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Abstract

Sparse autoencoders (SAEs) are emerging as
a key analytical tool in the field of mechanis-
tic interpretability for large language models
(LLMs). While SAEs have primarily been used
for interpretability, we shift focus and explore
an understudied question: “Can SAEs be ap-
plied to practical tasks beyond interpretabil-
ity?” Given that SAEs are trained on billions
of tokens for sparse reconstruction, we believe
they can serve as effective extractors, offering a
wide range of useful knowledge that can benefit
practical applications.

Building on this motivation, we demonstrate
that SAEs can be effectively applied to in-
context learning (ICL). In particular, we high-
light the utility of the SAE-reconstruction loss
by showing that it provides a valuable signal in
ICL—exhibiting a strong correlation with LLM
performance and offering a powerful unsuper-
vised approach for prompt selection. These
findings underscore the versatility of SAEs and
reveal their potential for real-world applications
beyond interpretability. Our code is available
at https://github.com/ihcho2/SAE-GPS.

1 Introduction

Sparse autoencoders (SAEs), an entirely unsuper-
vised approach, are rapidly gaining popularity as a
key tool in mechanistic interpretability (MI), which
aims to explain and understand how large language
models (LLMs) process and generate responses
(Cunningham et al., 2023; Sharkey et al., 2025).
Trained with a sparsity loss term to reconstruct
the input (i.e., LLM embedding) in a fully unsu-
pervised manner, SAEs have been shown to be
effective, to some extent, in decomposing embed-
dings into sparse features, where each feature corre-
sponds to human-understandable, mono-semantic
concept (Sharkey and Beren, 2022; Bricken et al.,
2023). Although SAEs have been predominantly
used for MI, there is no strong reason to assume
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they are limited to this domain'. Thus, in this work,
we explore the understudied question of whether
SAEs can be practical for real-world applications
beyond MI. Promisingly, our findings reveal that
SAE:s are highly informative and can be effectively
applied to in-context learning (ICL), a widely used
approach of LLMs. Promisingly, our findings re-
veal that SAEs provide meaningful insights and can
be effectively applied to in-context learning (ICL),
a widely used paradigm in large language models.

ICL—an emergent ability of LLMs to perform
diverse tasks by learning on-the-fly from just a few
exemplars within a single prompt—has become a
dominant paradigm in natural language process-
ing (Brown et al., 2020). Yet, understanding the
underlying mechanisms of ICL remains an open
challenge (Von Oswald et al., 2023). In this paper,
we analyze ICL behaviors of LLMs through the
lens of SAEs, uncovering their interesting patterns
and insights.

Our key motivation is that SAEs serve as effec-
tive extractors, trained on billions of tokens, that
decompose LLM embeddings into sparse, explicit
features. We believe these well-trained extractors
provide new sources of knowledge that can directly
benefit multiple aspects of ICL. In particular, we
focus on the SAE-Reconstruction Loss (SAE-
RL)—defined as the L2-norm between the input
LLM embedding and the SAE’s reconstructed em-
bedding—and demonstrate that it offers valuable
information to enhance the ICL framework.

We hypothesize that “the richer the knowledge
contained in an embedding, the more challenging it
becomes for SAEs to disentangle it into distinct fea-
tures—resulting in a higher SAE-RL”. This, in turn,
allows us to effectively measure the overall quality
of the embeddings produced by a given prompt,

! Although the sparsity loss term of SAEs is designed for
sparse dictionary learning, we believe it is relatively flexible,
allowing broader applications—which is the primary focus of
this paper.
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making ICL significantly more predictable. These
findings highlight the versatility of SAEs, paving
the way for exciting new avenues for exploration.

2 Related Work

In-Context Learning in LLMs In-context learn-
ing (ICL) is a paradigm in which large language
models (LLMs) are provided with a few exem-
plars within a single prompt and generate responses
conditioned on these examples without any task-
specific fine-tuning (Brown et al., 2020). By lever-
aging pre-trained knowledge, ICL enables effi-
cient generalization across various tasks, making it
highly adaptable in natural language processing.

However, the precise mechanism behind ICL
remain debated and not fully understood (Dong
et al., 2022; Wang et al., 2023; Von Oswald et al.,
2023). Additionally, ICL faces various practical
challenges such as exemplar selection (Liu et al.,
2021; Ye et al., 2023), exemplar order issues (Min
et al., 2022), and prompt sensitivity (Zhou et al.,
2022; Cho et al., 2024, 2025).

In this paper, we examine ICL through the lens
of SAEs, aiming to uncover insights that not only
deepen our understanding of ICL but also enhance
its performance by addressing the challenges men-
tioned above.

Sparse Autoencoders in LL.M-Interpretability
SAEs have emerged as a key approach to sparse dic-
tionary learning, which aims to decompose LLM
embeddings into sparse monosemantic features
(Huben et al., 2024). They have proven surpris-
ingly effective at uncovering ground truth features
in controlled, toy experiment settings (Sharkey and
Beren, 2022), although many challenges remain
when applying them to real LLMs. Nonetheless,
due to their simplicity and effectiveness, SAEs have
become one of the dominant baselines in MI.

SAE:s use a squared error reconstruction loss and
a sparsity penalty:

N
1 o
LSAE = N § HX(Z) - X(l)H% + A Lsparsity
=1

(D
and the SAE-reconstruction loss is defined as:
SAE-RL = ||x( — )2 2)

where x(¥) represents the original input, and X(*) is
the reconstructed output of the SAE:

)A((Z) = Wiec (U(Wenc(x(i)))) 3)

For the activation function o, various techniques
are used, such as JumpReLU (Lieberum et al.,
2024) and TopK-ReLU (Gao et al., 2024).

Sparse Autoencoders beyond Interpretability
A growing body of recent work explores the ap-
plication of SAEs to practical tasks beyond MI
(Cho and Hockenmaier), but their application in
ICL remains underexplored. For example, Demir-
can et al. (2024) show that certain SAE features
align with temporal difference loss in Markov deci-
sion problems when provided as exemplars in LLM
prompts. Kharlapenko et al. (2025) use SAEs to
reconstruct task vectors (Todd et al., 2023) for sim-
ple tasks like single-token replacement, but this
method struggles to scale to more complex tasks
(Brumley et al., 2024).

In contrast, we apply SAEs to general, com-
plex ICL tasks, such as classification and multiple-
choice QA, without relying on additional frame-
works. Our work also addresses key challenges
in ICL, including effective prompt selection and
making ICL more predictable.

Off-the-Shelf Value of SAEs A key advantage of
SAE:s is their off-the-shelf usability. Since they are
trained on broad, general-purpose corpora such as
The Pile (Gao et al., 2020), SAEs can be readily ap-
plied without the need for task-specific fine-tuning.
Owing to this advantage, we believe that demon-
strating the effectiveness of SAEs in enhancing
aspects of general ICL carries substantial merit.

3 SAE-GPS: SAE-Guided Prompt
Search

In this paper, we show that SAEs can add values to
ICL, making it more predictable in multiple ways.
Specifically, we verify that the SAE-reconstruction
loss (SAE-RL) exhibits a strong correlation with
LLM performance across various tasks. Based
on this finding, we introduce SAE-GPS (SAE-
Guided Prompt Search), which enables selecting
effective prompts (e.g., a set of ICL exemplars)
on-the-fly in an entirely unsupervised manner.

Intuition The core intuition behind SAE-GPS
is that the more knowledge an embedding contains,
the more challenging it becomes for SAEs to de-
compose it effectively, resulting in a higher SAE-
RL. Therefore, SAE-RL allows comparing differ-
ent prompts directly in an unsupervised manner.
We verify this core intuition in Section 5.1.
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Figure 1: The overall architecture of SAE-GPS. Prompt
with the highest SAE-RL is selected.

Methodology Motivated by our intuition, we
present SAE-GPS (SAE-Guided Prompt Search),
an inference-time method that relies solely on SAE-
RL to accurately select effective prompts on-the-
fly. The overall architecture of SAE-GPS is il-
lustrated in Figure 1. Given a test instance = and
k multiple candidate prompts P;, P, ..., Py, the
goal is to select the prompt P* that yields the
best performance. We utilize our key intuition
that prompts with higher SAE-RL (i.e., using more
knowledge) tend to predict more accurately. Ac-
cordingly, we run the LLM M with each prompt F;
up to layer [ (i.e., g; = My,[P;; x]), then measure
the SAE-RL of the last tokens” embeddings (i.e.,
|1gi.tast — SAE(Gi 1ast)||3)- The prompt P that pro-
duces the highest SAE-RL is selected, and further
processed through the remaining layers for the final
prediction (i.e., § = M. L[P; x]). We show in Sec-
tion 5.2 that SAE-GPS consistently outperforms
the baselines, and can also be effectively performed
at layers below the final layer. This offers a unique
computational benefit by requiring processing only
up to layer [ for the remaining (k — 1) prompts,
thereby reducing the computational burden.

4 Experimental Settings

Datasets We select two widely used classifi-
cation datasets in ICL: aspect-based sentiment
classification (ABSC) (SemEval-14-Laptops and
Restaurants (Pontiki et al., 2014)) and one widely
used multiple-choice question-answering dataset:
MMLU (Hendrycks et al., 2021). We use the mul-

tilingual version of MMLU provided by OpenAl
(OpenAl, 2024) for multilingualism analysis. We
create the validation set by selecting 300 instances
per label from the training set, and the final evalua-
tion is conducted on the test set. Detailed explana-
tions of each task can be found in Appendix A.

Models and Settings One requirement of our
work is having access to well-trained SAEs for
the LLM. Since training SAEs is computationally
expensive, we utilize the open-sourced SAEs re-
leased to encourage research by Lieberum et al.
(2024) and etc. Consequently, we employ the mid-
size model—Gemma2-9B-IT (Team, 2024) and
Llama3-8B-IT—along with its corresponding pub-
lic SAEs. We evaluate our approach on the general
few-shot setting using two exemplars per label. We
use layer 32°s SAE unless specified otherwise.

One requirement of our work is having access to
well-trained SAEs for the underlying LLM. Since
training SAEs is computationally expensive, we
leverage publicly released SAEs that were open-
sourced to encourage research by Lieberum et al.
(2024) and others. Accordingly, we employ mid-
sized models—Gemma2-9B-IT (Team, 2024) and
LLaMA-3-8B-Instruct (Al)—together with their
corresponding public SAEs. We evaluate our ap-
proach in a standard few-shot setting using two
exemplars per label.

5 Main Results and Analyses

5.1 SAE-RL provides valuable information

As discussed in Section 3, we hypothesize that em-
beddings containing richer knowledge are likely
to yield higher SAE-RL values. To test this, we
employed 20 different prompts (i.e., randomly se-
lected sets of ICL exemplars) and compared their
average SAE-RL with overall test performance.
Figure 2(c) shows a very strong correlation be-
tween performance and SAE-RL, confirming our
intuition (see also Figure 2(d) in Section 5.4).

Furthermore, Figures 2(a) and (b) offer a fine-
grained, example-level analysis. In Figure 2(a),
trivial examples (defined as those for which all
20 prompts yield correct answers) exhibit lower
SAE-RL than non-trivial examples, indicating that
SAE-RL can serve as a signal to distinguish be-
tween easy and challenging examples for LLMs.
Figure 2(b) further shows that among non-trivial
examples, prompts with higher SAE-RL are more
likely to produce correct answers.
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Figure 2: (a): Easy examples show lower SAE-LR. (b),
(¢), (d): Prompts with higher SAE-RL tends to have
better performance, aligning with our core intuition.

These results validate our hypothesis and sup-
port the use of SAE-RL as the key basis for our
proposed method, SAE-GPS.

5.2 SAE-GPS significantly outperforms the
baselines even when using the earlier layers

Table 1 summarizes the performance of SAE-GPS
on Gemma2-9B-IT (Team, 2024), demonstrating
that SAE-GPS can select effective prompts with
high accuracy. Furthermore, we observe that SAE-
GPS can perform effectively using earlier layers
rather than just the final layer, offering a computa-
tional advantage. Surprisingly, we find that using
layers 28 or 32 is more effective than using the
final layer (layer 42). These results suggest that the
SAEs from earlier layers provide sufficient —and
possibly more task-relevant— information, giving
SAE-GPS a unique computational advantage over
baselines that require processing through all layers.

We also experiment with the inverse version of

Rest14 Lapl4
Gemma2-9B-IT Acc&F1 Acc&F1
Baselines
ICL AVg. 80.730‘65 75.44035
ICL + Majority Vote 80.590.91 76.200.43
Ours: ICL + SAE-GPS
Layer 42 82.41¢.52 76.950.87
Layer 35 82.680.44 77.960.46
Layer 32 83.550.33 78.420.45
Layer 28 83.770.37 77.980.38
Layer 21 80.671‘08 76.110,41
Layer 14 81.450.11 75.570.65
ICL + Flipped SAE-GPS
Layer 42 78.95()‘80 73.271,47
Layer 35 78.591.00 72.80219
Layer 32 78.42¢ .93 72.051 .42
Layer 28 78.280,30 72.501,52
Layer 21 81.221418 74.111.31
Layer 14 79.760.31 74.201 39

Table 1: With £ = 15 random exemplar sets given, our
proposed SAE-GPS consistently outperforms majority
voting when using layers over 28. Note that SAE-GPS
does not use any additional knowledge except SAE re-
construction loss. Experiments are conducted across
five random seeds, with standard errors shown as sub-
scripts for the average of accuracy and F1 score.

SAE-GPS (Flipped SAE-GPS), which selects the
prompt with the lowest SAE-RL. The results, sum-
marized in the bottom of Table 1, indicate that
prompts with lower SAE-RLS generally lead to
worse performance.

1. Gemma2-9B-IT Rest14 Lapl4 MMLU (STEM)
ICL Avg. 80.73 75.44 63.94
ICL + Majority Vote 80.59 76.20 64.28
SAE-GPS (Flipped) 78.28 72.50 64.11
SAE-GPS 83.77 77.98 65.20
2. Llama3-8B-Instruct Rest14 Lapl4 MMLU (STEM)
ICL Avg. 76.84 75.59 45.83
ICL + Majority Vote 77.23 75.50 45.98
SAE-GPS (Flipped) 75.62 74.87 44.36
SAE-GPS 79.10 77.21 47.15

Table 2: We provide additional experiments on MMLU
(STEM topics) as well as with another model, LLaMA-
3-8B-Instruct (Al). These results show that our SAE-
GPS method is generally effective across different mod-
els and extends beyond classification tasks to multiple-
choice question answering.
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5.3 General Effectiveness and Compatibility
of SAE-GPS

Table 2 presents additional experiments on MMLU
(STEM topics) as well as results with another
model, LLaMA-3-8B-Instruct (Al) (using the SAE
from layer 25). These results demonstrate that our
SAE-GPS method is broadly effective across dif-
ferent models and extends beyond classification
tasks to multiple-choice question answering.

In Table 3, we further examine the synergy be-
tween SAE-GPS and exemplar selection strate-
gies. Specifically, we reproduced the KATE ap-
proach (Liu et al., 2021), a standard unsupervised
exemplar selection baseline. KATE identifies the
top-k most similar exemplars based on cosine sim-
ilarity between the embeddings of the test query
and the candidate exemplars. We implemented this
using dense embeddings from the LLM. To gener-
ate candidate prompts, we repeatedly sampled six
exemplars at random from the top-30 most simi-
lar exemplars. Our results show that SAE-GPS
achieves even stronger performance when com-
bined with KATE, with the exception of Rest14,
where KATE underperforms relative to the random
selection baseline. Nevertheless, SAE-GPS still im-
proves performance by 1.05%, indicating that even
when the candidate prompt set is of poor quality,
SAE-GPS can contribute meaningfully to perfor-
mance gains.

1. Gemma2-9B-IT Rest14 Lapl14 MMLU (STEM)
KATE 80.07 77.71 64.33
KATE + Majority Vote 80.32 77.88 64.54
KATE + SAE-GPS (Flipped) 79.63 76.87 64.02
KATE + SAE-GPS 81.12 79.96 65.65

Table 3: SAE-GPS creates synergy with exemplar-
selection methods (Liu et al., 2021).

5.4 SAE-RL accurately identifies
multi-lingual performance

In this study, we investigate whether SAE-RL pro-
vides valuable insights beyond its original domain,
particularly in multilingualism in LLMs. Using
M-MMLU (OpenAl, 2024), which offers parallel
data in multiple languages, we examine whether
SAE-RL can illuminate the multilingual capabili-
ties of LLMs. As shown in Figure 2 (d), SAE-RL
exhibits a remarkably strong correlation with lan-
guage performance, reinforcing our intuition that
languages with stronger capabilities (e.g., English,
Chinese) tend to have a better task understanding

—Ileading to a richer feature representation and,
consequently, a higher SAE-RL. We believe this
finding is valuable for two reasons: (1) it further
supports SAE-RL as a generally informative signal
across diverse domains, and (2) it enables precise
identification of languages where the LLM strug-
gles. This insight can guide LLM developers in
optimizing data allocation for specific languages.

6 Conclusion

This paper investigates whether sparse autoen-
coders (SAEs) can benefit in-context learning (ICL)
in large language models (LLMs). We present sev-
eral novel findings and approaches. First, we show
that SAE-reconstruction loss (SAE-RL) is highly
informative and can be leveraged to predict effec-
tive prompts during inference. We also demon-
strate that SAE-RL can distinguish between easy
and challenging examples for LLMs. Furthermore,
SAE-RL appears to be a valuable knowledge source
across various domains—including multilingual-
ism—thereby opening exciting avenues for future
research. To the best of our knowledge, our work
is among the first to explore the versatility of SAEs
in ICL, highlighting their potential and paving the
way for further advancements in the field.

7 Limitations

The major limitation of our study is that it requires
sparse autoencoders (SAEs), which may not al-
ways be available due to the high computational
cost of training them. Consequently, our work re-
lies on the publicly available SAEs provided by
Lieberum et al. (2024), limiting our experiments
to the Gemma2 model (Team, 2024). Exploring
our findings and evaluating the effectiveness of our
approaches on other model types (once their SAEs
become available) would be an intriguing direction
for future research.
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A Tasks and Datasets

In our study, we employ an aspect-based sentiment
classification (ABSC) task and a multiple-choice
question-answering (multiple-choice QA) task. For
ABSC, we specifically use SemEval-14-Laptops
and Restaurants datasets (Lap14 and Rest14) (Pon-
tiki et al., 2014). For multiple-choice QA, we
use the multilingual version of Massive Multi-
task Language Understanding dataset (M-MMLU)
(Hendrycks et al., 2021; OpenAl, 2024) focusing
on the STEM domain for multilingualism analysis.

Lap14 and Rest14 are the tasks to evaluate the
sentiment (positive, negative, or neutral) of the
given laptop and restaurant reviews toward a speci-
fied target within the sentence.

M-MMLU is a collection of MMLU'’s test set
translated into 14 languages, where the task is to
answer multiple-choice questions across 57 sub-
jects. These subjects are organized into four main
domains: Humanities, Social Sciences, STEM, and
Others. For this study, we focus exclusively on the
STEM domain, which contains 19 of 57 subjects.

Validation Set Settings The validation set is con-
structed by selecting 300 instances per label from
the training set, except when fewer than 300 in-
stances are available. For M-MMLU, we use the
entire provided MMLU development and valida-
tion sets as our validation set. The final evaluation
is conducted on the test set. Detailed statistics are
provided in Table 4. All experiments are conducted
on a single NVIDIA A100 GPU.

‘ Dataset ‘ Label Words
Task ‘ Train  Test ‘ Label Count
Lapl4 2313 638 Positive 341
Negative 128
Neutral 169
Rest14 3602 1120 Positive 728
Negative 196
Neutral 196
M-MMLU | 430 3153 Abstract Algebra 100
Anatomy 135
astronomy 152
College Biology 144
College Chemistry 100
College Computer Science 100
College Mathematics 100
College Physics 102
Computer Security 100
Conceptual Physics 235
Electrical Engineering 145
Elementary Mathematics 378
High School Biology 310
High School Chemistry 203
High School Computer Science 100
High School Mathematics 270
High School Physics 151
High School Statistics 216
Machine Learning 112

Table 4: Detailed information on the sizes of the training
and test datasets for each task, as well as the sizes of
the test datasets for each label within each task. The
M-MMLU dataset is available in one language, with
identical structures for the other 13 languages.

B SAE Settings

Gemma Scope (Lieberum et al., 2024) offers a di-
verse set of SAEs for the Gemma model family,
with at least two SAEs per layer trained using dif-
ferent hyperparameters. For our experiments, we
use the 131k-SAEs labeled as “canonical” unless
stated otherwise. All experiments are conducted
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on layer 32, which is known to be a good place to
work with (Gao et al., 2024).
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