve computa-
tional performance.

Limitations

Our study is comprehensive but still has some lim-
itations that we plan to address in future research.
For the multilingual PoT data we construct, we use
ChatGPT, as the work is conducted at that time.
Although more advanced models, such as GPT-
4 (OpenAI, 2023) and DeepSeek-R1 (Zheng et al.,
2025), are now available and can generate higher-
quality data, we do not rebuild the dataset due to
time and budget constraints. In addition, there is
room for improvement for selection strategies. Al-
though we conduct many explorations, we still not
find an prior selection method that is obviously ef-
fective. While posterior selection is effective, it is
more computationally intensive for each problem.
Therefore, it is still a challenge to investigate how
to effectively mix different programming languages
while minimizing the amount of computation re-
quired. For example, reinforcement learning can
fully eliminate selection costs, while early-stop
strategies or prior-posterior mixing are also worth
considering. Furthermore, in code metric analy-
sis, Python and Matlab lack inference training and
have excessive function calls, so optimizing them
is another interesting topic (Ma et al., 2025b). Fi-
nally, we currently focus only on the application of
multiple programming languages to mathematical
problems. Since PoT has been widely applied in
various domains, we will also explore the use of
multilingual PoT in other fields in the future.

Ethics Considerations

We hereby acknowledge that all authors of this
work are aware of the provided ACL Code of Ethics
and honor the code of conduct. In our work, we use
publicly available data during the dataset construc-
tion process and perform secondary construction.
We strictly follow the ChatGPT usage guidelines
and performed subsequent validation of the gener-
ated content to minimise the risk of harmful con-
tent generation. During model training, we adopt
a publicly standardised training process and used
harmless datasets to safeguard the model.

References
Toufique Ahmed and Premkumar Devanbu. 2022. Mul-

tilingual training for software engineering. In Pro-
ceedings of the 44th International Conference on
Software Engineering, pages 1443–1455.

AI@Meta. 2024. Llama 3 model card.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Alex Davies, Petar Veličković, Lars Buesing, Sam
Blackwell, Daniel Zheng, Nenad Tomašev, Richard
Tanburn, Peter Battaglia, Charles Blundell, András
Juhász, et al. 2021. Advancing mathematics by guid-
ing human intuition with ai. Nature, 600(7887):70–
74.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Jingyuan
Ma, Rui Li, Heming Xia, Jingjing Xu, Zhiyong Wu,
Tianyu Liu, et al. 2022. A survey on in-context learn-
ing. arXiv preprint arXiv:2301.00234.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A
pre-trained model for programming and natural lan-
guages. arXiv preprint arXiv:2002.08155.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

GitHub. 2024. Octoverse: Ai leads python to top lan-
guage as the number of global developers surges.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2023. Tora: A tool-integrated reasoning agent
for mathematical problem solving. arXiv preprint
arXiv:2309.17452.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and
Noah D Goodman. 2023. Solving math word prob-
lems by combining language models with symbolic
solvers. arXiv preprint arXiv:2304.09102.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

19802

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.blog/news-insights/octoverse/octoverse-2024/
https://github.blog/news-insights/octoverse/octoverse-2024/

Zhanming Jie and Wei Lu. 2023. Leveraging training
data in few-shot prompting for numerical reasoning.
arXiv preprint arXiv:2305.18170.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Wenqiang Luo, Jacky Wai Keung, Boyang Yang,
Tegawende F Bissyande, Haoye Tian, and Bach
Le. 2025. Unlocking llm repair capabilities in
low-resource programming languages through cross-
language translation and multi-agent refinement.
arXiv preprint arXiv:2503.22512.

Xianzhen Luo, Qingfu Zhu, Zhiming Zhang, Libo
Qin, Xuanyu Zhang, Qing Yang, Dongliang Xu, and
Wanxiang Che. 2024. Python is not always the best
choice: Embracing multilingual program of thoughts.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7185–7212.

Zhiyuan Ma, Zhenya Huang, Jiayu Liu, Minmao Wang,
Hongke Zhao, and Xin Li. 2025a. Automated cre-
ation of reusable and diverse toolsets for enhancing
llm reasoning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
24821–24830.

Zhiyuan Ma, Jiayu Liu, Xianzhen Luo, Zhenya Huang,
Qingfu Zhu, and Wanxiang Che. 2025b. Advanc-
ing tool-augmented large language models via meta-
verification and reflection learning. In Proceedings
of the 31st ACM SIGKDD Conference on Knowledge
Discovery and Data Mining V. 2, pages 2078–2089.

Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su.
2021. A diverse corpus for evaluating and developing
english math word problem solvers. arXiv preprint
arXiv:2106.15772.

Swaroop Mishra, Arindam Mitra, Neeraj Varshney,
Bhavdeep Sachdeva, Peter Clark, Chitta Baral, and
Ashwin Kalyan. 2022. Numglue: A suite of funda-
mental yet challenging mathematical reasoning tasks.
arXiv preprint arXiv:2204.05660.

Arvind Neelakantan, Tao Xu, Raul Puri, Alec Rad-
ford, Jesse Michael Han, Jerry Tworek, Qiming Yuan,
Nikolas Tezak, Jong Wook Kim, Chris Hallacy, et al.
2022. Text and code embeddings by contrastive pre-
training. arXiv preprint arXiv:2201.10005.

Alberto S Nuñez-Varela, Héctor G Pérez-Gonzalez,
Francisco E Martínez-Perez, and Carlos Soubervielle-
Montalvo. 2017. Source code metrics: A systematic
mapping study. Journal of Systems and Software,
128:164–197.

OpenAI. 2022. Chatgpt.

OpenAI. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. arXiv preprint arXiv:2305.14318.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models. In SC20:
International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 1–
16. IEEE.

Fabrizio Riguzzi. 1996. A survey of software metrics.
Università degli Studi di Bologna.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Konstantinos Skianis, Giannis Nikolentzos, and
Michalis Vazirgiannis. 2024. Graph reasoning with
large language models via pseudo-code prompting.
arXiv preprint arXiv:2409.17906.

Dídac Surís, Sachit Menon, and Carl Vondrick. 2023.
Vipergpt: Visual inference via python execution for
reasoning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 11888–
11898.

Aline Lopes Timóteo, Alexandre Álvaro, Ed-
uardo Santana De Almeida, and Silvio Romero
de Lemos Meira. 2008. Software metrics: A survey.
Sl: sn.

Yao Wan, Zhangqian Bi, Yang He, Jianguo Zhang,
Hongyu Zhang, Yulei Sui, Guandong Xu, Hai Jin,
and Philip Yu. 2024. Deep learning for code in-
telligence: Survey, benchmark and toolkit. ACM
Computing Surveys, 56(12):1–41.

Deze Wang, Boxing Chen, Shanshan Li, Wei Luo, Shao-
liang Peng, Wei Dong, and Xiangke Liao. 2023a.
One adapter for all programming languages? adapter
tuning for code search and summarization. In 2023
IEEE/ACM 45th International Conference on Soft-
ware Engineering (ICSE), pages 5–16. IEEE.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. 2023b. Math-
coder: Seamless code integration in llms for en-
hanced mathematical reasoning. arXiv preprint
arXiv:2310.03731.

19803

https://openai.com/blog/chatgpt
https://arxiv.org/abs/2303.08774

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Kaiyuan Yang, Junfeng Wang, and Zihua Song. 2025.
Raxcs: Towards cross-language code summarization
with contrastive pre-training and retrieval augmen-
tation. Information and Software Technology, page
107741.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi,
Linyong Nan, Lyuhao Chen, Yixin Liu, Xiangru
Tang, Rui Zhang, and Arman Cohan. 2024. Docmath-
eval: Evaluating math reasoning capabilities of llms
in understanding financial documents. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 16103–16120.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuan-
chao Shu, and Jiming Chen. 2025. A review on edge
large language models: Design, execution, and appli-
cations. ACM Computing Surveys, 57(8):1–35.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang,
Peiyi Wang, Runxin Xu, Y Wu, Yukun Li, Huazuo
Gao, Shirong Ma, et al. 2024. Deepseek-coder-v2:
Breaking the barrier of closed-source models in code
intelligence. arXiv preprint arXiv:2406.11931.

19804

A Prompt Template

A.1 Prompt Template for Data Construction

The prompt template for ChatGPT to generate the
multilingual PoT data is shown in List 1.

Listing 1: Instruction template for ChatGPT to generate
multilingual PoT data.
Task Prompt:
Please use {program_type} functions to
solve math problems. The function name
is "solution ()" and return the result.
The following are some cases:

Example Questions of GSM8K:
Question1: Natalia sold clips to 48 of
her friends in April , and then she sold
half as many clips in May. How many
clips did Natalia sell altogether in
April and May?

Question2: There are 381 pages in Elliot
book. He has already read 149 pages.

If he reads 20 pages a day for a week ,
how many pages are still left to be read
?

Question3: Weng earns $12 an hour for
babysitting. Yesterday , she just did 50
minutes of babysitting. How much did she
earn?

Question4: Alexis is applying for a new
job and bought a new set of business
clothes to wear to the interview. She
went to a department store with a budget
of $200 and spent $30 on a button -up

shirt , $46 on suit pants , $38 on a suit
coat , $11 on socks , and $18 on a belt.
She also purchased a pair of shoes , but
lost the receipt for them. She has $16
left from her budget. How much did
Alexis pay for the shoes?

Example Solutions of Python in GSM8K:
def solution ():

clips_april = 48
clips_may = clips_april / 2
clips_total = clips_april +
clips_may
result = clips_total
return result

def solution ():
pages_initial = 381
pages_read = 149
pages_per_day = 20
num_days = 7 # 7 days in a week
pages_read_in_week = pages_per_day *
num_days

pages_left = pages_initial -
pages_read - pages_read_in_week
result = pages_left
return result

def solution ():
hourly_rate = 12
minutes_worked = 50

hours_worked = minutes_worked / 60
earnings = hourly_rate *
hours_worked
result = earnings
return result

def solution ():
budget = 200
shirt = 30
pants = 46
coat = 38
socks = 11
belt = 18
money_left = 16
shoes = budget - (shirt + pants +
coat + socks + belt + money_left)
result = shoes
return result

Example Solutions of C++ in GSM8K:
float solution () {

float clips_april = 48;
float clips_may = clips_april / 2;
float clips_total = clips_april +
clips_may;
float result = clips_total;
return result;

}

float solution () {
float pages_initial = 381;
float pages_read = 149;
float pages_per_day = 20;
float num_days = 7; // 7 days in a
week
float pages_read_in_week =
pages_per_day * num_days;
float pages_left = pages_initial -
pages_read - pages_read_in_week;
float result = pages_left;
return result;

}

float solution () {
float hourly_rate = 12;
float minutes_worked = 50;
float hours_worked = minutes_worked
/ 60;
float earnings = hourly_rate *
hours_worked;
float result = earnings;
return result;

}

float solution () {
float budget = 200;
float shirt = 30;
float pants = 46;
float coat = 38;
float socks = 11;
float belt = 18;
float money_left = 16;
float shoes = budget - (shirt +
pants + coat + socks + belt +
money_left);
float result = shoes;
return result;

}

Example Solutions of Java in GSM8K:

19805

public static double solution () {
double clips_april = 48;
double clips_may = clips_april / 2;
double clips_total = clips_april +
clips_may;
double result = clips_total;
return result;

}

public static double solution () {
double pages_initial = 381;
double pages_read = 149;
double pages_per_day = 20;
double num_days = 7; // 7 days in a
week

double pages_read_in_week =
pages_per_day * num_days;
double pages_left = pages_initial -
pages_read - pages_read_in_week;
double result = pages_left;
return result;

}

public static double solution () {
double hourly_rate = 12;
double minutes_worked = 50;
double hours_worked = minutes_worked
/ 60;

double earnings = hourly_rate *
hours_worked;
double result = earnings;
return result;

}

public static double solution () {
double budget = 200;
double shirt = 30;
double pants = 46;
double coat = 38;
double socks = 11;
double belt = 18;
double money_left = 16;
double shoes = budget - (shirt +
pants + coat + socks + belt +
money_left);
double result = shoes;
return result;

}

Example Solutions of Matlab in GSM8K:
function result = solution ()

clipsApril = 48;
clipsMay = clipsApril / 2;
totalClips = clipsApril + clipsMay;
result = totalClips;

end

function result = solution ()
totalPages = 381;
pagesRead = 149;
pagesPerDay = 20;
daysInAWeek = 7;
pagesInAWeek = pagesPerDay *
daysInAWeek;
remainingPages = totalPages -
pagesRead - pagesInAWeek;
result = remainingPages;

end

function result = solution ()

hourlyRate = 12;
babysittingMinutes = 50;
babysittingHours =
babysittingMinutes / 60;
earnings = hourlyRate *
babysittingHours;
result = earnings;

end

function result = solution ()
budget = 200;
shirtCost = 30;
pantsCost = 46;
coatCost = 38;
socksCost = 11;
beltCost = 18;
amountSpent = shirtCost + pantsCost
+ coatCost + socksCost + beltCost;
remainingBudget = budget -
amountSpent;
shoesCost = budget - amountSpent;
result = shoesCost;

end

Example Questions of MATH:
Question1: The function $f(x)$ satisfies
[f(x + y) = f(x) f(y)]for all real

numbers x and $y.$ If $f(2) = 3,$ find
$f(6).$

Question2: Compute the sum of all the
roots of $(2x+3)(x-4)+(2x+3)(x-6)=0$.

Question3: A triangle in a Cartesian
coordinate plane has vertices (5, -2),
(10, 5) and (5, 5). How many square
units are in the area of the triangle?
Express your answer as a decimal to the
nearest tenth

Question4: How many nonnegative
solutions are there to the equation $x^2
= -4x$?

Example Solutions of Python in MATH:
def solution ():

def f(x):
if x == 2:

return 3
else:

return f(2) * f(x - 2)
result = f(6)
return result

def solution ():
x = sp.symbols('x')
equation = (2*x + 3)*(x - 4) + (2*x
+ 3)*(x - 6)
roots = sp.solve(equation , x)
result = sum(roots)
return result

def solution ():
vertices = [(5, -2), (10, 5), (5, 5)
]
area = 0.5 * abs((vertices [0][0]*(
vertices [1][1] - vertices [2][1]) +
vertices [1][0]*(vertices [2][1] -
vertices [0][1]) + vertices [2][0]*(
vertices [0][1] - vertices [1][1])))

19806

return round(area , 1)

import sympy as sp
def solution ():

x = sp.symbols('x')
equation = x**2 + 4*x
solutions = sp.solve(equation , x)
non_negative_solutions = [sol for
sol in solutions if sol >= 0]
result = len(non_negative_solutions)
return result

Example Solutions of C++ in MATH:
double f(double x) {

if (x == 2) {
return 3;

}
return f(2) * f(x - 2);

}
double solution () {

return f(6);
}

double solution () {
double root1 = -1.5;
double root2 = 5;
double sum_of_roots = root1 + root2;
return sum_of_roots;

}

double solution () {
double x1 = 5.0, y1 = -2.0;
double x2 = 10.0, y2 = 5.0;
double x3 = 5.0, y3 = 5.0;
double area = 0.5 * std::abs(x1 * (
y2 - y3) + x2 * (y3 - y1) + x3 * (y1
- y2));

return area;
}

int solution () {
int a = 1;
int b = 4;
int discriminant = b * b - 4 * a *
0;
int root_count = 0;
if (discriminant > 0) {

double root1 = (-b + sqrt(
discriminant)) / (2 * a);
double root2 = (-b - sqrt(
discriminant)) / (2 * a);
if (root1 >= 0) root_count ++;
if (root2 >= 0) root_count ++;

} else if (discriminant == 0) {
double root = -b / (2 * a);
if (root >= 0) root_count ++;

}
return root_count;

}

Example Solutions of Java in MATH:
public static double solution () {

double a = Math.sqrt (3);
double result = Math.pow(a, 6);
return result;

}

public static double solution () {
double a = 4;
double b = -14;

double c = -30;
double discriminant = b * b - 4 * a
* c;
if (discriminant < 0) {

return Double.NaN;
} else {

double root1 = (-b + Math.sqrt(
discriminant)) / (2 * a);
double root2 = (-b - Math.sqrt(
discriminant)) / (2 * a);

double sumOfRoots = root1 +
root2;

return sumOfRoots;
}

}

public static double solution () {
double x1 = 5;
double y1 = -2;
double x2 = 10;
double y2 = 5;
double x3 = 5;
double y3 = 5;
double area = 0.5 * Math.abs(x1 * y2
+ x2 * y3 + x3 * y1 - x1 * y3 - x2

* y1 - x3 * y2);
return area;

}

public static int solution () {
int a = 1;
int b = 4;
int discriminant = b * b - 4 * a *
0;
int root_count = 0;
if (discriminant > 0) {

double root1 = (-b + Math.sqrt(
discriminant)) / (2 * a);
double root2 = (-b - Math.sqrt(
discriminant)) / (2 * a);
if (root1 >= 0) root_count ++;
if (root2 >= 0) root_count ++;

} else if (discriminant == 0) {
double root = -b / (2.0 * a);
if (root >= 0) root_count ++;

}
return root_count;

}

Example Solutions of Matlab in MATH:
function result = solution ()

function value = f(x)
if x == 2

value = 3;
else

value = f(x - 2) * f(2);
end

end
result = f(6);

end

function result = solution ()
syms x;
equation = (2*x + 3)*(x - 4) + (2*x
+ 3)*(x - 6) == 0;
roots_x = solve(equation , x);
sum_of_roots = sum(roots_x);
result = sum_of_roots;

19807

end

function result = solution ()
x1 = 5; y1 = -2;
x2 = 10; y2 = 5;
x3 = 5; y3 = 5;
area = 0.5 * abs(x1*(y2 - y3) + x2*(
y3 - y1) + x3*(y1 - y2));
result = area;

end

function result = solution ()
syms x
equation = x^2 + 4*x;
solutions = solve(equation);
num_solutions = sum(double(solutions
>= 0));

result = num_solutions;
end

A.2 Prompt Template for Model Inference
The prompt template for MultiLingPoT to infer-
ence in different languages is shown in List 2.

Listing 2: Instruction template for MultiLingPoT to
inference in different languages.
/* Instruction */
You are a math problem solving robot ,
for the input math problem , write the
solution function to solve the problem
using the specified programming language
.

/* Input */
Write a {program_type} program to solve
the problem: {question}

/* Output in Python */
def solution ():

x, y = sp.symbols('x y')
equation1 = x**2 - y
equation2 = x + y - 1
intersections = sp.solve((equation1 ,
equation2), (x, y))

distance = sp.sqrt((intersections
[0][0] - intersections [1][0]) **2 + (
intersections [0][1] - intersections
[1][1]) **2)
return distance

/* Output in C++ */
double solution () {

// The equation of the first
intersection is (0, 0)
// The equation of the second
intersection is (1 - sqrt(1 - 4*0),
1 - sqrt(1 - 4*0))
double x1 = 0;
double y1 = 0;
double x2 = 1 - sqrt(1 - 4 * 0);
double y2 = 1 - sqrt(1 - 4 * 0);
double distance = sqrt(pow(x2 - x1 ,
2) + pow(y2 - y1, 2));
return distance;

}

/* Output in Java */
public static double solution () {

double x1 = 0;
double y1 = 0;
double x2 = 1 - Math.sqrt(1 - 4 * 0
* 0);
double y2 = 1 - 0;
double distance = Math.sqrt(Math.pow
(x2 - x1, 2) + Math.pow(y2 - y1, 2))
;
return distance;

}

/* Output in Matlab */
function result = solution ()

syms x;
y = x^2;
equation1 = x + y == 1;
equation2 = y == 0;
solutions = solve([equation1 ,
equation2], x);
intersection_points = [double(
solutions (1)), 0];
distance = norm(intersection_points
(1) - intersection_points (2));
result = distance;

end

B Language Selection Implementation

The following are the implementation details of the
language selection strategy in inference.

B.1 Prior Selection Strategy

The four specific implementation details of prior
selection strategy are as follows.

Case-Based Choice Assuming that similar
queries have similar solutions (Dong et al., 2022),
the method selects languages based on their per-
formance on training examples similar to the in-
put query. For each input query, the method uses
text-embedding-3-small (Neelakantan et al.,
2022) to compute similarity and rank the relevant
examples in the training set. Starting with the most
similar examples, the method counts the number
of correct answers for each programming language.
The language that reaches 10 correct counts first is
selected to answer the current query.

Small Model Scorer This method uses small pa-
rameter models as scorers for programming lan-
guage selection. Given that our task involves
both natural and programming languages, we
choose Bert-base-uncased (Devlin, 2018) and
CodeBert-base (Feng et al., 2020) as the base
models. Specifically, this method uses the four pro-
gramming languages’ performance on the training
set to train four scorers. Each scorer is responsible
for evaluating a specific language. For an input
query, the scorers provide a rating of [0,1]. The lan-

19808

guage with the highest rating is chosen to answer
the current query.

LLM Scorer Given that LLMs have better rea-
soning and understanding abilities, this method
uses Llama3-8B-Instruct (AI@Meta, 2024) as a
scorer for programming language selection. Simi-
lar to the small model scorer, this method trains a
Llama3 scorer using the performance of four lan-
guages on the training set. Given the input query
and chosen language, the scorer returns a “Yes” or
“No” response. And we use the difference between
the logprob of “Yes” and “No” as the score and
select the highest scoring language to answer the
current query.

Direct Perference Optimization This method
performs DPO training (Rafailov et al., 2024) on
the MultiLingPoT model, giving the model the abil-
ity to select preferences itself. Specifically, the
method uses the performance of the four languages
on the training set as the preference dataset. For
the input query, the PoT of the language that an-
swered correctly is chosen, while the PoT of the
incorrect language is rejected. By DPO training
on the preference dataset, the model can directly
output the query-preferred language results without
additional selection.

B.2 Posterior Selection Strategy

The four specific implementation details of poste-
rior selection strategy are as follows.

Self Consistency Referring to the study by Wang
et al. (2022), this method selects the final answer
by voting on the PoT results in four languages. The
answer with the most votes is chosen as the final
answer. In case of a tie vote, one of the tied results
is randomly selected as the final answer.

Small Model Scorer This method uses small pa-
rameter models as the scorers for programming
language selection. All steps are the same as in
the “Small Model Scorer” with the prior selection,
except that both the query and the generated code
are entered as criteria during training and inference.
This allows the model to make selections not only
based on the preferences from the query but also
by considering additional factors, such as the com-
pleteness of the code, the library functions used,
etc.

LLM Scorer This method uses LLM as a scorer
for programming language selection. All steps are

the same as in the “LLM Scorer” with the prior
selection, except that both the query and the gener-
ated code are used as evaluation criteria.

Voting and Scoring Influenced by the fact that
votes are often tied in complex dataset, we incorpo-
rate the self-consistency and LLM scorer methods.
For the input query and the PoT results in the four
languages, the method first votes on the PoT re-
sults. If there is a single highest-scoring answer, it
is selected as the final output. Otherwise, the final
answer is selected using the LLM scorer.

C Case Study

C.1 Correctness and Incorrectness in
Different Languages

The following are some examples where Python/-
Matlab are erroneous but C++/Java are correct.

Listing 3: Case Study of Correctness and Incorrectness
in Different Languages.
Case 1
A line segment begins at (1, 3). It is 5
units long and ends at the point (4, x)
and x > 0. What is the value of x?

/* python/matlab */
def solution ():

x = sp.symbols('x')
distance = sp.sqrt ((4 - 1)**2 + (x -
3)**2)

equation = sp.Eq(distance , 5)
solutions = sp.solve(equation , x)
result = solutions [0]
return result

/* c++/java */
public static double solution () {

double x1 = 1;
double y1 = 3;
double length = 5;
double x2 = 4;
double y2 = y1 + Math.sqrt(length *
length - (x2 - x1) * (x2 - x1));
return y2; }

Case 2
What is the remainder when 2^{87} +3 is
divided by 7?
/* python/matlab */
function result = solution ()

remainder = mod (2^87 + 3, 7);
result = remainder;
end

/* c++/java */
public static int solution () {

int base = 2;
int exponent = 87;
int modulus = 7;
int result = 1;
for (int i = 0; i < exponent; i++) {

result = (result * base) %
modulus; }

result = (result + 3) % modulus;
return result ;}

19809

Count Int. Num.Method Language Algebra Prob. Geom. Algebra Theory Prealg. Precalc. Average

DeepseekCoder

SinglePoT Python-DA 49.40 37.97 26.01 27.18 61.03 62.96 27.36 41.70

Python 47.95 31.64 25.37 23.92 60.26 60.81 26.87 39.54
C++ 53.95 41.56 27.07 22.74 52.20 64.39 26.39 41.18
Java 48.77 43.67 29.42 23.79 54.70 62.72 26.87 41.42
Matlab 35.21 43.45 26.86 14.50 51.82 56.15 24.45 36.06MultiLingPoT

Self-Cons. 58.23 49.57 30.49 28.36 62.95 68.21 30.02 46.83

CodeLlama-Python

SinglePoT Python-DA 40.85 32.91 23.45 21.04 52.59 52.44 23.97 35.32

Python 40.30 28.48 18.97 19.86 53.93 50.77 23.72 33.71
C++ 40.76 32.70 23.24 18.43 47.79 50.65 21.30 33.55
Java 39.67 36.91 20.46 18.69 48.94 52.09 24.45 34.45
Matlab 30.48 38.18 21.10 13.20 45.68 47.31 22.76 31.24MultiLingPoT

Self-Cons. 46.95 40.08 24.09 23.26 56.81 57.10 26.87 39.30

Llama3

SinglePoT Python-DA 42.12 30.80 23.66 24.44 55.85 52.21 21.79 35.83

Python 40.49 28.05 21.10 17.90 48.94 54.24 20.82 33.07
C++ 44.13 34.59 23.45 19.60 45.87 53.28 22.27 34.74
Java 44.04 38.81 25.79 19.21 46.25 53.88 21.79 35.68
Matlab 30.11 40.08 20.46 13.33 43.76 46.35 21.06 30.73MultiLingPoT

Self-Cons. 50.22 41.98 26.22 23.92 54.70 59.73 25.66 40.34

Table 8: Results of different models using MultiLingPoT on complex datasets, including DeepseekCoder for the
code model, CodeLlama-Python for the code model in a single language, and Llama3 for the non-code model.

There are two main reasons for this situation: (1)
Incorrect use of library functions and (2) different
solution logics. For the first type, Python/Matlab
often encounter errors due to the excessive number
of library functions, including calling non-existent
library functions (hallucinations), failing to han-
dle the output of library functions, incorrect pa-
rameter passing to library functions, etc. For the
second category, we found that due to the abun-
dance of library functions in Python/Matlab, they
tend to perform direct calculations during problem-
solving, while C++/Java are more likely to employ
“clever solutions.” This results in Python/Matlab
consuming more computational resources in some
problems and may even fail to provide answers due
to exceeding computational limits. Similar to the
second type, C++/Java are generally more sensi-
tive to boundary conditions and exception handling
issues.

C.2 Challenge of Language Selection

The following are some examples of language se-
lection in multilingual PoT reasoning.

Listing 4: Case Study of Challenge in Language Selec-
tion.

Case 1
Ravi has some coins. He has 2 more
quarters than nickels and 4 more dimes
than quarters. If he has 6 nickels , how
much money does he have?
Appropriate Language: C++

Case 2
There are 5 green candies , 3 blue
candies , and 4 red candies in a bag. If
Violet randomly picks a candy from the
bag , how likely is it that it 's blue?
Appropriate Language: Python

Case 3
How many rows of Pascal 's Triangle
contain the number 43?
Appropriate Language: Python

Case 4
Let C be the circle with equation x^2+12
y+57=-y^2-10x. If (a,b) is the center of
C and r is its radius , what is the

value of a+b+r?
Appropriate Language: Java

Case 5
The integer x has 12 positive factors.
The numbers 12 and 15 are factors of x.
What is x?
Appropriate Language: Matlab

Case 6

19810

A telephone pole is supported by a steel
cable which extends from the top of the
pole to a point on the ground 3 meters

from its base. When Leah walks 2.5
meters from the base of the pole toward
the point where the cable is attached to
the ground , her head just touches the

cable. Leah is 1.5 meters tall. How many
meters tall is the pole?

Appropriate Language: C++

Among these, case 1 and case 2 are from gsm8k.
For simple datasets, since the capabilities of differ-
ent languages are not significantly different (basic
arithmetic operations), the logical reasoning and
judgment of conditions during inference can signif-
icantly impact the results, which makes language
selection challenging. Case 3 to 6 are from MATH,
which also poses difficulties in language selection.
There are several reasons for this difficulty: (1) The
problem is abstracted, so it may not be immediately
clear what capabilities or libraries are required. (2)
Even if a language has the corresponding library,
it may not necessarily provide the correct solu-
tion. (3) Factors such as problem-solving logic and
decoding randomness can also affect the results.
Therefore, selecting the appropriate language, es-
pecially when relying solely on the query, is quite
challenging.

D Different Models on MultiLingPoT

The specific results of different models training
with multilingual PoT are shown in Table 8.

19811

