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Abstract

Large language models (LLMs) have shown re-
markable capabilities across various tasks, that
are learned from massive amounts of text-based
data. Although LLMs can control output se-
quence length, particularly in instruction-based
settings, the internal mechanisms behind this
control have been unexplored yet. In this study,
we provide empirical evidence on how output
sequence length information is encoded within
the internal representations in LLMs. In partic-
ular, our findings show that multi-head atten-
tion mechanisms are critical in determining out-
put sequence length, which can be adjusted in
a disentangled manner. By scaling specific hid-
den units within the model, we can control the
output sequence length without losing the infor-
mativeness of the generated text, thereby indi-
cating that length information is partially disen-
tangled from semantic information. Moreover,
some hidden units become increasingly active
as prompts become more length-specific, thus
reflecting the model’s internal awareness of this
attribute. Our findings suggest that LLMs have
learned robust and adaptable internal mecha-
nisms for controlling output length without any
external control.

1 Introduction

Large language models (LLMs) have gained con-
siderable attention in recent years for their remark-
able task-solving capabilities (Ouyang et al., 2022;
Wei et al., 2022; Bubeck et al., 2023). LLMs are
trained to predict the next token in a sequence.
They can produce coherent and informative text,
which demonstrates their implicit understanding of
diverse linguistic structures (Tenney et al., 2019;
Niu et al., 2022; Begus et al., 2023). Further-
more, they also learn when to stop generating text
to ensure that the output adheres to appropriate

t Authors contributed equally. * Corresponding author.
Our code is available at https://github.com/Mcat0o/
gilab_length.

length constraints (Juseon-Do et al., 2024). Con-
trolling output sequence length in LLMs is crucial
for real-world applications, such as text summariza-
tion (Liu et al., 2018; Makino et al., 2019; Liu et al.,
2022; Kwon et al., 2023), machine translation (Wu
et al., 2016; Murray and Chiang, 2018; Zhuocheng
et al., 2023), knowledge QA, and dialogue gener-
ation (Liu et al., 2020; Gupta et al., 2021), that
necessitate fitting content within specified length
limits without losing informativeness. Therefore,
the number of studies attempting to improve length
controllability has increased drastically (Shen et al.,
2023; Jie et al., 2024; Yuan et al., 2024).

Based on advancements in instruction-based
LLMs, it is observed that injecting constraints
into prompts can further effectively control out-
put length without requiring model modifica-
tions (Juseon-Do et al., 2024). However, these
prompt engineering methods mainly focus on ex-
ternal controls, and it has not been explored yet
how LLMs internally encode and constrain out-
put sequence length. Understanding these inter-
nal mechanisms is critical for achieving precise
length control, while enhancing the interpretability
and robustness of LLMs in generation-based sys-
tems. Herein, we aim to investigate how output
sequence length information is encoded within the
internal representations of general transformer ar-
chitectures. Specifically, we first investigate which
components within LLM transformer layers con-
tribute to length control. Our findings reveal that
the outputs from multi-head attention mechanisms
in the lower layers play a key role in determining
and controlling output sequence length in a tunable
and disentangled manner.

For this work, we utilize a sentence summariza-
tion task, which often requires adherence to de-
sired summary lengths, and employ models from
the Llama (Meta, 2024), Phi-3 (Abdin et al., 2024),
and Qwen-2.5 (Qwen et al., 2025) families.

We empirically demonstrate, based on human
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evaluations, that we can adjust output length during
generation without losing the informativeness of
texts by scaling specific hidden units within the out-
puts from the lower layers of multi-head attention
mechanisms. For instance, multiplying certain hid-
den units with negative numbers results in longer
text, while multiplying them by positive numbers
generates more concise texts without losing infor-
mativeness. Furthermore, certain hidden units re-
lated to length information show increasing activity
as prompts become more specific regarding length
constraints. These units appear to be directly in-
volved in controlling output length, indicating that
LLMs have learned to process length-related infor-
mation as a distinct feature, partially disentangled
from other semantic information. Moreover, we
find that the same highly activated hidden units
are consistently involved in length control even af-
ter fine-tuning, regardless of length constraints in
prompts (Dai et al., 2023). Our code is available at
https://github.com/Mcat@@/gilab_length.

2 Related Work

Large Language Models. In recent years, LLMs
have achieved considerable success due to their
remarkable task-solving abilities, specifically in
zero-shot settings (Radford et al., 2019; Brown
et al., 2020). LLMs are broadly categorized into
open and closed models. The open models, such
as the Llama or Phi family, offer flexible access to
modify their architectures, while the closed models,
such as ChatGPT,! have demonstrated remarkable
reasoning abilities in various natural language pro-
cessing tasks (Jiao et al., 2023; Peng et al., 2023;
Laskar et al., 2023; Ye et al., 2023; Xie et al., 2023,
2024). Recent studies have focused on finding bet-
ter methods to prompt LLMs (Zhou et al., 2022;
Kojima et al., 2023; Zhou et al., 2023).

Mechanistic Interpretability. Due to increasing
interest in investigating the internal mechanisms
of deep neural networks (Rauker et al., 2023), sig-
nificant attempts have been made to understand
LLMs with a focus on models like BERT (Tenney
et al., 2019; Rogers et al., 2020; Niu et al., 2022),
GPT (Hanna et al., 2023), and even multimodal
models (Goh et al., 2021). For instance, (Gurnee
and Tegmark, 2024) showed that, when handling
various prompts, LLMs learn linear representations
of space and time across multiple scales, that show
robustness. They also showed that next token pre-

"https://chat.openai.com/

diction can be changed simply by disentangling
hidden units related to time. (Heinzerling and Inui,
2024) introduced directions that encode numeric
properties in an interpretable manner; hence, by dis-
entangling these representations, LLM prediction
can change accordingly. There have been attempts
to investigate how in-context learning with LLMs
behaves similar to explicit fine-tuning for better
understanding them (Dai et al., 2023). Early efforts
to investigate how neural networks treat length in-
formation have focused on memory cell networks
in LSTMs, as they recursively encode and decode
sequences, though they failed to find single units
related to length information (Shi et al., 2016).

Length Controllable Summarization. Text sum-
marization aims to produce a concise summary
from an original text by retaining informative con-
tents (Liu et al., 2018; Takase and Okazaki, 2019;
Li et al., 2020; He et al., 2022). As the sum-
marization often requires additional constraints
such as a desired summary length, previous stud-
ies have focused on learning length-specific pa-
rameters (Kikuchi et al., 2016; Schumann et al.,
2020; Ghalandari et al., 2022), injecting direct con-
straints (Takase and Okazaki, 2019; Makino et al.,
2019), or splitting the training dataset into specific
length ranges (He et al., 2022). Recently, (Juseon-
Do et al., 2024) considered in-context learning
and demonstrated that LLMs can control output
sequence length through “length priming”. This
method involves injecting more length-specific in-
formation into prompts, thereby allowing the model
to adjust output sequence length without modify-
ing model architectures or learning parameters. (Jie
et al., 2024) considered length control types such as
greater/smaller than a value with exhaustive model
modifications by reinforcement learning.

To the best of our knowledge, this study is the
first attempt to interpret how length information
is encoded in LLMs and demonstrate how length-
specific information is partially disentangled from
semantic information. Furthermore, by comparing
various length-specific prompts, we investigate how
in-context learning and fine-tuning can influence
the internal representations of LLMs. Finally, we
demonstrate how disentangling length-specific hid-
den units can adjust output sequence length without
losing informativeness.
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Constraint Instruction

No-constraint Sentence:{src}The sentence without the less important tokens would be:

Length

Sentence: {src} The sentence without the less important {del} tokens would be:

Priming

Sentence that consists of {src len} tokens:{src}The sentence that consists of

{keep} tokens without the less important {del} tokens would be:

Table 1: Instruction formats. “src” indicates the placeholder for a source sentence, “del” denotes the placeholder for
the number of deleted tokens, and “keep” and “src len” denote additional length information.

3 Finding Length Representations

Our goal is to understand whether and how length
representations are encoded in LLMs when using
various length-constraint prompts. For this, we
extracted outputs from different components and
layers of transformer architectures during text gen-
eration. We then applied regression to predict the
generation time steps from these hidden states.
Summarization Dataset. We used the Google sen-
tence summarization dataset” (Filippova and Altun,
2013) in an instruction-based format, following
previous work® (Juseon-Do et al., 2024) because
recent studies on length control still faces chal-
lenges in managing it with LLMs (Jie et al., 2024;
Yuan et al., 2024). Table 1 presents the instruction
templates. As can be seen, in the No-constraint
setting, the model summarizes a given sentence
without considering a desired length, while in the
Length setting, it summarizes the sentence with a
specific desired length (Fetahu et al., 2023). The
Priming setting further considers more specific
length information, such as the length of the given
sentence and the number of tokens to keep (Juseon-
Do et al., 2024). The dataset includes 200k train-
ing, 1k validation, and 1k test pairs, where the
average compression ratio in the test dataset is 0.45.
Length-specific prompts use ground-truth summary
lengths.

3.1 Models and Methods

Models. We performed our experiments using
the Llama family of pre-trained instruction-based
LLMs, which range from 1B to 70B parame-
ters (Touvron et al., 2023; Grattafiori et al., 2024),
the Phi-3 family of mini (Abdin et al., 2024), and
the Qwen-2.5 family (Qwen et al., 2025). Addition-
ally, we considered how 4- and 8-bit quantizations
influence length representations in LLMs. Fur-

2https ://github.com/google-research-datasets/
sentence-compression.git

Shttps://github.com/JuseonDo/InstructCMP

thermore, we fine-tuned an LLM on Google using
QLoRA (Dettmers et al., 2023) to study how fine-
tuning with length constraint prompts affect length-
related internal representations. We followed previ-
ous work that incorporates such prompts to enhance
output length control (Juseon-Do et al., 2024). We
used greedy decoding in all experiments to elimi-
nate randomness in generation.

Gathering Model States. In the transformer, an
input sentence S = {s1,s9,...,8,} was first
converted into vector embeddings, after which
learned positional embeddings were added to form
Semb = {s§, 85, ..., s5}. These embeddings were
then normalized using layer normalization, ex-
pressed as Shorm = LN (Semp). Then, they were
computed through query (Wq), key (Wxk), and
value (W+v/) matrices, and were fed into the trans-
former layers as follows:

MH(Q, K, V) = Concat(hy, ... ,h,)Wo, (1)
Satn = Semp + MH(SS,, SE SV ), (2)
Strn = ReLU(LN(San ) W1 + b)) Wa + by, (3)
Sout = Sattn + Stfns 4)

where each h; = softmax (Q—\/lg) V indicates a
self-attention operation.

We considered four outputs from the transformer
layers: (1) multi-head attention, (2) multi-head at-
tention combined with the original embeddings, (3)
the outputs of feed-forward networks, and (4) an
integration of (2) and (3). Each output represents a
distinct level of encoded information derived from
the original input sentence S. We conducted sen-
tence summarization using prompts in three differ-
ent settings: No-constraint, Length, and Priming.
For each setting, we investigated these four outputs
for each layer. During token generation, we saved
each output with its corresponding numeric time
step value, excluding the input token prompts (Ka-
plan et al., 2024). For instance, we saved n with
its corresponding output when the model generated
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the n-th token. Appendix A provides further details
of data for predicting time steps from hidden states.
Neural Network Regression. To find evidence
of length representations in LLMs, we applied a
standard technique to predict a target label asso-
ciated with labeled input data (Shi et al., 2016),
specifically, X € R"*dmoel where m refers to the
number of data, dyoqel is the dimensionality of a
model’s hidden states, and Y is a target that con-
tains the generation time step as a numeric value
for each corresponding X. We used a two-layer
neural network with a hidden layer of 100 neurons
to predict Y = Wy (ReLU(W X + by)) + bo.
By investigating how well the model can predict
the generation time step, we can gain insights into
how length representations are encoded within the
LLM’s hidden states. To assess how well the time
step can be predicted from its corresponding hid-
den state in LLMs, we considered the coefficient
determination, R2, as a standard regression metric
to evaluate the overall performance. Appendix B
provides details of hyper-parameters and settings.

4 Length Representations in LL.Ms

We explored which transformer layers and outputs
contain length information, how length-specific
prompts and quantization affect length represen-
tations, and the impact of fine-tuning on LLMs.
Layer-wise Analysis for Length Representations.
Figure 1 shows the variation of R? for outputs from
a transformer layer corresponding to Equations (1),
(2), (3), and (4). In the second layer, the outputs of
Equation (1), which indicates the attention mecha-
nism, show a stronger correlation with the length
representations than the outputs from Equations (2),
(3), and (4) for all prompts. Length representations
decrease through LLLM layers during token gener-
ation but increase in the final layer based on the
attention outputs of Equation (1). This indicates
that the LLM captures length representations in the
early stages, similar to how they capture semantic
representations (Niu et al., 2022). As such, the
increase in length representations in the final layer
indicates that the model may revisit this informa-
tion to reinforce positional context.

Influence of Length-specific Prompts. Table 2
shows the results of R? for outputs, which include
Llama and Phi LLMs with a 4-bit quantization set-
ting. The results reveal that the attention output
consistently has higher R? scores than the other
outputs, particularly in the second layer for the

Llama- and Phi-3 families, regardless of model
sizes. However, we observed a notable decrease
in performance in the first layer, particularly in
the attention residual. This indicates that the ini-
tial input sequence embeddings do not effectively
contain length information; however, these rep-
resentations progressively accumulate it through
the layers. Although the length-specific prompt-
ing method (Priming) can precisely control output
sequence length (Juseon-Do et al., 2024), it does
not increase the R? when using all hidden units
for prediction. However, when we fine-tuned the
models, we found that for every model, regardless
of the prompts used, the R? scores were improved.
Quantization on Length Representations. Ta-
ble 3 shows the results with 8-bit and full-precision
settings. The results are similar to those obtained
with 4-bit quantization, wherein length representa-
tions are more prominently encoded in the atten-
tion outputs from the second layer than the other
outputs. This indicates that whether 4- or 8-bit
quantization is applied does not significantly affect
the LLMs’ capabilities to encode length represen-
tations. Therefore, the attention mechanism of the
second layer consistently captures length represen-
tations across different precision levels even for
different models with varying sizes.

5 Disentangling Length Representations

The previous section explored which components
and layers contain length representations for output
sequence length with varying prompts. While the
second attention layer has a strong correlation with
length representations, this does not indicate which
hidden units are actually responsible for control-
ling the output sequence length. Thus, the specific
hidden units must be identified for a better under-
standing of LLMs’ length control.

Do Length-specific Prompts Affect Inner Length
Representations? We additionally trained separate
neural network regression models on each single
hidden unit from the second layer of the attention
outputs in Llama-2-13B-Chat, which has a total of
5,120 hidden units. Table 4 shows the results for
hidden units of the top-5 highest R? scores. Com-
pared to the No-constraint and Length prompting
methods, length-related hidden units become more
active in representing length information when we
used more length-specific prompts Priming. In
the zero-shot setting, No-constraint and Length
prompts share similar top-5 hidden units for the
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Figure 1: Average R? scores and standard errors with five runs for outputs of four different types of transformer

layers using Llama-2-7B-Chat.

length representation, while the Priming prompt
activates different units, showing a shift in length
capture and stronger activation in top-k units. After
fine-tuning, the hidden units for the length repre-
sentation became nearly identical across prompting
methods, because the model learned the precise
length control. Interestingly, the same top-3 hid-
den units are activated with the Priming prompt in
the zero-shot and fine-tuning settings. This finding
shows that specific length-related units consistently
activate during Priming, thus guiding LLMs in out-
put length control and revealing in-context learning
as implicit fine-tuning (Dai et al., 2023).
Does Scaling Length Representations Affect
Model-Generated Text? Since identified length-
related units do not guarantee their actual involve-
ment in length representations within LLMs (Saj-
jad et al., 2022; Belinkov, 2022), we investigate the
effect of scaling these representations on model-
generated text. Specifically, we disentangled the
top-k and smallest-k activated hidden units in the
second layer’s multi-head attention by scaling them
with positive or negative values. The scaling was
applied to all output token positions except the in-
put prompts.* This approach demonstrates that the
identified units contribute to length representations
in LL.Ms and they are partially disentangled from
semantic representations.
Evaluation Metrics. We used Rouge-L (R-L) (Lin,
2004) to evaluate the informativeness of the sum-
marized sentences. To evaluate length control per-
formance, we used ACR, the arithmetical differ-
ence between model-generated and gold compres-
sion ratios. The compression ratio is the number of
summary tokens divided by the number of source
tokens. A ACR close to zero indicates that the gen-
erated summaries have a compression ratio similar
to the gold summaries, with higher values indicat-
ing longer summaries and lower values indicating
shorter ones. Thus, deviations in ACR from zero
*We also explored other scaling methods, such as applying

scaling only to the first output token, but found they were
ineffective at controlling output lengths.

often lead to lower R-L scores due to reduced align-
ment with the gold summary (Makino et al., 2019).

Results in Zero-Shot Settings. Figure 2 (a)
presents the results of applying negative or pos-
itive scaling factors to the top-k and smallest-k ac-
tivated hidden units in zero-shot settings. When
using more length-specific prompts of Priming, we
observed more consistent changes of ACR with
modifying only the top-1 hidden unit. We think
this is because Priming contains more highly acti-
vated hidden units related to length representations
than No-constraint and Length. Thus, the highly
activated length-related units provide better length
representations and length controllability, as shown
in Table 4. Additionally, the output sequence length
changes according to increases in the scaling fac-
tor. While multiplying positive and negative values
enables the LLLM to produce shorter and longer
summaries, respectively, than the original hidden
units, particularly in the Priming prompt, in the
No-constraint and Length prompts, the LLM does
not generate shorter summaries even when positive
scaling values were applied.

As for R-L scores, disentangling the top-k units
improves performance, particularly in the Priming
prompt due to improved length alignment with the
gold summary. This finding indicates that adjusting
the most highly activated length-related units not
only controls length but also enhances the infor-
mativeness of the generated text. However, when
we applied large scaling factors, such as -10 or
10, the R-L scores slightly decrease when the No-
constraint and Length prompts were used. In com-
parison, for Priming, which is more length-specific
prompts, continues to improve performance even
when we applied a large scaling factor of 10. Dis-
entangling the smallest-k units does not lead to
significant changes in output sequence length, thus
indicating that these units are less involved in en-
coding length information. For selected smallest-k
units, the individual R? scores are nearly 0.

Results in Fine-Tuning Settings. Figure 2 (b)
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Layer type

Model Prom. Attn Out Attn Residual MLP Out MLP Residual
F S L F S L F S L F S L
Llama-2 [1] 0.94 0.95 0.88 0.00 0.90 0.89 0.84 0.70 0.67 0.90 0.94 0.85
7B [2] 0.98 0.99 093 0.11 0.94 0.93 0.89 0.77 0.70 0.95 0.97 0.89
[3] 0.98 0.99 095 0.11 0.94 0.94 0.89 0.77 0.78 0.95 0.98 0.92
Llama-2 [1] 0.95 0.96 0.93 0.08 0.93 0.92 0.90 0.83 0.74 0.93 0.95 0.89
_13B [2] 0.94 0.94 0.92 0.10 0.92 0.92 0.89 0.81 0.75 0.91 0.94 0.91
[3] 0.99 0.99 091 0.17 0.96 0.92 0.92 0.81 0.72 0.97 0.98 0.89
Llama-2 [1] 0.99 0.99 0.88 0.17 0.97 0.92 0.93 0.81 0.74 0.98 0.98 0.91
-13B [2] 0.99 0.99 0.87 0.21 0.97 0.93 0.92 0.83 0.78 0.98 0.98 0.91
(finetuned) [3] 0.99 0.99 0.90 0.16 0.96 0.93 0.92 0.85 0.83 0.97 0.98 0.92
Llama-2 [1] 0.97 0.99 0.95 0.16 0.93 0.92 0.83 0.81 0.82 0.95 0.98 0.92
-70B [2] 0.97 0.99 094 0.17 0.92 0.93 0.87 0.84 0.80 0.95 0.98 0.92
[3] 0.98 0.97 091 0.18 0.91 0.89 0.82 0.76 0.78 0.94 0.95 0.88
Llama-3 [1] 0.96 0.98 0.91 0.20 0.86 0.91 0.70 0.74 0.78 0.88 0.95 0.88
-8B [2] 0.96 0.97 0.93 0.16 0.88 0.93 0.72 0.75 0.79 0.90 0.96 0.89
[3] 0.97 0.98 0.94 0.24 0.87 0.94 0.73 0.76 0.87 0.89 0.95 0.92
Phi-3 [1] 0.93 0.97 091 0.07 0.80 0.91 0.61 0.66 0.55 0.84 0.95 0.86
-mini [2] 0.94 0.97 0.92 0.04 0.80 0.92 0.65 0.67 0.56 0.82 0.94 0.86
-4k [3] 0.93 0.97 0.89 0.07 0.77 0.90 0.48 0.63 0.58 0.80 0.95 0.84
Phi-3.5 [1] 0.90 0.96 0.90 0.06 0.71 0.91 0.53 0.58 0.63 0.75 0.93 0.83
_mini [2] 0.90 0.96 0.89 0.07 0.71 0.90 0.56 0.59 0.62 0.74 0.93 0.84
[3] 0.63 0.73 0.55 0.05 0.40 0.63 0.30 0.44 0.44 0.45 0.73 0.60
Qwen-2.5 [1] 0.86 0.98 0.75 0.15 0.68 0.77 0.45 0.87 0.46 0.85 0.95 0.71
3B ’ [2] 0.84 0.97 0.77 0.15 0.64 0.78 0.42 0.84 0.57 0.83 0.95 0.75
[3] 0.82 0.96 0.72 0.17 0.65 0.73 0.39 0.85 0.47 0.82 0.93 0.67
Qwen-2.5 [1] 0.92 0.99 0.82 0.14 0.84 0.88 0.65 0.79 0.60 0.92 0.98 0.83
7B ) [2] 0.93 0.99 0.81 0.15 0.85 0.86 0.69 0.80 0.60 0.92 0.98 0.82
[3] 0.96 0.99 0.80 0.32 0.92 0.87 0.76 0.85 0.66 0.96 0.98 0.83

Table 2: Average R? scores with five runs for different models with constraint prompt types from the first (F),
second (S), and last (L) layers in LLMs. The standard errors are nearly zero. Prom. indicates the prompting method
used, and [1], [2], and [3] indicate No-constraint, Length, and Priming prompts.

shows the results of applying negative or positive
scaling factors to the top-k and smallest-k activated
hidden units in fine-tuning settings. In contrast to
the previous zero-shot settings, we obtained more
stable results for all prompts when we disentangled
the hidden units. While multiplying positive scal-
ing values results in generating shorter summaries,
multiplying negative values produces longer sum-
maries. This is because fine-tuning has strength-
ened the LLM’s reliance on the top-k length-related
units for precise length control. While large scaling
factors lead to greater changes in ACR and R-L
for the Priming prompt, higher overall R-L scores
are maintained. The decrease in R-L occurs be-
cause the Priming prompt in fine-tuning settings al-
ready achieves precise control, resulting in a ACR
close to zero. Applying large scaling factors causes
deviations from zero and leads to a decline in R-
L scores. Disentangling the smallest-k has mini-
mal impact on sequence length among all prompts.

Specifically, there are no significant changes in out-
put sequence length when the smallest-k hidden
units were modified.

Results Using Different LLMs. Figure 3 shows
the results using different LLMs. While Llama-
2-7B-Chat and Llama-2-13B-Chat used standard
multi-head attentions during their pre-training
steps, other LLMs employed grouped-query atten-
tions (Grattafiori et al., 2024; Abdin et al., 2024).
When we scaled the top-k hidden units by multiply-
ing scaling factors in the LLMs which employed
the multi-head attentions, we observed variations in
output length under zero-shot settings while scaling
the smallest-k hidden units did not impact length
control during generation. In contrast, scaling the
top-k hidden units in the LLMs that employed the
grouped-query attentions did not effectively con-
trol output length. However, after fine-tuning these
LLMs, we found that disentangling the top-k hid-
den units effectively controls output length. Addi-
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Layer type

Model  Prom. Attn Out Attn Residual MLP Out MLP Residual
First Second Last First Second Last First Second Last First Second Last

Ll ) [1] 0.58/0.55 0.70/0.68 0.76/0.74 0.01/0.04 0.58/0.56 0.73/0.72 0.59/0.58 0.56/0.57 0.61/0.59 0.58/0.55 0.66/0.64 0.70/0.69
_Zﬁ%' [2]1  0.99/0.99 0.99/0.99 0.94/0.94 0.11/0.11 0.96/0.97 0.94/0.94 0.92/0.93 0.83/0.83 0.76/0.76 0.96/0.96 0.98/0.98 0.92/0.92
[31 0.99/0.99 0.99/0.99 0.92/0.92 0.19/0.19 0.96/0.96 0.92/0.91 0.92/0.91 0.80/0.81 0.75/0.76 0.96/0.97 0.98/0.98 0.90/0.89
Llama-2 [1]1  0.99/0.99 0.98/0.98 0.87/0.87 0.19/0.22 0.96/0.97 0.92/0.92 0.91/0.92 0.80/0.80 0.75/0.77 0.97/0.97 0.99/0.98 0.90/0.90
_-13B [2] 0.99/0.99 0.98/0.99 0.87/0.87 0.19/0.20 0.96/0.97 0.92/0.93 0.91/0.91 0.81/0.83 0.78/0.78 0.97/0.97 0.98/0.98 0.91/0.92
(finetuned) [31 0.99/0.99 0.99/0.98 0.90/0.90 0.19/0.19 0.95/0.96 0.93/0.93 0.91/0.92 0.86/0.86 0.82/0.82 0.96/0.97 0.98/0.98 0.92/0.92
L 3 [1] 0.96/0.93 0.97/0.96 0.92/0.92 0.18/0.18 0.86/0.82 0.91/0.91 0.69/0.69 0.76/0.75 0.79/0.80 0.87/0.83 0.95/0.93 0.88/0.88
e_‘gl]f" [2] 0.96/0.95 0.98/0.97 0.93/0.93 0.15/0.15 0.87/0.86 0.92/0.93 0.70/0.72 0.78/0.76 0.78/0.79 0.89/0.87 0.96/0.95 0.89/0.89
[3] 0.88/0.86 0.91/0.85 0.90/0.86 0.16/0.14 0.79/0.64 0.84/0.82 0.64/0.53 0.60/0.55 0.59/0.61 0.79/0.70 0.87/0.79 0.75/0.73
Phi-3 [1] 0.94/0.94 0.97/0.97 0.92/0.92 0.07/0.07 0.80/0.82 0.93/0.93 0.61/0.64 0.66/0.67 0.52/0.53 0.84/0.84 0.95/0.96 0.87/0.87
-mini [2]1 0.94/0.94 0.97/0.97 0.93/0.93 0.06/0.05 0.82/0.82 0.93/0.92 0.61/0.63 0.67/0.65 0.53/0.52 0.84/0.83 0.95/0.96 0.87/0.86
-4k [3] 0.92/0.93 0.97/0.98 0.90/0.90 0.10/0.12 0.74/0.75 0.90/0.90 0.48/0.46 0.61/0.66 0.58/0.60 0.78/0.78 0.94/0.96 0.84/0.85
Qwen-2.5 [11 0.81/0.82 0.96/0.96 0.51/0.53 0.12/0.13 0.67/0.69 0.82/0.83 0.55/0.59 0.69/0.67 0.63/0.65 0.81/0.81 0.93/0.93 0.77/0.75
‘f/lerslB‘ [2] 0.83/0.82 0.96/0.97 0.54/0.56 0.12/0.12 0.66/0.66 0.87/0.86 0.58/0.58 0.71/0.69 0.64/0.61 0.82/0.81 0.95/0.95 0.80/0.77
’ [3] 0.67/0.80 0.92/0.97 0.23/0.38 0.10/0.15 0.54/0.65 0.55/0.85 0.50/0.52 0.56/0.65 0.41/0.50 0.66/0.78 0.82/0.94 0.49/0.77

Table 3: Average R? scores with 8-bit and full-precision settings based on five runs. In each cell, x/y represents the
8-bit quantization and full-precision scores. The standard errors are nearly zero.

Setting Prompting il o 31 AV 5t Avg 30
011 010 009 007 007

No-constraint 5 'j00y (170) (435) (3.499) (190) ©-00
Zero-shot 0.14 0.10 0.06 0.05 0.05

Length  »00) (110) @35 (321) (1,.411) 005

primi 038 032 023 019 018 o

TMINg —(371) (2,741) (1,380) (4,698) (4.554)

042 035 034 028 026

No-constraint 5741y (1380) (371) (4.698) (2,282) O-19
Fine-tuning 039 038 037 028 025

Length  (1'300) (371) (2,741) (4,372) (4,698) 020

priming 040 039 7034 031026 o

(371) (2,741) (1,380) (4,372) (1,419)

Table 4: R? scores for individual hidden unit. The
numbers in parentheses indicate an index of hidden units
from the second layer of the attention mechanisms.

tional experimental results using beam and top-k
sampling decoding strategies are in Appendix C.
We also experimented with machine translation and
story generation tasks using WMT16 (Bojar et al.,
2016) and ROCStories (Mostafazadeh et al., 2016)
test datasets. We disentangled identified length-
related units from the summarization prompts. Fig-
ure 6 and 7 show the results. We observed that
length-specific units are globally shared regardless
of tasks. The details are in Appendix D.

5.1 Human Evaluation and Case Study

Human Evaluation. We conducted human evalu-
ations to further assess the effect of disentangling
length-related units. Note that we separately eval-
uated the zero-shot and fine-tuning settings; thus,
their scales might be different. We sampled 100
instances for each setting from the Google test
dataset. Using Amazon Mechanical Turk, we as-
signed a total of 80 evaluators who held both US
high school and bachelor’s degrees for grading the
results, with scores from 1 to 5 (5 is the best),

Zero-shot  Fine-tuning
Scale Conc. Infor. Conc. Infor.
.10 356 3717 333 3.34f
1 359 370 346 3.31
Gold 3.58 3.68 3.45 3.28
10 359 3.63 3471 3.19

Table 5: The results of human evaluations using the
Priming prompt with Llama-2-13B-Chat. t indicates
the improvement for scales between 10 and -10 is signif-
icant using paired-bootstrap-resampling with 100,000
random samples (p<<0.05) (Koehn, 2004).

in terms of conciseness (Conc) and informative-
ness (Info). Table 5 shows the results. In the
zero-shot and fine-tuning settings, adjusting the
length-related hidden units with positive scaling
factors generally enhances conciseness but slightly
decreases informativeness because of generating
shorter summaries. In some cases, generated sum-
maries are already short (Juseon-Do et al., 2024),
and so conciseness scores are slightly higher when
positive scaling was applied than those from the
Base scale 1. In contrast, negative scaling improves
informativeness but slightly decreases conciseness
due to the production of longer summaries, which
can be an inherent trade-off between conciseness
and informativeness when controlling output se-
quence length in summarization (Kikuchi et al.,
2016; Makino et al., 2019).

Case Study. We conducted a detailed case study to
analyze the effects of disentangling length-related
hidden units by comparing the generated outputs
for different scaling factors with the source and
the gold summary. Table 6 and 9 present exam-
ples. We observed changes in the generated sum-
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Figure 2: ACR and Rouge-L scores change with standard errors by multiplying scale in the Llama-2-13B-Chat. (a)
and (b) mean zero-shot and fine-tuning settings, respectively. Base means original scores without scale modification
(i.e., the multiplying scale is 1). The gray color represents the standard errors of the Base.

Length
Text
Type . (#word)
Armenian national’s midfielder Aras Ozbiliz may 22
Source miss the friendly match against Russia, technical di-
rector Vardan Minasyan told reporters ahead of the
match.
Gold Aras Ozbiliz may miss the friendly match against 9
Russia.
Scale 5 Armenian midfielder may miss Russia against match. 6 (-1)
Ton-10 Scale 10 Armenian midfielder may miss Russia against match. 6 (-1)
op- Scale -5 Armenian midfielder Aras Ozbiliz may miss the 10 (+3)
match against Russia.
Scale -10  Aras Ozbiliz may miss the friendly match against Rus- 19 (+12)
sia, technical director Vardan Minasyan told reporters
ahead of the match.
Base (Scale 1) Armenian midfielder may miss match against Russia. 7
Scale 5 Armenian midfielder may miss match against Russia. 7
Smallest -10 Scale 10 Armenian midfielder may miss match against Russia. 7
) Scale -5 Armenian midfielder may miss match against Russia. 7
Scale -10  Armenian midfielder may miss match against Russia. 7

Table 6: Summarization example by scaling with Llama-2-13B-Chat in zero-shot Priming. The highlighted part
represents the changed part from the Base text. The gray and red tokens indicate deleted and added tokens,
respectively, while the blue token represents tokens that have changed their positions.

maries based on different scaling factors. In partic-
ular, when negative scaling was applied, the gen-
erated summaries became longer than the Base
summary by incorporating redundant information
from the source. In comparison, applying posi-
tive scaling values leads to shorter summaries by

focusing on important content similar to the gold
summary. When we disentangled the smallest-k
hidden units, the generated summaries remained
unchanged, regardless of the scaling factors, con-
sistently producing the same summary as the Base.
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Figure 3: Results in (a) zero-shot settings and (b) fine-tuning settings with the Priming prompt.

6 Discussion and Conclusion

We examined how LL.Ms encode output sequence
length in their internal representations. Our find-
ings empirically demonstrated that the outputs from
the second layer’s attention mechanisms showed
a strong correlation with the generation time step,
thus indicating that length representations were cap-
tured early in the process. We also found that this
pattern is consistent with different models with dif-
ferent sizes and continues to be robust even when
4- and 8-bit quantizations were applied. Further-
more, we analyzed individual hidden unit from the
second layer attention outputs and found that cer-
tain hidden units are highly activated and directly
contribute to the process of representing length in-
formation. Moreover, these units became more
active when length-specific prompts such as Prim-
ing were used. This finding indicates that LLMs
adjust their internal representations based on the in-
put prompts. Furthermore, by scaling these length-
related hidden units, we effectively controlled the
output sequence length without losing informative-

ness, that indicates that length information is par-
tially disentangled from semantic representations
within LLMs. Finally, our results revealed that
fine-tuning further improves the LLMs’ capabil-
ities by reinforcing reliance on the top-k length-
related units. We also found the same activation
of specific hidden units in the Priming prompt are
shared between zero-shot and fine-tuning settings,
that indicates LLMs have constructed robust inter-
nal mechanisms for controlling output sequence
length, and in-context learning performs similarly
to implicit fine-tuning (Dai et al., 2023).

Limitations

Our findings have important implications for the
interpretability and controllability of LLMs in nat-
ural language generation tasks. Understanding how
length information is internally encoded allows for
more precise length control over generated outputs,
which is crucial in applications, such as summa-
rization and machine translation, where adhering
to length constraints is often required. We focused
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on a summarization dataset because summariza-
tion is a widely used task for controlling output
length (Kikuchi et al., 2016; Takase and Okazaki,
2019), and recent studies on the summarization task
still face challenges when using LL.Ms for length
control (Juseon-Do et al., 2024; Yuan et al., 2024;
Wang et al., 2024). Thus, we considered other tasks
such as machine translation and story generation
and discussed them in Appendix D.

While we used neural networks to identify length
representations in LLMs, there are inherent limi-
tations, particularly due to their ability to decode
functionally irrelevant information from model rep-
resentations (Sajjad et al., 2022; Belinkov, 2022).
To validate that the identified hidden units are in-
volved in length control in LLMs, we disentan-
gled their top-k and smallest-k length-related units.
However, our findings face a limitation in their
application to LLMs that use grouped-query atten-
tions in zero-shot settings. Despite disentangling
the top-k units, the proposed methods do not effec-
tively control or influence the model’s internal rep-
resentations for length control. Moreover, whether
our findings can extend to models employing Mix-
ture of Experts (MoE) architectures or other types
of LLMs remains an open question. In the future,
we will extend our approach for the models that
use grouped-query attentions and will investigate
the MoE models as well.

Ethics Statement

We recruited annotators using Amazon Mechanical
Turk for human evaluations. Because the LLM-
generated summaries may contain inappropriate
or sensitive language, we reviewed the summaries
beforehand and found no problematic samples.
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A Dataset Details

For the neural network regression, we used the
dataset generated from each sequence of sum-
maries, excluding input token prompts. We ran-
domly divided the datasets into 90% for training
and 10% for validation. Table 7 shows statistics.

Model No-constraint Length Priming
Llama-2-7B-Chat 21,385 24,121 25,394
Llama-2-13B-Chat 26,526 28,590 20,291
Llama-2-13B-Chat(fine-tuned) 14,826 16,373 14,884
Llama-2-70B-Chat 20,885 15,707 19,870
Llama-3-8B-Instruct 17,952 22,853 13,366
Phi3-mini-4k-Instruct 30,552 18,500 25,160
Phi3-small-8k-Instruct 25,578 30,938 18,841

Table 7: Dataset Statistics.

B Experimental Details

Parameter  Value
Epochs 1,000
Batch size 32, 64
Learning rate  le-3
Dropout rate 0.1
Patience 5,10
Loss MSE
Activation RelLU

Table 8: Hyperparameters.

Computing Interfaces. We used the following
GPUs:

e NVIDIA A100 GPU for Llama-2-70B-Chat
e NVIDIA A6000 GPU for other LLMs

Hyperparameters. Table 8 shows the hyperpa-
rameters used in our experiments. For the neural
network regression to predict the generation time
step from all hidden unit (Table 2, Table 3, and
Figure 1), the batch size was set to 32 with an early
stopping patience of 10 epochs. For the neural net-
work regression to predict the generation time step
from each individual hidden unit (Table 4, Figure 2
and Figure 3), the batch size was set to 64 with an
early stopping patience of 5 epochs.

C Other Decoding Strategies

Figure 4 and 5 show additional experimental results
for disentangling the top- and smallest-k hidden
units using beam and top-k sampling methods. The
beam size was set to three, and top-k sampling was
set to 10. We observed consistent results with the
greedy decoding method.
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Figure 4: Results in (a) zero-shot settings and (b) fine-tuning settings using the Priming prompt with Beam decoding.
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Figure 5: Results in (a) zero-shot settings and (b) fine-tuning settings using the Priming prompt with top-k sampling.

D Machine Translation and Story
Generation

Machine translation prompt that consid-
ers “priming”’

Sentence that consists of {len(en)} tokens:
{en}
The sentence translated into German that consists of

We conducted additional experiments on two tasks:
{len(de)} tokens with {len(de)-len(en)} additional

machine translation and story generation. For .

. B tokens would be:
machine translation, we randomly sampled 500 Sentence that consists of {len(en)} tokens:
instances from the WMT16 test dataset (Bojar en ) )

t al., 2016) F t f d The sentence translated into German that consists of
et al, A or story genera .lo'n’ we us‘e {len(de)} tokens without {len(en)-len(de)} tokens
the ROCStories test dataset comprising 1,571 in- would be:
stances (Mostafazadeh et al., 2016). We evalu-
ated these tasks in zero-shot settings, disentangling
length-related units identified from summarization
prompts. Figures 6 and 7 show the results. In-
terestingly, we found that length-specific units are
globally shared across tasks and can be adjusted
without sacrificing informativeness.
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Story generation Prompt

You are given the first four sentences of a short story.
Please write a coherent fifth sentence that naturally
concludes the story.

Story:

1) {sentence 1}

2) {sentence 2}

3) {sentence 3}

4) {sentence 4}

Now, write the fifth sentence:

E Other case study

Table 9 shows case studies. We found that the gen-
erated summaries ended abnormally early or that
tokens were generated without spaces when ex-
treme numeric values, such as -10, were used. This
resulted in cases where the R-L scores significantly
decreased with extreme scaling factors.
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Figure 6: Experimental results on the WMT 16 test dataset. We evaluated translation quality using the average of
BLEU-1 and BLEU-2 scores.
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Figure 7: Experimental results on the ROCStories test dataset. We used the Qwen2.5-7B-Instruct model to evaluate
perplexity (PPL). Lower PPL scores indicate better text quality.
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Length

Text
Type & (#word)
South African captain Graeme Smith hailed "an incredible win" for his team after they clinched an 35
Source emphatic ten-wicket victory on the fifth day of the second and final Test against India at Kingsmead
on Monday.
Gold Graeme Smith hailed an incredible win. 6
Top-10 Scale -10  S. 1(-8)
Base (Scale 1) South African captain Graeme Smith hailed an incredible win. 9
Source Unknown assailants blew up a natural gas pipeline in Egypt, a security source said. 14
Gold Assailants blew up a gas pipeline in Egypt. 8
Top-10 Scale -10  AssBlewUpNatGasPipEgy. 1(-8)
Base (Scale 1) Assailants blew up a natural gas pipeline in Egypt. 9

Table 9: Case studies by scaling factors using Llama-2-13B-Chat with zero-shot priming.
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