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Abstract

Large Language Models (LLMs) are pivotal in
enabling intelligent experiences across various
applications, from summarization to advanced
content organization and retrieval functional-
ities. However, deploying LLMs for diverse
tasks is fundamentally constrained by memory
and compute limitations, making it impracti-
cal to fine-tune separate models for each task.
Parameter-Efficient Fine-Tuning (PEFT) meth-
ods like Low-Rank Adaptation (LoRA) offer a
scalable solution for multi-task LLM deploy-
ment. Despite its potential, LoRA faces chal-
lenges in selecting optimal ranks and layers for
each task-model pair, often resulting in ineffi-
ciencies and unnecessary parameters. We in-
troduce Norm Adaptive Localized (NormAL)
LoRA, a novel variant that employs rank-norm
regularization to dynamically determine the op-
timal rank for each weight matrix, ensuring
adaptation is concentrated where it is most im-
pactful. Our approach reduces adapter pa-
rameters by 37% while preserving full fine-
tuning performance, making NormAL LoRA a
transformative tool for enabling efficient, scal-
able, and space-constrained AI deployments
across diverse industries and applications. We
release our code here1.

1 Introduction

The rapid ascent of transformer (Vaswani et al.,
2017) based Large Language Models (LLMs) has
reshaped what we thought was possible in natu-
ral language processing: from generating coher-
ent paragraphs to answering complex questions,
these billion-parameter models continue to push
state-of-the-art performance (Brown et al., 2020;
Chowdhery et al., 2022; OpenAI, 2023). They are
increasingly powering intelligent features in var-
ious device-based ecosystems, underscoring the
need for scalable, on-device LLM deployment (Ra-
jbhandari et al., 2022; Xu et al., 2023b; Sahu et al.,

1https://github.com/jingax/NormAL

2024). Yet, their sheer size brings a practical
challenge—fine-tuning for a downstream task is
both compute and memory intensive, making it
difficult for most users to customize these models
without massive resources.

Parameter-Efficient Fine-Tuning (peft) meth-
ods offer an elegant solution by keeping the pre-
trained weights frozen and learning only a small
number of additional parameters (Ding et al., 2023).
Among these, Low-Rank Adaptation (Hu et al.,
2022) stands out: by factorizing weight updates
into two low-rank matrices, it reduces the trainable
footprint dramatically while preserving accuracy.
But a new question arises: what rank should each
adapter use? Too low, and the model underfits;
too high, and we waste precious budget. Worse,
different layers often need very different capaci-
ties, turning rank selection into an expensive grid
search over dozens—or even hundreds of combi-
nations. Identifying the optimal rank configuration
for different layers manually is computationally
expensive (Zhang et al., 2024; Liang et al., 2021).

To address this problem, we propose Norm
Adpative Localized (NormAL) LoRA to find the
optimal rank for each weight matrix. Central to our
approach is a new rank-norm regularization mech-
anism, which promotes knowledge concentration
within the adapter weights, enabling further com-
pression through effective layer clipping.
Our contributions:

• We propose a novel knowledge concentration
technique via rank-based norm regularization.

• We introduce NormAL-LoRA, which dynam-
ically allocates rank to each layer module
based on its estimated importance, enabling
more efficient and adaptive fine-tuning.

• We show NormAL LoRA outperforms SOTA
methods across multiple language understand-
ing and generation benchmarks, highlighting
its potential to unlock scalable and space-
constrained LLM applications on-device.
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2 Related work

We provide a brief summary of categories of PEFT
and specifically Low Rank Adaptation (LoRA),
and then highlight the gap our work addresses. The
PEFT methods are primarily categorized into:

Additive modules: Prompt-tuning prepends a
small set of trainable “soft prompts” to the model
input while keeping all pretrained weights frozen
(Lester et al., 2021). P-Tuning v2 (Liu et al., 2021)
improves scalability to larger models. Adapters
insert lightweight bottleneck layers between Trans-
former sub–layers, learning task-specific transfor-
mations with only a few million extra parame-
ters (Houlsby et al., 2019; Karimi Mahabadi et al.,
2021).

Selective Updates: Selective fine-tuning re-
stricts updates to particular subsets of model pa-
rameters. BitFit updates only the bias terms of each
layer, reducing trainable parameters to under 0.1%
of the original model (Zaken et al., 2021). Other
variants such as LayerNorm tuning (Li et al., 2022)
or attention-only adaptation (Ben-Zion et al., 2023)
achieve high efficiency with lower representational
flexibility.

Low-Rank Reparameterizations: Low Rank
Adaptation (Hu et al., 2022) factorizes each weight
update into two low-rank matrices, cutting the num-
ber of trainable parameters by orders of magnitude
with minimal performance degradation. Variants
such as LLaMA-Adapter (Zhang et al., 2023c) and
LoRA++ (Xu et al., 2023a) have extended LoRA
to multi-modal and multilingual domains.

Hybrid & Dynamic Schemes: Hybrid meth-
ods combine elements of additive and low-rank ap-
proaches. Prefix-LoRA jointly learns soft prompts
and LoRA adapters (He et al., 2023), while
UniPELT unifies prompt, adapter, and sparse-
update strategies in a single framework (Guo et al.,
2023). More recently, adaLoRA dynamically al-
locates per-layer adapter rank based on gradient-
norm statistics, optimizing parameter utility (Zhang
et al., 2024). DiffFit (Gaur et al., 2023) further
proposes fine-tuning by only training residuals of
LoRA weights for improved generalization.

Among all the techniques listed, LoRA has
emerged as a particularly powerful technique for
efficient fine-tuning of pre-trained models, particu-
larly in scenarios where computational resources
are limited. It achieves task-specific adaptation
by injecting low-rank trainable matrices into the
frozen weight matrices of a pre-trained model. This

Figure 1: Representation of Low-rank adaptation

approach allows the model to adapt to new tasks
while preserving the original parameters of the base
model. Mathematically, LoRA is expressed as:

f(x) = Wn×mx+ (Bn×R ×AR×m)x (1)

Here, W represents the frozen pre-trained weight
matrix, while A and B are low-rank matrices of
rank R. This formulation effectively introduces
a low-rank adaptor of size R (Fig. 1), enabling
fine-tuning by updating only the adapter weights.
However, this traditional perspective treats LoRA
as a unified adaptor, which can obscure the distinct
contributions of its individual rank vectors towards
specific tasks across various layers (Ding et al.,
2023; Dai et al., 2022).

Prior studies have applied heuristic pruning to
LoRA adapters—such as those of (Zhou et al.,
2024; Zhang et al., 2023a; Li et al., 2025; Liu
et al., 2024; Chang et al., 2025; Bhardwaj et al.,
2024; Renduchintala et al., 2023; Damirchi et al.,
2025)—showing that one can significantly reduce
trainable parameters with negligible loss in per-
formance; these methods typically rely on ei-
ther singular-value decomposition to rank adapter
subspaces or on gradient-norm metrics to select
adapters for removal.

3 Proposed Methodology

We propose a reinterpretation of LoRA by viewing
it not as a single low-rank adaptor but as R individ-
ual adaptors of size 1. This perspective allows us
to decompose the low-rank matrices A & B into
rank vectors var & vbr, each of size n×1 and m×1,
respectively. By expressing the adapted model in
terms of these rank vectors, we gain a more gran-
ular understanding of LoRA’s adaptation process.
Equation 1 can be reformulated as:

f(x) = Wx+
R∑

r=1

vbrv
a
rx (2)
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Figure 2: Stages of NormAL LoRA for a single layer. In the first step the weights are initialized uniformly. Then by
application of our novel rank-norm regularization the L2 norms of the LoRA weights are shifted towards one end
(top for LoRA A and left for LoRA B). We use norm as a surrogate of layer importance and clip/remove part of
LoRA matrix where L2 norms are lower thus obtaining a new smaller rank LoRA for that particular layer.

By treating LoRA as a collection of rank-1 adaptors
(as above), we can better analyze and optimize its
performance, particularly in scenarios where com-
putational efficiency and generalization are critical.
This allows for an efficient rank reduction method-
ology by just determining the most optimal subset
of rank vectors for both weight matrices. We pro-
pose a 2-stage methodology, described below, to
effectively determine the most efficient subset of
target vectors for the task. We first propose and
demonstrate a novel regularization methodology
(Knowledge Concentration Regularization) to ef-
fectively concentrate learning. This allows us to
effectively remove redundant or low-impact rank-1
adaptors through a Clipping strategy.

3.1 Knowledge Concentration Regularization
Reducing adapter sizes can be most effectively
achieved by grouping or concentrating the ‘knowl-
edge’ into the minimum number of initial layers.
This approach ensures that the most critical infor-
mation is retained in the early adaptors, while less
significant components can be pruned to optimize
computational efficiency. To formalize this intu-
ition, we draw inspiration from Taylor’s Theorem
in mathematics, which states that a function f(x)
can be approximated by a polynomial expansion
around a point a:

f(x) ≈ f(a)+f ′(a)(x−a)+· · ·+f (n)(a)

n!
(x−a)n

(3)
Each additional term improves the approximation
of f(x), but with diminishing returns.

Analogously, we interpret increasing the LoRA
rank as incrementally improving task performance,
with each added rank contributing progressively

less knowledge to the overall model. We use the
norm of the adapter weights to represent the accu-
mulated knowledge in each LoRA rank, reflecting
the amount of information encoded in a given layer.

Extending from Eqn 1 and 2, we can represent
LoRA matrices as a set of R rank vectors of size
N × 1. Specifically,
A = [va1 , v

a
2 , . . . , v

a
R], B = [vb1, v

b
2, . . . , v

b
R] (4)

We enforce regularization on these vectors to en-
sure that knowledge is concentrated in the initial
rank vectors, as illustrated in Figure 2b. Our ob-
jective is to force or regularize the rank vectors
such that their L2 norms decrease monotonically,
i.e., ||vi||2 > ||vi+1||2. (We provide justification
for using L2 norm in appendix K).This decreasing
order of L2 norms indicates that the most criti-
cal knowledge is being retained in the early rank
vectors, while less significant contributions are pro-
gressively minimized. The regularization function
used to achieve this is defined below

P (WN×R) =
R∑

r=1

√
r||vr||2 (5)

The coefficient
√
r acts as a penalization for higher

rank values, enforcing an optimal rank choice in the
weight matrix. We apply this regularization for the
first tp steps in training, followed by a “cool-off”
process to help the model generalize. We exper-
iment with different choices for the penalization
factor and, discussed is in section 4.3.

3.2 Weight Matrix Clipping
Once the condition of decreasing norms is satis-
fied, the reduction of trainable parameters can be
achieved by pruning the low-impact rank vectors.
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Based on the available computational constraints,
the user can select the most optimal subset of the
top k rank vectors. Prior to selection, we normalize
all norm values by dividing them by ||va1 ||2+||vb1||2
for their respective weight matrices. This normal-
ization ensures that the normalized norm value of
all first rank vectors in each layer is 1, guaranteeing
that each layer retains at least one rank vector. We
propose two methods for LoRA clipping below:

We present two methods LoRA clipping first is
budget constraint clipping presented in algorithm
3 and second is performance or norm value based
clipping presented in algorithm 2.

3.2.1 Budget-Constrained Clipping
We define a budget k as the total number of rank
vectors across all layers to be retained after clipping.
In this constraint-based clipping method, we simply
select the top k rank vectors with the highest nor-
malized norms. By enforcing a decreasing norm
condition, all retained rank vectors are naturally
grouped on one side of the LoRA adaptor, enabling
the remaining vectors to be efficiently clipped with-
out disrupting the model’s performance (Appendix
H). An important condition to note is that the bud-
get k does not directly correlate with number of
trainable params. 2 adaptors with the same budget
may differ in size due to variations in size of target
modules and their corresponding rank allocations.
3.2.2 Norm threshold based Clipping
Norm-based clipping is particularly useful when
the goal is to retain rank vectors based on their
relative contribution to the model’s performance,
rather than strictly adhering to a fixed number of
parameters. This method allows for dynamic se-
lection of rank vectors that carry the most signifi-
cant knowledge, ensuring that the adaptor retains
its most impactful components (Appendix G). To
achieve this, we define a threshold λ ∈ [0, 1] and
retain all rank vectors satisfying:

||vai ||2 + ||vbi ||2
||va1 ||2 + ||vb1||2

> λ

While norm-based clipping provides less control
over the final adaptor size, as the outcome depends
on the distribution of norm values and can vary
across different random seeds, it offers flexibility
in adapting to the specific characteristics of the
model. To comprehensively evaluate the efficacy
and trade-offs of each method, we conduct experi-
ments with both norm-based and constraint-based
clipping approaches, detailed in Sec 4.2.

Algorithm 1 NormAL LoRA
Require: LoRA Model M , Train steps T , clipping stage tc,

warm up stage tp, budget k
Ensure: 0 < tp ≤ tc < T

for t← 1 to T do
L←M(Xt)
if t < tp then

L← L+ ηpP (M) ▷ Add rank penalty
end if
if t = tc then

M ← CLIP (M,S) ▷ Clip LoRA ranks
end if
Update M using Loss L

end for
return M

For all experiments detailed in Section 5, we
adopt a consistent two-stage approach: knowledge
concentration for first tp steps followed by weight
clipping at step tc. After this step, we continue
training the modified LoRA weights normally to
ensure they align closely with the task at hand. Al-
gorithm 1 formalizes the complete approach. In
the subsequent ablations (Sec 4), we explore the
impact of various design choices and hyperparam-
eters to determine the most optimal configuration
for the proposed NormAL LoRA methodology.

4 Ablations

4.1 When to Clip? Determining tp and tc

NormAL LoRA, introduces two critical hyperpa-
rameters: tp, which controls when regularization
is terminated, and tc, which determines when the
LoRA weights are clipped. We observe that Nor-
mAL LoRA is sensitive to the choice of these
scheduling points and suboptimal values for tp and
tc can noticeably degrade performance.

To mitigate this, we explore heuristic-based
strategies for adaptively setting tp and tc. Specifi-
cally, we monitor the exponentially weighted mov-
ing average of the step-wise change in loss:

∆t = |Lt − Lt−1|
∆̂t = α · ∆̂t−1 + (1− α) ·∆t

(6)

Here, Lt is the loss at step t, ∆t is the absolute
change in loss, ∆̂t is the smoothed estimate at step
t, and α ∈ [0, 1) is the smoothing factor, set to 0.9.

When ∆̂t falls below a predefined regularization
threshold(λp), we terminate regularization (mark-
ing tp). After resetting the moving average, we con-
tinue monitoring. When ∆̂t again falls below the
clipping threshold(λc), we clip the LoRA weights
(marking tc). This adaptive scheduling significantly
improves training stability and reduces the need
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Method Avg rank BLEU NIST METEOR ROUGE_L CIDEr
Budget clipping 4 0.579 7.493 0.372 0.624 1.762
Norm thresholding (λ = 0.95) 3.89 0.572 7.410 0.367 0.608 1.693

Budget clipping 5 0.589 7.537 0.376 0.63 1.779
Norm thresholding (λ = 0.85) 7.24 0.578 7.440 0.371 0.614 1.687

Table 1: Comparison of budget clipping and norm value threshold clipping

for manual tuning. We present detailed results in
Appendix F. Please note that while this heuristics
provides easier and more stable clipping points, the
optimal performance is obtained by manual tuning
and hence for all experiments, we use this heuristic
to determine the correct range and then determine
the optimal values of tp and tc with a fine-grained
manual check.

4.2 Budget vs Norm Thresholding

We first evaluate the performance of two clipping
methods — Budget-based (Algorithm 3) and norm-
thresholding (Algorithm 2)—under identical train-
ing conditions on the NLG task (Section 5.2.1),
as the choice of clipping methodology is a critical
factor in determining overall efficiency and perfor-
mance. The results, summarized in Table 1, reveal
that norm-based clipping performs comparably to
or, in some cases, slightly worse than budget-based
clipping. However, norm-thresholding presents
challenges in controlling the final adapter size, of-
ten requiring multiple training rounds to fine-tune λ
to achieve a desired target size. In contrast, budget-
based clipping offers more predictable control and
efficiency, making it a more practical choice for
our experiments. As a result, all subsequent ex-
periments involving NormAL LoRA in this paper
utilize the budget-based clipping method.

Figure 3: Evaluation of various penalizing factors

4.3 Regularization Penalization Function

We demonstrate our proposed regularization func-
tion in Eqn 5, wherein we use

√
r as the penaliza-

tion function. To explore the impact of different pe-
nalizing functions, we experiment with alternatives
such as r, r2, r3, and log r, observing the impact of
a diverse range of growth rates and behaviors. We
present the loss curves for these functions along-
side the loss plot without NormAL LoRA in Figure
3. For readability, the plots for log r and r are omit-
ted from the main text as they closely resemble the√
r curve (provided in the Appendix A).

Across all experiments, we observe that the loss
decreases steadily from 0 to tp. At tp, the loss drops
significantly for all penalizing factors because the
regularization loss is removed. However, this trend
doesn’t apply to the

√
r curve, where the regular-

ization loss is already close to 0 at this step due
to its smaller penalty factor. We also notice that
for smaller penalizing functions, the initial loss
is lower than the curve with no penalty (Original
LoRA). This is because, before clipping at step tc,
NormAL LoRA has a rank of 8 (maximum rank),
while the no penalty curve has a rank of 2. The
larger number of trainable parameters in NormAL
LoRA helps it offset the extra loss caused by rank
regularization. On the other hand, when the pe-
nalizing factor is too high (e.g., r3), the benefit of
having more trainable parameters isn’t enough to
offset the very high regularization loss.

Another interesting observation is that at step tc,
the loss for some penalty factors spikes. We find
that smaller penalty factors result in higher spikes,
as pruning the LoRA weights at this step leads to a
temporary loss of knowledge, which is eventually
recovered in subsequent steps. Conversely, for very
large factors like r3, there is no significant spike
because these factors have already reduced many
rank vectors to zero, making pruning or clipping
them less impactful on the total loss.

Considering the above observations, we choose√
r as the most stable penalizing function for the

proposed regularization methodology.
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Method #Params MNLI SST-2 CoLA QQP QNLI RTE MRPC STS-B All
m/mm Acc Mcc Acc/F1 Acc Acc Acc Corr Avg

Full FT † 184M 89.90/90.12 95.63 69.19 92.40/89.80 94.03 83.75 89.46 91.60 88.09
HAdapter † 0.31M 90.10/90.02 95.41 67.65 91.54/88.81 93.52 83.39 89.25 91.31 87.60
PAdapter† 0.30M 89.89/90.06 94.72 69.06 91.40/88.62 93.87 84.48 89.71 91.38 87.90
LoRAr=2† 0.33M 90.30/90.38 94.95 68.71 91.61/88.91 94.03 85.56 89.71 91.68 88.15
AdaLoRA† 0.32M 90.66/90.70 95.80 70.04 91.78/89.16 94.49 87.36 90.44 91.63 88.86
Oursr=2 0.32M 90.44/90.18 95.99 70.64 92.04/89.44 94.56 88.81 90.93 91.58 89.19

Table 2: DeBERTaV3-base on GLUE val set with different fine-tuning methods. Result reported for NormAL
LoRA(Ours) with comparable trainable parameters by keeping avg adapter rank 2 † Taken from (Zhang et al., 2023b)

5 Experiments, Results & Observations

We implement NormAL LoRA by modifying the
HuggingFace peft library’s LoRA backend. For
a simplified implementation, we apply a mask to
the clipped weights during the forward pass and
use gradient hooks in the backward pass to mask
pruned component gradients. All experiments are
conducted on NVIDIA A100 GPUs with 80GB
memory. Our current implementation supports only
single-GPU training; multi-GPU behavior may dif-
fer and is left for future work.

We evaluate our approach across various lan-
guage understanding and generation tasks to prove
model efficacy and robustness across general pur-
pose capabilties. Additionally, we evaluate and
visualize how the rank distribution is affected with
the implementation of NormAL LoRA (Figure 5).
Finally, we evaluate the training costs of implemen-
tation to further prove the efficacy and efficiency
of the proposed approach in section 5.4.

5.1 Natural Language Understanding

To rigorously evaluate NormAL LoRA, we
conducted experiments on the GLUE bench-
mark (Wang et al., 2018), following the experi-
mental protocol established by AdaLoRA (Zhang
et al., 2023b). We fine-tune public DeBERTa-v3-
base model(12 layers & 86M backbone parame-
ters). The model was evaluated on the various stan-
dard natural language understanding (NLU) tasks,
detailed in Table 12. These tasks cover a broad
range of linguistic phenomena, including syntax,
semantics, and inference, making GLUE a compre-
hensive benchmark for evaluating general-purpose
language representations. Our goal was to com-
pare the performance and parameter efficiency of
our method against SOTA methods like AdaLoRA
under identical training conditions.

Table 2 presents the performance of NormAL
LoRA on the GLUE (Wang et al., 2018) benchmark

using a DeBERTaV3-base model with an average
adapter rank of 2. Compared to existing parameter-
efficient fine-tuning methods, including LoRA and
AdaLoRA, our method achieves state-of-the-art
results on a majority of tasks, notably outperform-
ing baselines on SST-2, CoLA, QQP, QNLI, RTE,
and MRPC tasks. This demonstrates that proposed
norm-based rank allocation and knowledge con-
centration regularization effectively enhances task
performance while maintaining a low parameter
footprint, across all target tasks. Sginificantly, Nor-
mAL LoRA outperforms full model finetuning with
just 0.16% of original trainable parameters.

5.2 Natural Language Generation

To further evaluate NormAL LoRA efficacy across
multiple language tasks and architectures, we also
evaluate its performance on various language gen-
eration tasks. Specifically, we evaluate on the E2E
NLG Challenge dataset (Novikova et al., 2017)
with TinyLlama-1.1B model and CNN/DailyMail
summarization dataset (Hermann et al., 2015) with
BART-large.

5.2.1 E2E NLG Challenge
The E2E NLG Challenge (Novikova et al., 2017)
is a benchmark for data-to-text generation, where
models are trained to generate natural language
utterances from structured meaning representations
(MRs). The task evaluates how well a model can
fluently and accurately verbalize structured input
into coherent sentences.

We evaluate both methods using TinyLlama-
1.1B with ranks ranging from 1 to 8. For fair
comparison, NormAL LoRA is configured with
an equivalent average rank. All hyperparameters
including learning rate, batch size, LoRA scaling
factor (α), and number of epochs, are kept constant
across experiments. Each setting is run 5 times
with different seeds, and we report the mean and
standard deviation across these runs in Figure 4.
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Figure 4: Comparison of standard LoRA (Hu et al., 2022) and NormAL LoRA (ours) on the E2E NLG Challenge.
Experiments use TinyLlama-1.1B trained for a single epoch. The rank for NormAL LoRA reflects the average
across layers, while baseline LoRA uses a uniform rank. The number of trainable parameters is held constant.

Method Rank BLEU NIST METEOR ROUGE_L CIDEr
µ σ µ σ µ σ µ σ µ σ

LoRA
1

0.0 0.0 0.0 0.0 0.017 0.008 0.033 0.013 0.117 0.043
Ours 0.0 0.0 0.0 0.0 0.017 0.008 0.033 0.013 0.117 0.043

LoRA
2

0.498 0.033 6.024 0.982 0.323 0.022 0.55 0.034 1.323 0.097
Ours 0.541 0.01 6.825 0.405 0.343 0.012 0.588 0.018 1.48 0.129

LoRA
4

0.546 0.009 6.739 0.209 0.345 0.006 0.579 0.015 1.476 0.045
Ours 0.579 0.006 7.493 0.073 0.372 0.003 0.624 0.005 1.762 0.044

LoRA
5

0.557 0.014 6.823 0.324 0.353 0.01 0.591 0.025 1.528 0.111
Ours 0.589 0.005 7.537 0.082 0.376 0.002 0.63 0.004 1.779 0.034

LoRA
8

0.59 0.006 7.575 0.116 0.378 0.004 0.626 0.006 1.788 0.05
Ours 0.59 0.006 7.575 0.116 0.378 0.004 0.626 0.006 1.788 0.05

Table 3: Accuracy and Standard Deviation across different ranks for NLG tasks

As can be seen, NormAL LoRA with an aver-
age rank of 5 matches the performance of baseline
LoRA at rank 8, achieving a 37.5% reduction
in adapter size. Across all tested ranks, proposed
method consistently delivers better or equivalent
performance with fewer parameters.

In addition, NormAL LoRA offers improved
training stability as seen with the lower standard
deviation across different runs. This is particularly
evident at lower ranks: for example, at rank 2, vari-
ance across runs is significantly lower. Detailed
standard deviation values have been noted in Table
3, showing a 2–3× reduction in standard devi-
ation across most metrics. We extend our exper-
iments to scale upto 7B parameneter count using
Mistral-7B model (Appendix J) showcasing gener-
alizability to very large model sizes.

5.2.2 Text Summarization

The CNN/DailyMail dataset (Hermann et al., 2015)
is a popular benchmark for abstractive summariza-
tion, tasked with producing concise and coherent
summaries of news articles while retaining their

core information. We employ the BART-large
model for this task, given its high performance
for text generation tasks such as summarization.
We assess NormAL LoRA’s performance on this
dataset, comparing it to baseline LoRA, with a fo-
cus on the quality of concise summaries produced
and the reduction in trainable parameters.

The evaluation is conducted using standard met-
rics such as ROUGE-1, ROUGE-2, and ROUGE-
L, which assess the overlap of n-grams and the
longest common subsequences between the gener-
ated summaries and the reference summaries. De-
tailed results have been noted in Table 4.

Although NormAL LoRA use average rank 5
and the original LoRA use the uniform rank of 2,
NormAL LoRA places more emphasis on smaller
target modules, which leads to a reduction in the
number of parameters of 12%. Despite this dif-
ference in module size, NormAL LoRA achieves
comparable performance to the original model
across all ROUGE metrics.
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Method Params (M) ROGUE-1 ROGUE-2 ROGUE-L

LoRA 0.64 0.413 0.197 0.293
Ours 0.56 0.410 0.196 0.292

Table 4: Summarization performance on CNN dataset

Across all the tasks and experimental setups, we
note that NormAL LoRA consistently outperforms
baseline LoRA based methodologies while retain-
ing the smallest number of parameter sizes.

5.3 Image Understanding
To assess the generalizability of NormAL LoRA
beyond language tasks, we extend our experiments
to object classification using standard vision bench-
marks (CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), and Food-101 (Bossard et al., 2014)) and
Object detection on COCO (Lin et al., 2014).

5.3.1 Image classification
We fine-tune widely used Vision Transformer (ViT)
variants (Dosovitskiy et al., 2020), including ViT-
Tiny and ViT-Base, and compare performance
against the original LoRA baseline.

As shown in Table 5, NormAL LoRA delivers
the largest improvements on smaller models, par-
ticularly ViT-Tiny. It outperforms original LoRA
across all datasets on this architecture, with notable
gains of up to +0.26 on Food-101 and +0.18 on
CIFAR-100. These improvements are especially
significant for edge applications, where compact
models are favored due to tight memory and com-
pute constraints.

On larger backbones like ViT-Base, NormAL
LoRA remains competitive, with performance dif-
ferences typically under 0.1% compared to origi-
nal LoRA. This indicates that while both methods
perform similarly at scale, NormAL LoRA offers
distinct benefits in constrained environments.

Method Params cifar-10/100 food101
VIT-tiny
Oursr=1.5 20.7K 95.87/81.50 77.62
Oursr=2 27.6K 95.95/81.68 78.06
LoRAr=2 27.6K 95.87/81.62 77.8
VIT-base
Oursr=1.5 82.9K 98.49/90.60 86.51
Oursr=2 110.5K 98.49/90.57 86.51
LoRAr=2 110.5K 98.53/90.63 86.51

Table 5: Comparison of ViT-Tiny and ViT-Base models.
Results highlight the higher efficacy for smaller ViT-
Tiny model across multiple vision-language tasks.

Method AP AP50 AP75 AR1 AR10 AR100

LoRAr=8 40.05 59.09 42.33 32.66 48.78 50.37
Oursr=5 40.14 59.23 42.54 32.59 48.81 50.42

Table 6: Object detection task on COCO dataset

Importantly, these gains are achieved with re-
duced parameter overhead. Even with a lower av-
erage rank (e.g., 1.5), NormAL LoRA matches or
exceeds the performance of original LoRA at rank
2, highlighting its efficiency in parameter usage.
This makes it particularly well-suited for on-device
fine-tuning and continual learning on mobile or
embedded platforms, where minimizing trainable
parameters is essential.

5.3.2 Object detection
To further evaluate the efficacy of NormAL LoRA,
we integrate it with the YOLOS-base model (86M)
(Fang et al., 2021), which comprises approximately
86 million parameters, and assess its performance
on the object detection task using the COCO2017
dataset (Lin et al., 2014). Our experimental re-
sults (shown in table 6) enforce the erstwhile noted
trend. NormAL LoRA is able to obtain adapter
size reduction of up to 35%, while maintaining
comparable performance. The generic efficacy of
NormAL LoRA, across different input types, re-
inforces the impact that can be brought in for any
transformer-powered application across domains.

5.4 Implementation Cost
We measure the end-to-end training time for Nor-
mAL LoRA versus standard LoRA and observed a
2 – 4% increase in total training time—an overhead
we consider acceptable. This modest slowdown
arises from two sources:

1. Additional regularization: NormAL LoRA
applies its extra penalty only during the first tp
optimization steps, so the regularization cost
is incurred solely in those initial iterations.

2. Increased parameter count: In our current
implementation, we mask rather than prune
adapter weights (for ease of implementation).
As a result, a NormAL adapter with average
rank 2 (maximum rank 8) carries four times as
many masked parameters as its LoRA coun-
terpart. (Pruning masked weights instead of
masking them would eliminate this overhead.)

Given the improved performance with a much
smaller parameter size, we consider this increase
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Figure 5: Rank distribution of final adapter using NormAL LoRA applied on DeBERTaV3-base trained for MNLI
task with an average rank of 8 and max rank of 16.

in training time an acceptable cost to attain more
efficient, smaller adapters to target real-time, on-
device applications.

5.5 Rank distribution by NormAL LoRA

We plot the rank distribution assigned by Nor-
mAL LoRA for a natural language understand-
ing task (MNLI) in Fig 5. The final ranks as-
signed to each layer align with the expectation
that the later layers play a more significant role
in the model’s final output. As shown, earlier
(shallower) layers are assigned lower ranks com-
pared to deeper layers. Additionally, we observe
that different modules are assigned varying lev-
els of importance. Specifically, the WK and
WO layers (corresponding to the key_proj and
output.dense) receive the least importance (least
ranks), while the Wf1 (intermediate.dense) and
Wf2 (attention.output.dense) layers are as-
signed the highest ranks. We can attribute this
relatively high weightage to the dense layers hav-
ing more parameters hence playing more important
role in a transformer.

6 Conclusion

In this work, we introduce NormAL (Norm
Adaptive Localized) LoRA, which dynamically al-
locates optical rank to each layer depending on its
impact on the downstream task. We introduce a
novel knowledge concentration regularization tech-
nique with multi-constrained clipping mechanisms.
The proposed regularization scheme concentrates
most of the model’s learned information into the
early columns of each adapter. This structure al-
lows the remaining columns to be pruned, yielding
a much smaller adapter.

To comprehensively assess the versatility and
generalizability of NormAL LoRA, we conduct
a thorough evaluation across a diverse range of
natural language processing (NLP) tasks, includ-
ing both Natural Language Understanding (NLU)
and Natural Language Generation (NLG), as well
as computer vision tasks such as object detection
and image classification. Under equal average-rank
budgets, NormAL LoRA matches or exceeds the
performance of existing baselines while also re-
ducing run-to-run variance. Specifically, Normal
LoRA provides a 37% parameter reduction with
no performance drop across NLG baselines. Our
experiments span models of varying sizes, from 86
million to 7 billion parameters, thereby encompass-
ing a broad spectrum of computational complexi-
ties. Furthermore, we investigate the applicability
of NormAL LoRA across different model architec-
tures, including encoder-only, decoder-only, and
encoder-decoder configurations. This extensive
evaluation aims to provide a holistic understand-
ing of NormAL LoRA’s efficacy and its potential
as a universally applicable parameter-efficient fine-
tuning method. By demonstrating its effectiveness
across a wide range of tasks and model architec-
tures, we establish NormAL LoRA as a robust
and versatile technique for adapting large-scale
pre-trained models to diverse downstream appli-
cations. As the capabilities of LLMs increase and
more on-device solutions are built on top of base
LLMs, Normal LoRA will be crucial in creating
the most optimal and effective adapters in an on-
device, highly resource constrained environment.

1Language and grammar in this manuscript were refined
with the assistance of ChatGPT.
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Limitations

While the proposed dynamic variant of LoRA
demonstrates consistently strong performance, sev-
eral minor limitations remain. First, the method is
sensitive to the scheduling of two key hyperparam-
eters: the regularization termination point (tp) and
the clipping step (tc). Optimal performance was
consistently observed only when tp and tc were
aligned with empirically favorable values. Deviat-
ing significantly from these points led to reduced
performance, indicating that careful tuning is essen-
tial. Second, although our implementation masks
weights and gradients instead of pruning them out-
right, this choice leaves potential efficiency gains
unrealized. A more sophisticated implementation
could incorporate actual pruning for improved run-
time and memory efficiency, which we leave to
future work. Finally, the maximum rank remains a
manually specified hyperparameter. Automating its
selection, potentially via validation-based adapta-
tion or meta-learning, could enhance the method’s
usability and generalization.
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A LOSS PLOTS

Figure 6: Comparison of training loss curves for different penalty functions on E2E challenge for a single
Epoch on TinyLlama-1.1B.

B GLUE TRAINING SETUP

Task learning rate epochs k avg rank max rank tp tc seed
MNLI 5e-4 7 144 2 8 330 350 4
SST-2 8e-4 24 144 2 16 520 550 6
CoLA 8e-4 25 144 2 16 1005 2010 4
QQP 8e-4 5 144 2 16 330 350 4
QNLI 5e-4 5 144 2 8 400 440 4
RTE 1.2e-3 12 144 2 16 140 398 5

MRPC 1e-3 30 144 2 8 522 1044 4
STS-B 2.2e-3 25 144 2 16 330 360 6

Table 7: Detailed hyper parameter settings for GLUE benchmark on DeBERTa-V3-Base model

C E2E TRAINING SETUP

avg rank k learning rate max rank tp tc
2 132 2e-5 8 329 526
4 264 2e-5 8 329 526
5 330 2e-5 8 329 526

Table 8: Detailed hyper parameter settings for training on TinyLlama-1.1B for 1 epoch
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D SUMMARIZATION TRAINING SETUP

Model Task learning rate epochs k avg rank max rank tp tc seed
BART(large) CNN 5e-4 15 384 5 16 330 350 4

Table 9: Hyper parameter setting for Summarization task

E TRAINING TIME

Method Time(min)
Original LoRA 9.01

NormAL LoRA(Ours) 10.08

Table 10: Training time comparision of NormAL LoRA and Original LoRA for E2E challenge on a single epoch

F THRESHOLD EVALUATIONS

∆̂t(tp/tc) tp/tc Avg Rank BLEU NIST METEOR ROUGE_L CIDEr
2e-2/15e-3 181/407 2 0.548 6.774 0.343 0.589 1.440

4 0.569 7.423 0.372 0.621 1.711
5 0.565 7.338 0.367 0.618 1.668

3e-2/11e-3 115/510 2 0.550 6.849 0.345 0.601 1.467
4 0.568 7.289 0.365 0.616 1.672
5 0.571 7.351 0.367 0.618 1.696

5e-2/20e-3 92/118 2 0.564 7.099 0.347 0.615 1.602
4 0.567 7.485 0.369 0.619 1.725
5 0.574 7.315 0.366 0.624 1.692

Table 11: Results obtained on E2E challenge using different ∆̂t(tp/tc) configurations, reported with corresponding
average ranks and performance scores
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G Norm-Based Clipping Algorithm

Algorithm 2 Norm threshold based Clipping
Require: Model M with LoRA, Norm threshold
λ
ranks← {} ▷ Default value 0
for layer ← layers(M) do

ranks[layer]← 0
for r ← 1 to R do

va ← layera[:][r]
vb ← layerb[r][:]
va0 ← layera[:][0]
vb0 ← layerb[0][:]

if then va+vb

va0+vb0
> λ

ranks[layer]← r
end if

end for
end for
for layer ← layers(M) do

layera ← layera[:][: ranks[layer]]
layerb ← layerb[: ranks[layer]][:]

end for
return M ▷ Return LoRA with optimal ranks

H Constrained Clipping Algorithm

Algorithm 3 Budget-Constrained Clipping

Require: Model M with LoRA, LoRA adaptor
budget k
ranks← {} ▷ Default value 0
for i← 1 to k do

norms← {} ▷ Default value 0
for layer ← layers(M) do

va ← layera[:][ranks[layer]]
vb ← layerb[ranks[layer]][:]
va0 ← layera[:][0]
vb0 ← layerb[0][:]

norms[layer]← va+vb

va0+vb0
end for
s← argmax(norms) ▷ Selected layer
ranks[s]← ranks[s] + 1 ▷ Increase rank

end for
for layer ← layers(M) do

layera ← layera[:][: ranks[layer]]
layerb ← layerb[: ranks[layer]][:]

end for
return M ▷ Return LoRA with optimal ranks

I NLU Dataset Descriptions

Task Description
MNLI (Williams
et al., 2017)

Three-way classification: en-
tailment, contradiction, or neu-
tral.

SST-2 (Socher
et al., 2013)

Sentiment classification: posi-
tive or negative.

CoLA (Warstadt
et al., 2018)

Grammatical acceptability:
yes or no.

QQP
(Kwiatkowski
et al., 2019)

Paraphrase detection: are two
questions paraphrases?

QNLI (Wang
et al., 2018)

Question answering: does a
sentence contain the correct
answer?

RTE (Giampic-
colo et al., 2007)

Textual entailment: does the
premise entail the hypothesis?

MRPC (Dolan
and Brockett,
2005)

Paraphrase detection: are two
sentences semantically equiva-
lent?

STS-B (Cer
et al., 2017)

Semantic similarity: score be-
tween 0 and 5.

Table 12: Datasets used for NLU tasks
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J Scaling to 7B model

We further expand our experiments to Mistral-7B model to showcase that NormAL LoRA generalizes
across all model sizes. We see that NormAL LoRA out performs the standard LoRA with rank 8 and with
average rank of 5 it give performance similar to rank 8 LoRA. The trend is similar to what is observed
with TinyLlama-1.1B.

Method BLEU NIST METEOR ROUGE_L CIDEr
LoRA(Rank8) 0.4695 4.0880 0.3376 0.5584 1.0417
NormAL LoRA (avg rank = 8) 0.5856 7.0506 0.3810 0.6306 1.6385
NormAL LoRA (avg rank = 5) 0.4691 4.4528 0.3384 0.5488 0.9896

Table 13: Mistral-7b model on E2E NLG challenge

K Why use L2 norm?

Prior works like Pruning filters for efficient convnets and Learning both Weights and Connections
for Efficient Neural Networks have shown that gradient norms are a good yard stick for pruning layers.
We show correlation between the gradient norms and the weight norms of a LoRA adaptor to prove that
L2 norm is also a good metric for pruning a layer.

Figure 6: Comparison of Gradient norms and L2 norms across layers on E2E challenge for a single Epoch
on TinyLlama-1.1B.
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