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Abstract

Direct Preference Optimization (DPO) has
been demonstrated to be highly effective in
mitigating hallucinations in Large Vision Lan-
guage Models (LVLMs) by aligning their out-
puts more closely with human preferences. De-
spite the recent progress, existing methods
suffer from two drawbacks: 1) Lack of scal-
able token-level rewards; and 2) Neglect of
visual-anchored tokens. To this end, we pro-
pose a novel Token Preference Optimization
model with self-calibrated rewards (dubbed
as TPO), which adaptively attends to visual-
correlated tokens without fine-grained anno-
tations. Specifically, we introduce a token-
level visual-anchored reward as the difference
of the logistic distributions of generated to-
kens conditioned on the raw image and the
corrupted one. In addition, to highlight the
informative visual-anchored tokens, a visual-
aware training objective is proposed to enhance
more accurate token-level optimization. Ex-
tensive experimental results have manifested
the state-of-the-art performance of the pro-
posed TPO. For example, by building on top of
LLaVA and Qwen, our TPO boosts the per-
formance absolute improvement for halluci-
nation benchmarks. Our code is available at
https://github.com/alibaba/TPO.

1 Introduction

Recently, Large Vision Language Models (LVLMs)
have showcased their remarkable capabilities in
handling multimodal information, excelling in
tasks such as image captioning, visual question-
answering, and complex visual reasoning (Team
et al., 2023; Bai et al., 2023; Hurst et al., 2024;
Yang et al., 2023). Specifically, by integrating
pre-trained language models with meticulously de-
signed visual encoders, LVLMs are capable of ef-
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Figure 1: An example of visual Q&A. The upper box
contains the ground truth answer, while the lower box
shows the LVLM responses before and after training
with our method. In each box, we visualize the rewards
for each token which can reflect the degree of visual an-
choring, with the top representing scores before training
and the bottom after. Scoring is detailed in Equation 4,
and we’ve applied sigmoid normalization in this score.

fectively capturing the semantic correlations be-
tween visual and textual data. This integration
supports more accurate and contextually relevant
tasks of visual understanding and generation.

Despite the advancements, the issue of “hallu-
cination”, where the generated responses are not
grounded in the input visual contexts, greatly im-
pedes the reliability and practical deployment of
LVLMs (Liu et al., 2024a; Bai et al., 2024). To
alleviate this, various methods have been proposed
from the perspectives of data quality (Liu et al.,
2023; Zhai et al., 2023) and inference-time strate-
gies (Yin et al., 2023; Zhou et al., 2023; Huang
et al., 2024). Recently, direct preference optimiza-
tion (DPO) (Rafailov et al., 2024) is introduced to
align outputs with human preferences, therefore
reducing the risk of generating hallucinatory or
nonsensical responses.

Existing DPO-like methods, however, still suffer
from two drawbacks: 1) Lack of scalable token-
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level rewards. The fine-grained token-level rewards
enable precise adjustments to individual parts of
generated responses. Existing methods, however,
either provide global sentence rewards or rely on
manual efforts for fine-grained segment-level anno-
tations (Yu et al., 2024b). Therefore, designing a
scalable token-level reward generation strategy has
become a clearly defined necessity (c.f . Table 1);
2) Neglect of visual-anchored tokens: By “visual-
anchored tokens”, we refer to response tokens that
are essential and highly correlated with the input
visual embeddings. RLHF-V assigns all the hallu-
cinated segments with a fixed reward value. Recent
studies (Guan et al., 2024) attribute the hallucina-
tion issue to an inherent imbalance between the
visual and textual modalities. Specifically, due to
the large-scale pre-trained textual corpus, LVLMs
tend to prioritize language-based information even
at the costs of overriding the provided visual con-
tent. Therefore, we argue that not all the tokens
are equal, i.e., visual-anchored tokens (e.g., glass
in Figure 1) are more prone to hallucination and
deserve great emphasis. As shown in Table 1, the
concurrent pre-print V-DPO (Xie et al., 2024) also
focuses on visual-anchored tokens; however, it re-
quires the additional construction of a synthetic
dataset, whereas our method eliminates the need
for any extra annotations.

To alleviate these aforementioned problems, we
propose a novel Token Preference Optimization
with self-calibrated rewards (dubbed as TPO),
which rectifies the fine-grained token-level halluci-
nations and attends to visual-anchored tokens with-
out the need of fine-grained annotations. Specifi-
cally, to mine the visual-anchored tokens, we com-
pute the differences between the logits distributions
of generated tokens conditioned on the raw image
and the corrupted one. We regard this distribution
difference as token-wise rewards. In Figure 1, we
apply this visual-anchored score mining strategy
on both golden truth and the generated responses.
As shown, this strategy effectively helps highlight
visual-anchored tokens. Then, we propose a to-
ken preference optimization loss by integrating the
self-calibrated rewards into the vanilla DPO. In
particular, we multiply the like-hood distribution
with token-wise rewards to generate our desired
visual-correlated ones.

Overall, the main contributions of this work are:
• We propose TPO for hallucination mitigation in

LVLMs, which implements token-level distri-
bution rectification without the reliance of fine-

Methods Visual-
Anchored

Token-
level

Non Fine-grained
Annotations

DPO ✗ ✗ ✓
POVID ✗ ✗ ✓
CSR ✓ ✗ ✓
MDPO ✓ ✗ ✓
V-DPO ✓ ✓ ✗
RLHF-V ✗ ✓ ✗
TPO (Ours) ✓ ✓ ✓

Table 1: Comparisons with hallucination mitigation
methods from the perspective of whether attending to
vision-anchored tokens, whether generating token-level
rewards and whether requiring fine-grained annotations.
The compared methods include DPO (Rafailov et al.,
2024), POVID (Zhou et al., 2024a), CSR (Zhou et al.,
2024b), MDPO (Wang et al., 2024a), V-DPO (Xie et al.,
2024), RLHF-V (Yu et al., 2024b).

grained manual annotations.

• We mine visual-anchored tokens by comparing
the response distributions conditioned on the
raw image and the corrupted one.

• Extensive experiments on the popular halluci-
nation benchmarks demonstrate the state-of-the-
art performance of the proposed TPO.

2 Related Works

2.1 LVLMs’ Hallucination

Leveraging the rich knowledge in large language
models and the vision understanding capabilities of
vision encoders, LVLMs have shown exceptional
performance in image understanding and genera-
tion tasks (Li et al., 2023b; Zhu et al., 2023). How-
ever, imbalances in parameters and data scale dur-
ing pre-training can lead to LVLMs being overly in-
fluenced by biases in the language model, resulting
in inadequate attention to visual information and
potential hallucination issues (Zhou et al., 2023;
Zhang et al., 2024). Consequently, addressing the
issue of hallucinations in LVLMs has become one
of the key research focuses in this field.

Previous studies have mitigated hallucinations
by enhancing training data quality, refining decod-
ing strategies, and post-processing generated re-
sponses (Huang et al., 2024; Leng et al., 2024; Yu
et al., 2024a; Han et al., 2024; Chen et al., 2024;
Zhou et al., 2023; Yin et al., 2023; Lee et al., 2023;
Shao et al., 2024a; Jiang et al., 2024; Yue et al.,
2024; Xiao et al., 2025; Sarkar et al., 2024; Zhao
et al., 2023). While these methods can lead to more
accurate responses, they do not fundamentally re-
solve the issue of inadequate visual information
association in LVLMs.
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Figure 2: Outline of our TPO pipline. The process is divided into three parts for each data at every training
step. First, 1) add noise to the image, then, 2) calculate Self-Calibrated Visual-Anchored Rewards, and finally 3)
perform Token Preference Optimization. At the end of each training step, we calibrate the model and calculate new
Visual-Anchored Rewards for the next step.

2.2 Preference Learning Methods

More recently, reinforcement learning from human
feedback (RLHF) (Sun et al., 2023) is gradually
becoming a prevalent approach to mitigate the hal-
lucination. As a more direct and effective method,
DPO (Rafailov et al., 2024) and its variants are
more widely utilized for preference alignment.

Several studies based on DPO focus on develop-
ing more robustly constructed preference data. For
example, the POVID (Zhou et al., 2024a) method
constructs negative samples for preferred data by
adding noise to the image and providing halluci-
nated patterns to guide the model to generate hal-
lucinated responses. The MDPO incorporate op-
timization for image preference, training with the
images before and after alteration as positive and
negative samples. Apart from these works, RLAIF
(Yu et al., 2024c) and CSR (Zhou et al., 2024b)
methods, which are built upon on-policy DPO strat-
egy, construct preference pairs by iteratively per-
forming self-rewarding to select preference pairs.
R1-Onevision (Yang et al., 2025) enhances the vi-
sual reasoning capabilities by employing Group
Relative Policy Optimization (GRPO). However,
assigning response-level rewards for each gener-
ated sequence is insufficient for effectively aligning
with genuinely hallucination-prone contents.

Other studies, RLHF-V (Yu et al., 2024b) and
V-DPO (Xie et al., 2024), investigated this issue
and achieved more fine-grained alignment of pref-
erence data. Nevertheless, this approach depends
on resource-intensive annotations or data construc-
tions and applies a fixed reward to all hallucinated
segments, thus failing to account for the differing

levels of relevance these segments may have to vi-
sual information. It is worth mentioning that CSR
also considered this problem and introduced CLIP
(Radford et al., 2021) to calculate the relevance
score between generated text and vision informa-
tion as an additional reward, and TLDR (Fu et al.,
2024) score each token by training a scoring model.
However, these methods requires the introduction
of an additional model, which reduces the training
efficiency.

In this paper, we propose a token-level pref-
erence optimization method with self-calibrated
visual-anchored rewards (TPO), aimed at address-
ing the aforementioned challenges. TPO facilitates
finer-grained alignment in LVLMs, enhancing accu-
racy in visual information correlation and reducing
hallucinations during response generation.

3 Methodology

The schematic illustration of the proposed TPO is
demonstrated in Figure 2. In Sec. 3.1, we present
the preliminaries including the definition and off-
policy optimization of DPO. Then we detail the
visual-anchored rewards and token preference opti-
mization loss in Sec. 3.2 and Sec. 3.3, respectively.

3.1 Preliminaries

DPO (Rafailov et al., 2024) is designed to directly
maximize the reward margin between positive and
negative responses to align human preferences.
Given a textual input x, a visual input v, a neg-
ative response yl, and a preferred positive response
yw, the reward function r(x, v, yl/yw) is defined
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as follows.

r(x, v, y) = β log
πθ(y|x, v)
πref(y|x, v)

, (1)

where πref(y|x, v) and πθ(y|x, v) respectively rep-
resent the reference model and current policy
model. On this basis, the formulation of a max-
imum likelihood objective is defined as:

LDPO(πθ;πref) = −E(x,v,yw,yl)∼D

[
log σ

(
β log

πθ(yw|x, v)
πref(yw|x, v)

− β log
πθ(yl|x, v)
πref(yl|x, v)

)]
,

(2)
where σ(·) denotes the sigmoid function.

3.2 Visual-Anchored Rewards

Different to the equal confidence for each token in
DPO, we propose a visual-anchored by measuring
the token-wise visual reliance. Specifically, we
firstly add noise into the embedding of the input
image v in a total k steps to obtain the corrupted
image vc:

vc(k) =

√
ξ̄k · v +

√
1− ξ̄k · ϵ, (3)

where ξ is a predefined noise parameter derived
from a list with 1,000 equally spaced elements1. ξ̄k
is a cumulant, i.e., ξ̄k =

∏k
i=0 ξi.

Subsequently, the difference of generated token
distribution is computed as follow:

syi = plog(yi|x, v, y<i)− plog(yi|x, vc, y<i), (4)

where syi denotes the distribution difference of
the token yi of the response y. plog refers to the
raw logits output of the model, before applying
softmax normalization.

The sole variation in the input when computing
syi of the token lies in whether noise is introduced
into the image. A higher contrastive score, reflect-
ing a greater divergence in logits, indicates that the
current token is more susceptible to image perturba-
tions. This increased sensitivity suggests a stronger
dependence on and relevance to visual information,
thereby marking it as a visual-anchored token. One
example case is demonstrated in Figure 1, which
demonstrates that syi reflects the visual relevance
of each token yi.

1More details can be found in Appendix A, and experimen-
tal analysis can be found in Appendix D

Then, a self-calibration process is proposed to
generate the final visual-anchored rewards cyi .

cyi =

{
a+ σ(syi) if yi ∈ yw

a+ 1− σ(syi) if yi ∈ yl
(5)

where a is a margin value. We set a = 0.5 in Equa-
tion (5), so that when s = 0, c = 1, the rewards
will not take effect. This process aims to ensure
that positive samples receive higher rewards than
negative samples while optimizing the visual rele-
vance of visual-anchored tokens in all responses.

3.3 Token Preference Optimization

After obtaining the reward cyi to yi, the output
cumulative distribution can be calculated:

πv(y|x, v) =
∏

yi∈Y
cyi (6)

Especially, when cyi = 1, the probability of yi will
not be accumulated. By multiplying the probability
distribution with the visual-anchored rewards, we
obtain a novel KL-constrained reward maximiza-
tion objective:

max
π

E(x,v,y)

[
r′(x, v, y)− βDKL

(
πθ(y|x, v)

· πv
θ (y|x, v), πref(y|x, v) · πv

ref(y|x, v)
)]

,

(7)
where DKL(·, ·) denotes the KL divergency com-
putation. πv

θ (y|x, v) and πv
ref(y|x, v) are calculated

using the policy model and the reference model,
respectively. Thus, the optimal solution formula for
the maximization objective of the KL-constrained
reward is as follows:

πθ(y|x, v) · πv
θ (y|x, v) =

1

Z(x, v)
πref(y|x, v)·

πv
ref(y|x, v) exp

( 1
β
r′(x, v, y)

)
.

(8)
The partition function of Eq (8) is as follows.

Z(x, v) =
∑

y

πref(y|v, x) · πv
ref(y|x, v)

· exp
( 1
β
r′(x, v, y)

) (9)
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Rearranging Eq (8), we obtain the reward function:

r′(x, v, y)

= β log
πθ(y|x, v) · πv

θ (y|x, v)
πref(y|x, v) · πv

ref(y|x, v)
+ βZ(x, v)

= β
∑

yi∈y

[
log

(
pθ(yi|x, v, y<i) · cθyi

)

− log
(
pref(yi|x, v, y<i) · cref

yi

)]
+ βZ(x, v)

= β
∑

yi∈y

[
log pθ(yi|x, v, y<i)− log pref(yi|x, v, y<i)

+ log
cθyi
cref
yi

]
+ βZ(x, v),

(10)
where cθyi and cref

yi represent the token reward cal-
culated using the policy model and the reference
model, respectively.

Compared to the original reward function in
DPO (Eq (1)), we multiply each p(yi|x, v, y<i) by
the generated visual-anchored rewards cyi at the to-
ken level. cθyi is continuously updated at each step
during training as the model changes. To calculate
each token in the entire reward function, we add a

term log
cθyi
cref
yi

∈ (−log3, log3) (as we set a = 0.5 in

Equation (5)), which has a reasonable upper and
lower bound. For positive samples, this term is ex-
pected to increase, while for negative samples, it is
expected to decrease. Due to the different methods
of calculating cyi that we set in Eq (5), this will
encourage the increase of syi during the training
process, making the token generation focus more
on visual information.

Thus, following the Bradley-Terry model, when
given the positive and negative samples D =

{x(k), v(k), y(k)w , y
(k)
l }Nk=1, we obtain our maxi-

mum likelihood objective:

LTPO(πθ;πref) = −E(x,v,yw,yl)∼D

[
log σ

(
β log

πθ(yw
∣∣x, v) · πv

θ (yw
∣∣x, v)

πref(yw
∣∣x, v) · πv

ref(yw
∣∣x, v)−

β log
πθ(yl

∣∣x, v) · πv
θ (yl

∣∣x, v)
πref(yl

∣∣x, v) · πv
ref(yl

∣∣x, v)
)]

= LDPO(πθ;πref) + E(x,v,yw,yl)∼D

[
log σ

(
β log

πv
θ (yw

∣∣x, v)
πv

ref(yw
∣∣x, v) − β log

πv
θ (yl

∣∣x, v)
πv

ref(yl
∣∣x, v)

)]

(11)

According to Eq (10), we can deduce as follows.

LTPO(πθ;πref) = −E(x,v,yw,yl)∼D

[
log σ

(
β

∑

ywi∈yw

[
log

(
pθ(ywi |x, v, yw<i)

)

− log pref(ywi |x, v, yw<i) + log
cθywi

cref
ywi

]

+
∑

yli∈yl

[
log

(
pθ(yli |x, v, yl<i

)
)

− log pref(yli |x, v, yl<i
) + log

cθyli
cref
yli

])]

(12)

where cθywi
and cref

ywi
represent the token reward

calculated for yw using the policy model and the
reference model, respectively. The same applies to
cθywi

, cref
ywi

and yl.

4 Experiment

4.1 Setup
Aligning with previous DPO-based approaches on
hallucination mitigation, we mainly adopt the pop-
ular LVLM, LLaVA-1.5 (Liu et al., 2024b), as the
backbone model to validate the effectiveness of our
TPO. Furthermore, to evaluate the effectiveness
of TPO on more advanced and powerful model,
we implement TPO training based on Qwen2-VL
(Wang et al., 2024b), and compare it with the DPO
method. For the dataset, we directly utilize the
preference pairs provided by RLHF-V (5K) with-
out their fine-grained human annotations.

Benchmarks We primarily conduct the experi-
ments on three hallucination benchmarks: AMBER
(Wang et al., 2023), MMHal-Bench (Sun et al.,
2023), and HallusionBench (Guan et al., 2024). In
this section, we mainly focus on AMBER’s discrim-
inative task and report the accuracy and F1 metrics
referencing (Yu et al., 2024c). In addition, we pro-
vide the results of its Chair metric in Appendix
C. Moreover, we also evaluate the performance of
TPO on four general benchmarks: SEED Bench (Li
et al., 2023a), MMBench (Liu et al., 2025), LLaVA
Bench (Liu et al., 2024c) and MM-Vet (Yu et al.,
2023). These benchmarks are used to evaluate the
performance of the models on general tasks after
hallucination alignment.

Baselines We mainly compare TPO with the R1-
Onevision (Yang et al., 2025), LLaVA-1.5-7B SFT
model, as well as with the V-DPO (Xie et al.,
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Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MMVet
R1-Onevision 80.2 85.7 3.85 36.46 63.74 50.47 62.80 35.2 – 83.7 67.8
LLaVA-1.5-7B 71.7 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
+ DPO 77.5 82.1 2.14 58.33 37.36 37.21 43.84 66.4 73.3 69.1 31.6
+ CSR 73.2 76.1 2.05 60.42 43.08 41.16 47.48 65.9 73.0 68.9 31.0
+ POVID 71.9 74.7 2.26 55.21 42.86 41.63 47.56 66.1 73.2 68.2 31.7
+ RLHF-V 74.8 78.5 2.02 60.42 42.20 43.72 48.27 66.1 73.1 68.0 32.3
+ MDPO – – 2.39 54.00 – – – – – – –
+ V-DPO – 81.6 2.16 56.00 – – 51.63 – – – –
+ TPO (Ours) 79.3 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0
LLaVA-1.5-13B 71.3 73.1 2.38 53.13 44.40 36.51 46.94 68.2 76.7 73.1 36.1
+ DPO 83.2 86.9 2.47 51.04 45.49 43.49 50.22 68.6 76.6 72.8 37.5
+ RLHF-V 79.2 82.3 2.50 52.08 43.96 40.00 48.27 68.2 76.7 76.7 38.5
+ TPO (Ours) 83.9 88.0 2.72 45.83 44.40 46.05 50.93 68.7 76.8 72.8 36.2
Qwen2-VL-7B 86.5 90.0 3.5 29.0 67.0 48.8 64.0 45.0 79.0 82.4 61.4
+ DPO 86.5 90.0 3.7 28.1 67.3 49.3 64.5 45.0 79.0 81.9 60.2
+ TPO (Ours) 86.4 89.9 4.2 18.8 67.9 50.0 65.2 45.0 79.0 82.9 61.4

Table 2: Performence of LLaVA-1.5 on hallucination and general benchmarks. Score and Hall refer to the overall
GPT-4 (Achiam et al., 2023) score and hallucination rate, respectively. Easy represents the accuracy of with original
images, hard represents the accuracy with manually edited challenging images, and aAcc is the average accuracy for
each question. The results for POVID (Zhou et al., 2024a) and CSR (Zhou et al., 2024b) are based on our testing of
their open-source model weights, while the results for V-DPO (Xie et al., 2024), MDPO (Wang et al., 2024a) are
taken from previous work

.

2024) and DPO methods trained using RLHF-V
(Yu et al., 2024b) data, along with two improved
methods, CSR (Zhou et al., 2024b) and POVID
(Zhou et al., 2024a). Moreover, to evaluate the
effectiveness and robustness of TPO as the model
size increases, we further evaluate the performance
of TPO on the LLaVA-1.5-13B model and com-
pared it with DPO. Additionally, to demonstrate
the advantages of TPO, we reproduced the strong
baseline method, RLHF-V, on LLaVA-1.5-13B and
conducted a comparison. Furthermore, we addition-
ally employ Qwen2-VL-7B (Wang et al., 2024b)
as the baseline mode and compare our TPO with
DPO.

4.2 Main Results

In Table 2, we present the main results of our TPO
and baselines. In hallucination benchmarks, our
method shows significant improvements over all
previous methods for both the 7B and 13B mod-
els, surpassing even the GRPO-based (Shao et al.,
2024b) R1-Onevision model. Specifically, com-
pared to the original LLaVA model, we achieve
improvements of 20.4 % on AMBER F1, 22.8% on
the MMHAL score, and 8.5% on HallusionBench
aAcc at most. This validates the effectiveness of
our method in helping the model mitigate hallucina-

tion issues and improve the performance of visual
question answering.

Notably, on the HallusionBench evaluation met-
rics, "Easy" represents the accuracy of original
image-based questions, which tend to rely on prior
knowledge, while "Hard" represents the accuracy
of questions based on manually edited images,
which tend to rely on visual information. Our
method leads to the most significant improvement
for the original model on hard questions. This indi-
cates that our approach enables the model to focus
more on visual information rather than textual prior
knowledge to provide accurate answers.

In general benchmarks, our approach remains
stable against the backbone models and achieves
improvement on most benchmarks. We attribute
it to our method helping the model associate with
more visual information when answering questions.
This shows that our approach can improve halluci-
nation issues while maintaining good performance
in general evaluation tasks.

4.3 Results on Qwen2-VL-7B

As Table 2 shown, we report the results on the key
metrics of three hallucination benchmarks. The
results indicate that our TPO outperforms DPO
on most benchmarks. On Qwen2-VL-7B, which
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has strong inherent capabilities, using 5K RLHF-V
data for DPO alignment barely improves the per-
formance. However, introducing TPO leads to a
significant further enhancement. This demonstrates
that TPO can capture and learn more subtle prefer-
ences from the data and brings higher data utiliza-
tion efficiency. In addition, the results on the chair
metric in Figure 6 further demonstrate that TPO
can also significantly solve the object hallucination
problem of Qwen2-VL-7B.

4.4 Ablation Studies

Visual-Anchored Rewards Table 3 demon-
strates that TPO can enhance model performance
when rewards are assigned separately to positive
and negative samples, achieving results compara-
ble to those obtained by rewarding both simultane-
ously. However, by providing opposite rewards to
positive and negative samples, where rewards are
negatively correlated with the visual relevance of
positive samples and positively correlated with that
of negative samples, TPO’s performance signifi-
cantly deteriorates. In some metrics, this approach
yields even poorer results than the original LLaVA-
1.5 model. This further underscores the validity of
the designation of visual-anchored rewards.

Noise Step We conduct an ablation study on the
noise steps, as illustrated in Figure 5 (a) and de-
tailed in Table 5 of Appendix. The results indicate
that optimal performance is achieved at 500 steps.
This intermediate level of corruption allows the
model to retain the general structure of the image
while obscuring fine-grained details, thereby reduc-
ing the tendency to generate hallucinations among
visual-anchored tokens.

These findings are consistent with previous work
(Zhou et al., 2024a) which noted that as image
noise increases, models tend to produce responses
such as “there are noise spots in the image,” while
the probability of hallucination first increases and
then decreases. Our experimental results align with
this trend and provide further empirical support.

The Figure also shows when step=0, TPO still
effective and significantly better than DPO. This
confusion is a code-implementation issue. In im-
plementation as shown in Listing 1, we first convert
the image into a tensor, add noise, and then convert
it back into an image. This encode-decode process
introduces some losses. Our method of setting the
noise step to 0 serves as an ablation experiment to
test the impact of this loss on our method, and it

allows our experiment to more comprehensively
demonstrate the advantages of TPO. The following
portion of code may help you better understand
our encode-decode process for adding noise. We
will also open source all the code once the paper is
accepted.

Parameter a We conduct experiments by vary-
ing the parameter a introduced in Equation (5) with
the results shown in Figure 5 (b) (detailed in Ta-
ble 6 of Appendix). By setting a = [0, 0.5, 1], we
observed consistently good performance across all
configurations. This suggests that effective perfor-
mance is achieved as long as the reward mechanism
successfully highlights token differences and iden-
tifies visually anchored tokens. Notably, the best
overall results are obtained with a = 0.5, validat-
ing our proposed method and hypothesis. This in-
dicates that when the visual-anchored score s = 0,
setting c = 1, not introducing additional reward
signals can yield better outcomes.

4.5 Analysis
Visual-Anchored Rewards As Figure 1 shown,
the proposed visual-anchored rewards can reflect
the degree to which a token depends on visual in-
formation. To further prove this statement, we
construct the analysis experiment on the MMhal
dataset as shown in Table 4. Intuitively, nouns
and adjectives in responses are thought to most
associate the content of an image. Therefore, we
first perform part-of-speech (POS) tagging on the
model responses and count the average number of
noun/adjective tokens and other types of tokens.
Specifically, in the ground-truth responses, 39.6%
of the tokens are nouns or adjectives. In the re-
sponses from LLAVA-1.5-7B, the proportion of
noun and adjective tokens remains nearly constant
at 39.2%, both before and after TPO.

Afterwards, we count the average score from
Equation 4 of noun/adjective tokens and other types
of tokens. The results show that noun and adjec-
tive tokens have significantly higher scores than
other types, indicating higher relevance to images.
After applying TPO, these scores of all the tokens
increased notably. The results supports our con-
clusions: 1) The visual-anchored rewards reflects
token-image relevance. 2) TPO enhances the align-
ment of generated tokens with image content.

Attentions To further validate TPO’s effective-
ness in enhancing visual alignment, we measure
the relevance using the sum of attention weights
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Figure 3: Comparison of attention weights for LLaVA before and after TPO training. Each horizontal line represents
the mean of that data. The blue section response incorrectly, with many ’visual-anchored tokens’ tokens having high
attention weights but resulting in hallucinated responses (e.g. USB). The red section on the right answered correctly.

Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MM-Vet
LLaVA-1.5-7B 71.70 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
Only Win 79.10 84.5 2.24 56.25 44.62 46.05 50.40 66.6 73.6 69.8 31.7
Only Loss 79.20 84.8 2.33 53.13 42.20 47.91 49.87 66.6 73.5 70.7 32.0
Opposite 75.30 80.7 1.91 64.58 42.42 45.58 48.63 65.6 73.1 68.9 32.1
TPO (Ours) 79.30 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0

Table 3: Ablation Studies. Performence of LLaVA-1.5 on hallucination and general benchmarks.

Figure 4: The curve of changes in self-calibrated re-
wards for positive and negative samples over training
steps, with a sample point taken every 10 steps.

between responses and images. On the MMHal
dataset, the overall image attention weights for
LLaVA-1.5-7B increased from 0.14 before TPO
training to 0.17 afterward. Additionally, Figure 3
visualizes the cases, showing a significant increase
in image attention weights for response tokens, es-
pecially for visual-anchored tokens (e.g., table,
cord). This highlights our method’s success in
improving the model’s integration of visual infor-

Average score Noun/Adj Others
Ground Truth 1.83 0.90
Ground Truth (TPO) 5.72 4.87
Response of LLaVA 1.48 0.83
Response of LLaVA+TPO (TPO) 5.67 4.59

Table 4: Average score from Equation 4 of Noun/Adj to-
kens and other tokens. Here, Ground Truth and Ground
Truth (TPO) represent the scores calculated for the
ground truth answer using LLaVA-1.5-7B and LLaVA-
1.5-7B+TPO. Response of LLaVA and LLaVA+TPO
(TPO) correspond to the outputs before and after TPO
training and the scores calculated by LLaVA-1.5-7B and
LLaVA-1.5-7B+TPO, corresponding to Fiure 1.

mation, thus reducing hallucinations.

Self-Calibration To illustrate that our method
enables the model to progressively enhance its fo-
cus on visual information through continuous self-
calibration during training, we present the evolu-
tion of scores for positive and negative samples, as
calculated by Equation (5), across various training
steps. With a = 0.5, it follows that cyi ∈ (0.5, 1.5).
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Figure 5: Performance curves with the change of the
noise steps-(a) and the change of parameter a-(b), We
separately present the F1 of AMBER, the hallucination
rate of MMHAL, the aACC of HallusionBench, and the
average value of the general benchmarks.

As shown in Figure 4, the scores for positive sam-
ples gradually approach their maximum values,
while those for negative samples approach their
minimum values, indicating convergence. This
trend illustrates the self-calibrating effect of our
method, which ultimately enhances the model’s
ability to focus on visual information.

5 Conclusion

In this study, we propose a novel pereference align-
ment method, TPO, to mitigation hallucinations in
LVLMs. TPO incorporates a self-calibrated visual-
anchored reward mechanism that automatically
identifies "vision-anchored tokens" and adaptively
assigns appropriate rewards to them. By adding
noise to the visual input and capturing changes in
the generation probability of each token, TPO com-
putes a score indicating each token’s relevance to
visual information. Based on the self-calibrated
visual-anchored reward, TPO can perform more ef-
ficient token-level preference alignment optimiza-
tion for LVLMs. Experimental results have proved
that TPO not only alleviates the hallucination prob-
lem but also strengthens the model’s attention to
visual input when generating responses.

6 Limitation

Although our method has achieved outstanding
performance in addressing the hallucination prob-
lem, the self-calibrated visual-anchored rewards
approach we used in this paper can be extended to
even broader areas. By altering the way noise is
added to images, we can shift from adding noise
to the entire image to adding noise to specific key
objects. It can enable the model to specifically
improve its focus on image information in certain
domains, thus having extensive industrial applica-
tions. Besides, we believe that the core part of the
TPO method, the visual-anchored reward scoring
method, possesses strong extensibility. For exam-
ple, these token-level rewards can also be used to
weight the probability distributions in the calcu-
lations for other RLHF methods, enhancing the
visual attention of multimodal models.

We will continue to expand in this direction, and
we believe that the technology we have proposed in
this paper has a vast space for further development
and application.

7 Ethic Statement

The main purpose of this article is to alleviate
the hallucination problem in LVLM using rein-
forcement learning method. By employing a self-
calibrated visual-anchored reward approach, we
propose the TPO method, which significantly ad-
dresses the hallucination issue and helps the model
connect with more visual information. All the mod-
els and datasets we used are open source, so we
believe that the work in this paper does not pose
any potential threats.
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A Implement Details

A.1 Setup

In our experiments, we trained the LLaVA-v1.5
model. For our TPO method and the vanilla DPO
method, we set the maximum learning rate to 5e-8
on the 7B version and trained for 4 epochs. We
set the maximum learning rate to 2e-7 on the 13B
version and trained for 4 epochs. The RLHF-V
training was set according to the paper (Yu et al.,
2024b). All parts requiring GPT-4 evaluation use
the GPT-4-0613 8K version, and the MM-Vet test-
ing is conducted on the official evaluation website.

During the training process, we froze the vision
encoder and only trained the LLM.

We also trained the Qwen2-VL model. For our
TPO method and the vanilla DPO method, we set
the maximum learning rate to 5e-9 for 7B model,
1e-9 for 2B model and trained for 4 epochs.

For a fair comparison, we set the seed to 42 dur-
ing training and greedy decoding was used during
inference.

Our experiments were all conducted on a server
equipped with 8 Nivdia A100 GPUs; in specific
cases (such as the 13B model), we utilized 32
Nivdia A100 GPUs. For the hyperparameter set-
tings, all hyperparameters are consistent with those
of our main experiment. We used ‘Pytorch’ in
our code. Moreover, the level of diffusion noise
in our model is represented by a formula ξ =
Sigmoid(lt)×(0.5×10−2−10−5)+10−5, where
lt is a list of 1,000 numbers taken at equal intervals
over the interval [−6, 6], and ϵ ∈ N(0, 1).

The cases in Figure 1 and Figure 3 come from
benchmarks (Sun et al., 2023), while the cases in
Figure 2 come from the RLHF-V training set (Yu
et al., 2024b).

A.2 Benchmarks

The three hallucination benchmarks: (1) AMBER :
a multi-dimensional hallucination benchmark with
more than 15K samples, including discriminative

and description tasks. (2) MMHal-Bench : it mea-
sures the hallucination rate and informativeness of
responses. (3) HallusionBench : it evaluates visual
illusions and knowledge hallucinations through sys-
tematically structured discriminative tasks.

The four general benchmarks: (1) SEED Bench :
a benchmark for LVLMs on generative comprehen-
sion. (2) MMBench: a comprehensive benchmark
designed to evaluate the capabilities across vari-
ous tasks and modalities. (3) LLaVA Bench: a
benchmark for evaluating multi-modal conversa-
tion, detailed description, and complex reasoning.
(4) MM-Vet: a benchmark to assess integrated ca-
pabilities.

A.3 Training Efficiency

In TPO, generating corrupted images at each
step incurs almost no time cost, as it is done
during the initial data preparation. The main
time consumption comes from calculating logits
plog(yi|x, vc, y<i) for the noisy images.

We have also conducted a careful analysis of
the time consumption for LLava-1.5-7B under the
settings in Section A.1, the training durations for
DPO and TPO were 1 hour 24 minutes and 1 hour
57 minutes, respectively, indicating about a 40%
increase in time. Nevertheless, all training methods
aimed at eliminating hallucinations inevitably in-
cur additional time costs, compared to other meth-
ods requiring fine-grained annotations, our self-
calibrated approach with 40% time increase proves
to be sufficiently efficient.

It has also shown superior outcomes on 5K train-
ing data training to CSR training on 13K data and
POVID training on 17K data. This highlights the
efficacy of our method in guiding the model to pay
more attention to image details and in reducing
hallucinations.

pil_to_tensor = transforms.ToTensor ()
tensor_to_pil = transforms.ToPILImage ()
image = Image.open(default_image_path).

convert("RGB")
image_tensor = pil_to_tensor(image)
image_noisy = add_diffusion_noise(

image_tensor , 500)
image_noisy = tensor_to_pil(image_noisy)

Listing 1: Example Python Code for Noise Addition

B Comparison with Related Methods

To more comprehensively highlight the advantages
of the TPO method, we conducted comparisons
with other related works (Jiang et al., 2024; Yue
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Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MM-Vet
LLAVA-1.5-7B 71.7 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
0 setp 77.6 82.6 2.10 58.33 44.40 45.35 49.42 66.2 73.2 69.9 32.1
250 steps 79.0 84.5 2.33 53.13 43.52 46.05 49.51 66.6 73.4 68.5 31.3
750 steps 79.30 85.0 2.40 52.08 41.76 48.14 50.04 66.7 73.5 69.2 32.8
999 steps 79.20 85.0 2.41 52.08 41.76 47.67 49.69 66.7 73.5 69.2 33.3
500 steps (Ours) 79.30 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0

Table 5: Detail of Figure 5 (a).

Method
AMBER MMHal HallusionBench General Benchmarks

Acc F1 Score Hal ↓ Easy Hard aAcc SEED MMB LLaVA MM-Vet
LLAVA-1.5-7B 71.7 74.3 2.01 61.46 42.64 41.16 47.21 66.1 73.3 65.6 31.6
a = 0 79.2 83.0 2.24 56.25 42.20 43.72 48.27 66.6 73.5 68.4 32.8
a = 1 79.2 84.9 2.44 48.96 41.54 47.44 49.60 66.7 73.6 70.8 33.1
a = 0.5 (Ours) 79.3 85.0 2.47 51.04 41.76 48.37 50.22 66.6 73.6 70.2 33.0

Table 6: Detail of Figure 5 (b).

et al., 2024; Xiao et al., 2025; Sarkar et al., 2024;
Zhao et al., 2023; Leng et al., 2024; Huang et al.,
2024; Zhou et al., 2023) aimed at addressing the
hallucination problem. The results show that TPO
achieves more significant hallucination reduction.

Preference alignment and decoding strategies
are two important and parallel categories of meth-
ods for hallucination mitigation. We believe that
training with preference alignment offers several
advantages: 1) Direct Optimization of Output
Preferences: This approach directly optimizes the
model’s output to align with desired preferences
without requiring changes to the decoding strategy.
2) Higher Inference Efficiency: Preference align-
ment typically results in more efficient inference, as
it does not introduce additional complexity during
the decoding process.

One key advantage of decoding methods is that
they do not require retraining the model, making
them highly efficient for deployment. However,
this does not preclude the benefits of preference
alignment. In fact, we believe combining these two
approaches can yield even better results.

To further elucidate the innovations of our work,
we provide a more in-depth comparison with sim-
ilar methods (Cui et al., 2024; Zhou et al., 2024a;
Leng et al., 2024). Our approach exhibits both con-
ceptual distinctions and methodological advance-
ments. Unlike FiSAO, which relies on a vision
encoder to compute token-level scores, TPO de-
rives them directly from the LVLM’s logits differ-
ence between clean and noisy images. Moreover,

while FiSAO builds upon PPO, TPO enhances the
DPO framework. Our method shares with VCD the
idea of using noise-induced logits change to iden-
tify visual-sensitive tokens; however, TPO goes be-
yond identification by introducing a self-calibrating
reward Eq. 5 that jointly reinforces positive out-
puts, suppresses hallucinations, and strengthens
image–token alignment—aiming fundamentally to
improve perceptual faithfulness. In contrast, VCD
focuses on decoding less image-affected tokens
without enhancing underlying visual grounding.
Similarly, although POVID also uses Gaussian
noise for perturbation, it primarily constructs nega-
tive samples for DPO training, whereas TPO lever-
ages noise to quantify token–image relevance and
enables a more efficient token-level reinforcement
learning strategy, leading to superior performance.

C Results on Object Hallucination

In the AMBER benchmark, there is a subset for
evaluating object hallucinations in image descrip-
tion tasks. Since this paper focuses on visual ques-
tion answering, this part of the experiment is in-
cluded in this section. To assess the proportion of
object hallucinations in image descriptions, AM-
BER uses Chair as the metric.

The results are shown in Figure 6. Note that
’Chair’ represents the hallucination ratio, where a
smaller value indicates better model performance.
To more clearly illustrate the comparison between
methods in the figure, we use 10 − chair as the
indicator. The results show that TPO can not only
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Method AMBER MMHal

Acc F1 Score Hal↓
LLaVA-1.5-7B 71.7 74.3 2.01 61.46
VCD 71.8 74.9 2.12 54.20
LURE 73.5 77.7 1.64 60.40
OPERA 75.2 78.3 2.15 54.20
HACL 2.13 50 - -
EOS 2.03 59 - -
HA-DPO 1.97 60 75.2 79.9
HALVA 2.25 54 - 83.4
DPO 77.5 82.1 2.14 58.33
TPO 79.3 85 2.47 51.04
LLAVA-1.5-13B 2.38 53 71.3 73.1
HSA-DPO 2.61 48 - -
HALVA 2.58 45 - 86.5
DPO 2.47 51 83.2 86.9
TPO 2.72 46 83.9 88

Table 7: Comparison of Results

Figure 6: Chair Performance Comparison.

mitigate the hallucination in visual question an-
swering, but also eliminate the object hallucination
in image descriptions to a certain extent.

D Comparison of Different Noise Adding
Methods.

To evaluate the impact of different methods of
adding noise to images on our approach, we test
a scheme where noise images were replaced with
white images under the same experimental condi-
tions. The results, shown in Table 8, demonstrate
the superior performance of our method. We be-
lieve that the noise addition method used in our pa-
per can control noise levels to create images that are
more likely to induce hallucinations in the model,
thereby achieving better results.

E Evaluation of TPO Training on
Real-World Performance

To validate the effect of TPO training, we compared
the performance of the LLaVA-1.5-7B models be-

Method
AMBER MMHal HallusionBench

Acc F1 Score Hal↓ Easy Hard aAcc
LLaVA-
1.5-7B

71.7 74.3 2.01 61.5 42.6 41.2 47.2

+TPO
(white)

78.0 82.7 2.26 55.2 44.2 45.4 49.3

+TPO 79.3 85.0 2.5 51.0 41.8 48.4 50.2

Table 8: Comparison of different noise adding method.
“white" indicates that blank images are used in place of
noisy images.

Method
AMBER

Acc F1
LLaVA-1.5-7B 71.7 74.3
+ DPO 77.5 82.1
+ CSR 73.2 76.1
+ POVID 71.9 74.7
+ RLHF-V 74.8 78.5
+ TPO (1K) 72.5 75.3
+ TPO (3K) 78.9 83.4
+ TPO (5K) 79.3 85.0

Table 9: Evaluation of TPO Training with varying
amounts of training data.

fore and after training on a real-world image set
of 10 images, as suggested during the review pro-
cess. A manual analysis of the outputs revealed
that the TPO-trained model provided superior re-
sults in 40% of the cases. In contrast, the original
model was better in only 20% of cases, with both
models performing equally well in the remaining
40%. This represents a clear net performance gain
attributable to the TPO training procedure.

F Analysis of TPO Training on less
training data

In order to further investigate the impact of training
data volume, we constructed subsets of 1K and 3K
samples from the original 5K training set. Using
these subsets, we fine-tuned the LLaVA-1.5-7B
model with a consistent learning rate of 5e-8 for 4
epochs, maintaining identical experimental settings
as in the full-data scenario.

As anticipated in table 9, the performance of
the TPO method exhibits a gradual decline with
reduced training data. Nevertheless, even when
trained on only 1K samples, TPO remains competi-
tive and surpasses most baseline methods. With 3K
training samples, it achieves the second-highest per-
formance, further underscoring the effectiveness
and data efficiency of our approach.
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