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Abstract

Recent advances in large language model
(LLM) fine-tuning have shown that training
data augmented with high-quality reasoning
traces can remarkably improve downstream per-
formance. However, existing approaches usu-
ally rely on expensive manual annotations or
auxiliary models, and fail to address the unique
constraints of smaller “weak” LLMs. To bridge
these gaps, we introduce Weak2Wise, a fully
automated, lightweight framework for synthe-
sizing high-quality, weak-LLM-friendly rea-
soning traces. Starting from a QA dataset,
Weak2Wise filters out the samples that can al-
ready be correctly answered by the weak LLM,
gathers diverse candidate reasoning traces
from multiple strong LLMs, and leverages our
Step-Mask scoring to rank and truncate the
most guidance-effective traces. These reason-
ing traces are then used for fine-tuning, yielding
substantial improvements in the weak LLM’s
reasoning abilities. The name Weak2Wise has
two meanings: using a “weak” LLM to se-
lect the "wisest" reasoning traces generated
by stronger LLMs, and fine-tuning the same
weak LLM on these reasoning traces to be-
come “wiser”. We further use Weak2Wise to
build GR-1K, a 1,000-sample math and sci-
ence QA-reasoning dataset optimized for weak
LLMs, and fine-tune Qwen2.5-7B on it to cre-
ate GR-7B, which achieves superior perfor-
mance on AIME2024, MATH-500, and GPQA
Diamond benchmarks. Our codes are publicly
released to facilitate further research1.

1 Introduction

The quality of training data plays a critical role in
the fine-tuning of large language models (LLMs).
During the fine-tuning stage, the inclusion of rea-
soning traces in the training data leads to no-
table improvements in the reasoning capabilities
of LLMs (Hsieh et al., 2023; Shridhar et al., 2023;

*Corresponding Authors
1https://github.com/Lingo30/Weak2Wise

Figure 1: An example illustrates how Weak2Wise is
used to synthesize reasoning traces for weak LLMs.
Given a question and its answer, different strong LLMs
generate various candidate reasoning traces. The key is-
sue is to identify the reasoning trace that is truly suitable
for fine-tuning a weak LLM. Note that the mathematical
question in the figure is merely used to illustrate the
pipeline, while actual questions we used are much more
difficult.

Li et al., 2023a; Yue et al., 2024). A high-quality
dataset can significantly enhance the performance
of an LLM in a specific domain, even with a lim-
ited number of examples (Zhou et al., 2023; Muen-
nighoff et al., 2025).

To obtain high-quality reasoning traces for fine-
tuning, researchers have explored automated meth-
ods beyond costly manual annotations. Some meth-
ods (Shao et al., 2023; Liu et al., 2023; Zelikman
et al., 2024) automate the majority of the pipeline,
yet still rely on manual intervention at critical steps
.Other methods (Bhan et al., 2024; Lupidi et al.,
2024; Haji et al., 2024) achieve full end-to-end
automation but require training additional models,
which in turn compromises the lightweight design.

However, weak LLMs2 often follow different
2In this paper, we refer to LLMs with fewer than 10B

parameters and without reasoning mode as weak LLMs.
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reasoning patterns from strong LLMs’3, making
them unable to interpret certain traces (Zhang et al.,
2024; Hu et al., 2024; Li et al., 2024). Only few
methods (Cai et al., 2025; Kim et al., 2025) note
this gap and adjust their synthesis processes to fit
reasoning patterns of weak LLMs. But they merely
replicate these patterns rather than truly integrate
weak LLMs into the synthesis pipeline.

This raises a natural and important question:
How can we synthesize high-quality reasoning
traces with an automated and lightweight method,
while ensuring that these reasoning traces are truly
friendly to weak LLMs?

To address this challenge, we propose
Weak2Wise, an automated and lightweight
framework for weak-LLM-friendly reasoning
synthesis. The key issue is to identify the reasoning
trace that is truly suitable for fine-tuning weak
LLMs, as illustrated in Figure 1. Unlike prior
methods that rely on external reward models or
multi-agent coordination, Weak2Wise leverages
the weak LLM’s own performance to evaluate
reasoning traces. The core idea is to evaluate each
candidate reasoning trace’s guidance effectiveness
using a novel Step-Mask Scoring: incrementally
masking partial reasoning steps and querying the
weak LLM itself reveals how well each trace aids
the weak LLM in reaching the correct answer.

Weak2Wise offers several distinct advantages:
i) Full Automation: the entire pipeline is fully
automated, requiring no human intervention; ii)
Lightweight Design: no additional reward mod-
els or agent-based frameworks are required, keep-
ing the entire process simple and scalable; and
iii) Weak-LLM-Friendly: by leveraging the weak
LLM’s own behavior during evaluation, synthetic
reasoning traces are adapted to reasoning patterns
of weak LLMs.

We evaluate Weak2Wise on some of the most
challenging mathematical and scientific reasoning
benchmarks, including AIME2024 (Maxwell-Jia,
2024), MATH-500 (Lightman et al., 2023), and
GPQA Diamond (Rein et al., 2023). Applied to
the weak LLM Qwen2.5-7B (Yang et al., 2024),
our framework achieves consistent and substantial
improvements across all datasets. Ablation studies
further verify the effectiveness of the Step-Mask
Scoring and truncation strategies.

In summary, we make the following major con-

3We define strong LLMs as large-parameter models with
demonstrated high reasoning performance.

tributions:

• We propose Weak2Wise, a new lightweight
framework that fully automates the synthesis
of reasoning traces friendly to weak LLMs.
To the best of our knowledge, this is the first
framework to incorporate the weak LLM itself
into the reasoning synthesis process.

• In the Weak2Wise framework, we introduce
a novel and pivotal method that evaluates
different reasoning traces: Step-Mask Scor-
ing. The step-mask scores accurately reflect
a weak LLM’s comprehension of each trace,
allowing us to identify the reasoning trace that
best aligns with the weak LLM’s reasoning
patterns.

• We apply Weak2Wise to augment and con-
struct a mathematics and science question-
reasoning–answer dataset GR-1K, which con-
tains 1,000 high-quality samples friendly
to weak LLMs. We further fine-tune
Qwen2.5-7B on GR-1K to obtain GR-7B,
which achieves superior performance on
reasoning-related evaluation tasks.

2 Related Work

2.1 Reasoning Improvements via Strong LLM
Prompting

Several studies have demonstrated that fine-tuning
smaller models with prompts distilled from strong
LLMs leads to significant improvements in rea-
soning. Fine-tune-CoT (Ho et al., 2023) prompts
GPT-3.5 to produce multiple high-quality reason-
ing traces per QA pair and fine-tunes a student
model on the resulting triples, yielding substan-
tial reasoning gains. SCoTD (Li et al., 2023b)
extends this by sampling diverse CoT traces from
a large teacher and supervising the student on all
variants, significantly boosting both supervised and
few-shot performance. SCOTT (Wang et al., 2023)
further introduces a counterfactual consistency ob-
jective to ensure the student truly relies on the pro-
vided chains. KARD (Kang et al., 2023) augments
teacher reasoning traces with retrieved evidence be-
fore distillation, achieving strong improvements on
knowledge-intensive tasks. PaD (Zhu et al., 2024)
replaces free-form CoT with structured, executable
programs to reduce noise and improve supervision
fidelity. The above studies confirm that when fine-
tuning incorporates higher-quality reasoning traces,

19640



the target model achieves greater improvements in
reasoning capabilities.

2.2 Synthesis of High-Quality Reasoning
Research on automated synthesis of high-quality
reasoning traces has led to several innovative frame-
works. Auto-CoT (Zhang et al., 2022) clusters
questions and uses a strong LLM to generate ex-
emplar chains per cluster, matching human-crafted
prompts without manual annotations. Synthetic
Prompting (Shao et al., 2023) bootstraps QA-CoT
pairs by alternating backward question generation
and forward reasoning generation to create large
synthetic datasets. LogiCoT (Liu et al., 2023)
uses meta-instructions to GPT-4 to produce a log-
ically structured CoT dataset for instruction tun-
ing. Self-AMPLIFY (Bhan et al., 2024) extracts
post-hoc mini reasoning traces from both success-
ful and failed cases to serve as demonstrations.
STaR (Zelikman et al., 2024) iteratively leverages
a small number of reasoning examples and a large
dataset without reasoning, to bootstrap the abil-
ity to perform successively more complex reason-
ing. Source2Synth (Lupidi et al., 2024) generates
synthetic data points with intermediate reasoning
steps grounded in real-world sources and improves
dataset quality by discarding low-quality genera-
tions based on their answer ability. MA-ToT (Haji
et al., 2024) combines multi-agent reasoning with
Tree-of-Thoughts (Yao et al., 2023) and introduces
a Thought Verifier agent to filter out flawed reason-
ing branches.

Although these methods dispense with manual
construction, they often require clustering or meta-
instruction design (not fully automated), train addi-
tional models (not lightweight), or synthesize rea-
soning that does not specially designed for the fine-
tuned weak LLM (not weak-LLM-friendly). Table
1 demonstrates the superiority of our Weak2Wise
method compared with existing methods.

2.3 Weak-LLM-Friendly Reasoning
Various studies (Zhang et al., 2024; Hu et al., 2024;
Li et al., 2024) have shown that weak LLMs exhibit
different reasoning patterns from strong LLMs, mo-
tivating the need for synthesizing reasoning traces
friendly to weak LLMs. Few recent methods (Cai
et al., 2025; Kim et al., 2025) generate reasoning
tailored to weak LLMs. However, they do not in-
corporate the weak LLM’s actual performance into
the reasoning optimization process. As a result,
these approaches cannot obtain authentic feedback

Method Fully-
Automated Lightweight

Weak-
LLM-

Friendly
Auto-CoT ✓ ✓ ✗
Synthetic Prompting ✗ ✓ ✗
LogiCoT ✗ ✓ ✗
Self-AMPLIFY ✓ ✗ ✗
STaR ✗ ✓ ✗
Source2Synth ✓ ✗ ✗
MA-ToT ✓ ✗ ✗
Weak2Wise (Ours) ✓ ✓ ✓

Table 1: Comparison of high-quality reasoning synthe-
sis methods in Section 2.2 and ours.

from the weak LLM, nor can they truly synthe-
size weak-LLM-Friendly reasoning traces. Our ap-
proach addresses this gap by integrating the weak
LLM’s real-time reasoning performances into an
automated, lightweight framework, ensuring that
the final reasoning traces are both high-quality and
truly friendly to the weak LLM.

3 Method

3.1 Overview

Let SQA denote an existing question–answer
dataset, Mweak a base LLM with weak reasoning
ability for selection and subsequent fine-tuning,
and Mstrong a set of strong reasoning LLMs used
to generate candidate reasoning traces. Our method
consists of five successive stages: (i) Question-
Answer Data Filtering. Each (q, a) ∈ SQA is eval-
uated by Mweak. Retain only those pairs for which
Mweak produces an incorrect response, resulting
in the filtered subset S ′

QA (Section 3.2). (ii) Can-
didate Reasoning Traces Generation. For each
(q, a) ∈ S ′

QA and for each Mstrong ∈ Mstrong, in-
voke our chat template Cgen repeatedly to produce
multiple, diverse candidate reasoning traces, includ-
ing normal-reasoning traces and step-reasoning
traces (Section 3.3). (iii) Step-Mask Reason-
ing Scoring. Apply our proposed Step-Mask to
each candidate reasoning trace. Concatenate each
masked reasoning trace with its original question
q and query Mweak. Binary correctness outcomes
at each mask level are aggregated via a Step-Mask
scoring function to measure the guidance effective-
ness for each candidate (Section 3.4). (iv) Golden
Reasoning Selection. For each (q, a), select the
reasoning trace with the highest step-mask score
as the Golden Reasoning r∗. For excessively long
r∗, truncate it appropriately to reduce its length
(Section 3.5). (v) Fine-Tuning. Augment S ′

QA to
the dataset SQAR = {(q, a, r∗)} by adding r∗and
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Figure 2: Overview of our proposed Weak2Wise framework. (i) Filter QA pairs answered incorrectly by Mweak. (ii)
Use strong LLMs Mstrong to generate multiple reasoning traces. (iii) Apply Step-Mask to score each reasoning
trace. (iv) Select the highest-scoring reasoning trace r∗ and truncate it. (v) Fine-tune Mweak on the augmented
golden reasoning dataset.

then fine-tune Mweak (Section 3.6). Figure 2 also
illustrates our Weak2Wise framework.

3.2 Question–Answer Data Filtering
To select high-quality question-answer pairs and
better facilitate subsequent steps, we first need to
filter the given question-answer dataset SQA. Dur-
ing the filtering process, we consider questions that
weak LLM Mweak cannot answer correctly as high-
quality ones. This is because these question-answer
pairs reveal that the weak LLM Mweak is unable
to complete certain high-difficulty reasoning pro-
cesses. These high-quality question-answer pairs
used for fine-tuning weak LLM Mweak can maxi-
mize the improvement of its reasoning abilities.

Let SQA denote the original question–answer
dataset, and let Mweak be the base LLM with weak
reasoning capability. Each (q, a) ∈ SQA is applied
to Mweak. The filtered subset S ′

QA retains only
those pairs for which Mweak answers incorrectly:

S ′
QA =

{
(q, a) ∈ SQA

∣∣ Mweak(q) ̸= a
}

(1)

where q is a question in SQA and a is its ground-
truth answer. The symbol "̸=" indicates that
Mweak(q) and a are not semantically equivalent.

To automatically determine whether Mweak(q)
and a are semantically equivalent, we designed a
prompt template Pjudge (see Figure 7 in Appendix
A for details) that uses an additional LLM to auto-
matically judge whether Mweak(q) is correct.

3.3 Candidate Reasoning Traces Generation
Given the filtered question–answer set S ′

QA (Sec-
tion 3.2), our goal at this stage is to produce

{ role: "user"; content: question}
{ role: "assistant"; content: answer}
{ role: "user"; content: "Please reason step by
step. Before every step, must output a subtitle
beginning with ’##’. The subtitle of the last
step must be ’## Final Answer’."}

Figure 3: The chat template Cgen used for Candidate
Reasoning Traces Generation (Section 3.3)

a diverse set of candidate reasoning traces for
each question-answer pair (q, a) ∈ S ′

QA. Con-
cretely, for each (q, a) and for each strong model
Mstrong ∈ Mstrong, we repeatedly invoke a uni-
fied chat prompt template Cgen (see Figure 3 for
details) and collect multiple reasoning traces.

Chat Template Cgen. The chat template Cgen

integrates the question and answer in the context
of the LLM and prompts the LLM to output the
reasoning trace from the question to the answer
in a step-by-step format. Based on Cgen, Mstrong

will output two parts in their responses: "reason-
ing content" and "content". Here is a real case of
"reasoning content" and "content" in Appendix D.
Back-tracking tokens like “wait . . . ” pervade the
trace and make it look noisy, yet they allow the
LLM to detect and revise its own errors, which
is exactly the self-correcting skill we want weak
LLMs to learn.

• Normal-Reasoning Trace: the "reasoning
content" is the LLM’s own reasoning process.
It is typically characterized by multiple occur-
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rences of "wait" to check its own reasoning
process. We refer to the "reasoning content"
as the Normal-Reasoning Trace, which will
be used for fine-tuning.

• Step-Reasoning Traces: the "content" is the
step-by-step reasoning process output accord-
ing to our prompt, with each step beginning
with "##". We refer to the "content" as the
Step-Reasoning Trace, which will be used for
golden reasoning selection.

Diversity and Coverage. To ensure both breadth
and depth in the candidate reasoning trace set, we
apply two orthogonal diversity strategies:

• Inter-Model Diversity: sample outputs from
multiple Mstrong ∈ Mstrong, which captures
differing reasoning styles.

• Intra-Model Diversity: sample the same
Mstrong multiple times at a relatively high
temperature, which uncovers alternative rea-
soning paths.

The final candidate reasoning trace set for each
(q, a) is:

Rcand(q, a) =
⋃

M∈Mstrong

Rcand(q, a,M) (2)

where Rcand(q, a,M) is the set of all reasoning
traces sampled by Mstrong for (q, a). Each candi-
date reasoning trace r ∈ Rcand(q, a) comprises
both Normal-Reasoning Trace (leveraged in Sec-
tion 3.5 and Section 3.6) and Step-Reasoning
Trace (leveraged in Section 3.4).

3.4 Step-Mask Reasoning Scoring
Given the candidate reasoning traces Rcand(q, a)
generated in Section 3.3, our goal in this stage
is to yield a score to measure the guidance effec-
tiveness for each reasoning trace. This score mea-
sures how effectively each reasoning trace guides
the weak LLM Mweak toward the correct answer
when partial reasoning is masked. We deliber-
ately choose to score Step-Reasoning Traces rather
than Normal-Reasoning Traces, because Normal-
Reasoning Trace often includes backtracking and
verification, where the correct answer may appear
mid-trace. In such cases, mask-and-score would
unfairly reward traces that reveal the answer earlier,
without truly reflecting reasoning quality.

We score Step-Reasoning Traces via our Step-
Mask procedure, which produces a standard score

Figure 4: The process of adding a step mask to the
Step-Reasoning trace (Section 3.4). The gray area repre-
sents the step-mask, which in practice is replaced with
the placeholder "(to be continued...)". To avoid
the Mweak simply copying the correct answer, we fully
mask the "## Final Answer" step of each trace.

s(r) for each candidate reasoning trace r ∈
Rcand(q, a).

Step-Mask Construction. As described in Sec-
tion 3.3, each reasoning trace comprises two com-
ponents: the Normal-Reasoning trace and the
Step-Reasoning trace. In this stage, we leverage
the Step-Reasoning trace, denoted rs. Let a Step-
Reasoning trace rs consists of K ordered steps,
each encoded as a character sequence. We define
a mask granularity parameter n ∈ N+. For each
granularity level i ∈ {0, 1, . . . , n − 1}, we simul-
taneously mask the final i

n fraction of characters in
every step, producing n masked variants

r(i)s =
(
r
(i)
s,1, . . . , r

(i)
s,K

)
, (3)

where for step k of length ℓk, we replace the last
⌈ i
n ℓk⌉ characters with the placeholder "(to be

continued...)." Figure 4 illustrates the process
of adding a step mask to the Step-Reasoning trace.

Binary Correctness Evaluation. Each masked
Step-Reasoning trace r

(i)
s is concatenated with the

original question q using the prompt template Pqr

(see Figure 5 for details), and the resulting prompt
is fed into Mweak. We then record the binary out-
come:
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## Problem
{question}

## Hint
{Step-Reasoning trace}

Please reason step by step, and put your final
answer within \boxed{}.

Figure 5: The prompt template Pqr used to concatenate
Step-Reasoning trace with its original question (Section
3.4).

s(i) =

{
1, if Mweak(q∥r(i)s ) = a,

0, otherwise.
(4)

where the symbol "=" indicates that Mweak(q∥r(i)s )
and a are semantically equivalent. We continue to
use the prompt template Pjudge (see Figure 7 in
Appendix A for details) to automate this evaluation.
As a result, each Step-Reasoning trace produces a
set of n binary scores: {s(0), s(1), . . . , s(n−1)}.

Step-Mask Scoring Function. From these bi-
nary outcomes, we compute two complementary
metrics:

• Average Step-Mask Score

savg(r) =
1

n

n−1∑

i=0

s(i), (5)

which captures the overall guidance effective-
ness of r under varying mask strengths.

• Exponentially Weighted Step-Mask Score

sew(r) =
1

n− 1

n−1∑

i=1

s(i)·2−(n−i)+s(0)·2−(n−1),

(6)
which assigns greater weight to success under
heavier masking, emphasizing the reasoning
structure’s robustness and guidance effective-
ness.

Finally, we combine these into a single step-
mask score to measure guidance effectiveness:

s(r) = β · savg(r) + (1− β) · sew(r), (7)

where β ∈ [0, 1] is a tunable hyperparameter bal-
ancing overall quality and structural quality of the
reasoning trace r. The step-mask scores s(r) are
then used in Section 3.5 to select high-quality rea-
soning traces.

In the ablation studies (Section 4.3.1), we will
demonstrate the efficacy of this step-mask scoring
function as a metric for evaluating the quality of
reasoning traces.

3.5 Golden Reasoning Selection
Having computed a standard step-mask score s(r)
for each candidate reasoning trace r ∈ Rcand(q, a)
(Section 3.4), our goal is this stage is to select and,
if necessary, truncate the optimal reasoning trace
to serve as the Golden Reasoning r∗. This stage
comprises two steps: selection over all candidates,
and length-aware truncation to enforce practical
constraints on trace size.

Selection. For each (q, a) ∈ S ′
QA, we select the

candidate reasoning trace whose step-mask score
is maximal:

r∗ = argmax
r∈Rcand(q,a)

s(r). (8)

In the event that multiple reasoning traces achieve
the maximal step-mask score, we select the reason-
ing trace with the fewest tokens, since such concise
reasoning traces maintain equal guidance effective-
ness while being easier for the weak LLM Mweak

to comprehend.

Length-Aware Truncation. During fine-tuning,
we utilize the Normal-Reasoning trace portion of
r∗ rather than the Step-Reasoning trace, since the
latter is overly abstract for Mweak and thus diffi-
cult to internalize. However, Normal-Reasoning
traces often include repeated “wait” backtracks af-
ter the correct answer has already been found. To
eliminate this redundancy, we introduce a prompt
template Ptrunc (see Figure 8 for details) that
automatically truncates excessively long Normal-
Reasoning trace at the first occurrence of the cor-
rect answer. The resulting truncated trace r̃∗ is
significantly shorter and thus better suited for down-
stream fine-tuning of Mweak. Here is a real case of
a Normal-Reasoning Trace before and after trunca-
tion in Appendix D.

Although we score Step-Reasoning Traces
while fine-tuning on the corresponding Normal-
Reasoning Traces, this misalignment does not un-
dermine validity. Both traces originate from the
same response and they share an identical logi-
cal path. Moreover, our ablation study (see ab-
lation study 4.3.1 for details) further verifies the
alignment between Step-Reasoning and Normal-
Reasoning Traces.
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prompt: {q}
response: <think> {r∗} </think> {a}

Figure 6: The concatenation format of fine-tuning train-
ing data (Section 3.6).

Resulting Dataset. After selection and trunca-
tion, we obtain the final Golden Reasoning r∗ (or
r̃∗ if truncated) for each (q, a). We then form the
enriched dataset

SQAR =
{
(q, a, r∗)

∣∣ (q, a) ∈ S ′
QA

}
, (9)

which serves as the basis for fine-tuning the weak
model Mweak in Section 3.6.

In the ablation studies (Section 4.3.2), we will
demonstrate the efficacy of truncating reasoning
trace for downstream fine-tuning.

3.6 Fine-Tuning
In the final stage, we perform supervised
fine-tuning of the weak model Mweak on the en-
riched dataset SQAR. Each training example is
formatted as Figure 6, where (q, a, r∗) ∈ SQAR.

During optimization, we encourage the model
to generate both the reasoning and the answer in
sequence, and compute the loss on reasoning and
answer tokens. Let y = (y1, . . . , yT ) denote the
full sequence of response tokens and i the index of
the "<think>" marker. The supervised fine-tuning
loss function is:

L(θ) = − 1

|SQAR|
∑

(q,a,r∗)∈SQAR

T∑

t=i

log pθ
(
yt | q, y<t

)
.

(10)
By masking out the question part during gradi-
ent computation, Mweak is guided to assimilate
Mstrong’s reasoning capabilities while preserving
focus on reasoning and answer.

4 Experiments

4.1 Experiment Setup
Dataset Synthesis. We apply our Weak2Wise
framework for high-quality reasoning traces syn-
thesis from existing QA pairs in S1K dataset
(Muennighoff et al., 2025). S1K is a high-quality
math and science QA dataset with 1,000 sam-
ples, which already excludes questions answer-
able by Qwen2.5-7B. Thus, the Data Filtering
step in Weak2Wise can be skipped in our experi-
ments. We adopt DeepSeek r1 (Guo et al., 2025)

and QwQ-Plus (Yang et al., 2024) as Mstrong and
Qwen2.5-7B as Mweak. Each model in Mstrong

samples 3 distinct reasoning traces per question
with temperature = 0.3, producing a diverse
candidate pool. We then set the mask granular-
ity parameter n = 6 and the score weight pa-
rameter β = 0.5 in Step-Mask Scoring stage.
DeepSeek-V3 (Liu et al., 2024) is leveraged for cor-
rectness judgment and reasoning trace truncation
with temperature = 0.1. We use the "majority
vote" principle to evaluate each answer three times
to ensure reliability. After incorporating golden
reasoning into the S1K dataset via Weak2Wise, we
obtained the GR-1K dataset.

Training. We perform supervised fine-tuning on
Qwen2.5-7B with our GR-1K dataset to obtain our
model GR-7B. Detailed training hyper-parameters
can be found in Appendix B.

Baselines. Following Cai et al., 2025, we com-
pare GR-7B against five competitive 7B-parameter
models: LLaMA-o1 trained on 332K reasoning
examples (SimpleBerry, 2025), Macro-o1 trained
on 60K reasoning examples (Zhao et al., 2024),
Bespoke-Stratos-7B trained on 17K distilled chains
(Bespoke Labs, 2025), CRV-SFT-7B trained on
17K distilled chains (Cai et al., 2025) and S1.1-7B
trained on 1K DeepSeek-R1 reasoning traces
(Muennighoff et al., 2025). We evaluate all models
under “lm-evaluation-harness” framework (Bider-
man et al., 2024) to ensure a fair comparison.

We excluded several methods from Sections
2.1 and 2.2 because they are not designed for
weak LLMs: they typically rely on large-scale
fine-tuning of much larger models, and thus per-
form poorly in our limited-sample weak-LLM fine-
tuning setting. We therefore compare only against
baselines that (i) match our parameter scale, (ii)
use comparable fine-tuning data volumes, and (iii)
explicitly target mathematical reasoning or weak-
LLM data synthesis.

Evaluation. Following Muennighoff et al., 2025,
GR-7B and other models are evaluated on three
challenging reasoning benchmarks: AIME2024
(Maxwell-Jia, 2024), MATH-500 (Lightman et al.,
2023), and GPQA Diamond (Rein et al., 2023).
None of the evaluation questions appear in GR-1K.
As noted by Muennighoff et al., 2025, all training
samples are decontaminated against these evalua-
tion sets (AIME2024, MATH500 and GPQA Di-
amond) using 8-grams. The metrics are scores of
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Model Training Set Size AIME2024 MATH-500 GPQA Diamond
LLaMA-o1 332K 3.3 28.6 26.3
Macro-o1 60K 6.7 38.4 31.8
Bespoke-Stratos-7B 17K 20.0 82.0 37.8
CRV-SFT-7B 17K 20.0 80.0 37.4
S1.1-7B 1K 20.0 83.0 40.9
Qwen2.5-7B(backbone) 0 10.0 73.6 33.3
GR-7B 1K 26.7 84.2 42.4

Table 2: Performance comparison of various 7B-parameter models on AIME2024, MATH-500, and GPQA Diamond
benchmarks

these benchmarks.

• AIME2024: 30 three-digit answer math prob-
lems from the 2024 American Invitational
Mathematics Examination.

• MATH-500: A set of 500 college-level com-
petition questions covering algebra, geometry,
number theory, and probability.

• GPQA Diamond: 198 graduate-level science
questions spanning biology, chemistry, and
physics qualifiers.

4.2 Main Results
To contextualize GR-7B’s performance among
other competitive 7B-parameter models, Table 2
compares accuracy and training set sizes. De-
spite being trained on only 1K reasoning traces,
GR-7B outperforms larger-data baselines such
as LLaMA-o1 (332K examples) and Macro-o1
(60K examples), as well as distilled-chain mod-
els Bespoke-Stratos-7B and CRV-SFT-7B (17K
examples each). Notably, GR-7B achieves the
highest accuracies on all benchmarks—26.7% on
AIME2024, 84.2% on MATH-500, and 42.4% on
GPQA Diamond—while matching S1.1-7B’s mini-
mal training set size. This highlights the efficiency
and effectiveness of our Weak2Wise approach in
reasoning synthesis.

Table 2 also reports the performance of our
fine-tuned model GR-7B against its backbone
Qwen2.5-7B on three standard reasoning bench-
marks. Compared to Qwen2.5-7B, GR-7B achieves
substantial gains in accuracy across all datasets: an
absolute increase of 16.7% accuracy on AIME2024
(from 10.0% to 26.7%), 10.6% on MATH-500
(from 73.6% to 84.2%), and 9.1% on GPQA Di-
amond (from 33.3% to 42.4%). These results
demonstrate that incorporating high-quality, weak-
LLM-Friendly reasoning traces via Weak2Wise

substantially enhances the reasoning capabilities of
Qwen2.5-7B even with only 1K fine-tuning exam-
ples.

4.3 Ablation Studies

To further validate the contributions of our
Step-Mask Scoring and reasoning trace truncation,
we conduct two complementary ablation experi-
ments. Table 3 compares the effect of different
candidate selection strategies, and Table 4 exam-
ines the impact of disabling our truncation step.

4.3.1 Effectiveness of Step-Mask Scoring

In the first ablation (Table 3), we replace our
highest-scoring trace selection with (i) random
sampling, (ii) lowest Step-Mask Score, and (iii)
highest Step-Mask Score (our full method). We
then fine-tune Qwen2.5-7B on each resulting
dataset. Selecting reasoning traces at random
yields a substantial drop in accuracy, and using
the lowest-scoring traces performs even worse than
the backbone model on MATH-500 and GPQA
Diamond. In contrast, choosing the top-ranked
reasoning traces via our Step-Mask Scoring con-
sistently delivers the best results across all bench-
marks. This demonstrates that our scoring metric
effectively quantifies reasoning trace quality and
that prioritizing high-scoring candidates is crucial
for reliable supervision. We additionally conduct a
statistical analysis of the scores generated by Step-
Mask Scoring in Appendix C.1.

The results also indicate that fine-tuning on
Normal-Reasoning selected via high-scoring Step-
Reasoning outperforms random or low-scoring se-
lections, suggesting that the scores faithfully re-
flect the quality of their paired reasoning traces.
This also illustrates the alignment between Step-
Reasoning and Normal-Reasoning Traces.
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Benchmark random lowest GR-7B
AIME2024 16.7 10.0 26.7
MATH-500 78.2 70.6 84.2
GPQA Diamond 39.4 30.8 42.4

Table 3: Ablation on candidate selection: random vs.
lowest-scoring vs. GR-7B (highest-scoring traces).

4.3.2 Impact of Reasoning Trace Truncation
The second ablation (Table 4) evaluates the effect
of disabling our truncation step. Without trunca-
tion, accuracy decreases markedly. We attribute
this degradation to QwQ-Plus occasionally gener-
ating reasoning traces longer than 32,768 tokens,
which exceed Qwen2.5-7B’s context window. In-
corporating these extremely-long reasoning traces
during fine-tuning leads to incomplete reasoning
and flawed inference. By truncating traces properly
to fit within the model’s context capacity, we pre-
serve the integrity of the learned reasoning patterns
and achieve substantial performance gains.

Benchmark w/o Truncation GR-7B
AIME2024 16.7 26.7
MATH-500 72.2 84.2
GPQA Diamond 35.4 42.4

Table 4: Ablation on truncation: without truncation vs.
GR-7B (with truncation).

4.4 Transferability across Models
To further validate the transferability of our method
Weak2Wise, we repeat the pipeline with LLaMA-
3.1-8B (Grattafiori et al., 2024), a backbone that
holds different architecture from Qwen2.5-7B.
Starting from the existing QA pairs in S1K (Muen-
nighoff et al., 2025), we synthesize high-quality
reasoning traces via our method to create a new
fine-tuning set. After fine-tuning, we get GR-8B,
which achieves large gains on all three benchmarks.
Results are shown in Table 5.

Benchmark LLaMA3.1-8B GR-8B
AIME2024 6.7 23.3
MATH-500 46.2 83.4
GPQA Diamond 30.4 43.9

Table 5: Performance of LLaMA-3.1-8B (backbone)
and GR-8B (fine-tuning on high-quality reasoning traces
synthesized by our method) across three benchmarks.

The results in Table 5 show that our Weak2Wise
can consistently synthesize high-quality reasoning

traces for weak LLMs of different architectures
and thus improve their reasoning performance, in-
dicating that Weak2Wise generalizes across weak
LLMs in boosting reasoning capabilities.

To examine whether Step-Reasoning scores
transfer across different weak LLMs, we repeated
the scoring process using LLaMA3.1-8B instead
of Qwen2.5-7B as Mweak, constructing a new fine-
tuning set denoted as GR-1K-llama. We then fine-
tuned Qwen2.5-7B on GR-1K-llama and evaluated
on the same three benchmarks. Results are shown
in Table 6.

Benchmark GR-1K-llama GR-1K
AIME2024 20.0 26.7
MATH-500 83.8 84.2
GPQA Diamond 41.4 42.4

Table 6: Performance of Qwen2.5-7B fine-tuned on
training data scored by different weak LLMs across
three benchmarks.

Compared with the original GR-1K, perfor-
mance decreases only slightly, which we attribute
to the fact that both Qwen2.5-7B and LLaMA3.1-
8B are weak LLMs of similar parameter scale and
reasoning ability.

4.5 Statistical Analyses
Additionally, we conducted statistical analyses in
three aspects: (i) Step-Mask score distribution, (ii)
truncation control and (iii) strong LLMs’ contribu-
tion. Details are provided in Appendix C. These
analyses further validate the effectiveness of our
Step-Mask scoring and truncation mechanisms.

5 Conclusion

In this paper, we introduce Weak2Wise, a fully au-
tomated, lightweight framework for synthesizing
high-quality, weak-LLM-friendly reasoning traces.
Our framework innovates by leveraging the weak
LLM’s own performance to evaluate reasoning
traces with a novel step-mask scoring mechanism.
Through experiments on challenging benchmarks,
we demonstrated that Weak2Wise effectively syn-
thesize reasoning traces for fine-tuning weak LLMs.
Weak2Wise offers an efficient solution for improv-
ing reasoning in LLMs, making high-quality rea-
soning more accessible for practical applications.

19647



Limitations

While Weak2Wise has demonstrated promising re-
sults, it is important to acknowledge some limita-
tions inherent in its current design. One notable
aspect is its reliance on data distillation from strong
LLMs, which is a common limitation of data distil-
lation approach. Although this approach has been
carefully implemented with multiple sampling and
selection processes to ensure robustness, the perfor-
mance of Weak2Wise remains closely tied to the
quality of the strong LLMs used. There may be
instances where the reasoning traces, despite our
efforts to optimize their selection, could still con-
tain subtle deficiencies or biases resulting from the
limitations in strong LLMs. These factors might
influence the learning effectiveness of weak LLMs.
Future work will focus on exploring additional
strategies to further mitigate such potential lim-
itations and enhance the overall robustness and
independence of the Weak2Wise framework.

Ethical Considerations

In conducting our research, we have thoroughly
reviewed and ensured compliance with ethical stan-
dards. Our study utilizes existing datasets, which
have been publicly available and previously vetted
for ethical use. These datasets have been carefully
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content. Therefore, we consider that our research
does not present any ethical issues. The data used
is ethically sourced, the analysis is unbiased, and
all procedures align with established ethical guide-
lines.
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A Prompt Template

Here are all the prompt templates used in Section 3. Each prompt template has been custom-designed to
automate the entire workflow without any manual intervention.

You’re an AI evaluator for science questions. The user will give you a question, an attempt and the
correct answer.

Your task is to compare the attempt with the provided correct answer and determine whether it is
correct. If the correct answer is a clear numerical value or a multiple-choice option, there must be
no ambiguity. If the correct answer requires a full reasoning process, assess whether the attempt is
valid, using the correct answer as a reference if necessary.

The user will supply the input in the following format:
## Question
{question}
## Attempt
{attempt to be evaluated}
## Correct Answer
{correct answer}

Explain your evaluation step by step, and finish your response on a new line with only “Yes” or
“No”.

Figure 7: The prompt template Pjudge used to determine the correctness of LLM’s response to certain question.
(Section 3.2 and Section 3.4)

You are a helpful assistant who is highly skilled at simplifying reasoning processes. User will
provide you with the reasoning process and correct answer for a certain question. There are many
backtracking in reasoning, which always start with the word ’wait’.
You need to simplify the reasoning process in the following way: Extract from the beginning of
the reasoning until the correct answer is FIRST deduced. Note that all you need to do is find the
appropriate endpoint and output the reasoning process from the beginning to the endpoint. No
modification of any reasoning content is allowed.

Just output the simplified reasoning process without any additional content.

Here is the reasoning process and correct answer for a certain question from the user:

## Reasoning Process
{Normal-Reasoning trace}
## Correct Answer
{answer}

Figure 8: The prompt template Ptrunc used to truncate excessively long Normal-Reasoning traces (Section 3.5).

B Training Details

We fine-tune the Qwen2.5-7B model on our GR-1K dataset. We train for 3 epochs with a learning rate of
1e-5. Packing is enabled to optimize GPU memory usage by combining multiple shorter sequences. A
cosine learning rate scheduler is applied with a warm-up ratio of 0.03 and weight decay of 0.01 to balance
training stability and convergence. The training takes approximately 2 hours on an 8 NVIDIA A100 GPU
server.
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C Statistical Analyses

C.1 Step-Mask Score Distribution

Here, we additionally conduct a statistical analysis of the scores generated by Step-Mask Scoring (Section
3.4) for each reasoning. From the Step-Mask Scoring Function in Section 3.4, it can be easily proven
that the value of the step-mask score ranges between 0 and 1. The step-mask score is 0 when all s(i) are 0,
and 1 when all s(i) are 1.

Specifically, we analyze the distribution of the ranges of s(i) generated by each reasoning, which aims
to demonstrate that our step-mask scoring design has strong separability for different reasoning traces.
From Figure 9 (left), We observe that in only a small proportion of reasoning traces, all s(i) exhibit a
range of less than 0.1 (10% of the total score range of 0–1). This indicates that our step-mask scoring
reflects differences across different reasoning traces, demonstrating strong separability.

Figure 9: Distribution of the ranges of s(i) generated by each reasoning (left) And Distribution of the step-mask
scores of each reasoning (right).

We additionally analyze the scores distribution of all golden reasoning, which correspond to the highest
scores among all reasoning traces for each QA pair. We find that these scores are distributed across the
entire 0–1 range. We believe this reflects a uniform distribution of problem difficulties in our selected QA
set. For simple questions, strong LLMs can generate high-quality reasoning traces (with scores closer to
1), whereas for difficult questions, even strong LLMs may only produce lower-quality ones (with scores
closer to 0), despite our selection process.

It is particularly notable that 6% of the golden reasoning traces scored 0, which may be ineffective
for fine-tuning weak LLMs and enhancing their reasoning abilities. For these golden reasoning traces
and their corresponding QA pairs, we propose the following remedies: (i) discard them to prevent weak
LLMs from learning low-quality or incorrect reasoning processes; (ii) resample by having strong LLMs
generate more reasoning traces for the corresponding QA pairs until a reasoning trace with a score higher
than 0 is obtained; (iii) manually annotate them. Given the dataset’s overall size of approximately 1K,
6% translates to only around 60 data points, which is a manageable task. Moreover, these QA pairs may
also be too difficult for strong LLMs to answer properly, so manual annotation would better improve data
quality.

C.2 Truncation Control

Out of the 1 000 GR-1K traces, 367 underwent truncation, the majority of which were generated by QwQ-
plus. Token statistics further confirm the effect: the average length dropped from 6,147 tokens before
truncation to 3,466 tokens after truncation. This demonstrates that our truncation strategy effectively
reduces verbosity while retaining sufficient reasoning content, thereby making the traces more suitable for
weak LLMs with limited context windows.
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C.3 Strong LLMs’ Contribution

In terms of source strong LLMs, 56.7% of the traces originated from DeepSeek-R1 and 43.3% from QwQ-
plus, indicating a clear preference for DeepSeek-R1 outputs. Weak LLMs benefit more from DeepSeek-R1
traces because they are generally shorter (1,645 tokens on average versus 2,124 for QwQ-plus) and avoid
extreme cases of excessive backtracking or overly long reasoning chains (sometimes exceeding 20,000
tokens for QwQ-plus). These results highlight that concise, focused reasoning traces are more compatible
with the limited capacity of weak LLMs.

D Case Studies

Here is a real case of golden reasoning synthesis from the original QA. The data in the Question and
Answer columns were extracted from the original QA dataset S1K (Muennighoff et al., 2025). After
applying the chat template Cgen in Figure 3, the strong LLM generated the corresponding Normal-
Reasoning Trace ("reasoning content") and Step-Reasoning Trace ("content"). We performed Step-Mask
Scoring on the Step-Reasoning Trace and found that it had the highest score among all generated reasoning
traces. Subsequently, due to the excessive length of its Normal-Reasoning Trace, we used Ptrunc in Figure
8 for truncation, and ultimately obtained the golden reasoning for fine-tuning. We mark the complete
Normal-Reasoning Trace with light blue and the truncated Normal-Reasoning Trace with dark blue.

Question
Given a rational number, write it as a fraction in lowest terms and calculate the product of the resulting
numerator and denominator. For how many rational numbers between 0 and 1 will 20! be the resulting
product?

Correct Answer
128

Normal-Reasoning Trace ("reasoning content")
Okay, so the problem is asking: For how many rational numbers between 0 and 1 will 20! be the product
of the numerator and denominator when the rational number is written in lowest terms. Hmm, let me try
to unpack this step by step.
First, let me make sure I understand the question correctly. We need to find all fractions between 0 and 1
that, when reduced to their simplest form (i.e., numerator and denominator are coprime), the product of
the numerator and denominator equals 20 factorial (20!). Then, count how many such fractions exist.
So, to rephrase, we are looking for pairs of integers (a, b) such that:
1. 0 < a < b (since the fraction is between 0 and 1)
2. gcd(a, b) = 1 (the fraction is in lowest terms)
3. a · b = 20! (the product of numerator and denominator is 20!)
Therefore, the task reduces to finding the number of coprime pairs (a, b) with 0 < a < b and a · b = 20!.
Hmm, how do I approach this? Let me think. Since a and b are coprime and their product is 20!, they
must form a coprime pair of divisors of 20!. So, essentially, we need to count the number of ways to split
the prime factors of 20! into two coprime parts a and b, such that a < b.
But since a and b are coprime, they must share no common prime factors. That means all the prime
factors of 20! have to be partitioned between a and b, with no overlap. So, each prime factor in 20! must
go entirely to a or entirely to b.
Wait, that makes sense. Because if a prime p divides both a and b, then gcd(a, b) would be at least p,
contradicting the coprimality. Therefore, each prime in the prime factorization of 20! must be assigned
exclusively to either a or b.
Therefore, the problem becomes equivalent to finding the number of ways to partition the set of prime
factors of 20! into two non-empty subsets (since a and b must both be at least 1) such that the product of
the primes in each subset (with their respective exponents) gives a and b, and then ensuring that a < b.
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But wait, actually, it’s not just the primes, but all the prime powers in the factorization of 20!. Because
20! has exponents for each prime. For example, 20! = 218 · 38 · 54 · 72 · 111 · 131 · 171 · 191 (let me check
that later). So, each prime power must be entirely assigned to either a or b.
But since a and b are coprime, as long as all occurrences of a prime are assigned to one side, they can be.
So, the process is similar to assigning each prime in the prime factorization to either a or b. For each
distinct prime, we have two choices: assign all its exponents to a or to b. However, since the order matters
(a < b), but we have to account for that.
But wait, the number of coprime pairs (a, b) with a · b = N is 2k−1, where k is the number of distinct
prime factors of N . Because for each prime, you assign it to a or b, giving 2k possibilities. However,
since a and b are positive integers and a ≤ b, we divide by 2, but since N is a square only if there’s a
square factor, but in our case, since a and b are coprime, N cannot be a square unless all exponents are
even, but 20! has exponents which are not all even. Wait, but 20! is not a perfect square. Let me check.
Wait, 20! includes primes like 2, which has exponent 18 (even), 3 has exponent 8 (even), 54 (even), 72

(even), but 11, 13, 17, 19 each have exponent 1 (odd). So, 20! is not a perfect square. Therefore, there
are no solutions where a = b. Therefore, the total number of unordered pairs {a, b} with a · b = N and
gcd(a, b) = 1 is 2k, where k is the number of distinct prime factors, divided by 2 (since unordered), which
would be 2k−1. But since we need ordered pairs (a, b) with a < b, the number would be 2k−1.
But hold on, in our problem, N is 20!, so k is the number of distinct prime factors of 20!.
Let me first compute the prime factors of 20!.
Primes less than or equal to 20 are: 2, 3, 5, 7, 11, 13, 17, 19. That’s 8 primes. Therefore, k = 8. Therefore,
the number of coprime pairs (a, b) with a · b = 20! would be 28−1 = 128. But wait, is that correct?
(The first occurrence of the correct answer)
Wait, the standard formula for the number of coprime pairs (a, b) with a · b = N is 2k, where k is the
number of distinct prime factors of N . Because each prime can go to a or b. Since a and b must be
positive integers, and each coprime decomposition corresponds to a subset of primes assigned to a, and
the rest to b. Therefore, the number of such pairs is 2k. However, since the problem requires a < b, then
we need to divide by 2, but only if a ̸= b. Since N is not a perfect square (as established earlier), all pairs
have a ̸= b. Therefore, the number of ordered pairs (a, b) with a < b and a · b = N and gcd(a, b) = 1 is
2k−1.
Therefore, since k = 8, the number would be 27 = 128. Therefore, the answer would be 128.
But wait, let me verify this carefully. Let’s take a smaller example. Suppose N is 6, which is 2 · 3. Then,
the coprime pairs (a, b) with a · b = 6 are (1,6) and (2,3). However, (1,6) and (6,1), (2,3) and (3,2). But
since a < b, we have two pairs: (1,6) and (2,3). The number of distinct prime factors of 6 is 2 (primes 2
and 3). So, 22−1 = 2, which matches. Similarly, for N = 30 (primes 2, 3, 5), k = 3, so 22 = 4. Let’s
see: the coprime pairs with a · b = 30 and a < b are (1,30), (2,15), (3,10), (5,6). That’s 4 pairs. Yep, that
works. So the formula holds.
Therefore, applying this to 20!, which has 8 distinct prime factors, the number should be 27 = 128. Hence,
the answer is 128.
But hold on a second. Let me check the prime factors of 20! again to confirm the count of distinct primes.
The primes less than or equal to 20 are 2, 3, 5, 7, 11, 13, 17, 19. That’s 8 primes. So k = 8. Thus,
28−1 = 128. So that should be the answer.
But let me think again. Is there any possibility that in the case of 20! being a factorial, its prime exponents
might affect this count? For example, does the multiplicity of primes (like 218, 38, etc.) play any role here?
Wait, in the formula, we only consider the number of distinct primes. Because even if a prime has a higher
exponent, when we split the prime factors between a and b, all the exponents of that prime must go to
one side or the other. Therefore, each prime is treated as a single entity when partitioning. So, whether a
prime is raised to the 1st power or the 18th power, it’s still just one prime in terms of assignment. Hence,
the number of coprime pairs is determined solely by the number of distinct primes, not their exponents.
Therefore, even with multiple exponents, the number of coprime pairs remains 2k, with k being the number
of distinct primes.
Therefore, in our case, since there are 8 distinct primes in 20!, the number of coprime pairs (a, b) with
a · b = 20! is 28 = 256. However, since we require a < b, we divide by 2, giving 128. That seems correct.
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Therefore, the answer is 128. So I should check the problem statement once again to make sure I didn’t
miss any details.
The problem says: “how many rational numbers between 0 and 1 will 20! be the resulting product”. So,
each such fraction a

b , reduced to lowest terms, with a · b = 20!. Since a and b are coprime, their product
is 20!, and each such pair corresponds to a unique fraction. The count is the number of such fractions,
which is the same as the number of coprime pairs (a, b) with a < b and a · b = 20!.
Therefore, yes, the answer is 128.
But let me make sure with another example. Take N = 12, which is 22 · 3. The distinct primes are 2 and 3,
so k = 2. Then, the number of coprime pairs (a, b) with a < b and a · b = 12 is 22−1 = 2. Let’s check.
The possible pairs:
Possible coprime pairs (a, b) with a · b = 12:
1 · 12: gcd(1, 12) = 1
3 · 4: gcd(3, 4) = 1
But 2 · 6: gcd(2, 6) = 2 ̸= 1
So, only two pairs: (1,12) and (3,4). So, 2 pairs, which is 22−1 = 2. Correct.
Another example: N = 30, as before, primes 2,3,5: 3 primes. So 23−1 = 4, which matches the four pairs.
So, the formula holds. Therefore, for N = 20! with 8 primes, the answer is 28−1 = 128.
Therefore, I think that’s the correct answer. I don’t see any mistakes in the reasoning. The key insight is
that each prime must be entirely assigned to a or b, leading to 28 possibilities, and since we want a < b,
we divide by 2, getting 27 = 128.

Step-Reasoning Trace ("content")
Understanding the Problem
We need to find how many rational numbers between 0 and 1, when written in lowest terms, have a product
of numerator and denominator equal to 20!.
Key Observations
1. The rational number a

b must satisfy 0 < a < b and gcd(a, b) = 1.
2. The product a · b = 20!.
3. a and b must be coprime divisors of 20!.
Prime Factorization of 20!
20! has prime factors: 2, 3, 5, 7, 11, 13, 17, 19. These are 8 distinct primes.
Coprime Divisor Pairs
Each prime factor must be assigned entirely to either a or b. For each prime, there are 2 choices (assign
to a or b), leading to 28 = 256 total pairs. Since a < b, we divide by 2 to avoid double-counting.
Final Calculation
The number of valid pairs is 28−1 = 27 = 128.
Final Answer
128

Truncated Reasoning Trace for Fine-Tuning (Golden Reasoning)
Okay, so the problem is asking: For how many rational numbers between 0 and 1 will 20! be the product
of the numerator and denominator when the rational number is written in lowest terms. Hmm, let me try
to unpack this step by step.
First, let me make sure I understand the question correctly. We need to find all fractions between 0 and 1
that, when reduced to their simplest form (i.e., numerator and denominator are coprime), the product of
the numerator and denominator equals 20 factorial (20!). Then, count how many such fractions exist.
So, to rephrase, we are looking for pairs of integers (a, b) such that:
1. 0 < a < b (since the fraction is between 0 and 1)
2. gcd(a, b) = 1 (the fraction is in lowest terms)
3. a · b = 20! (the product of numerator and denominator is 20!)
Therefore, the task reduces to finding the number of coprime pairs (a, b) with 0 < a < b and a · b = 20!.
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Hmm, how do I approach this? Let me think. Since a and b are coprime and their product is 20!, they
must form a coprime pair of divisors of 20!. So, essentially, we need to count the number of ways to split
the prime factors of 20! into two coprime parts a and b, such that a < b.
But since a and b are coprime, they must share no common prime factors. That means all the prime
factors of 20! have to be partitioned between a and b, with no overlap. So, each prime factor in 20! must
go entirely to a or entirely to b.
Wait, that makes sense. Because if a prime p divides both a and b, then gcd(a, b) would be at least p,
contradicting the coprimality. Therefore, each prime in the prime factorization of 20! must be assigned
exclusively to either a or b.
Therefore, the problem becomes equivalent to finding the number of ways to partition the set of prime
factors of 20! into two non-empty subsets (since a and b must both be at least 1) such that the product of
the primes in each subset (with their respective exponents) gives a and b, and then ensuring that a < b.
But wait, actually, it’s not just the primes, but all the prime powers in the factorization of 20!. Because
20! has exponents for each prime. For example, 20! = 218 · 38 · 54 · 72 · 111 · 131 · 171 · 191 (let me check
that later). So, each prime power must be entirely assigned to either a or b.
But since a and b are coprime, as long as all occurrences of a prime are assigned to one side, they can be.
So, the process is similar to assigning each prime in the prime factorization to either a or b. For each
distinct prime, we have two choices: assign all its exponents to a or to b. However, since the order matters
(a < b), but we have to account for that.
But wait, the number of coprime pairs (a, b) with a · b = N is 2k−1, where k is the number of distinct
prime factors of N . Because for each prime, you assign it to a or b, giving 2k possibilities. However,
since a and b are positive integers and a ≤ b, we divide by 2, but since N is a square only if there’s a
square factor, but in our case, since a and b are coprime, N cannot be a square unless all exponents are
even, but 20! has exponents which are not all even. Wait, but 20! is not a perfect square. Let me check.
Wait, 20! includes primes like 2, which has exponent 18 (even), 3 has exponent 8 (even), 54 (even), 72

(even), but 11, 13, 17, 19 each have exponent 1 (odd). So, 20! is not a perfect square. Therefore, there
are no solutions where a = b. Therefore, the total number of unordered pairs {a, b} with a · b = N and
gcd(a, b) = 1 is 2k, where k is the number of distinct prime factors, divided by 2 (since unordered), which
would be 2k−1. But since we need ordered pairs (a, b) with a < b, the number would be 2k−1.
But hold on, in our problem, N is 20!, so k is the number of distinct prime factors of 20!.
Let me first compute the prime factors of 20!.
Primes less than or equal to 20 are: 2, 3, 5, 7, 11, 13, 17, 19. That’s 8 primes. Therefore, k = 8. Therefore,
the number of coprime pairs (a, b) with a · b = 20! would be 28−1 = 128.

E License For Artifacts

In our experiments, we utilized the S1K dataset (Muennighoff et al., 2025) and several models, each
governed by specific licenses. The S1K dataset is released under the MIT License, which permits free
use, modification, and distribution for any purpose, provided that the original copyright and license terms
are retained. The Qwen2.5-7B and QwQ-Plus models (Yang et al., 2024) are licensed under Apache-2.0,
allowing for both personal and commercial use, with the requirement to include copyright and license
notices in any derivative works. Meanwhile, the DeepSeek r1 (Guo et al., 2025) and DeepSeek v3 (Liu
et al., 2024) models are distributed under the MIT License, offering similar permissive terms for usage and
distribution. These licensing frameworks ensure that our research complies with the conditions set forth
by the respective developers and institutions, while also facilitating the transparent and lawful utilization
of these artifacts in our study.

F AI Assistant Usage

During the research process, we utilized ChatGPT to polish some wording in the introduction section
of the paper. We used the auto-completion feature of GitHub Copilot to assist with the coding. We did
not overuse AI assistants in the writing and coding process. All text and code generated by AI assistants
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have been thoroughly checked and verified by us to avoid potential ethical issues and program errors. The
final content and methods presented in this paper, as well as the coding work, are the original work of the
authors.
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