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Abstract

We introduce SPIRE, a speech-augmented lan-
guage model (LM) capable of both translating
and transcribing speech input from English into
10 other languages as well as translating text
input in both language directions. SPIRE in-
tegrates the speech modality into an existing
multilingual LM via speech discretization and
continued pre-training using only 42.5K hours
of speech. In particular, we adopt the pretrain-
ing framework of multilingual LMs and treat
discretized speech input as an additional trans-
lation language. This approach not only equips
the model with speech capabilities, but also pre-
serves its strong text-based performance. We
achieve this using significantly less data than
existing speech LMs, demonstrating that dis-
cretized speech input integration as an addi-
tional language is feasible during LM adapta-
tion. We make our code and models available
to the community.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success on various text-based natural
language processing tasks (Achiam et al., 2023;
Touvron et al., 2023; Yang et al., 2024; Alves et al.,
2024; Martins et al., 2024), motivating research
into extending them to other modalities. This has
led to the development of multimodal LMs ca-
pable of processing speech, audio, images, and
video (Gemini Team et al., 2023; Driess et al., 2023;
Rubenstein et al., 2023; Liu et al., 2023; Tang et al.,
2024; Défossez et al., 2024; Hu et al., 2024; Huang
et al., 2024; Nguyen et al., 2025). However, the
integration of new modalities often comes at the
cost of existing capabilities (Zhai et al., 2024).
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For speech-LLM integration, a simple approach
is to link the output of an automatic speech recog-
nition (ASR) system to a text-only LLM (Huang
et al., 2024). This solution, however, is prone to
error propagation and depends largely on individ-
ual model quality. More popular are solutions that
investigate equipping LLMs natively with speech
processing capabilities through modality projec-
tion (Shu et al., 2023; Radhakrishnan et al., 2023;
Wu et al., 2023a; Tang et al., 2024; Xue et al., 2024;
Hu et al., 2024). Typically, a speech foundation
model generates speech representations that are
mapped to the embedding space of the LLM, fol-
lowing which the model is then fine-tuned along
with a projector on speech-to-text tasks to equip
the LLM with speech processing capabilities. In
this setting, key challenges include prompt overfit-
ting and high training costs, as tuning these multi-
modal LLMs requires the adaptation of the speech
projector module on vast amounts of raw speech
data (Tang et al., 2024; Hu et al., 2024).

An alternative approach for integrating speech
into a text-only LLM is to use speech discretization,
where continuous speech features are transformed
prior to training into sequences of “discrete speech
units” (DSUs), which can be processed similarly to
text (Chou et al., 2023a; Zhang et al., 2023; Ruben-
stein et al., 2023; Chang et al., 2024; Défossez et al.,
2024; Trinh et al., 2024; Maiti et al., 2024; Nguyen
et al., 2025). This approach simplifies training by
eliminating the need for additional parameters be-
yond extended embedding matrices. Finally, while
both projector-based and discretization-based so-
lutions have shown promising results on text-to-
speech and speech-to-text tasks, their development
has prioritized speech-centric tasks at the expense
of textual performance. Furthermore, limited re-
search has focused on integrating speech while pre-
serving the LLM’s original capabilities in textual
tasks (Chou et al., 2023b; Huang et al., 2024).

In this work we present SPIRE, a speech-
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Figure 1: Illustration of the model training approach for SPIREBASE and SPIREFULL.

augmented LLM built from the open-weight multi-
lingual model TOWER (Alves et al., 2024). SPIRE

can perform English ASR and from-English speech
translation (ST) while maintaining TOWER’s strong
performance on machine translation (MT) across
all 10 languages1 supported by TOWER. SPIRE en-
codes speech via HuBERT-based (Hsu et al., 2021)
k-means clustering, as in previous work (Zhang
et al., 2023; Rubenstein et al., 2023; Chang et al.,
2024). We perform training in two stages: Con-
tinued Pre-Training (CPT) and Instruction Tun-
ing (IT). For the CPT stage, we use a mixture of
ASR data and a small fraction of TOWER’s text
CPT data. For IT, we leverage TOWER’s task-
specific MT data, as well as additional English
ASR and ST data. SPIRE is trained using only
42.5K hours of speech, differing from the large
scale of data used by existing models (Radford
et al., 2023; Nguyen et al., 2025; Chu et al., 2024).
Figure 1 illustrates our training process. We make
the following contributions:

• We present a pipeline for integrating speech as
an additional modality into an existing LLM,
enabling it to transcribe and translate English
speech while preserving its original text capa-
bilities across 10 languages;

• We analyze speech integration at two stages,
namely CPT and IT, demonstrating the neces-
sity of both stages to achieve optimal perfor-
mance across both modalities;

• We make our models, datasets, and scripts
available to the community.2

2 Related Work

Speech-to-Text Models An increasing number
of studies have explored integrating speech into

1en, de, fr, nl, it, es, pt, ko, ru, zh
2https://huggingface.co/collections/

utter-project/spire-67d4253d6af8d6a0308527e0

LLMs (Zhang et al., 2023; Rubenstein et al., 2023;
Hassid et al., 2024). For discrete speech input,
Hassid et al. (2024) demonstrate the benefits of ini-
tializing a speech LLM from a text-based LLM.
SpeechGPT (Zhang et al., 2023) applies IT on
speech-to-text ASR, text-to-speech (TTS), and text-
based question answering. AudioPALM (Ruben-
stein et al., 2023) is trained in a multi-task fashion,
similarly to SpeechGPT, but on multilingual input.
Recently, VoxtLM (Maiti et al., 2024) was trained
jointly on DSUs and text data for ASR, TTS, and
open-ended speech/text generation. Our work is
most similar to SpiritLM (Nguyen et al., 2025),
which adapts an LLM with an interleaved mixture
of DSU and text data, which requires an expensive
DSU-to-transcript step to create. In contrast, we
adopt a more cost-effective input representation
that can be extended to any language, regardless of
the availability of a speech aligner. Our focus is on
successfully incorporating speech input while pre-
serving the original competence of the model, so
that the resulting model can successfully perform
both speech-to-text and text-only tasks. None of
the aforementioned models are trained to preserve
the original model’s performance in text tasks.

Adapting LLMs Previous approaches involve
training from scratch with task- and domain-
specific data (Singhal et al., 2023; Lewkowycz
et al., 2022), performing CPT with a diverse
training data mix designed to broadly extend the
model’s knowledge (Wu et al., 2023b), or IT on
use-case-specific data (Chen et al., 2023). Recent
work has explored combining the latter two ap-
proaches (Xu et al., 2024a; Alves et al., 2024; Wei
et al., 2021; Roziere et al., 2023). In our approach
to integrating DSUs into TOWER, we take inspira-
tion from Alves et al. (2024) in adopting a two-step
CPT+IT process. Our work differs in that we fo-
cus on adding the speech modality, whereas Alves
et al. (2024) focused on increasing the multilingual
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capabilities of an LLM.

Continuous and Discrete Speech Represen-
tations Self-supervised speech representation
models produce contextualized high-dimensional
speech vectors directly from raw audio (Hsu et al.,
2021; Baevski et al., 2020; Chen et al., 2022),
largely outperforming statistical speech features on
downstream tasks (Yang et al., 2021). These con-
tinuous representations can be used to derive DSUs
that capture both linguistic content and prosody
through clustering (Borsos et al., 2023; Kharitonov
et al., 2022). DSUs provide better alignment with
textual data, facilitating the transfer of successful
training settings from the text domain (Cui et al.,
2024). Building on Lakhotia et al. (2021), which
demonstrated that HuBERT (Hsu et al., 2021) is
a powerful feature extractor, several studies have
adopted this approach, incorporating a k-means
clustering step for discretization (Zhang et al.,
2023; Rubenstein et al., 2023; Lam et al., 2024;
Chang et al., 2024; Nguyen et al., 2025). Xu et al.
(2024b) study the optimal settings to obtain DSUs
in terms of cluster size and feature extraction layer.
We use their findings to inform our initial choices.

3 SPIRE: A Speech-to-Text LLM

We introduce SPIRE, whose goal is to equip an
LLM with speech capabilities while preserving its
preexisting text capabilities. As our base LLM we
choose TOWER (Alves et al., 2024), which was de-
veloped from Llama-2 (Touvron et al., 2023) with
a two-step approach: CPT on a mixture of monolin-
gual and parallel data (TOWERBASE), followed by
IT on translation-related tasks (TOWERINSTRUCT).
We use an approach similar to TOWER to extend
the model to the speech modality. First, we perform
CPT with a combination of text-only and aligned
speech-to-text datasets, followed by IT using both
text-only general-purpose and task-specific data cu-
rated in TOWERBLOCKS,3 alongside task-specific
speech-to-text datasets.

We choose TOWER in particular due to its com-
petitive performance compared to other open al-
ternatives. TOWER-based models were among the
best participating systems in the WMT24 general
translation task (Kocmi et al., 2024). TOWER’s us-
age of open source data during the CPT phase along
with the release of the TOWERBLOCKS dataset,
used in the IT phase, further motivates our choice.

3
https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2

3.1 Speech Discretization

To easily transfer the training setup of TOWER, we
use DSUs as opposed to an auxiliary speech en-
coder. For all speech datasets that were used, we
follow recent discretization methodology (Zhang
et al., 2023; Rubenstein et al., 2023; Chang et al.,
2024) to produce DSUs by first extracting continu-
ous speech representations for our speech data from
the 22nd layer of an HuBERT-large model, trained
on 60K hours of English speech (Hsu et al., 2021),
and then using k-means clustering (K = 5000)
to produce centroids that are used to convert our
continuous speech representation into a discrete
sequence of cluster IDs.4 We train our k-means
model on a collection of 235K audio files (approx-
imately 720 hours), drawn from three speech cor-
pora: CoVoST-2 (Wang et al., 2021b), VoxPop-
uli (Wang et al., 2021a), and Multilingual Lib-
riSpeech (MLS; Pratap et al., 2020). The CoV-
oST subset consists of 62K audio files from 10,049
speakers, with a maximum of 8 audio files per
speaker. The VoxPopuli subset includes 65K audio
files from 639 speakers, capped at 250 audio files
per speaker. Finally, the MLS subset contains 107K
audio files from 5,490 speakers.

3.2 SPIREBASE

The first CPT stage, yielding SPIREBASE, is
trained from TOWERBASE-7B5 using both text-
only and aligned speech-to-text datasets. Following
previous work, we include a fraction of TOWER’s
original training data to preserve its existing perfor-
mance (Scialom et al., 2022; de Masson D’Autume
et al., 2019).

3.2.1 Data

We use a mixture of monolingual and parallel
text in Chinese (zh), Dutch (nl), English (en),
French (fr), German (de), Italian (it), Korean (ko),
Portuguese (pt), Russian (ru), and Spanish (es), that
was sourced from the TOWER training data, as well
as English ASR data sourced from popular open-
source ASR datasets, as reported in Table 1. Both
speech and text data are downsampled to create a
6B token data mixture (5B speech; 1B text), mea-

4Optimizing the layer selection for feature extraction is a
complex research problem (Pasad et al., 2023; Mousavi et al.,
2024). In this work we follow the insights from Gow-Smith
et al. (2023) and Xu et al. (2024b).

5We used TOWER-7B models instead of the 13B or 70B
versions due to its lower compute requirements.

19660

https://huggingface.co/datasets/Unbabel/TowerBlocks-v0.2


sured by the model tokenizer.6 Note that the 5B
speech tokens include both DSUs (4.4B tokens)
and their text transcriptions (0.6B tokens).

Text Data The monolingual text data split corre-
sponds to data from mC4 (Raffel et al., 2019), a
multilingual web-crawled corpus which we uni-
formly sample from across all languages. The
parallel data split includes uniformly sampled in-
stances to and from English (en↔xx) for the 10
languages, sourced from various public sources.
Further details can be found in Alves et al. (2024).

Speech Data We collect 35K hours of speech
data from SPGI Speech (O’Neill et al., 2021), Gi-
gaSpeech (Chen et al., 2021), MLS, and VoxPopuli.
We normalize as described in Appendix A.1.

3.2.2 CPT Setup
We train SPIREBASE using MegatronLLM (Cano
et al., 2023) on 8 A100-80GB GPUs for 6 days. We
use the same hyperparameters as TOWER, except
for the effective batch size, which in our case is
2304. To incorporate the DSUs in the CPT stage,
we extend the model’s original vocabulary by 5000
types, e.g., <extra_id_x>. This allows us to have
a vocabulary that can encode both text in subword
units and speech in DSUs. For the extended vocab-
ulary, we initialize new embeddings from a mul-
tivariate Gaussian distribution. The mean of this
distribution is set to the average of the original em-
beddings, while the covariance is derived from the
empirical covariance of the original embeddings,
scaled by a factor of 1× 10−5 (Hewitt, 2021).

3.3 SPIREFULL

SPIREFULL is obtained by instruction tuning
SPIREBASE on task-specific text and speech data.

3.3.1 Data
We use a mixture of text and speech instructions
for ASR, MT, and ST. The prompt formats used
during training are shown in Appendix A.2.

Text Data We use TOWERBLOCKS (Alves et al.,
2024), which includes high quality translation bi-
texts between English and the other languages sup-
ported by TOWER. It also includes instructions for
the translation-related tasks of named entity recog-
nition (NER) and automatic post-editing (APE).

6Preliminary experiments on the data mixture led to this
particular choice.

Dataset Task Phase # DSUs # Hours

SPGI Speech ASR CPT 645M 5.1K
Gigaspeech ASR CPT 1.2B 9.9K

MLS ASR CPT 2.4B 19.2K
VoxPopuli ASR CPT 69M 0.5K

CV ASR IT 105M 0.8K
Europarl-ST ST IT 122M 1.0K

FLEURS ST IT 11M 0.09K
CoVoST-2 ST IT 12M 0.09K

SPGI Speech Pseudo-ST IT 350M 2.8K
GigaSpeech Pseudo-ST IT 161M 1.3K

CV Pseudo-ST IT 212M 1.7K

Table 1: Statistics for speech training data. Hours are
approximated from the number of deduplicated DSUs.

ASR Data We use 0.8K hours of ASR data from
CommonVoice 18 (CV; Ardila et al., 2020), down-
sampling as described in Appendix A.1.

ST Data In our IT set, we use 842 hours of
speech across three ST training sets: FLEURS
(all nine language pairs; we filter out examples
whose transcriptions overlap with the FLORES
devtest set), Europarl-ST (Iranzo-Sánchez et al.,
2020) (en � {de, es, fr, it, nl, pt}), and CoVoST-
2 (en→zh). Since this amounts to far less data
for ST than ASR, and since en→{ko, ru} have
only examples from the tiny FLEURS set, we aug-
ment our speech collection with pseudo-labeled
data, which has been effective for other ST sys-
tems (Barrault et al., 2023). We select 300k ASR
examples each from CV, SPGI, and GigaSpeech
and translate them to all nine target languages
using TowerInstruct-13B.7 We then filter exam-
ples whose transcript-translation combination has
a COMET-QE8 (Rei et al., 2022b) score under 85.
Finally, for each language pair, we sample 60K
examples to be used in direct ST prompts and an-
other 60K to be used in multi-turn prompts. This
results in 180K direct ST prompts and 180K multi-
turn prompts for each language pair.9 The prompt
formats are shown in Appendix A.2.

3.3.2 IT Training Setup
We use the chatml template (OpenAI, 2023) to
format our instructions in dialogue form. We
train models using Axolotl10 on 4 H100-80GB
GPUs for 2.7 days. We use a learning rate of

7
https://huggingface.co/Unbabel/TowerInstruct-13B-v0.1

8
https://huggingface.co/Unbabel/wmt22-cometkiwi-da

9Due to our aggressive filtering, we were left with slightly
fewer examples for en � zh.

10
https://github.com/axolotl-ai-cloud/axolotl
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7 × 10−6 and a cosine scheduler with 100 warm-
up steps. We train for 4 epochs with an effective
batch size of 576 and a weight decay of 0.01. We
impose a maximum sequence length of 4096 and
use the AdamW optimizer (Loshchilov and Hutter,
2019). Other hyperparameters are derived from
TOWERINSTRUCT (Alves et al., 2024).

4 Experiments

We evaluate our models across three tasks: ASR,
MT, and ST. First, we present our results for
ASR (§4.1), confirming the new capabilities SPIRE

has in the speech domain. We then present MT
results (§4.2), demonstrating that the speech per-
formance does not come at the expense of the orig-
inal model’s MT performance. Finally, we present
results for ST (§4.3) to investigate model perfor-
mance on a task that requires both ASR and MT
capabilities.

Evaluation Setup Across models and tasks, we
perform inference with greedy decoding with a
maximum of 256 generated tokens. For the TOWER

and SPIRE models, we decode with vllm (Kwon
et al., 2023). However, since vllm does not sup-
port all of our baselines, we use alternative li-
braries (transformers; Wolf et al., 2019) where
necessary. Unless specified otherwise, we use zero-
shot prompts for all models and tasks.

4.1 ASR
Datasets and Metrics We evaluate ASR perfor-
mance across multiple test sets, in order to cover
a variety of recording styles: LibriSpeech (LS)
test-clean and test-other (Panayotov et al., 2015),
FLEURS (Conneau et al., 2023), and VoxPopuli.11

We report the Word Error Rate (WER) between
the hypotheses and gold transcripts, after Whisper
normalization (Radford et al., 2023).

Baselines We include the following models:

• Whisper (Radford et al., 2023) is an encoder-
decoder transformer trained on over 5 million
hours of labeled data that performs multilin-
gual ASR and to-English ST. We report re-
sults for Whisper-base (74M parameters) and
Whisper-large-v3 (1.5B parameters).

• SeamlessM4T (Barrault et al., 2023) is an
encoder-decoder transformer trained on 406K

11For CPT models, LS is an in-domain evaluation because
its training set is part of MLS.

LibriSpeech FLEURS VoxPopuliClean Other

Whisper-base 5.0 11.9 12.1 9.8
Whisper-large-v3 1.8 3.7 5.8 9.2
SeamlessM4T 2.6 4.9 8.1 7.5
SALMONN 2.4 5.3 9.3 8.9
Qwen2-Audio 1.6 3.9 6.6 6.5
SpiritLM 6.0* 11.0* - -
HuBERT-large+CTC 4.3 7.6 11.4 14.7

Our models
SPIREBASE 28.9 56.3 11.0 13.7
SPIREFULL 4.2 7.1 10.7 15.8
*We were unable to reproduce SpiritLM’s ASR performance; therefore, we

report their self-reported LS results using ten-shot prompts.

Table 2: WER on various ASR test sets.

hours of speech that performs ASR, ST and
MT across 100 languages. We report results
for SeamlessM4T-large-v2 (2.3B parameters).

• SALMONN (Tang et al., 2024) integrates a
pre-trained text LLM with separate speech
and audio encoders into a single multi-
modal model.12 SALMONN uses a LoRA
adapter (Hu et al., 2022) to align the spaces.

• Qwen2-Audio (Chu et al., 2024) integrates
audio into Qwen-7B (Bai et al., 2023) us-
ing a specialized encoder that is initialized
from Whisper large-v3. The resulting model
is pretrained on ∼520K hours of data span-
ning speech, sound, and music.

• SpiritLM (Nguyen et al., 2025) is a decoder-
only model, trained from Llama-2 on 307B to-
kens of text, 458K hours of unlabeled speech,
and 111K hours of labeled speech. As in
SPIRE, it uses HuBERT DSUs.

• HuBERT-large+CTC is a CTC-based ASR
model trained using the same speech repre-
sentation model we use for DSU generation,
and using the same ASR data from the IT
stage (Section 3.3.1).13 Unlike SPIRE, this
model has access to a very powerful speech
representation backbone. However, it lacks
strong language modeling capabilities.

Results Our results are presented in Table 2.
SPIREFULL’s performance demonstrates that per-
forming both the CPT and IT stages is an effective
strategy to give speech capabilities to a text LLM.

12SALMONN uses 4400 hours of speech/audio data in the
IT phase but does not specify the large amount of pre-training
ASR and audio captioning data used.

13The hyperparameters are described in Appendix B.
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en→xx xx→en
C22 spB C22 spB

SeamlessM4T 87.22 39.0 87.42 39.9
TOWERBASE-7B 87.38 37.8 88.02 41.7
TOWERINSTRUCT-7B 88.45 38.8 88.27 42.0

Our models
SPIREBASE 87.41 37.4 87.97 41.4
SPIREFULL 88.54 39.3 88.21 41.8

Table 3: COMET-22 (C22) and spBLEU (spB) on the
FLORES devtest set between English and the other
languages supported by TOWER And SPIRE.

On the other hand, SPIREBASE does not consis-
tently show reasonable speech performance; how-
ever, on FLEURS and VoxPopuli we obtain some-
what strong results in the zero-shot settings, which
is surprising given that non-instruction-tuned mod-
els often struggle to work out-of-domain without
in-context learning examples.14

Although SPIREFULL does not match the
performance of SeamlessM4T, Whisper-large-v3,
SALMONN, or Qwen2-Audio, these were trained
on far more speech data than our models (around
10x for Qwen2-Audio and SeamlessM4T). Given
this training data gap, it is notable that SPIRE-
FULL does outperform Whisper-base on LS and
FLEURS, and SpiritLM on all benchmarks Spir-
itLM reports, at a fraction of the speech data.

SPIREFULL also outperforms the HuBERT-
large+CTC baseline on three out of four datasets.
This is an impressive result given that the CTC
model has access to continuous features, which
SPIREFULL lacks. We believe this demonstrates
that our compressed discrete representations cap-
ture the speech signal well enough to support
speech-to-text tasks.

4.2 MT

Having demonstrated that our training approach
works well to initially equip TOWER with speech
processing capabilities, we now turn to MT to inves-
tigate whether SPIRE can maintain TOWER’s strong
performance on MT despite its speech-centric CPT.

Datasets and Metrics We evaluate on two
datasets for MT: FLORES-200 (Team et al., 2024),
which covers SPIRE’s languages, and the WMT23

14We also tried prompting SPIREBASE with few-shot exam-
ples, but the results were much worse, possibly because the
length of the DSU sequences led to in-context examples that
were too long for the model to handle effectively.

APE NER
en→xx xx→en Multilingual

TOWERINSTRUCT-7B 83.08 80.29 71.56
SPIREFULL 83.13 80.08 67.10

Table 4: Results on APE (COMET) and NER (seq. F1).

test set (Kocmi et al., 2023), which covers en↔{de,
ru, zh}. We report COMET-22 (COMET; Rei
et al., 2022a) and spBLEU15 (Papineni et al., 2002)
scores via the SacreBLEU toolkit (Post, 2018).

Baselines We compare the SPIRE models to
the text-to-text translation performance of Seam-
lessM4T. Additionally, we report the performance
of TOWERBASE-7B and TOWERINSTRUCT-7B.

Results Our results show that even after the
speech-centric CPT and mixed speech and text IT
stage, the SPIRE models retain the original text-
only performance of TOWER on both FLORES
(Table 3) and WMT23 (Table 5). This indicates
that neither CPT nor IT on speech data negatively
impacts the model’s ability to perform MT. This
is true for both SPIREBASE, which achieves per-
formance comparable to TOWERBASE; and for IT
models, where SPIREFULL slightly surpasses the
performance of TOWERINSTRUCT on en→xx. Ta-
ble 6 shows that between TOWERINSTRUCT and
SPIREFULL, neither model consistently shows a
significant improvement over the other. SPIRE-
FULL also outperforms SeamlessM4T by both met-
rics on all WMT23 language pairs, and for both
en→xx and xx→en on FLORES.

Translation-related Tasks We follow the eval-
uation set-up from TOWER (Alves et al., 2024) to
additionally evaluate SPIRE on translation-related
tasks. In Table 4 we report our results on APE
for en↔{de, ru, zh} and NER for {de, en, es,
fr, it, pt, zh}. SPIRE performs similarly to
TOWERINSTRUCT across both tasks and all lan-
guage directions, maintaining the original text-only
capabilities even after training on speech data.

4.3 ST

As SPIRE has shown success at both ASR and MT,
we now investigate its performance on ST.

Datasets For ST, we evaluate our models on
FLEURS (Conneau et al., 2023), covering ST be-

15nrefs:1|case:mixed|eff:no|tok:flores200|
smooth:exp|version:2.5.1
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en→de en→ru en→zh de→en ru→en zh→en
C22 spB C22 spB C22 spB C22 spB C22 spB C22 spB

SeamlessM4T 77.76 27.8 83.22 34.2 80.14 29.7 78.69 26.6 80.58 32.5 76.96 23.8
TOWERBASE-7B 79.96 36.1 83.08 34.2 83.49 33.3 83.56 41.1 80.06 32.7 78.48 23.5
TOWERINSTRUCT-7B 82.34 38.8 84.66 34.9 85.09 35.3 84.95 45.1 82.94 36.7 80.14 26.1

Our models
SPIREBASE 79.88 34.7 83.04 33.7 83.85 32.4 83.19 40.5 80.20 32.4 78.65 23.1
SPIREFULL 82.50 39.5 84.60 34.9 85.37 37.3 85.24 45.2 82.58 36.4 79.92 26.3

Table 5: COMET-22 (C22) and spBLEU (spB) on the WMT23 test set.

Corpus Metric TI Better SF Better NS

FLORES spBLEU 3 4 11
COMET 1 1 16

WMT23 spBLEU 0 2 4
COMET 2 2 2

Table 6: Counts of language pairs in which
TOWERINSTRUCT significantly outperforms SPIRE-
FULL (TI Better), SPIREFULL significantly outperforms
TOWERINSTRUCT (SF Better), or differences are not
significant (NS). Significance is reported at the p < 0.5
level. We used the paired bootstrap method for spBLEU.

tween all en→xx pairs, and CoVoST-2 (Wang et al.,
2021b) for en→{de, zh}.

ST approaches As well as direct ST, we report
self-cascades, in which each model transcribes the
audio before translating its own output to the target
language (i.e., ASR followed by MT).

Baselines We compare SPIRE to SeamlessM4T
in both direct and cascaded settings. We also re-
port the results of SALMONN and Qwen2-Audio,
which are both 7B parameter models, like SPIRE.
However, SALMONN and Qwen2-Audio do not
support text-to-text translation, so we use them
only for direct ST.16 There are also coverage dif-
ferences between the models: while SeamlessM4T
can handle all of SPIRE’s language pairs, neither
SALMONN nor Qwen2-Audio supports en→ko;
SALMONN also does not support en→ru.

Results Our FLEURS spBLEU ST results are
reported in Table 8. For brevity, COMET-22 scores
are reported in Appendix C. SeamlessM4T per-
forms best at direct ST for all language pairs ex-
cept en→zh. Among the 7B parameter models,

16Although Whisper is frequently used for ST, we exclude
it because it only supports to-English translation, whereas
SPIRE is a from-English ST model. Therefore ST comparisons
between the two models are impossible.

en→de en→zh
C22 spB C22 spB

Self-cascade
SeamlessM4T 72.40 21.7 72.32 17.0
SPIREFULL 78.05 31.8 79.50 28.1

Direct
SALMONN 74.98 22.7 80.92 27.8
Qwen2-Audio 82.29 34.5 85.27 38.7
SeamlessM4T 85.95 42.3 83.62 31.3
SPIREFULL 73.96 25.4 74.53 21.0

Table 7: ST results on CoVoST-2.

SPIREFULL is the best direct model on average,
notably beating SALMONN on all language pairs
except en→zh. It also outperforms Qwen2-Audio
on 6 out of 8 language pairs that Qwen2-Audio
supports, and ties or beats it for all except en→zh
and en→de.

Performance on CoVoST-2 (Table 7) tells a
different story. Although SPIREFULL maintains
its advantage over SeamlessM4T in self-cascaded
translation, it attains the worst performance on
en→zh, while performing similarly to SALMONN
for en→de. This shows that the direct ST perfor-
mance of SPIREFULL is dataset-dependent, which
could be a consequence of its relatively small train-
ing data.

SPIREFULL achieves the best self-cascaded per-
formance by a significant margin for both datasets,
outperforming SeamlessM4T by a large margin
in this setting. This demonstrates that SPIREFULL

maintains greater robustness to its own outputs than
SeamlessM4T, supporting the insight that LLM-
based translation models can be very robust to per-
turbations (Peters and Martins, 2025).

5 Analysis

The key innovation of our approach is the applica-
tion of the CPT followed by IT paradigm to dis-
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de es fr it ko nl pt ru zh avg7 avgall

Self-Cascade
SeamlessM4T 24.2 21.5 37.7 18.9 12.5 16.9 28.2 27.1 14.6 23.1 22.4
SPIREFULL 38.1 29.4 45.3 31.2 23.1 31.2 42.9 33.5 29.0 35.3 33.7

Direct
SeamlessM4T 39.2 28.0 48.1 30.6 21.5 30.8 47.5 34.3 23.2 35.3 33.7
SALMONN 25.5 20.8 34.3 16.7 0.1 20.5 32.6 3.1 21.9 24.6 19.5
Qwen2-Audio 31.8 23.5 31.3 23.5 5.4 22.3 36.1 23.7 24.7 27.6 24.7
SPIREFULL 31.1 23.5 37.9 25.5 15.4 25.7 37.3 26.9 21.0 28.9 27.1

Table 8: FLEURS ST ex→xx results with self-cascade and direct models in terms of spBLEU. The avg7 column
averages over the 7 language pairs that all models in the table support (excluding en→{ko, ru}).

Model Base Model
CPT IT

Speech Text Speech Pseudo Text

TOWERFULL TowerBase-7B ✗ ✗ ✓ ✓ ✓

SPIREBASE SpireBase ✓ ✓ ✗ ✗ ✗

SPIREFULL SpireBase ✓ ✓ ✓ ✓ ✓

SPIRE Variants
SPIRENOBLOCKS SpireBase ✓ ✓ ✓ ✓ ✗

SPIRENOPSEUDO SpireBase ✓ ✓ ✓ ✗ ✓

Table 9: Ablations of our models. The CPT and IT
columns indicate which data was seen during training.

cretized speech allowing us to build upon existing
text-only capabilities of our base model. Here, we
analyze how the composition of these two training
phases contributes overall to model performance
across all tasks previously evaluated. To that end,
we consider several variants of SPIREBASE and
SPIREFULL which are described in Table 9 and
whose results are reported in Table 10.

• i) No CPT was performed and IT was
performed with the entire IT data mix
(TOWERFULL);

• ii) CPT was performed and no data
from TOWERBLOCKS was seen during IT
(SPIRENOBLOCKS), and

• iii) CPT was performed and pseudo-labeled
ST data and FLEURS were omitted from the
IT data mix (SPIRENOPSEUDO).

We report additional datasets in Appendix D.

Effectiveness of CPT and IT Our previous re-
sults demonstrated that using both CPT and IT
was the most effective strategy. The performance
gap between SPIREFULL and the TOWERFULL on
ASR (5.3 points in LS test-clean) further shows
that IT alone is also not as effective. However, for
ST we observe that performing only IT leads to a
strong model that is capable of performing speech

ASR MT ST

en→xx xx→en en→xx

WER C22 spB C22 spB C22 spB

SPIREFULL 4.2 88.54 39.3 88.21 41.8 81.33 27.1
TOWERFULL 9.5 88.57 39.4 88.17 41.7 79.10 26.1
SPIRENOBLOCKS 4.1 82.98 34.2 85.93 36.1 81.11 27.1
SPIRENOPSEUDO 3.9 88.40 38.9 88.22 42.0 62.80 27.1

Table 10: Ablation models and SPIREFULL on LS Clean
for ASR, FLORES devtest for MT, and Fleurs for ST
reporting WER, COMET-22 (C22), and spBLEU (spB).

translation. This contrasts from SPIREBASE, for
which we also attempted direct ST but the model
failed to produce output in the target language, even
when given few-shot prompts. Despite the impres-
sive results from TOWERFULL, we still observe
the best performance by SPIREFULL showing that
while the effect of CPT is not as drastic as in the
case of ASR, we still observe gains with a speech-
centric CPT phase.

Modality Interplay Our results show that text
and speech modalities are orthogonal to each
other. Specifically, the performances of TOWER-
FULL and SPIREFULL show that speech-centric
CPT does not degrade the text performance of
the base model. However, MT quality suffers
when TOWERBLOCKS is removed from the IT
data, as is shown by SPIRENOBLOCKS’s much
weaker performance than SPIREFULL. Simul-
taneously, SPIREFULL performs on par with
SPIRENOBLOCKS on both ASR and ST, indicat-
ing that adding text instructions also does not de-
grade performance on speech tasks. It is worth
highlighting that a model strong at both MT and
ASR (SPIRENOPSEUDO) does not lead to a strong
ST model, showing surprisingly that competence
at MT is not very helpful for direct ST.
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6 Conclusion

In this work we presented SPIRE, a simple and ef-
fective recipe for adapting a text-based, translation-
specialist LLM to the speech modality while pre-
serving the original performance on text-based
tasks. We investigated the impact of speech in-
tegration on two stages of LLM adaptation, CPT
and IT, finding that both contribute to the final
model’s performance on speech tasks. Our results
demonstrate that we are able to successfully inte-
grate a new modality without compromising the
original model’s capabilities. SPIRE achieves com-
petitive performance on ASR, while its MT abili-
ties remain on par with the original TOWER model.
Finally, for the ST task, we find that the leverag-
ing ASR and MT data does not directly transfer to
ST performance. Nonetheless, the model achieves
promising performance with both direct and self-
cascaded ST. To benefit the community, we only
used publicly available and licensed data to train
our models, making our results reproducible. As
future work, we intend to extend this recipe to mul-
tilingual settings by replacing our English HuBERT
speech component by the multilingual mHuBERT-
147 (Boito et al., 2024).

Limitations

The downstream tasks we evaluate on are re-
stricted to MT and ASR/ST, which provides an
idea of the model performance but do not give
us the full picture. We plan to address this by
utilizing the LM-harness evaluation (Gao et al.,
2024) to evaluate on a suite of text-based bench-
marks such as MMLU (multitask language under-
standing) (Hendrycks et al., 2021a,b), Arc (com-
monsense reasoning) (Clark et al., 2018), Bele-
bele (reading comprehension) (Bandarkar et al.,
2024), and HellaSwag (sentence completion)
(Zellers et al., 2019). Lastly, our model handles
speech and text on the input side but is currently
limited to generating only text.

Acknowledgments

This work was supported by EU’s Horizon
Europe Research and Innovation Actions (UT-
TER, contract 101070631), by UK Research
and Innovation (UKRI) under the UK govern-
ment’s Horizon Europe funding guarantee (grant
number 10039436: UTTER), by the project
DECOLLAGE (ERC-2022-CoG 101088763),
by the Portuguese Recovery and Resilience

Plan through project C645008882-00000055
(Center for Responsible AI), by Fundação
para a Ciência e Tecnologia (FCT) through
the project with reference UIDB/50021/2020
(DOI:10.54499/UIDB/50021/2020), and by
FCT/MECI through national funds and when
applicable co-funded EU funds under UID/50008:
Instituto de Telecomunicações. This work was per-
formed using HPC resources from GENCI–IDRIS
(Grant 2023-AD011014668R1). We thank Duarte
Alves and Giuseppe Attanasio for their insightful
comments.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Duarte Miguel Alves, José Pombal, Nuno M Guerreiro,
Pedro Henrique Martins, João Alves, Amin Farajian,
Ben Peters, Ricardo Rei, Patrick Fernandes, Sweta
Agrawal, Pierre Colombo, José G. C. de Souza, and
Andre Martins. 2024. Tower: An open multilingual
large language model for translation-related tasks. In
First Conference on Language Modeling.

Rosana Ardila, Megan Branson, Kelly Davis, Michael
Kohler, Josh Meyer, Michael Henretty, Reuben
Morais, Lindsay Saunders, Francis Tyers, and Gre-
gor Weber. 2020. Common voice: A massively-Â-
multilingual speech corpus. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 4218–4222, Marseille, France. European
Language Resources Association.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Advances in neural information processing systems,
33:12449–12460.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. Preprint, arXiv:2309.16609.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and

19666

https://openreview.net/forum?id=EHPns3hVkj
https://openreview.net/forum?id=EHPns3hVkj
https://www.aclweb.org/anthology/2020.lrec-1.520
https://www.aclweb.org/anthology/2020.lrec-1.520
https://arxiv.org/abs/2309.16609


Madian Khabsa. 2024. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 749–775,
Bangkok, Thailand. Association for Computational
Linguistics.

Loïc Barrault, Yu-An Chung, Mariano Cora Meglioli,
David Dale, Ning Dong, Paul-Ambroise Duquenne,
Hady Elsahar, Hongyu Gong, Kevin Heffernan, John
Hoffman, et al. 2023. Seamlessm4t-massively mul-
tilingual & multimodal machine translation. arXiv
preprint arXiv:2308.11596.

Marcely Zanon Boito, Vivek Iyer, Nikolaos Lagos,
Laurent Besacier, and Ioan Calapodescu. 2024.
mHuBERT-147: A Compact Multilingual HuBERT
Model. In Interspeech 2024.

Zalán Borsos, Raphaël Marinier, Damien Vincent,
Eugene Kharitonov, Olivier Pietquin, Matt Shar-
ifi, Dominik Roblek, Olivier Teboul, David Grang-
ier, Marco Tagliasacchi, et al. 2023. Audiolm: a
language modeling approach to audio generation.
IEEE/ACM transactions on audio, speech, and lan-
guage processing, 31:2523–2533.

Alejandro Hernández Cano, Matteo Pagliardini, An-
dreas Köpf, Kyle Matoba, Amirkeivan Mohtashami,
Xingyao Wang, Olivia Simin Fan, Axel Marmet,
Deniz Bayazit, Igor Krawczuk, Zeming Chen,
Francesco Salvi, Antoine Bosselut, and Martin Jaggi.
2023. epfllm megatron-llm.

Xuankai Chang, Brian Yan, Kwanghee Choi, Jee-Weon
Jung, Yichen Lu, Soumi Maiti, Roshan Sharma, Jia-
tong Shi, Jinchuan Tian, Shinji Watanabe, et al. 2024.
Exploring speech recognition, translation, and under-
standing with discrete speech units: A comparative
study. In ICASSP 2024-2024 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 11481–11485. IEEE.

Guoguo Chen, Shuzhou Chai, Guan-Bo Wang, Jiayu
Du, Wei-Qiang Zhang, Chao Weng, Dan Su, Daniel
Povey, Jan Trmal, Junbo Zhang, Mingjie Jin, Sanjeev
Khudanpur, Shinji Watanabe, Shuaijiang Zhao, Wei
Zou, Xiangang Li, Xuchen Yao, Yongqing Wang,
Zhao You, and Zhiyong Yan. 2021. GigaSpeech: An
Evolving, Multi-Domain ASR Corpus with 10,000
Hours of Transcribed Audio. In Proc. Interspeech
2021, pages 3670–3674.

Sanyuan Chen, Chengyi Wang, Zhengyang Chen,
Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki
Kanda, Takuya Yoshioka, and Xiong Xiao. 2022.
Wavlm: Large-scale self-supervised pre-training for
full stack speech processing. IEEE Journal of Se-
lected Topics in Signal Processing, 16(6):1505–1518.

Zeming Chen, Alejandro Hernández Cano, Angelika
Romanou, Antoine Bonnet, Kyle Matoba, Francesco
Salvi, Matteo Pagliardini, Simin Fan, Andreas Köpf,
Amirkeivan Mohtashami, et al. 2023. Meditron-70b:

Scaling medical pretraining for large language mod-
els. arXiv preprint arXiv:2311.16079.

Ju-Chieh Chou, Chung-Ming Chien, Wei-Ning Hsu,
Karen Livescu, Arun Babu, Alexis Conneau, Alexei
Baevski, and Michael Auli. 2023a. Toward joint
language modeling for speech units and text. arXiv
preprint arXiv:2310.08715.

Ju-Chieh Chou, Chung-Ming Chien, Wei-Ning Hsu,
Karen Livescu, Arun Babu, Alexis Conneau, Alexei
Baevski, and Michael Auli. 2023b. Toward joint
language modeling for speech units and text. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 6582–6593, Singapore.
Association for Computational Linguistics.

Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei,
Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng
He, Junyang Lin, Chang Zhou, and Jingren Zhou.
2024. Qwen2-audio technical report. arXiv preprint
arXiv:2407.10759.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Alexis Conneau, Min Ma, Simran Khanuja, Yu Zhang,
Vera Axelrod, Siddharth Dalmia, Jason Riesa, Clara
Rivera, and Ankur Bapna. 2023. Fleurs: Few-shot
learning evaluation of universal representations of
speech. In 2022 IEEE Spoken Language Technology
Workshop (SLT), pages 798–805. IEEE.

Wenqian Cui, Dianzhi Yu, Xiaoqi Jiao, Ziqiao Meng,
Guangyan Zhang, Qichao Wang, Yiwen Guo, and Ir-
win King. 2024. Recent advances in speech language
models: A survey. arXiv preprint arXiv:2410.03751.

Cyprien de Masson D’Autume, Sebastian Ruder, Ling-
peng Kong, and Dani Yogatama. 2019. Episodic
memory in lifelong language learning. Advances in
Neural Information Processing Systems, 32.

Alexandre Défossez, Laurent Mazaré, Manu Orsini,
Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard
Grave, and Neil Zeghidour. 2024. Moshi: a speech-
text foundation model for real-time dialogue. arXiv
preprint arXiv:2410.00037.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.
2023. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

19667

https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://aclanthology.org/2024.acl-long.44
https://github.com/epfLLM/Megatron-LLM
https://doi.org/10.21437/Interspeech.2021-1965
https://doi.org/10.21437/Interspeech.2021-1965
https://doi.org/10.21437/Interspeech.2021-1965
https://doi.org/10.18653/v1/2023.findings-emnlp.438
https://doi.org/10.18653/v1/2023.findings-emnlp.438
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602


Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Edward Gow-Smith, Alexandre Berard, Marcely
Zanon Boito, and Ioan Calapodescu. 2023. NAVER
LABS Europe’s multilingual speech translation sys-
tems for the IWSLT 2023 low-resource track. In
Proceedings of the 20th International Conference on
Spoken Language Translation (IWSLT 2023), pages
144–158, Toronto, Canada (in-person and online).
Association for Computational Linguistics.

Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai Gat,
Alexis Conneau, Felix Kreuk, Jade Copet, Alexan-
dre Defossez, Gabriel Synnaeve, Emmanuel Dupoux,
et al. 2024. Textually pretrained speech language
models. Advances in Neural Information Processing
Systems, 36.

Dan Hendrycks, Collin Burns, Steven Basart, Andrew
Critch, Jerry Li, Dawn Song, and Jacob Steinhardt.
2021a. Aligning ai with shared human values. Pro-
ceedings of the International Conference on Learning
Representations (ICLR).

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021b. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

John Hewitt. 2021. Initializing new word
embeddings for pretrained language mod-
els. https:/nlp.stanford.edu/ johnhew//vocab-
expansion.html.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. IEEE/ACM transactions on audio,
speech, and language processing, 29:3451–3460.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2022. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Shujie Hu, Long Zhou, Shujie Liu, Sanyuan Chen, Ling-
wei Meng, Hongkun Hao, Jing Pan, Xunying Liu,
Jinyu Li, Sunit Sivasankaran, et al. 2024. Wavllm:
Towards robust and adaptive speech large language
model. arXiv preprint arXiv:2404.00656.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-
tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,
Zhiqing Hong, Jiawei Huang, Jinglin Liu, et al. 2024.
Audiogpt: Understanding and generating speech, mu-
sic, sound, and talking head. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 23802–23804.

Javier Iranzo-Sánchez, Joan Albert Silvestre-Cerda,
Javier Jorge, Nahuel Roselló, Adria Giménez, Al-
bert Sanchis, Jorge Civera, and Alfons Juan. 2020.
Europarl-st: A multilingual corpus for speech transla-
tion of parliamentary debates. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pages 8229–8233.
IEEE.

Eugene Kharitonov, Ann Lee, Adam Polyak, Yossi
Adi, Jade Copet, Kushal Lakhotia, Tu Anh Nguyen,
Morgane Riviere, Abdelrahman Mohamed, Em-
manuel Dupoux, and Wei-Ning Hsu. 2022. Text-free
prosody-aware generative spoken language modeling.
In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 8666–8681, Dublin, Ireland.
Association for Computational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
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A Data

A.1 Speech Data Preprocessing

Normalization In order to make transcripts con-
sistent across the different datasets, the following
normalization is applied:

• GigaSpeech (CPT): we lower-case
the text and replace punctuation tags:
<COMMA>, <PERIOD>, QUESTIONMARK>,
<EXCLAMATIONPOINT> with their appropriate
punctuation.

• MLS (CPT): we apply a tail-end normaliza-
tion step here which uniformly samples each
speaker to have at maximum 13 transcriptions.
This allows us to have a better distribution of
speakers.

• CV (IT): we subsampled from CommonVoice
to ensure a minimum duration of 3 seconds
per sample. To enhance transcript diversity,
we limit each transcript to 4 unique speakers.

Deduplication As in previous work (Zhang et al.,
2023; Rubenstein et al., 2023; Chang et al., 2024),
we merge consecutive repeated DSU tokens into a
single token to reduce sequence length.

A.2 Prompt Format

Table 11 show the prompts used during both train-
ing stages.

ASR (CPT)

Speech:<extra_id_i>· · · <extra_id_j>
English: {TRANSCRIPT}

MT (CPT)

Source_lang: Source-sentence
Target_lang: {TRANSLATION}

ASR (IT)

Speech: <extra_id_i>· · · <extra_id_j>
English: {TRANSCRIPT}

Direct ST (IT)

Speech: <extra_id_i>· · · <extra_id_j>
TARGET_LANG: {TRANSLATION}

Multi-turn ST (IT)

Speech: <extra_id_i>· · · <extra_id_j>
English:{TRANSCRIPT}
TARGET_LANG: {TRANSLATION}

Table 11: Prompt formats for CPT and IT.

B CTC-based ASR model

We train a CTC-based ASR model using the Hug-
gingFace transformers library (Wolf et al., 2019),
leveraging the ASR data from the IT stage (CV, Ta-
ble 1) as training data after whisper normalization.
Our ASR model is made of the HuBERT-Large17

speech representation model, followed by three hid-
den layers and a vocabulary projection layer. We
train for 50 epochs with a dropout of 0.3 and a
learning rate of 1e-4 with a warm-up ratio of 0.15.
We perform step-based best checkpoint selection
based on CER scores. Our best checkpoint was
obtained at step 220K (at epoch 12.8).

C ST results

Table 12 report results of ST on FLEURS across
baseline models and SPIREFULL. We report
COMET-22. We observe the same trend in scores
as reported by spBLEU where in SPIREFULL ob-
tains the best self-cascaded performance while beat-
ing Qwen2-Audio and SALMONN on direct ST
across most language pairs. SeamlessM4T obtains
the overall best performance in direct ST.

D Ablation results

Table 13 reports results from all remaining evalua-
tion datasets across ASR, MT, and ST. We report
the same metrics as in Section 4. Here as well, we
note that in MT, the inclusion of speech data did
not degrade text-only performance (SPIREFULL

vs. TOWERFULL). Similarly, the inclusion of task-
specific text data also did not harm performance on
ASR (SPIRENOBLOCKS vs. SPIREFULL). Lastly,
SPIREFULL has the best performing direct ST sys-
tem, further showing that individual task compe-
tencies (in MT and ASR) do not contribute directly
to a compositional task (ST) but rather the inclu-
sion of task-specific data leads to the highest gains
(SPIRENOPSEUDO vs SPIREFULL).

17
https://huggingface.co/facebook/hubert-large-ll60k
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de es fr it ko nl pt ru zh avg7 avgall

Self-Cascade
SeamlessM4T 72.69 76.97 78.06 76.03 75.33 72.58 78.25 79.38 69.76 74.91 75.45
SPIREFULL 84.26 83.32 84.70 85.16 86.89 84.91 86.01 86.45 85.21 84.80 85.21

Direct
SeamlessM4T 84.79 83.20 85.32 85.03 85.17 85.17 86.75 86.31 79.90 84.31 84.63
SALMONN 77.41 77.99 79.95 74.47 61.07 77.18 80.94 53.05 81.63 78.51 73.74
Qwen2-Audio 79.82 80.43 79.44 81.28 69.33 78.75 83.41 77.90 80.71 80.55 79.01
SPIREFULL 80.16 79.82 80.68 81.63 82.62 81.93 83.18 82.19 79.76 81.02 81.33

Table 12: FLEURS ST ex→xx results with self-cascade and direct models in terms of COMET-22. avg7 covers the
7 language pairs that all models in the table support (excluding en→{ko, ru}).

ASR MT ST

WER C22 spB C22 spB C22 spB

LS Other Fleurs VoxPopuli en→xx xx→en en→xx
SPIREFULL 7.1 10.7 15.8 84.16 37.2 82.58 41.8 81.33 27.1
TOWERFULL 13.8 14.3 40.7 84.19 36.9 82.25 35.6 71.52 20.1
SPIRENOBLOCKS 7.4 10.4 15.8 73.12 26.9 74.78 25.1 74.02 23.2
SPIRENOPSEUDO 7.3 11.1 14.3 83.93 36.9 82.50 35.9 59.88 6.8

Table 13: Ablation models and SPIREFULL on LS Other, Fleur, VoxPopuli for ASR, WMT23 for MT, and CoVoST-2
for ST reporting WER, COMET-22 (C22), and spBLEU (spB).
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