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Abstract

Reasoning ability of large language models
(LLMs) is a crucial ability, especially in com-
plex decision-making tasks. One significant
task to show LLMs’ reasoning capability is
code time complexity prediction, which in-
volves various intricate factors such as the input
range of variables and conditional loops. Cur-
rent benchmarks fall short of providing a rigor-
ous assessment due to limited data, language
constraints, and insufficient labeling. They
do not consider time complexity based on in-
put representation and merely evaluate whether
predictions fall into the same class, lacking
a measure of how close incorrect predictions
are to the correct ones. To address these de-
pendencies, we introduce CodeComplex, the
first robust and extensive dataset designed to
evaluate LLMs’ reasoning abilities in predict-
ing code time complexity. CodeComplex com-
prises 4,900 Java codes and an equivalent num-
ber of Python codes, overcoming language and
labeling constraints, carefully annotated with
complexity labels based on input characteristics
by a panel of algorithmic experts. Additionally,
we propose specialized evaluation metrics for
the reasoning of complexity prediction tasks,
offering a more precise and reliable assessment
of LLMs’ reasoning capabilities. We release
our dataset and baseline models publicly to en-
courage the relevant (NLP, SE, and PL) commu-
nities to utilize and participate in this research.
Our code and data are available at https:
//github.com/sybaik1/CodeComplex.

1 Introduction

Large language models (LLMs) demonstrate signif-
icant potential in complex decision-making tasks,
with their inference capabilities being particularly
valuable in software development (Austin et al.,
2021; Jain et al., 2021). To further test LLM’s in-
ferencing abilities, we showcase this domain of pre-
dicting the code time complexity, which requires
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the consideration of numerous intricate factors. For
example, factors such as algorithmic structure (Tur-
ing, 1936; Bentley et al., 1980), data input size,
and resource constraints can all influence the time
complexity of code (Nogueira, 2012; Hutter et al.,
2014). Understanding and optimizing these factors
is crucial for improving the performance of com-
plex algorithms and generating efficient code (Peng
et al., 2021; Lu et al., 2021).

Despite the existence of benchmarks for the time
complexity analysis, such as CoRCoD (Sikka et al.,
2020), and TASTY (Moudgalya et al., 2023), these
benchmarks have limitations on their current state.
Notably, CoRCoD is the only publicly available
dataset that is small in size, and while TASTY con-
siders both time and space complexity, its dataset
remains undisclosed. Consequently, there is a clear
need for a comprehensive and publicly accessible
benchmark that addresses these shortcomings.

Our work aims to fill this gap by introducing
CodeComplex, a dataset designed to be the defini-
tive benchmark for evaluating LLMs’ time com-
plexity inference abilities. CodeComplex offers
several distinct advantages over existing bench-
marks. First, it provides a larger and more diverse
dataset, encompassing a broad range of program-
ming languages beyond the limited scope of CoR-
CoD, which focuses solely on Java. Second, our
dataset encompasses a more comprehensive set of
labeled complexity classes that cover general-use
problem-solving algorithms, enabling a more de-
tailed analysis. Thirdly, CodeComplex considers
the representation of input data, distinguishing be-
tween numeric values and input size indicators,
which is critical for accurate complexity analysis.
Lastly, we suggest detailed metrics that allow for a
more nuanced assessment of LLMs’ performance,
moving beyond simple class-based evaluations.

In summary, our contributions are as follows:

1. Comprehensive dataset: We present a novel
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dataset with a comprehensive range of algo-
rithmic problems that includes bilingual pro-
gramming languages, offering a significant
expansion upon existing benchmarks.

2. Detailed complexity analysis: We annotate the
code complexity through complexity analysis
of the representation of input data, distinguish-
ing between numeric interpretations and input
size indicators.

3. Robustness of evaluation metrics: We imple-
ment precise evaluation metrics for a rigorous
and nuanced assessment of LLMs’ time com-
plexity inference, facilitating accurate com-
parisons with state-of-the-art baselines.

Through these contributions, CodeComplex
aims to advance the study of LLMs inference capa-
bilities with the task of predicting code time com-
plexity, ultimately fostering the development of
optimized software. Our benchmark sets a new
standard for the evaluation of LLMs, providing a
robust and comprehensive tool for researchers and
practitioners alike.

2 Related Work

The LLMs have led to numerous advances in the
field of natural language processing (Brown et al.,
2020; Chowdhery et al., 2023). Therefore, recent
research is ongoing to improve the reasoning abil-
ity of LLMs. Numerous prompt engineering tech-
niques emerged, such as zero-shot, few-shot, chain
of thought, and prompt changing (Wei et al., 2022;
Wang et al., 2023; Yao et al., 2023). Specifically,
the chain of thought prompting was proposed to en-
courage them to engage in inferential thinking, with
the subsequent application of arithmetic, common-
sense, and sentiment reasoning. The methodologies
demonstrated that when the LLMs’ reasoning was
improved, their capability to perform a range of
tasks was enhanced.

Nevertheless, it is evident that LLMs are still
constrained in their capacity to reason about com-
plex tasks. The enhancement of LLLM’s capacity to
reason effectively in complex domains is highly de-
pendent upon the availability of a domain-specific
and sophisticated dataset. In the field of code time
complexity, some representative complex tasks
have been proposed as a method for improving the
reasoning ability of LLM models. Recently, Sikka
et al. (2020) explored code complexity prediction

using machine learning-based methods. They cu-
rated the CoRCoD dataset comprising 929 anno-
tated Java codes. These codes were enriched with
various hand-engineered features extracted from
the code, encompassing counts of loops, methods,
variables, jumps, breaks, switches, and the identifi-
cation of specific data structures or algorithms like
priority queues, hash maps, hash sets, and sorting
functions. Employing machine learning classifica-
tion algorithms such as K-means, random forest,
decision tree, SVM, and more, they made predic-
tions based on these diverse features. Additionally,
they explored graph2vec (Narayanan et al., 2017),
a neural graph embedding framework that oper-
ates on a program’s AST and achieves comparable
performance results.

Another exploration by Prenner and Robbes
(2021) scrutinized the potential of pre-trained pro-
gramming language understanding models, particu-
larly CodeBERT (Feng et al., 2020), for predicting
code complexity. Their experiments showcased
promising results, suggesting that pre-trained mod-
els could serve as a viable solution in this domain.
In the most recent development, Moudgalya et al.
(2023) tackled the analysis of time and space com-
plexity using language models. They leveraged
codes sourced from GeeksForGeeks! and CoRCoD,
alongside a dataset comprising 3,803 Java codes.
Their work showcased the viability of fine-tuning
pre-trained language models such as GraphCode-
BERT (Guo et al., 2021) for predicting both time
and space complexity, thereby opening new av-
enues for exploration in this field.

3 The CodeComplex Dataset

The CodeComplex dataset contains a collection of
codes written in two languages, Java and Python,
from a competitive programming platform. Our
dataset originates from Codeforces and collects
data from CodeContests (Li et al., 2022), a com-
petitive programming dataset tailored for machine
learning applications created by DeepMind. It
comprises 9,800 codes, evenly split between Java
and Python, with 4,900 codes each. We have
categorized these codes into seven distinct com-
plexity classes: constant (O(1)), linear (O(n)),
quadratic (O(n?)), cubic (O(n?)), logarithmic
(O(Inn), O(nlnn)), and exponential. Each class
contains a minimum of 500 Java and Python codes.

We annotated all 9,800 codes with experts,
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Figure 1: Overview of the CodeComplex dataset creation process.

which include the 317 Java codes in the CoRCoD
dataset from Codeforces. It is worth mention-
ing that the CoRCoD, a previous dataset used for
code complexity prediction, categorizes Java codes
into five complexity classes: O(1), O(n), O(n?),
O(Inn), and O(nlnn). However, it suffers from
imbalanced class distribution, evident in Table 1,
with a relatively small size of 929 Java code sam-
ples in total. Our expansion significantly enhances
the dataset’s value for research, particularly con-
cerning DL-based models outlined in Section 4.

Cl | CoRCoD | CodeComplex
ass

| Java | Java Python
0(1) 143 750 (+ 62) 791
O(n) 382 779 (+ 117) 853
O(n?) 200 765 (+48) 657
O(n3) 0 601 606
O(lnn) 54 700 (+ 18) 669
O(nlnn) 150 700 (+ 72) 796
exponential 0 605 528
Total | 929 4,900 (+317) 4,900

Table 1: Statistical difference between CoRCoD and
CodeComplex. Numbers in parentheses imply the num-
ber of codes from CoRCoD.

3.1 Data Collection

The original corpus of code is from CodeContests,
which collected 128 million codes from Code-

forces. The corpus only contained information
about the contest ID, problem, username, language,
acceptance, and statistics (runtime and memory).
We extracted the selected problems from this cor-
pus and identified each code’s complexity.

Code samples were selected within the matching
candidates with the following conditions. First, we
checked the relevance of the problem. There are
many problems within a coding competition, but
not all of them fall into the scope of complexities
we seek to compromise. Therefore, the problems
were first analyzed to check whether or not they
were in the complexity class of our dataset. If the
problem was determined to be in one of the seven
complexity classes, then we marked the problem as
a candidate for the dataset. This helps to establish a
clear base dataset for the complexity domain. Sec-
ond, we checked the completeness and correctness
of the code. We filtered codes that are available to
pass the given problem in the contest, meaning that
the code is functional, self-contained, and correct
on the given task. One of the reasons for using code
competition data is that we can check if the code is
correct for the problem. Lastly, we wanted a large
pool of code samples for a given problem. We
took code samples from problems with abundant
submissions. This helped to clarify the problem’s
robustness and variation.

Consider the following Python program that
solves a problem with O(1) time complexity:
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buf = input()
hand = buf.split()
t =[]
for i in range(3):
t.append([])
for j in range(9):
t[i].append(@)
for x in hand:
idx = @
# Following lines are omitted.

Despite the short length of the code, it is not
trivial to understand that the time complexity of the
above code is actually constant, which implies that
the number of instructions for executing the pro-
gram does not depend on the input size. In fact, the
problem description says that the input always con-
sists of three strings separated by whitespace and,
therefore, the size of the list hand is actually con-
stant. Hence, it is impossible to correctly calculate
the time complexity of a code only by analyzing
the code, as the problem description sometimes has
a big hint to determine the time complexity.

3.2 Data Preprocessing

Data preprocessing is an important step in prepar-
ing datasets for analysis or machine learning tasks.
In this process, we utilize dead code elimination
and comment removal. Dead code elimination
involves removing any code that does not con-
tribute to the functionality or output of the program,
thereby reducing unnecessary clutter. From each
code, we marked irrelevant codes and unreachable
codes as dead codes. Irrelevant code involves vari-
ables, functions, and classes that were never used or
never called, and unreachable code involves condi-
tional statements that cannot be satisfied and state-
ments that cannot be reached because of control
statements such as continue and return.

On the other hand, comment removal entails
stripping out any comments within the codebase,
which are meant for human understanding. We
removed the comments since the fragments could
be exploited by the models to improve the accuracy
of predicting the time complexity of models.

3.3 Annotation Process

Our primary objective is to create a solid founda-
tion for accurately classifying time complexities.
To achieve this, we have meticulously designed a
procedure to generate a robust dataset with mini-
mal noise and high quality. We specifically filter
‘correct’ Java and Python codes, ensuring they pass
all test cases, including hidden ones. These codes

form the basis of our statistical population. Catego-
rizing problems based on problem-solving strate-
gies involves leveraging annotations from Code-
Contests.Each problem in the dataset is associated
with a plausible problem-solving strategy, such as
brute force, dynamic programming, or backtrack-
ing, as outlined in CodeContests. Following this
initial categorization, a detailed analysis of each
problem is conducted. This analysis considers in-
put and output variables, utilized data structures,
and the overall workflow of the code. Subsequently,
the code for each problem is annotated based on its
specific input characteristics. More precisely, we
take the largest input variable as the main factor in
calculating the overall time complexity. By analyz-
ing the code, we consider each control sequence
on the code to determine if the input impacts a con-
trol segment or is constant. Note that we assume
a unit-cost RAM model that requires the same cost
for accessing all memory locations for calculating
the time complexity. Our core annotation process
adheres to four key rules:

1. Consider the input size and the output size as
parameters to determine time complexity, with
measurement based on the largest parameter
among the input variables.

2. Account the impact of used packages and li-
braries, such as hashmap, sorting, and string-
matching algorithms, on time complexity.

3. Treating each test case within a single input
separately for complexity measurement.

4. Classifying cases with fixed constants as hav-
ing a constant time complexity.

The annotation was held by three annotators who
have expertise in the algorithm. In the initial anno-
tation step, each annotator annotated each problem
independently. Each reasoned on how we judged
the input and annotated the time complexity.
During the agreement process, the annotators
collaborated closely to reconcile any discrepan-
cies in their annotations. We engaged in thorough
discussions, sharing our reasoning and insights to
reach a consensus on the appropriate time com-
plexity classification for each problem. In cases
where disagreements arose, the annotators carefully
evaluated the evidence and considered alternative
perspectives before arriving at a mutually accept-
able classification. The involvement of ChatGPT
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Figure 2: Statistics of CodeComplex dataset. The first and second lines are for Java and Python codes, respectively.

serves as a neutral advisor to validate the annota-
tions and offer additional perspectives on complex
cases. Through open communication and collabo-
rative decision-making, the annotators ensure the
accuracy and reliability of the final dataset. How-
ever, it is essential to note the significant impact
of input formats and constraints on the actual time
complexity of algorithmic problems. These con-
straints often lead to deviations from the ideal time
complexity. Think of a scenario in which the input
exploits the problem constraints in time complex-
ity. Despite the problem of having a quadratic
time complexity, the provided input constraints
may result in linear running time. Moreover, deter-
mining the parameter for complexity measurement
becomes crucial when faced with multiple input
parameters. Additionally, certain code submissions
optimize execution based on problem constraints,
thus influencing code complexity assessment.

TASTY CODAIT CoRCoD CodeComplex

Provided # of Languages 2 1 1 2
Label Categories 7 6 5 6
Accessibility X X (6] (0]
Input-based Annotation X X X (0]

Table 2: Comparison between CodeComplex and other
time complexity prediction datasets.

The CodeComplex dataset offers a meticulously
curated collection of algorithmic problems and cor-
responding Java and Python code submissions. It
serves as a foundation for accurately classifying
time complexities and problem-solving strategies.
Figure 2 demonstrates basic statistics of the codes
for the number of lines, functions, variables, depth
of code (DoC), and depth of iterations (Dol). More-
over, both Java and Python solutions displayed
comparable characteristics when considering the
depth of iterations, reflecting nested loops. How-

ever, a distinctive trait of Python code was its
abundance of variables, potentially attributed to
Python’s lack of explicit variable declaration re-
quirements. This inherent difference in variable
declaration mechanisms might contribute to the ob-
served discrepancy in variable counts between the
two languages within our dataset. Table 2 summa-
rizes the strengths of our dataset.

3.4 Dataset Overview

Various data We have collected the dataset to
include multiple problems upon various algorithm
categories. Each complexity class includes prob-
lems from dynamic programming, brute force, dy-
namic programming, divide and conquer, and much
more. The dataset provides the problem tags from
Codeforces, which the user can use to verify the
algorithm categories. Also, we can see in Figure 2,
that our dataset is not biased in the number of func-
tions or variables for a given complexity class. The
traditional models in Table 3 fail to verify the com-
plexity class from these features, which further
shows that the solution codes have an even distri-
bution among the complexity classes.

Balanced complexity classes One of the signifi-
cant strengths of our dataset is the careful balancing
of complexity classes. Balanced classes prevent
bias in the reasoning process of LLMs and enable
more accurate and generalized model performance
by providing a comprehensive learning experience
across all possible scenarios. However, in Tables 1,
the CoRCoD dataset exhibits imbalances among
the classes. In contrast, our dataset provides bal-
anced class data, ensuring an accurate and reliable
prediction result of LLM models.

Open access In previous research on benchmark-
ing the time complexity of code, it was observed
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that open data sources for code complexity predic-
tion are notably scarce, with CoRCoD being one of
the few available datasets. In contrast, our dataset
is an open-source resource, providing an accessible
and practical solution for researchers and practi-
tioners in the field.

Fully human generated and annotated dataset
The Codecomplex dataset is labeled manually by
three human annotators and all final decisions and
verifications are made by humans. Also, the source
codes are collected from the codes before LLMs be-
came present, which makes them free of machine-
generated codes.

Thorough validation During the process of code
complexity annotation, a thorough validation was
conducted. Three annotators annotated using struc-
tured guidelines and cross-validated each other’s
annotations and the reasoning process. Also, we
used ChatGPT as a failsafe precaution to validate
the labels. If the response from ChatGPT disagrees,
the annotators re-evaluated the code through edge
case validation.

4 Experiments

As a preliminary study on code complexity pre-
diction using a large-scale dataset, we conduct
experiments with well-known machine learning-
based solutions and LLMs. First, we try to repli-
cate the result by Sikka et al. (2020) by employ-
ing traditional models such as decision tree (DT),
random forest (RF), and support vector machine
(SVM). Second, we use pre-trained programming
language models (PLMs) such as CodeBERT (Feng
et al., 2020), GraphCodeBERT (Guo et al., 2021),
UniXcoder (Guo et al., 2022), PLBART (Ahmad
et al., 2021), CodeT5 (Wang et al., 2021), and
CodeT5+ (Wang et al., 2021). Note that we can
further categorize these models into two groups
where the first group (CodeBERT, GraphCode-
BERT, and UniXcoder) only uses encoder archi-
tecture, and the second group (PLBART, CodeT5,
and CodeT5+) exploits encoder-decoder architec-
ture. Finally, we test the dataset on closed-source
LLMs, ChatGPT3.5, ChatGPT4.0 (OpenAl, 2024),
Gemini Pro (Google, 2024), and test open source
LLMs Llama (Touvron et al., 2023), CodeGemma,
Gemmal and Gemma2 (Team et al., 2024),
Mistral-Nemo (Jiang et al., 2023), Qwen2 and
Qwen2.5 (Yang et al., 2024) from an instruction-
tuned and a fine-tuned version of our dataset.

4.1 Experimental Settings

We divide the CodeComplex into training and test
datasets by a 9 to 1 ratio for both Java and Python.
As aresult, the training and test datasets comprise
8,820 and 980 codes, respectively. Hyperparame-
ters and methods to fine-tune each model can be
found in section B.

4.2 Evaluation Metric

Hierarchy Complexity Score(HC-Score) To ef-
fectively evaluate the reasoning capabilities of
LLMs on our dataset, we propose a novel met-
ric called the Hierarchy Complexity Score (HC).
Traditional accuracy metrics treat all incorrect an-
swers equally. In contrast, the HC-Score is de-
signed for tasks with a clear hierarchy, such as
code time-complexity. It penalizes predictions in
proportion to their hierarchical distance from the
correct answer. The HC-Score is calculated with
the following formula:

N
1 pi — i
HC(P,R) = — 1l —
(P ) N;( Number of class ) ’

where N is the total number of samples, P =
P1,-..,pnN 1s the set of model predictions, R =
r1,...,rn 1s the set of correct answers (refer-
ences), and |p; — ;| is the hierarchical distance
between a prediction and the correct answer. For
example, think of a case of predicting a O(nlogn)
class as an O(n) class. We would give a score of
6/7 for this case, penalizing the 1 class near miss.

For more flexible evaluation, we can adapt this
metric by introducing a "scoring window," which
limits the penalty range. This Windowed HC-Score
(HC,,) assigns a score of zero to predictions that
fall outside a specified distance. Also, we can ex-
pand this metric by reducing the scoring window
of a single class. The formula is:

N
1 i —Ti
HC,(P,R) = N Zmam <0, 1— \pw7’|> ,
i=1

where w is the size of the scoring window. If the
distance |p; — ;| is greater than or equal to w, the
score for that instance becomes 0. Predictions that
closely approximate the correct result incur mini-
mal penalties, while those with substantial errors
are penalized more heavily. This nuanced scoring
system aims to provide a more precise assessment
of an LLM’s reasoning abilities by accounting for
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the complexity of the tasks at hand. Our contribu-
tion is the introduction of this refined evaluation
metric, which offers a discriminative and compre-
hensive tool for assessing model performance. The
HC-Scored metric facilitates a deeper understand-
ing of LLM capabilities, guiding further advance-
ments in the development of sophisticated language
models.

5 Results & Analysis

We present some selected interesting experimental
results and analysis for various scenarios in the
following Section. Full experimental results can be
found in the Appendix C due to the lack of space.

5.1 Comparison of Java and Python

Java and Python are both popular programming
languages, each with its unique features and char-
acteristics that influence code structures and devel-
opment practices. One key difference between Java
and Python is the syntax typing. Java has to de-
clare variables with their data types beforehand, but
Python variables can be assigned without explicit
type declarations.

Model Java Python

F1 HC HC;| F1 HC HC,
Decision Tree 444 823 56.1| 37.3 79.9 50.9
Random Forest 41.9 80.0 51.9| 40.0 80.3 52.6
SVM 243 719 39.1| 17.2 66.8 36.0
CodeBERT 77.3 90.9 80.2| 73.3 88.7 76.5
GraphCodeBERT | 85.5 94.1 87.4| 80.8 92.2 83.5
UniXcoder 86.5 94.6 88.2| 85.4 94.0 87.4
PLBART 85.3 94.3 87.1| 77.2 91.0 80.7
CodeT5 82.4 93.1 84.8| 75.5 89.9 79.1
CodeT5+ 85.8 94.6 88.0| 78.2 91.0 81.2
Gemini Pro 29.7 80.1 48.6| 33.4 80.2 51.8
ChatGPT 3.5 52.9 87.0 66.2 | 442 83.4 59.9
ChatGPT 4.0 60.6 90.0 72.7| 52.7 87.2 67.4

Table 3: Performance comparison between Java and
Python. Macro F1 score and HC scores are displayed.

UniXcoder was the best of the listed modes, and
even the wrong answers lie in a similar class which
is hard to distinguish. The HC scoring metric al-
ways boosts the score since it grants some score
to wrong predictions. However, we can see by the
HC score that LLMs are more affected than the
traditional and program language models. Since
LLMs try to reason parts of the codes and combine
those results into a whole answer, LLMs tend to
land closer to the correct answer if the parts are
analyzed correctly.

5.2 Effect of Code Length

Intuitively, it is natural to assume that the shorter
the code is, the easier it is to predict the complexity.
To confirm our assumption, we categorize codes
into four groups according to the number of tokens
of the codes. If a code has less than or equal to
128 tokens, then the code falls into the first group
(G1). If a code has more than 128 tokens and less
than or equal to 256 tokens, then it falls into the
second group (G2). The third group (G3) has codes
with more than 256 tokens and less than or equal to
512 tokens. Lastly, group G4 has the longest codes,
where each code has more than 512 tokens.

Figure 3 shows the experimental results on the
four groups. It is easy to see that the experimental
results confirm our assumption as the performance
gets worse as the code becomes longer. We can see
that the performance is quite similar in tendency
except group G4. PLMs tend to have limits to
their token size limiting their performance, how-
ever, the traditional methods rely on robust features
of longer codes leading to better performance.

5.3 Experiments with LLMs

To predict the code time complexity, we use Ope-
nAI’s ChatGPT (version 3.5 and 4.0) and Google’s
Gemini-Pro for closed-source LLMs? and use
the instruction-tuned versions of Gemma (9b and
27b), Llama3.1 (8B and 70B), Mistral-Nemo-2407
(12B), and Qwen2 (7B) for open-source LLMs.
The prompt used for the experiments is given in
Figure 5. The prompt specifies the role, the ques-
tion on time complexity, the output format, and
the answer choices. In summary of experimental
results with LLMs, the biggest model, ChatGPT4.0
and Llama3.1 70B excel for both the base and fine-
tuned versions. Also, we can see that ChatGPT4.0
has a high score on HC,, which indicates that Chat-
GPT4.0 was able to infer the time complexity to
a point, but failed in gathering information to con-
clude the correct complexity. We can see in Fig 4,
LLMs sometimes fail on the final step of inference,
which our HC scoring metric can capture. This is
especially the case between Qwen2 and Qwen2.5,
where Qwen2.5 is better on the F1 score but Qwen2
is better on the HC score. Our experiments show
that ChatGPT4.0 indeed has the best inference ca-
pabilities. One thing to note is that some models,
such as Gemma2 27B, are poor at analyzing time
complexity. This was due to the instruction-tuned

2Accessed on 2024/2/12 for all closed-source LLMs
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Figure 3: Classification performance of models for different length groups of codes.

LLM response example

"complexity": "linear", Here’s why: the main
logic of the code involves a binary search func-
tion, which has a time complexity of o(logn).
However, the binary search is called only once,
and the rest of the code runs in constant time.
Therefore, the overall time complexity is domi-
nated by the binary search, making it linear.

Figure 4: Wrong LLM response example.

models failing to output a response when if it could
not generate the desired output format. Gemma2
9B outputs the response ignoring the output for-
mat giving a better result than the 27B model. You
can also see more results with smaller models in
appendix C.

5.4 Qualitative Error Analysis

After investigating the common errors from exten-
sive experiments with many baseline models, we
find that the following problems are the root causes
of most error cases.

Unused boilerplate codes Codes can include
parts of codes that are irrelevant to the operation
of the code. This can be because of coding habits
or template codes for handy development. There
are cases where the writer puts in ascii art in the
comments. These methods add to the overall recog-

Method \ Acc  Fl HC HC, HCs
Gemini Pro | 34.0 316 80.2 502 63.1

ChatGPT 3.5 | 499 486 852 63.1 728

ChatGPT 4.0 | 569 56.7 88.6 70.1 784
CodeGemma-7B | 25.7 289 567 356 44.6
Gemma2-9B | 41.1 435 715 503 589
Gemma2-27B | 132 175 198 151 173
Gemmal.l-7B | 25.7 28.7 573 347 438
Llama3.2-3B | 22.9 22.8 606 33.1 434

Inst Llama3.1-8B | 30.0 284 738 434 56.6
Llama3.1-70B | 44.2 438 813 562 67.1
Mistral-12B | 42.3 443 732 535 619
Qwen2.5-7B | 342 399 57.8 429 493
Qwen2.5-14B | 4.0 7.2 6.6 4.9 5.5
Qwen2-7B | 33.6 319 77.1 489 61.0
CodeGemma-7B | 89.5 91.6 94.0 914 926
Gemma2-9B | 874 894 935 893 9l1.1
Gemma2-27B | 90.2 922 943 920 93.1
Gemmal.l-7B | 89.6 91.6 94.0 91.5 92.7

Fine- Llama3.2-3B | 88.2 894 949 91.1 9238
tuned Llama3.1-8B | 89.4 90.7 954 920 93.6
Llama3.1-70B | 929 94.1 96.0 942 95.0
Mistral-12B | 88.5 89.7 948 909 927
Qwen2.5-7B | 88.7 90.0 95.0 914 93.1
Qwen2.5-14B | 91.9 932 96.0 93.6 94.7
Qwen2-7B | 90.2 91.5 953 925 937

Table 4: Complexity prediction with accuracy, macro f1
score, and HC-Score for each LLM models

nition load of understanding the codebase and can
obscure the true flow of execution. Codes that in-
clude unused methods introduce noise, making it
harder for models to recognize the overall structure.

Logarithmic loops The most common errors are
from the logarithmic complexity class. Loops with
logarithmic sizes, such as those found in binary
search algorithms, can significantly affect the pre-
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diction of a code’s time complexity. These loops
have similar structures to normal linear loops, but
inside the loop, they have additional variables or
conditions that control the algorithm’s flow. Un-
like linear loops, this needs a thorough analysis of
all contributing factors, ensuring a comprehensive
understanding of the algorithm’s performance char-
acteristics. It seems like deep learning models lack
the power to determine the contributing factors and
figure out their meaning and impact.

Too much conciseness of Python Despite the
famous zen of Python, it offers various ways to
implement a loop such as classical for or while
loop, list comprehension, and even lambda func-
tion. While the usage of list comprehension and
lambda function makes Python codes much more
concise and leads to statistics as in Figure 2, it also
makes the complexity prediction task more chal-
lenging. The tendency is clearly seen especially
when compared to Java in Table 3.

6 Conclusions

We have presented CodeComplex, the first large-
scale, bilingual benchmark dataset designed to rig-
orously assess the reasoning abilities of LLLMs in
predicting the worst-case time complexity of pro-
grams. By providing a comprehensive and bal-
anced collection of Java and Python codes, along
with input-aware annotations and a novel Hier-
archy Complexity Score (HC-Score), our work
establishes a more nuanced foundation for eval-
uating model performance beyond simple accu-
racy. Our experiments with a wide range of mod-
els, from classical machine learning approaches
to state-of-the-art LLMs, demonstrate that while
current techniques show promise, a significant gap
remains in achieving reliable performance for prac-
tical use cases, underscoring the need for continued
research.

Looking ahead, we identify several key direc-
tions for future work to build upon this founda-
tion. First, exploring more advanced prompting
techniques is crucial. Leveraging methods like
Chain-of-Thought prompting could elicit stronger
zero-shot reasoning, moving models from pattern
matching to more deliberate, step-by-step analysis.
Second, to ensure models develop true algorith-
mic understanding, we propose conducting code
obfuscation tests. Assessing performance on func-
tionally identical but syntactically varied or inten-
tionally complex code would test the robustness

of models beyond familiar, memorized patterns.
Third, the task itself can be evolved from classifica-
tion to generation. Future work should investigate
open-ended complexity generation, where models
produce a symbolic expression (e.g., O(ny/m))
rather than selecting from a fixed set of classes.
This would represent a far more sophisticated level
of reasoning. Finally, the ability of models trained
on CodeComplex to generalize is paramount. We
suggest conducting transfer experiments by evalu-
ating these models on other benchmarks, such as
CoRCoD and problems from platforms like Geeks-
ForGeeks, to measure out-of-domain performance
gains and pave the way for more universally appli-
cable code reasoners. Pursuing these directions will
be essential in developing LL.Ms with the sophis-
ticated and reliable inference capabilities required
for the next generation of software development
tools.

7 Limitations

Although this study offers insights into enhanc-
ing LLM reasoning abilities in complex tasks such
as code time complexity prediction tasks, future
research should address the following limitations.
First, problem descriptions should be provided as
part of the input for the completeness of the spec-
ification. As shown in examples in Section 3.1, it
is necessary to consider problem specification to
determine the intended time complexity of the prob-
lem, which will apply to most of the solution codes
for the problem. Second, we need to deal with the
unintended biases towards problem-specific infor-
mation rather than implementation details learned
due to the characteristics of our dataset. Finally, to
fully address the inference capabilities of LLMs,
we could use methods such as chain of thought
prompting or tree of thought prompting to handle
cases such as Fig 4 and give us more robust results.
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Note: the following appendices are in one-column format due to heavy code examples.

A Overview on CodeComplex Dataset

Our dataset construction process owes much to the recently released dataset called the CodeContests?,
a competitive programming dataset for machine learning by DeepMind. We constructed a dataset with
the codes from the CodeContests dataset that are again sourced from the coding competition platform
Codeforces. Our dataset contains 9,800 codes in seven complexity classes, where there are new 500 Java
and Python source codes annotated with each complexity class. The seven complexity classes are constant
(O(1)), linear (O(n)), quadratic (O(n?)), cubic (O(n3)), O(Inn), O(nInn), and exponential. We also
re-use 317 Java codes from CoRCoD as we confirmed that they also belong to the CodeContests dataset.

For constructing the dataset, we asked three human annotators who have more than five years of
programming experience and algorithmic expertise to inspect the codes manually and classify them into
one of the seven complexity classes. Once each human annotator reported the initial result, we collected
the annotation results and inspected them once again by assigning the initial result to two different
annotators other than the initial annotator. Finally, we have collected 9,800 complexity annotated codes of
which there are 500 codes for each complexity class in both languages.

First, we selected several problems that are expected to belong to one of the considered complexity
classes and submitted codes for the problems from Codeforces. The submitted codes contain both correct
and incorrect solutions, and they are implemented in various programming languages such as C, C++,
Java, and Python. We sorted out only the correct Java codes for our dataset construction.

In the second step, before delving into the time complexity of problems, we divide the problems by
the problem-solving strategy such as sorting, DP (dynamic programming), divide-and-conquer, DFS
(depth-first search), BFS (breadth-first search), A*, and so on. This is because it is helpful to know the
type of problem-solving strategy used to solve the problem for human annotators to analyze the time
complexity, and problems solved by the same strategy tend to have similar time complexity.

Third, we uniformly assign problems and correct codes for the problems to human annotators and let
them carefully examine the problem-code pairs to label the time complexity of the codes.

Notice that there can be solutions with different time complexities for a problem depending on how to
actually implement the solutions.

We, therefore, provide a specific guideline that contains instructions and precautions to annotators so
that human annotators can assign correct and consistent labels to the assigned codes.

After the initial annotation process, we collect the results and assign them to different annotators to
carefully cross-check the correctness of the initial annotation results. Primarily, we instruct the annotators
again to carefully verify the results in accordance with the precautions provided in the annotation guideline.

A.1 Further Details on CodeComplex Dataset Construction

We gathered 128,000,000 submissions of Codeforces, where 4,086,507 codes are implemented in Java
language. After discarding the incorrect codes (that do not pass all the test cases), there are 2,034,925
codes and 7,843 problems. Then the problems are split with their tags (e.g. sorting, dfs, greedy, etc) and
given to the annotators with the guidelines in Section A.2. We were able to gather around 500 problems
and 15,000 codes for the seven complexity classes.

As the complexity of codes for the same problem can vary depending on the implemented algorithms,
it is obvious that the codes we inspect also have various complexity classes. However, we only target
seven complexity classes that are the most frequently used complexity classes for algorithmic problems.
Accordingly, there were some codes we inspected which belong to other complexity classes such as
O(n®) or O(Inlnn). We inspected around 800 problems and found out that the complexity classes of
approximately 15 of the problems belong outside the chosen complexity classes. Although it is still
possible that one might implement codes with complexity class that falls into the seven complexity classes,
we simply rule out the problems from our dataset to ease the annotation process.

Shttps://github.com/deepmind/code_contests
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During this process, we found out that many codes are not optimal for the given problem and some
codes are too difficult to analyze due to their complex code structure. Moreover, there are many codes
with a number of methods that are never used, mainly because the codes come from a coding competition
platform and participants prefer just to include the methods that are frequently used in problem-solving
regardless of the actual usage of the methods.

In the section below, we share the detailed guidelines provided to human annotators for a consistent
and accurate annotation process.

A.2 Guideline of Production
Annotator Guideline

1. Check the variables that are described in the algorithm problems. Each algorithm implemen-
tation can have many variable instances and we only consider the variables that are given as
inputs from the problems for calculating the time complexity.

* For convenience, we use n and m in the guideline to denote the input variable and |n| and |m)|
to denote the size of n and m.

2. Considering the input variable from the prior step, follow the below instructions for each input
type and calculate the time complexity.

(a) When only a number n is given as an input, calculate the time complexity proportional to
n. Do the same thing when there are two or more variables. For instance, when only n is
given as an input, the variable used to denote the time complexity of a code is n.

(b) When a number n and m numeric instances are given as inputs, calculate the time com-
plexity proportional to the one with higher complexity. For instance, when m = n?2,
we compute the complexity of a code with m. If the implemented algorithm runs in

O(n?) = O(m), it belongs to the linear complexity class.

(c) If the input is given as constant values, the complexity of a given code also belongs to
the constant class. For instance, if an algorithm problem states that exactly 3 numeric
values are given as inputs, the solution code only uses the constant number of operations.
Therefore, the code belongs to the constant class.

3. Consider the case where the code utilizes the input constraints of the problem. When the input
is given by n < a, the code can use the fixed value a in the problem instead of using n. Mark
these codes as unsuitable.

4. Consider the built-in library that the implemented algorithm is using (e.g. HashMap, sort, etc.)
to calculate the time complexity of an entire code. For instance, given n numeric instances as
inputs, when an implemented algorithm uses O(n) iterations of built-in sort algorithm for n
numeric instances, the time complexity for the algorithm is O(n? Inn).

5. When the code has unreachable codes, only consider the reachable code.

6. Mark the item that does not belong to any of the 7 complexity classes.
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A.3 Statistics of CodeComplex

Table 5 shows basic statistics in numbers of our CodeComplex dataset. Each property is extracted using
the abstract syntax tree of each language.

Property | O(1) O(n) O(n?) | O3 | O(nn) |O(nlnn) |exponential| Total
Ja. Py| Ja Py| Ja Py| Ja Py| Ja Py| Ja Py| Ja Py| Ja Py

#Problems | 38 50| 94 104| 12 16| 41 46| 10 22| 60 63| 23 36| 269 277
#Lines 31.7 19.7(60.9 29.3|72.7 36.6|82.3 48.3/66.0 22.2|59.4 30.7|85.6 43.6/64.5 31.9
#Functions| 2.6 13| 45 17| 59 20| 6.0 34| 60 13| 47 16| 6.0 26| 5.0 19
#Variables | 5.3 9.7|12.2 15.5|15.2 18.6/19.4 243|11.2 12.3|11.6 16.0|/19.4 24.5|13.2 16.7
DoC 5.7 1.5]10.2 25(122 34|13.6 42| 94 23| 85 26(142 35104 2.8
Dol 06 05|27 10| 40 10| 55 1.0/ 1.8 08| 24 09| 56 09| 3.1 09

Table 5: Statistics of codes from CodeComplex dataset. There are two values in each cell where the first value is
about the Java codes and the second value is aboitemizeut the Python codes.

B Experiment Details for each Model

Hyperparameters For all pre-trained programming language models, we use the AdamW (Loshchilov
and Hutter, 2019) optimizer with a warmup linear scheduler. The learning rate was set to 2e-6, epsilon
to 1le-8, and the weight decay to le-2. We applied either the AutoTokenizer or the RobertaTokenizer.
The models were fine-tuned for 15 epochs before using them for evaluation. For open-source LLMs, we
used QLoRA and FSDP to train and test the models. We used a AdamW optimizer with a warmup linear
scheduler. The learning rate was set to 2e-5, and used flash attention for training. The LoRA alpha and r
values were both set to 16, with a dropout of 0.05. The quantization was set to 4 bits. We applied the
basic AutoTokenizer and the basic chat template from the LLM model. Prompting was done in a similar
manner to Fig 5, where it includes system messages to give a coding expert role if the LLM supports a
system role. Otherwise, it is given as the header of the user message.

Prompt example

You are a world expert in investigating properties of a code that influences the time complexity.

The given code: "[code]"

Print "ONLY the time complexity in ONE WORD" of the given code in the answer from np, logn,
quadratic, constant, cubic, linear and nlogn, do not print any other words in a json format.

Figure 5: LLM prompt examples used in our experiments.

C Full Experimental Results

C.1 Performance Per Complexity Class

We analyzed the results with responses that could be recognized as one of the seven classes. We can see
in Table 6, Table 7 and Table 12, that the constant class and linear class are the most accurate among the
classes. The direct correlation between the input size and the number of iterations makes these classes
easy to analyze. However, models still face challenges in predicting the complexity of self-referential
algorithms and control flows that are not in the main part of the algorithm, such as predicting between
the O(nlogn) class and O(n?) class. Failing to analyze loop controls leads to failing to differentiate the
O(nlogn) case from O(n?). This is well seen in the confusion matrix in Section E, where we can see
many wrong predictions are between classes O(n), O(nlogn), and O(n?).
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Method | O(1) O(Inn) O(n) O(nlnn) O(R?) O(n®) exponential | Micro Macro

Decision Tree 64.4 55.9 15.2 65.2 68.8 32.9 34.4 48.6 48.1
Random Forest 66.2 57.7 28.2 68.6 60.2 36.0 62.6 439 542
SVM 49.7 40.0 65.1 42.7 74.6 23.5 18.0 28.1 44.8
CodeBERT 86.1 60.9 68.1 18.8 33.6 73.1 84.8 60.5 59.4
GraphCodeBERT | 88.7 53.5 51.9 28.9 38.8 78.1 85.5 60.4  60.0
UniXCoder 83.1 54.8 54.1 15.9 33.9 76.9 88.1 57.7 56.6
PLBART 86.6 52.7 61.9 34.8 36.4 76.2 88.1 52.1 61.9
CodeT5 81.8 437 69.4 40.7 33.9 72.0 85.6 60.7 60.3
CodeT5+ 90.7 50.8 64.2 14.1 27.0 74.9 86.8 58.0 56.1
ChatGPT 3.5 54.0 55.8 74.1 28.0 67.7 79.8 85.73 436 35.6
ChatGPT 4.0 64.2 434 70.9 72.8 56.2 67.2 42.2 548 457
Gemini Pro 33.2 154 594 7.1 72.4 8.1 194 30.1 214

Table 6: Complexity prediction accuracy of classification methods for each complexity class on Java.

Method | O(1) O(lnn) O(n) O(nlnn) O(n®) O(n®) exponential | Micro Macro
Decision Tree 45.0 39.8 37.0 62.4 42.1 65.8 6.6 38.8 427
Random Forest 529 534 44.8 63.4 42.0 69.4 18.5 40.8  49.2
SVM 43.1 253 78.6 52.1 14.0 20.7 13.7 236 354
CodeBERT 68.0 66.1 31.7 46.9 40.6 63.8 25.6 512 492
GraphCodeBERT | 68.5 56.9 61.9 514 56.8 68.1 34.8 581 573
UniXCoder 63.0 59.8 51.7 504 51.0 63.8 36.9 550 544
PLBART 72.1 62.3 51.9 46.3 48.5 59.3 2422 540 524
CodeT5 68.9 47.1 44.5 41.4 43.6 51.8 38.3 489 484
CodeT5+ 65.9 54.9 589 234 40.3 66.3 24.6 498 477
ChatGPT 3.5 44.4 46.4 83.0 12.3 60.6 29.8 19.6 418 356
ChatGPT 4.0 54.7 33.0 80.0 39.6 61.4 78.3 342 51.7 419
Gemini Pro 359 19.5 72.0 8.4 61.3 23.2 16.6 35.1 28.5

Table 7: Complexity prediction accuracy of classification methods for each complexity class on Python.

Method | O(1) O(lan) O(n) O(nlnn) O(n®) O(n®) exponential | Micro Macro
CodeGemma-7B | 85.9 85.5 76.5 72.6 83.5 86.8 90.2 2577 244
Gemma2-9B | 86.7 91.5 78.5 84.8 81.9 87.0 82.6 41.1  36.1
Gemma2-27B | 81.0 90.7 84.8 84.2 85.8 86.9 90.3 13.2 13.6
Gemmal.1-2B | 79.9 89.2 74.3 84.1 60.1 86.9 61.8 12.8 9.1
Gemmal.1-7B | 83.7 90.6 76.9 76.1 82.1 85.6 80.7 257 233
Llama3.1-8B | 83.7 90.3 58.5 78.4 79.1 87.9 89.7 30.0 234
Inst Llama3.1-70B | 87.3 90.4 69.7 75.5 86.1 90.0 92.2 44.2  36.6
Llama3.2-1B | 79.2 89.4 78.8 824 83.6 86.7 75.1 8.2 9.2
Llama3.2-3B | 84.4 89.5 78.4 82.9 56.7 87.0 82.2 22.9 17.8
Mistral-12B | 88.6 91.1 76.1 88.5 78.3 88.6 83.0 423  36.6
Qwen2.5-1.5B | 80.0 90.0 824 84.1 86.3 86.8 85.3 1.4 22
Qwen2.5-7B | 85.3 91.9 79.3 84.6 80.9 87.1 91.5 342 341
Qwen2.5-14B | 80.2 90.6 82.7 84.4 85.7 86.7 89.2 4.0 6.5
Qwen2-7B | 89.1 91.3 76.0 84.1 51.9 88.2 90.9 33.6 257
CodeGemma-7B | 97.9 97.7 96.2 96.8 97.8 98.4 98.8 89.5 80.1
Gemma2-9B | 97.0 97.7 95.0 96.8 96.5 98.1 98.2 874 782
Gemma2-27B | 97.8 98.2 96.3 97.1 98.1 98.3 99.1 90.2  80.8
Gemmal.1-2B | 96.9 97.3 94.6 94.5 94.6 97.2 98.4 84.6  75.7
Gemmal.1-7B | 98.3 98.1 96.1 96.9 97.3 98.2 98.8 89.6  80.1
Llama3.1-8B | 98.1 98.4 95.1 96.1 96.8 98.5 98.6 894 794
Fine- Llama3.1-70B | 98.4 99.0 97.6 97.9 97.8 99.0 99.0 929 824
tuned Llama3.2-1B | 96.4 97.6 91.4 94.5 95.1 97.9 97.9 839 748
Llama3.2-3B | 97.4 97.9 93.7 95.8 97.3 98.5 98.5 88.2 785
Mistral-12B | 97.6 98.3 93.7 96.1 96.9 98.6 98.7 885 788
Qwen2.5-1.5B | 98.2 97.9 94.8 95.3 96.5 98.6 98.7 88.6 787
Qwen2.5-7B | 98.3 98.2 94.8 95.3 96.3 98.9 98.7 88.7 789
Qwen2.5-14B | 98.5 98.2 96.6 97.8 97.9 99.1 98.7 919 815
Qwen2-7B | 98.1 98.0 95.4 96.3 98.1 98.7 98.7 90.2  80.1

Table 8: Complexity prediction accuracy of classification methods for each complexity class on open source LLMs.
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Method Gl G2 G3 G4 | G1 G2 G3 G4
Java Python
Decision Tree 572 456 40.0 382|572 456 40.0 382
Random Forest 623 468 40.6 264 | 623 46.8 40.6 264
SVM 489 18.1 18.1 166|489 18.1 18.1 16.6
CodeBERT 724 628 60.7 48.0 | 569 469 375 228
GraphCodeBERT | 74.6 61.7 49.8 394 | 60.3 57.8 44.1 30.8
UniXCoder 58.6 544 432 312 |58.6 544 432 31.2
PLBART 743 651 625 528 | 60.6 494 399 232
CodeT5 69.5 56.5 524 424|536 481 365 195
CodeT5+ 72.8 635 530 444|564 424 307 29.8

Table 9: Prediction performance on different code length groups.

Model w/o Desc. with Desc.
Ja Py Ja Py

ChatGPT 3.5 | 43.38 43.14 | 42.51 36.55

ChatGPT 4.0 | 5542 51.57 | 57.61 54.28

Table 10: Complexity prediction performances of LLMs with and without a problem description in the prompt by
the help of information retrieval.

C.2 Does Problem Description Help?

A critical aspect in accurately determining the worst-case time complexity of a given code is the com-
prehensive understanding of the problem specifications. In certain instances, these specifications may
indicate that some inputs are constant, significantly influencing the complexity analysis. The absence of a
full and detailed specification can lead to an incomplete or incorrect assessment of the worst-case time
complexity.

Table 10 shows that problem descriptions actually help LLMs perform better as ChatGPT 4.0 is known
to have real-time access to the information on the web. Note that the performance becomes worse for
ChatGPT 3.5 when problem IDs are provided, as ChatGPT 3.5 does not utilize the problem descriptions,
only from problem IDs.

C.3 Effect of Dead Code Elimination

Table 11 shows the effect of dead code elimination on prediction performance. Given the nature of codes
submitted to competitive programming platforms, there are a lot of redundant variables, methods and even
classes in the codes. Due to Java’s complicated 10 functions and limited built-in data structures, there are
many codes related to the implementation of 10 and data structures. Removing such fragments helps the
models concentrate on the program structure and results in enhanced prediction accuracy. On the other
hand, it appears that the dead code elimination does not help improve the performance on Python as the
Python codes are already more concise than the Java codes due to its own language design principle.

19632



Model After Before
Ja Py Ja Py
Decision Tree 48.6 388 | 476 21.1
Random Forest 439 40.8 | 43.2 230
SVM 28.1 23.6 | 27.1 215
CodeBERT 60.5 51.2 1597 520
GraphCodeBERT | 60.4 58.1 | 57.8 60.2
UniXcoder 577 550|572 553
PLBART 62.1 540 1| 612 554
CodeT5 60.7 489 | 60.2 49.8
CodeT5+ 58.0 498 | 574 50.0
ChatGPT 3.5 541 454 | 53.8 46.16
ChatGPT 4.0 599 537 | 59.7 53.8
Gemini Pro 324 351 | 340 335

Table 11: Performance comparison before and after dead code processing.

D Failure Cases

public class mad {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int cura = @, curb = 0;
int ver;
System.out.println("? @ 0");
System.out.flush();
ver = sc.nextInt();
for (int i = 29; i >=0; i--) {
System.out.println("? " + (cura + (1 << i)) + " " + curb);
System.out.flush();
int templ = sc.nextInt();
System.out.println("? " + cura + " " + (curb + (1 << i)));
System.out.flush();
int temp2 = sc.nextInt();
if (templ != temp2) {
if (temp2 == 1) {
cura += (1 << i);
curb += (1 << i);

3
} else {
if (ver == 1) cura += (1 << i);
if (ver == -1) curb += (1 << i);
ver = templ;
}
}
System.out.println(”! " + cura + " " + curb);

The following example exhibits a failure example where our model predicts O(2") for a code with
O(Inn) complexity. We suspect that the primary reason is the usage of bitwise operators. When we filter
the codes that use any bitwise operator at least once from our CodeComplex dataset, about 56 of the codes
belong to the class O(2"). We find that many implementations for exponential problems rely on bitwise
operators as they can efficiently manage the backtracking process by manipulating bit-level flags.

The following example demonstrates the case when our model predicts constant time complexity O(1)
for a code that runs in O(n) time. We suspect that our model may have ignored the existence of the check
method which actually determines the O(n) time complexity or considered the argument of check as
constant.
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Method Acc F1 HC HCy HC3

Gemini Pro | 34.0 31.6 80.2 502 63.1
ChatGPT 3.5 | 499 48.6 852 63.1 728
ChatGPT 4.0 | 56.9 56.7 88.6 70.1 784

CodeGemma-7B | 25.7 28.9 56.7 356 44.6
Gemma2-9B | 41.1 435 71.5 50.3 589
Gemma2-27B | 13.2 175 19.8 151 17.3
Gemmal.1-2B | 12.8 10.5 535 22.6 327
Gemmal.1-7B | 25.7 287 573 347 438
Llama3.2-1B | 82 11.1 244 120 159
Llama3.2-3B | 22.9 228 60.6 33.1 434
Llama3.1-8B | 30.0 284 73.8 434 56.6
Llama3.1-70B | 44.2 43.8 813 56.2 67.1
Mistral-12B | 42.3 443 732 535 619
Qwen2.5-15B | 14 20 46 22 29
Qwen2.5-7B | 342 399 578 429 493
Qwen2.5-14B | 40 72 66 49 55
Qwen2-7B | 33.6 319 77.1 489 61.0

CodeGemma-7B | 89.5 91.6 940 914 926
Gemma2-9B | 874 894 935 893 O91.1
Gemma2-27B | 90.2 922 943 920 93.1
Gemmal.l-2B | 84.6 86.5 92.7 88.0 90.0
Gemmal.1-7B | 89.6 91.6 94.0 915 927
Llama3.2-1B | 83.9 852 932 87.1 §89.8

Fine- Llama3.2-3B | 88.2 894 949 91.1 0928
tuned Llama3.1-8B | 89.4 90.7 954 920 93.6
Llama3.1-70B | 92.9 94.1 96.0 94.2 95.0
Mistral-12B | 88.5 89.7 948 909 927
Qwen2.5-1.5B | 88.6 89.8 952 91.6 933
Qwen2.5-7B | 88.7 90.0 95.0 914 93.1
Qwen2.5-14B | 919 932 96.0 93.6 94.7
Qwen2-7B | 90.2 91.5 953 925 93.7

Inst

Table 12: Complexity prediction with accuracy, macro f1 score, and HC-Score for each LLM models

public class abc {
public static int check(StringBuilder s) {
int countRemove = 0;
if (!s.toString().contains(”"xxx")) return countRemove;

else {
for (int i = 1; i < s.length() - 1; i++) {
if (s.charAt(i - 1) == 'x' && s.charAt(i) == 'x' && s.charAt(i + 1) == 'x') {
countRemove++;
3
}

return countRemove;

3

public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
String s = sc.next();
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StringBuilder sb = new StringBuilder("");
sb.append(s);
System.out.println(check(sb));

The following is the case where our model predicts the quadratic time complexity O(n?) when the
ground-truth label is O(n Inn). We guess that our model simply translates the nested for loops into the
quadratic time complexity. However, the outer loop is to repeat each test case and therefore should be
ignored. Then, the O(n Inn) complexity can be determined by the sort function used right before the
nested loops.

public class round111A {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] coins = new int[n];
for (int i = @; i < n; ++i) coins[i] = sc.nextInt();
Arrays.sort(coins);
int ans = (int) 1e9;
for (int i = 1; i <= n; ++i) {
int suml = 0;
int ¢ = 0;
int j = n - 1;
for (j =n-1; j>08&&c<1i; —-j, ++tc) {
suml += coins[j];
}
int sum2 = 0;
for (int k = @; k <= j; ++k) sum2 += coins[k];
if (suml > sum2) {
System.out.println(i);
return;

The following is the case when our model is confused with exponential complexity O(2") with quadratic
complexity O(n?). The code actually runs in exponential time in the worst-case but our model simply
returns quadratic time complexity as it does not take into account the recursive nature of the method
solve.

~

public class D {
static int n, KA, A;
static int[] b;
static int[] 1;
static double ans = 0;

public static void main(String[] args) throws IOException {

Scanner in = new Scanner(System.in);

n = in.nextInt();

KA = in.nextInt();

A = in.nextInt();

b = new int[n];

1 = new int[n];

for (int i = 0; i < 1l.length; i++) {

b[i] = in.nextInt();

1[i] = in.nextInt();
}
dp = new double[n + 2][n + 2][n * 9999 + 2];
go(0, KA);

System.out.printf("%.6f\n", ans);

19635



public static void go(int at, int k) {

if (at == n) {
ans = Math.max(ans, solve(0, 0, 0));
return;

}

for (int i = 0; i <= k; i++) {
if (1[at] + i * 10 <= 100) {
1[at] += i * 10,
go(at + 1, k - i);
1[at] -= i * 10,

3
static double dp[JI[1[];

public static double solve(int at, int ok, int B) {
if (at == n) {
if (ock >n / 2) {
return 1;
} else {
return (A * 1.0) / (A * 1.0 + B);
}
3
double ret = ((1l[at]) / 100.0) * solve(at + 1, ok + 1, B) + (1.0 - ((1l[at]) / 100.0)) *
— solve(at + 1, ok, B + b[at]);
return ret;

The following is the case when our model predicts O(Inn) for a code with O(n?) complexity. It is
easily seen that the inversions function determines the quadratic time complexity by the nested for
loops. We suspect that somehow our model does not take into account the inversions function in the
complexity prediction and instead focuses on the modulo () operator to draw the wrong conclusion that
the complexity is in O(Inn).

public class maestro {
public static long inversions(long[] arr) {
long x = 0;
int n = arr.length;
for (int i =n-2; i >=0; i--) {
for (int j =1+ 1; j <n; j+t) {
if (arr[i] > arr[jl) {
X+t
3
}
}

return x;

}

public static void main(String[] args) {

Scanner sc = new Scanner(System.in);

int n = sc.nextInt();

long[] arr = new long[n];

for (int i = @; i < n; i++) arr[i] = sc.nextLong();

long m = sc.nextlLong();

long x = inversions(arr) % 2;

for (int i = 0; i <m; i++) {
int 1 = sc.nextInt() - 1;
int r = sc.nextInt() - 1;
if (r-1+1)%4>1)x=(x+1)%2;
if (x == 1) System.out.println("odd");
else System.out.println("even");
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E Confusion Matrices for Models

This appendix provides a detailed visualization of model performance through a series of confusion
matrices, offering a granular view of classification accuracy and error patterns for each of the seven
complexity classes. Each figure presents a side-by-side comparison of a model’s prediction results on
the Java (left) and Python (right) datasets. The figures illustrate the performance of various models, with
Figure 6 showing results for CodeBERT, Figure 7 for GraphCodeBERT, Figure 8 for PLBART, Figure 9
for UniXcoder, and Figure 10 for CodeT5+. These matrices map the true complexity labels against the
labels predicted by the models. A common pattern revealed across these figures is the models’ tendency to
confuse hierarchically adjacent classes, such as mistaking O(nlogn) for O(n) or O(n?). This is visually
evident in the heatmaps where significant numbers of misclassifications cluster around the main diagonal,

underscoring the subtleties of the prediction task.

68 21 8 2
154 38 4 2
50 57 97 53

28 86 25

True label

28 284 153 143
35 120 51 168

23 6 10

c logn n nlogn n?
Predicted label

600

500

400

300

True label

200

100

50 137 16 28

252 212 162 1 12

58 2187 90
21 7 153 B o0

27 0 191 59
18 0 49 86 171

77 6 106 36 109

¢ logn n nlogn n?
Predicted label

n3

NP-h

500

400

300

200

100

Figure 6: Confusion matrices of prediction results by CodeBERT on Java (left) and Python (right) datasets.
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Figure 7: Confusion matrices of prediction results by GraphCodeBERT on Java (left) and Python (right) datasets.
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Figure 8: Confusion matrices of prediction results by PLBART on Java (left) and Python (right) datasets.
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Figure 9: Confusion matrices of prediction results by UniXcoder on Java (left) and Python (right) datasets.
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Figure 10: Confusion matrices of prediction results by CodeT5+ on Java (left) and Python (right) datasets.
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