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Abstract

We study how large language models (LLMs)
reason about memorized knowledge through
simple binary relations such as equality (=),
inequality (<), and inclusion (<). Unlike
in-context reasoning, the axioms (e.g., a <
b,b < c¢) are only seen during training and
not provided in the task prompt (e.g., evaluat-
ing a < c¢). The tasks require one or more
reasoning steps, and data aggregation from
one or more sources, showing performance
change with task complexity. We introduce
a lightweight technique, out-of-context repre-
sentation learning, which trains only new to-
ken embeddings on axioms and evaluates them
on unseen tasks. Across reflexivity, symmetry,
and transitivity tests, LLMs mostly perform
statistically significant better than chance, mak-
ing the correct answer extractable when testing
multiple phrasing variations, but still fall short
of consistent reasoning on every single query.
Analysis shows that the learned embeddings
are organized in structured ways, suggesting
real relational understanding. Surprisingly, it
also indicates that the core reasoning happens
during the training, not inference.

1 Introduction

A large number of works have investigated
the reasoning capabilities of Large Language
Models (LLM), spanning from math (Frieder
et al., 2023), logic (Kojima et al., 2023; Pan
et al., 2023), planning (Guan et al., 2023; Lin
et al., 2024; Valmeekam et al., 2024), and, more
recently, multi-agent problem solving (Li et al.,
2024a). The empirical evidence suggests that
the larger a model and its associated training
data, the more capable the LLM is at handling
unseen problems (Brown et al., 2020; Kaplan
et al.,, 2020). Complex problem-solving relies
on the capabilities of a model to decompose a
problem into its sub-components and, similarly to
a puzzle, provide the correct answer by integrating

the solutions from each sub-task. This principle,
known as compositionality (Dziri et al., 2023),
relies on the assumption that LLMs possess a core
set of capabilities to solve each sub-task with
low error probability. Most existing benchmarks
focus on in-context reasoning, where the necessary
information is explicitly provided within the
prompt (McCoy et al., 2023). This approach offers
insights into how models process information
presented at inference time. Yet, in-context
learning does not assess the ability of LLMs to
reason out-of-context, i.e., based on memorised
knowledge encountered only during training and
that does not appear in the prompt.

While several works have explored out-of-
context learning (Allen-Zhu and Li, 2023a; Hu
et al., 2024; Zhu et al., 2024), they primarily focus
on complex/high-order tasks, making it hard to
identify the reasons behind a model’s success or
failure. The most closely related work to ours
is (Berglund et al., 2023), where the authors
explored LLMs’ difficulty with reversal relations,
summarised by its title "LLMs trained on ‘A
is B’ fail to learn ‘B is A’". The verb “is” can
be interpreted as a binary relation or as a verb,
introducing a confounder that makes it complex to
judge whether a model captures the core properties
of transitivity. While in logic, “A is B” implies
“B is A”, from a linguistic perspective, “Students
are Humans” poses some issues in deriving that
"Humans are Students”, and it is thus hard to
impute a model’s failure to its inability to handle
symmetry properly. In addition, they tested
whether a model generates A given B, instead
of whether “B is A” evaluates true, implicitly
assuming that only high-probability predictions are
those that a model considers correct. Figure 1 (left)
illustrates this issue. We are not aware of works
that tested LLMs on other binary relations (beyond
’is’) or other properties (beyond symmetry).
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Figure 1: Left: an example of a binary relation that a model would learn without issues (top). On the other hand,
both the examples at the bottom raise issues in terms of the acceptability of the answer (which nonetheless would
follow from an axiomatic system). Right: our solution encompasses all three cases without falling into the biases of

existing representations.

Motivated by this gap in the current litera-
ture, we study how well LLMs handle binary
relations, a core concept in math that appears
frequently in most problems LLMs excel at
solving when provided with sufficient in-context
information (Ahn et al., 2024; Li et al., 2024b; Hu
et al., 2025).

Our research aims to ground the extent to which
LLMs can reason out-of-context, specifically
focusing on logical, relational reasoning. As
sketched in Figure 1, we propose an out-of-context
representation learning technique that introduces
new tokens into a model’s vocabulary and trains
only their representations while leaving the other
parameters unchanged. By training only the
representation of unseen tokens, out-of-context
representation learning allows us to (1) understand
what reasoning capabilities are present in a model
and (2) without relying on external guidance,
e.g., in-context learning and/or illustrations (Wei
et al., 2022; Kojima et al., 2023). It also makes
analysing the learned parameters much easier.
For the rest of the paper, we will refer to our
technique as out-of-context representation learning,
while (whole model) fine-tuning, which trains
the entire model and is also called out-of-context
learning, will be referred to as fine-tuning, to avoid
confusion. Our experiments assess the models
capabilities on binary relations and their basic
properties, such as reflexivity, symmetry, and
transitivity.

In summary, in this paper, we:

* Assess the LLMs’ capabilities to reason on
binary relations by inferring missing pairs.

* Show that our technique is a more principled
approach than in-context learning and fine-
tuning, as it does not modify the model’s pa-

rameters or provide additional information in
the input prompt.

* Analyse the learned representations, show-
ing that LLMs can encode useful information,
such as encoding the embeddings of order re-
lation arranged on an axis, similar to numbers.

The following sections review the current literature
and formally introduce the binary relations and
properties that we test.

2 Related Work

Several papers have explored out-of-context learn-
ing in LLMs. For example, (Allen-Zhu and Li,
2023a) trained GPT-2 in synthetic biographies and
then tested its ability to answer fine-tuning ques-
tions about specified details. The model performed
well after fine-tuning on such questions for biogra-
phies not included in the test set. (Allen-Zhu and
Li, 2023b) advanced this approach by testing ques-
tions requiring reasoning, such as determining if
someone was born in an even year. While the
model performed well on simple tasks (e.g., even or
odd birth years) after some fine-tuning, it struggled
with more complex questions requiring operations
like comparison or subtraction, performing only
marginally better than random guessing regardless
of fine-tuning. (Hu et al., 2024; Zhu et al., 2024)
tested similar capabilities and reported poorer re-
sults, potentially due to a lack of fine-tuning or
paraphrasing in the training data. (Treutlein et al.,
2024) investigated whether LL.Ms could make in-
ferences from information spread across distinct
training data, concluding that LLMs can some-
times actually perform better when fine-tuned than
with in-context reasoning. Berglund et al. (2023)
explored LLMs’ difficulty with reversal relations,
summarised by its title “LLLMs trained on A is B
fail to learn B is A”. Recent works explain this phe-
nomenon as an intrinsic limitation of Transformers
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architectures at maintaining consistent relation be-
tween the subject and the predicted object (Wang
and Sun, 2025). Similar findings are reported in
the previously mentioned paper (Allen-Zhu and
Li, 2023b). Somewhat differently, but taking a
more formal approach, (Mruthyunjaya et al., 2023)
evaluates the capability of LLMs to replicate well-
defined properties such as symmetry on relevant
data (e.g., if a model knows that Barack Obama
is married to Michelle Obama, does it know that
Michelle Obama is married to Barack Obama?).
However, they do not train the model on new, syn-
thetic data, and it may well be that both directions
exist in the training data. More papers took simi-
lar approaches, mainly with multi-hop reasoning
(Yang et al., 2024; Yanaka et al., 2021; Welbl et al.,
2018; Yang et al., 2018).

3 Methodology

This section introduces the basic notation to de-
scribe a binary relation and an LLM. We then
describe out-of-context representation training
methodology and how it differs from standard fine-
tuning and in-context learning. We conclude the
section with a brief overview of the dataset format.

Binary relation. We focus on three binary rela-
tions, namely equality (=), inequality (<), and in-
clusion (c). Each binary relation satisfies/violates
several properties that are the object of our study,
for example, reflexivity, symmetry, and transitiv-
ity, as well as other properties such as irreflexivity.
For a finite set of elements F, the Cartesian prod-
uct I/ X E identifies ordered pairs that satisfy a
particular relation R.!

Consider, for example, equality and the set
of natural numbers N. For any ej,es, ez € N,
e1 = eg implies that ey = e; (symmetry); it
also holds that e; = e (reflexivity); finally e; =
e2 A eg = e3 = e = ez (transitivity). On
the other hand, < preserves transitivity but ful-
fills irreflexivity and asymmetry, with the relation
e] < ey Aey <es => e < eg that accounts for
transitivity, e; < e = e £ e; for asymmetry,
and ey £ e; for irreflexivity.

Large Language Models. An LLM is a
parametrised model ¢, that maps a sequence of
elements/tokens from a discrete set, namely its vo-
cabulary 3, into a probability distribution over the

!These relations are often called homogeneous.

same set, i.e., 1)? : ©* — P(X). The newly gener-
ated token can be appended to the input to generate
longer sequences. With a small abuse of notation,
we denote with x and y an input/output sequence.
We also denote with f : ¥ < R? the embedding
that maps each discrete token in X to a real-value
vector of dimension d. Our settings incorporate
a set of axioms H c (F X F) sufficient to gen-
eralise on unseen test cases R < (E X E), i.e.,
H = R, and a set of question in the form e;Re;
the model is expected to reply for each consistently
with the ground truth label y, i.e., true or false.

Out-of-context representation learning. We
augment the model’s vocabulary Y with new to-
kens—unseen during pre-training—to explicitly
represent out-of-context elements, i.e., the ele-
ments of the set £ on which the relation R is
defined. Formally, for an input x that expresses
a relation between two elements, e;Res, and its
ground truth value y (true/false) we aim to find:

{(e1,€}), (e2,¢3)} € afgmi}n L’ (x),y)

st. e, ¢X (1)
f(e)) =ef e RY

i€{l,2}

Where {(e1,e7), (e2,€5)} is the set of tokens
and representations added to the model to represent
the elements of the relationship in (x,y), while £
is the model’s training loss. This approach extends
to multiple ordered pairs that define H. In prac-
tice, each token embedding is randomly initialised
with its norm matching that of the other existing
tokens and then optimised via gradient descent to
minimise the above-reported problem 2.

In-context learning. We represent elements in
the in-context experiments using Latin alphabet
letters, ensuring that each variable consists of a
single existing token: no new tokens are intro-
duced in 33. The choice of the Latin vocabulary is
purely conventional, and nothing prevents the use
of other character systems. For a question that tests
a model’s capability to infer the relation between
two variables, a Rb, we prepend the list of axioms
H.

The technical details are reported in Section 7.1.

*While one can use a combination of tokens to define
each variable in a binary relationship, this would introduce

unnecessary complexity in tokenization and could lead to
performance drops.
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Table 1: A comparison of the number of training pa-
rameters and amount of extra information provided in
the prompt for out-of-context representation learning in-
context learning, and fine-tuning. In the out-of-context
setting, n = |E| is the number of elements on which the
relation is defined, and d is the embedding dimension
of the model. H is an encoding of the hypotheses to
correctly solve a task, while 6 are the parameters of
a model. e;Re; is the property the model is asked to
handle properly.

A comparison of the salient characteristics of
out-of-context representation learning, in-context
learning, and fine-tuning is reported in Table 1.

Dataset format.
dataset as follows:

The data is formatted as a Q&A

User: Is <a> R <b>?
System: [Yes/No]

Out-of-context representation training focuses
on the final token: the model is trained to output
[Yes/No] given the question.

As previous research suggests (Allen-Zhu and
Li, 2023a,b), we increase the question variety with
paraphrases for training/test and each LLM’s sys-
tem prompt *. In addition, to have a balanced
dataset, we introduce both positive and negative
questions, such as:

User: Is it wrong that <a> R <b>?
System: [No/Yes]

In the next section, we introduce the experi-
mental setup and the results we obtain by com-
paring out-of-context representation learning with
in-context learning.

4 [Experiments

In our experiments, we train Llama-3-8B, Llama-
3.2-1B (Grattafiori et al., 2024) and Mistral-7B-
v0.3 (Jiang et al., 2023) with out-of-context rep-
resentation learning, as introduced in Eq. 1. The
experiments for in-context learning are similar, ex-
cept that the same axioms are introduced in the
prompt instead of the training set, and only the
minimal setting is used.

*Section 7.2 in the appendix.

For each relation, namely strict total order, equal-
ity, and proper subset, we craft a training dataset
that tests the model’s capability to handle one or
more properties of such a relation. The LLM is
then tested on some questions that do not appear
in the training, but for which the training set pro-
vides sufficient knowledge to solve them correctly.
Each evaluation contains both true and false state-
ments (i.e., the expected ground truth answer is
[Yes/Nol), expressed with different phrasing to
enhance variety. We run each experiment 10 times
with different initial random embeddings, then av-
erage the results. The out-of-context representation
learning paradigm is implemented by introducing
a new set of tokens (each paired with a dense repre-
sentation), in the LLM’s vocabulary, and by train-
ing only these representations. While other works
employ Chain of Thoughts (Wei et al., 2022) to test
the reasoning capabilities of LLMs (Berglund et al.,
2023; McCoy et al., 2023), we do not employ it as
the training does not contain any reasoning chain.
Future works can address this limitation and check
whether a model can generate chains of thought
while not being explicitly trained to do so. In the
next sections, we first introduce the salient details
of each binary relation alongside the implemen-
tation details; we then discuss the results of our
evaluation.

4.1 Inequality: Strict Total Order

We test the properties of inequality with the
“smaller than” (<) relation. We build different
training sets to test whether a model can gener-
alise on the irreflexivity (e; < e1), asymmetry
(e1 < egy es £ e1), and transitivity
(e1 < ex Aey < e3 = e < e3) properties
of this relation.

_—

Setting I. Minimal sufficient hypotheses. In this
setting, the model is given the minimum informa-
tion required to logically derive all the answers
for the test set. The training data is the same for
testing reflexivity, symmetry, and transitivity, and
in the form e; < e;41 : 1 < ¢ < n. For ir-
reflexivity, we test a model with pairs in the form
e; £ e;; pairs are in the form e; 1 £ e; for testing
asymmetry; finally, tests are expressed in the form
e; < ej : j —1 = 2 for transitivity, which enables
seeing whether the performance of the model is af-
fected by the distance j — ¢ between the variables.

Setting II. Illustrative information. The second
setting introduces more information than is strictly
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necessary to derive the correct answer for test pairs.
Here, when testing a certain property, the model
is given in the training data, beyond the minimum
information, the other properties.

For example, the transitivity training set further
includes the asymmetry, i.e., ;41 € €;: 1 <i <
n, and the irreflexivity pairs, e; < e;. When testing
transitivity with asymmetry given, we can test both
inequality directions: e; < e; and e; £ e; for
j — 1t = 2. Thus, the illustrative settings allow the
balancing of the number of positive and negative
samples, beyond the simple "is it wrong" variation.
These contrastive examples that are expected to
benefit the generalisation capabilities of a model.

4.2 Equality

We test the equality relation by employing the
“equal to” (=) relation. The training data is in
the form d; = ds,ds = dg,...,dn_1 = dp,d, #
e1,62 = €3,....,en_1 = e, Where d;,e; : 1 <
¢ < n are unique tokens introduced in the out-of-
context learning procedure as per Eq. 1.

Similarly to the strict total order, we introduce two
settings: one minimal, with the training samples
that specify the minimum necessary information to
handle the test cases properly, and one where the
training samples introduce, in addition, all proper-
ties other than the one tested.

4.3 Inclusion: Proper Subset

We test the properties of inclusion with the “proper
subset” (<) relation. The training data is in the
form diy < ds,dys < ds,...,d,_1 < d,, simi-
larly e; < eg,e3 C es,...,e,—1 € Uy, and finally
dy & ep.

Similarly to the Strict total order and the Equality,
we introduce two settings: one minimal, with the
training samples that specify the minimum suffi-
cient information to handle the test cases properly,
and one where the training samples introduce prop-
erties other than the one tested.

5 Results

The average results over all experiments are sum-
marised in table 2. We chose two concurrent base-
lines to conclude on a model’s capability to handle
binary relations: the accuracy of a random classi-
fier and that of a model that predicts an input being
positive or negative with the same probability as the
training data distribution, regardless of the actual
elements in question. If an LLM is significantly

Model Settings : verage Baseline
ccuracy
Llama-3-8B Minimum 0.45 0.39
Llama-3-8B [llustrative 0.65 0.49
Llama-3.2-1B Minimum 0.43 0.39
Llama-3.2-1B Illustrative 0.62 0.49
Mistral-7B-v0.3 Minimum 0.45 0.39
Mistral-7B-v0.3 Illustrative 0.6 0.49

Table 2: Average accuracy over all experiments.

better than both, we say the model succeeds in the
task. If the model is significantly worse than both
baselines, we conclude that the model has failed.
Otherwise, we say that the results are inconclusive.

Hence, for the minimum variation, the overall
models’ performance lies between the baseline and
random guess, hence are inconclusive; and the over-
all results for the illustrative settings are better than
both the baseline and random guess, for all models.
For the illustrative settings, Llama-3-8B’s accuracy
is better than that of Llama-3.2-1B, which is better
than that of Mistral-7B-v0.3. For the minimum set-
tings, Llama-3-8B and Mistral-7B-v0.3 score the
same, and Llama-3.2-1B yields slightly worse re-
sults. A more detailed analysis of the performance
on every experiment follows.

Minimum information First, in the “minimal
sufficient hypotheses” setting, the training and test
data are unbalanced by construction. For example,
when testing transitivity, the training data only con-
tains positive instances, and so is the test data. A
success may also be caused by the model collaps-
ing to give the same answer, no matter what the
input. We report the results in Tables 3, 6 and 9°.
Summarising all experiments, however, all models
fail in the “minimal sufficient hypotheses” setting
and mostly follow the baseline distribution, sug-
gesting that their best approximation of the prop-
erties comes directly from training statistics. In
other words, LL.Ms still struggle to generalise on
well-known mathematical properties without di-
verse data and contrastive examples.

IMustrative information The “illustrative infor-
mation” setting mitigates the balancing issue by
adding additional information that is not directly
useful for solving the test cases but adds diversity
and balances the datasets. The results for this set-
ting are reported in Tables 4, 7 and 10: “V”” marks
a success (i.e., the model successfully learned the
task and beats both the baselines), “X” a failure

>Omitted tables can be found in the appendix.
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Figure 2: Llama-3-8B total order, where asymmetry and
transitivity are given. The pattern where numbers appear
along a circle by their order typically happens when
projecting (regular) numbers embedded in Llama. The
same trend is observed with the other models (Figures 6
and 9).
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Figure 3: PCA of the embeddings of the first 100 num-
bers (from O to 99) of Llama-3-8B.

(the model performs significantly worse than both
baselines), while “?” denotes that results are not
statistically significant to conclude anything or lie
in between both baselines (we conducted a T-test
for comparison and a Page’s trend test for trend
analysis, with & = 0.01). In this setting, Llama-
3-8B succeeds on all properties for all relations,
except for reflexivity in the proper subset. While
slightly worse, the performance of the other models
follows a similar trend.

In-context When testing in-context learning,
there is no training distribution because we do not
train the model, so we only compare the model to a
random guess. The results are reported in Tables 5,
8 and 11. For most test cases, all models perform
better in out-of-context representation learning than
in in-context learning, a sign that our technique
improves the model capabilities while being less
intrusive and more efficient than LORA (Hu et al.,
2021).

The distance effect In the total order relation, the
accuracy of all tested models increases as a func-
tion of the distance between the compared sym-
bols, the so-called distance effect. Our results
confirm what was observed in (Shaki et al., 2023),
though they use pre-trained tokens representing ac-
tual numbers. This effect mirrors a well-known
phenomenon observed in people, who are known
to respond faster and more accurately when com-
paring increasingly distant numbers (Moyer and
Landauer, 1967; Van Opstal et al., 2008; Van Op-
stal and Verguts, 2011). This result is astounding
in our context since the alleged number of reason-
ing steps needed to determine the correct answer
increases as a function of the distance. A possible
explanation, which we expand on in the next para-
graph, is that the models encode a fuzzy routine
to compare numbers where noise plays an increas-
ingly marginal role for distant numbers.

The reversal curse. Another interesting phe-
nomenon that our experiments explain is that of
the reversal curse, i.e., a model that fails to gen-
eralise “B is A” after learning “A is B” (Berglund
et al., 2023). Our experiments show that Llama-3-
8B and Mistral-7B-v0.3 (small models compared
to larger LLMs such as LLama-3.1-405B) success-
fully learn symmetry (both in the minimum set-
tings, and Llama-3-8B also in the illustrative set-
tings). We argue that the reversal curse arises from
the linguistic ambiguity of ’is’, which can signal
equality or function as a copula in noun phrases.
With proper training, as in our out-of-context rep-
resentation learning, small models succeed at the
task and are unaffected by this issue.

When tested with in-context learning, i.e., the
training data is instead provided as part of the
prompt, Llama-3-8B succeeds mostly on equal-
ity. Surprisingly, Mistral-7B-v0.3 succeeds mostly
on the strict total order and proper subset, except
on transitivity, where the model fails. Llama-3.2-
1B achieves low accuracy, even when performing
statistically significantly better than random guess,
stressing the role of model size in this setting.

Learned representations. We analyse the
learned representations for each experiment in
the “illustrative information” setting, i.e., when
the models mostly succeed in the task, with
a one or two-dimensional PCA to reveal the
dimensions of the maximum variation. As reported
in Figure 2, the projection of the newly introduced
representations resembles that of the first 100

19611



Equality

d2 d3 ed €2 el
e o © @ o 0@
dl d4  do 3

15¢ Principal Component

Figure 4: Llama-3-8B, equality, where symmetry and
transitivity are given. The equivalence classes are clear.
This also happens when reflexivity and transitivity are
given. The same trend is observed with the other models
(Figures 7 and 10).

Proper
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Figure 5: Llama-3-8B proper subset, where irreflexivity
and transitivity are given. Groups that are contained by
others are to their right. vO0 is also to the right of v9,
even though it is explicitly stated in the training data
that it is not strictly contained in v9. A similar trend is
observed with the other models (Figures 8 and 11).

natural numbers, as per Figure 3.

We hypothesise that for the total order relation,
Llama learns to model asymmetry and transitivity
similarly to how it does for natural numbers (i.e., by
projecting the embeddings into a low-dimensional
manifold that satisfies the two properties). We also
observe similar representations in Mistral’s embed-
dings. On the other hand, symmetry and transitiv-
ity of the equality relation, as well as irreflexivity
and transitivity of the proper subset relation, re-
quire a more straightforward representation, as per
Figures 4 and 5. In this sense, out-of-context rep-
resentation learning is efficient and suggests the
existence of shared learning dynamics for similar
problems/representations.

The graph analysis is that of the averaged learned
embeddings over the multiple iterations we ran for
each experiment. The patterns are not observed
directly for a single iteration. We also note that
the accuracy of using these average representations
(Tables 12 to 14) are similar to the average on each
learned representation (average difference of +0.01
for Llama-3-8B, -0.02 for Mistral-7B-v0.3, and
-0.06 for Llama-3.2-1B). This is a known phenom-
ena that occur when averaging models’ weights
(Rame et al., 2022; Izmailov et al., 2018; Cha
et al., 2021), especially when the test data is out-of-

distribution (Rame et al., 2022), as in our case.

Limitations and Open Questions

While in-context learning provides relevant infor-
mation in the input prompt, fine-tuning modifies the
weights of a model. The former tests the capability
of a model to reason with external information; the
latter optimises the model’s parameters and tests
whether a model can learn such a property; yet,
both in-context learning and fine-tuning are prone
to the bias of pre-existing tokens (see the discussion
on the “reversal curse”), and fine-tuning can also
incur overfitting. On the other hand, out-of-context
representation learning does not provide external
information or change the model’s parameters. As
long as one can introduce new tokens in a model,
our technique serves as a way to assess a model’s
capability on a task.

While in many cases our approach succeeds and
supports the hypothesis that LLMs can properly
reason about binary relations, it raises some ques-
tions when they fail. In particular, Tables 4 and 7
(marked with a “?” symbol) show that models
behave ambiguously for asymmetry in strict total
order, unless the elements involved are the farther
as per the initial hypotheses. Results support the hy-
pothesis that the embedding representations learnt
with our technique are noisy (see Figures 4 and 5)
and thus subject to errors for short-distance com-
parisons.

6 Conclusions

This paper explores the ability of LLMs to reason
about binary relationships through out-of-context
representation learning. We assessed whether
LLMs can generalise reasoning beyond in-context
learning by examining relational properties such
as reflexivity, symmetry, and transitivity, on knowl-
edge the model encountered only during training.
Our findings indicate that out-of-context represen-
tation learning allows for better generalisation in
most tasks we tested. We show that when the mod-
els succeed, they do so by arranging the learned
embeddings according to the task.

Future research will test the robustness of out-
of-context representation learning against data con-
tamination by repeating the experiments on model
trained on plain text version of our experiments.

19612



Relation Property Accuracy Baseline
Strict ..
Total Order Irreflexivity 0.09 0
Strict
Total Order Asymmetry 0.01 0
Strict Transitivity 0.97,0.98, 0.99, 0.97, 0.99, 0.97, 0.99, 0.97 1
Total Order {2,3,4,5,6,7,8,9} hops T T BRI BT BT A BT
Equality Reflexivity 0.86 0.89
Equality Symmetry 0.75 0.5
. Transitivity
Equality {2, 3,4} hops 0.62, 0.6, 0.46 0.5
Proper Subset Irreflexivity 0.2 0.05
Proper Subset Asymmetry 0.07 0.05
Transitivity
Proper Subset {2, 3, 4} hops 0.59,0.52,0.42 0.5

Table 3: Results for Llama-3-8B, out-of-context representation learning, minimum information settings.

Relation Property Accuracy Success Trend
To tg:lg: der Irreflexivity 0.58 v None
Strict Asymmetry 0.12,0.17,0.19, 0.32, 2,227, I .
Total Order | distance of {1,2,3,4,5,6,7,8,9} | 0.4,045,0.56,078,097 | 2,2,2,v,y | "eame
Strict Transitivity 0.61, 0.55, 0.61, 0.65, V,,V,V, Increasin
Total Order {2,3,4,5,6,7,8,9} hops 0.65, 0.76, 0.9, 0.9 V,V,V,V creasing
Equality Reflexivity 0.98 v None
. Average symmetry .
Equality distance of {1, 2, 3, 4} 0.62, 0.63, 0.68, 0.72 V,V,V,V Increasing
. Average transitivity 9 9 .
Equality {2, 3, 4} hops 0.57,0.55,0.45 V, 2,7 Decreasing
Proper Subset Irreflexivity 0.45 ? None
Asymmetry o .
Proper Subset distance of {1, 2, 3, 4} 0.65, 0.82, 0.89, 0.94 ,V,V,V Increasing
Proper Subset Average transitivity 0.66, 0.63, 0.68 V,V,V Not found
{2, 3,4} hops

Table 4: Results for Llama-3-8B, out-of-context representation learning, illustrative information settings. Symbol
“V”” marks a success (i.e., the model successfully learned the task and beats both the baselines), “X” a failure (the
model failed on both baselines), while “?” denotes that results are not statistically significant to conclude anything
(we conducted a T-test for comparison and a Page’s trend test for trend analysis).

Relation Property Accuracy Success Trend
Strict ..
Total Order Irreflexivity 0.55 \" None
Strict
Total Order Asymmetry 0.48 X None
Strict Transitivity 0.39, 0.37, 0.37, 0.38, XX, X, X, Not found
Total Order {2,3,4,5,6,7,8,9} hops | 0.37,0.38,0.38,037 | X, X, X, X ottoun
Equality Reflexivity 0.9 v None
Equality Symmetry 0.81 \% None
. Transitivity N .
Equality 2,3, 4 hops 0.6, 0.51,0.45 V,7, X Decreasing
Proper Subset Irreflexivity 0.47 X None
Proper Subset Asymmetry 0.58 v None
Transitivity 99 9
Proper Subset {2, 3,4} hops 0.5,0.5,0.5 2,7, Not found

Table 5: Results for Llama-3-8B, in-context learning. Symbol “V”” marks a success (i.e., the model successfully
learned the task and beats random guess), “X” a failure, while “?” denotes that results are not statistically significant
to conclude anything (we conducted a T-test for comparison and a Page’s trend test for trend analysis).
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