
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 19515–19530
November 4-9, 2025 ©2025 Association for Computational Linguistics

CAC-CoT: Connector-Aware Compact Chain-of-Thought for Efficient
Reasoning Data Synthesis Across Dual-System Cognitive Tasks

Sunguk Choi* Yonghoon Kwon* Heondeuk Lee*

DATUMO
{sunguk.choi, yonghoon.kwon, heondeuk.lee}@selectstar.ai

Abstract

Long chain-of-thought (CoT) prompting helps
Large Language Models (LLMs) solve difficult
problems, but very long traces often slow or
even degrade performance on fast, intuitive
“System-1” tasks. We introduce Connector-
Aware Compact CoT (CAC-CoT) — a method
that deliberately restricts reasoning to a small,
fixed set of connector phrases, steering the
model toward concise and well — structured
explanations. Despite its simplicity, our syn-
thetic method with general-purpose LLMs
yields a high-quality training quality. CAC-CoT
achieves ≈ 85% on GSM8K and ≈ 40% on
GPQA (System-2) while also achieving ≈ 85%
on S1-Bench (System-1), surpassing the base-
line by over 20%. Its reasoning traces average
≈ 300 tokens(ART), about one-third the length
of baseline traces, delivering higher efficiency
without loss of accuracy.1

1 Introduction

Large Language Models (LLMs) have achieved
striking gains on reasoning tasks by producing
explicit chain-of-thoughts (CoT) rationales (Wei
et al., 2022). For complex problems that demand
slow, analytical System-2 thinking, they deploy
Long CoTs enriched with self-reflection, backtrack-
ing and budget-forcing — an approach adopted
by frontier systems such as OpenAI’s o1 (Jaech
et al., 2024), DeepSeek-R1 (Guo et al., 2025)
and the inference-time scaling method s1 (Muen-
nighoff et al., 2025a) — and one that has markedly
improved performance on challenging reasoning
benchmarks.

Frontier Reasoning LLMs — e.g., from OpenAI,
Anthropic and Google — internalize long-chain
reasoning techniques and dynamically adjust CoT
length, thereby achieving state-of-the-art results

*Equal contribution
1Code is publicly available at https://github.com/

selectstar-ai/CAC-CoT

Figure 1: Comparison of reasoning trace generation.
Most studies (top) use standard LLMs to generate ver-
bose, repetitive reasoning with excessive connector us-
age. In contrast, our Connector-Aware Compact CoT
framework (bottom) employs explicit connector con-
trol to produce concise, coherent reasoning traces with
significantly fewer connectors, enabling efficient and
high-quality data generation.

on demanding benchmarks like AIME and GPQA
(Jaech et al., 2024; Anthropic, 2025; Google, 2025).
Recent open-source initiatives follow the same tra-
jectory. Representative efforts include RedStar (Xu
et al., 2025b) and SkyThought (Li et al., 2025a),
which boost reasoning performance by fine-tuning
on large Long CoT corpora with reinforcement
learning (RL), while LIMR (Li et al., 2025b) shows
that carefully selected subsets can yield comparable
gains at lower cost. Complementary work demon-
strates that small and curated reasoning datasets
alone can endow compact models with strong rea-
soning skills via supervised fine-tuning (SFT); no-
table examples include LIMO and the inference-
time scaling method s1 (Ye et al., 2025a; Muen-
nighoff et al., 2025a).

Despite their promise, integrating Long-CoT rea-

19515

https://github.com/selectstar-ai/CAC-CoT
https://github.com/selectstar-ai/CAC-CoT

soning into LLMs introduces significant drawbacks.
Models fine-tuned on very long traces tend to gen-
erate equally lengthy chains at inference time, a
phenomenon termed overthinking — they continue
to reason well past the point of finding a correct
answer (Chen et al., 2025). Such gratuitous delib-
eration inflates computation and may even degrade
accuracy, as unnecessary steps accumulate noise
and contradictions. Recent evaluations corroborate
this trade-off: Long-CoT-optimized models excel
on System-2 thinking benchmarks yet falter on in-
tuitive, System-1 tasks (Zhang et al., 2025). These
findings underscore a pressing need for balanced
dual-system reasoning in LLMs — models must
learn to invoke fast, heuristic reasoning for simple
queries while reserving slow, analytical reasoning
for genuinely hard problems.

In this paper, we propose Connector-Aware
Compact Chain-of-Thoughts (CAC-CoT), a data-
generation framework that bridges the gap between
analytical System-2 reasoning and agile System-
1 intuition. CAC-CoT prompts frontier LLMs to
produce reasoning traces that (i) insert explicit
connector sentences — e.g., “Let’s pause and re-
think this.”, “Wow, that actually makes a lot of
sense now.” — as deliberate checkpoints for self-
reflection, whether in correct or incorrect reasoning,
and (ii) enforce structural compactness that discour-
ages gratuitous length. These connectors cue the
model to pause, verify, or backtrack only when
necessary, preventing runaway verbosity while pre-
serving logical coherence. In effect, it trains mod-
els to balance dual-system reasoning: they engage
thorough analytical reasoning when warranted yet
default to concise, intuitive responses on simpler
queries. The proposed method is outlined in Figure
1.

To build a high-quality CAC-CoT dataset, we
leverage general-purpose LLMs — cost-efficient
but capable frontier models — using a simple
single-turn prompt that elicits concise, connector-
rich traces. Despite the dataset’s modest size and
simplicity of the prompting strategy, fine-tuning
target models on this data yields strong reasoning
performance. The result is an exceptionally eco-
nomical training recipe that bypasses the need for
large Long CoT corpora or complex pipelines.

Comprehensive experiments confirm CAC-
CoT’s effectiveness. On demanding System-2
thinking benchmarks, our model attains ≈ 85%
on GSM8K and ≈ 40% on GPQA (Rein et al.,
2024) with Long-CoT fine-tuned specialists. On

S1-Bench (Zhang et al., 2025), which stresses in-
tuitive System-1 thinking, Ours reaches ≈ 85 %,
representing an improvement of over 20% points
compared to the s1.1 and LIMO baselines. Effi-
ciency follows suit: the model averages an ART
of ≈ 300, surpassing nearly all prior systems in
computational economy. Collectively, these results
demonstrate that connector-based, compact reason-
ing traces are a promising foundation for future
reasoning data sets and models.

2 Related works

2.1 Long Chain-of-Thought

Recent advancements in CoT prompting have sig-
nificantly enhanced the reasoning abilities of Large
Language Models (LLMs) by decomposing com-
plex tasks into intermediate steps (Wei et al., 2022).
Early work mainly relied on static, human-written
exemplars, but subsequent studies introduced self-
reflection and backtracking mechanisms to gen-
erate longer yet more adaptive reasoning traces.
For instance, Reflexion prompts an agent to store
episodic self-feedback between trials (Shinn et al.,
2023), whereas Self-Refine iteratively rewrites its
own output until self-criticism converges (Madaan
et al., 2023). Building on this idea, Pang et al.
(2024) directly optimizes pairwise preferences be-
tween good and bad traces, and Adarsh et al. (2024)
distills high-quality rationales into smaller models
via self-guided cycles of error detection and re-
generation.

In other research directions on Long CoT, there
is ongoing debate regarding the optimal length and
granularity of reasoning traces. (Yao et al., 2023a)
argue that concise, structured traces improve effi-
ciency without harming accuracy, whereas (Shen
et al., 2025) and (Snell et al., 2024) present scaling
laws showing that longer reasoning often improves
performance on difficult tasks, particularly for large
models. Recent observations suggest that overly
lengthy reasoning traces can result in diminishing
returns or even performance degradation due to
noise accumulation and increased inference costs
(Chen et al., 2025). This phenomenon, often termed
overthinking, disproportionately hampers smaller
models, which struggle to assimilate and faithfully
reproduce the excessively long reasoning chains
that arise when they are trained on Long CoT data
(Li et al., 2025c; Wu et al., 2025; Xu et al., 2025a;
Zhang et al., 2025).

19516

2.2 Data Efficiency and Overthinking

While architectural advances have driven recent
gains in reasoning performance, growing evidence
highlights that the structure and quality of train-
ing data play an equally critical role (Li et al.,
2025a; Swayamdipta et al., 2020). In particular,
Long Chain-of-Thought (Long CoT) supervision
has proven effective for inducing structured rea-
soning. However, such traces are often verbose,
increasing both training cost and the risk of overfit-
ting to unnecessary steps (Chen et al., 2025).

Recent studies attempt to mitigate this verbosity
by emphasizing logical sufficiency over exhaus-
tiveness. For instance, Sky-T1 (Li et al., 2025a)
enhances reasoning robustness by filtering out in-
correct reasoning traces rather than compressing
them. Meanwhile, LIMO (Ye et al., 2025a) curates
high-quality datasets and applies multi-step super-
vision to highlight only the essential logical steps.
Although neither approach directly targets brevity,
both demonstrate the potential to improve training
efficiency by focusing on core reasoning content.
These strategies reflect a broader trend toward data-
centric LLM development, where the structure and
quality of supervision play a decisive role in down-
stream reasoning behavior.

Despite improvements, overthinking remains a
failure mode. Models often produce overly detailed
reasoning even for intuitive tasks, leading to re-
dundancy, inconsistencies, and degraded perfor-
mance—particularly on System-1 benchmarks (Sui
et al., 2025; Zhang et al., 2025). This issue is pro-
nounced in smaller models, where excessive elabo-
ration introduces noise or contradictions (Yao et al.,
2023b; Chen et al., 2024). Even compact prompting
strategies can backfire when misapplied to simple
problems, underscoring the need for task-aware
reasoning generation that adjusts explanation depth
to problem complexity.

2.3 Dual-System Reasoning

Dual-system theory distinguishes between two
types of cognition: fast, intuitive System-1 rea-
soning, and slow, analytical System-2 reasoning
(Kahneman, 2011; Kannengiesser and Gero, 2019).
Although large reasoning models excel at complex
System-2 tasks, their performance often deterio-
rates on simpler System-1 tasks due to unneces-
sarily elaborate reasoning strategies (Zhang et al.,
2025). This highlights a critical limitation—current
models often lack the cognitive flexibility needed

to generalize across varied reasoning demands.

Early attempts to address this limitation took di-
vergent approaches. LIMO curated a minimal yet
challenging question set requiring detailed reason-
ing and manually verified each reasoning step for
high-quality supervision. However, its scalability
is limited by the labor-intensive nature of manual
annotation. In contrast, Sky-T1 distilled reasoning
patterns into fixed-length traces via offline analysis
and trained LoRA adapters, sacrificing adaptability
and stylistic diversity for inference simplicity.

CAC-CoT adopts a different approach by remov-
ing reliance on large reasoning models (LRMs)
during trace generation. Instead of imitating model-
generated reasoning trajectories, CAC-CoT ex-
plicitly injects connector phrases into the gen-
eration process. This strategy leverages existing
high-quality question datasets (such as those from
LIMO) while guiding models to produce con-
cise, cognitively aligned reasoning traces. No-
tably, CAC-CoT achieves this without requiring
chain-level annotations or reinforcement learning,
thereby promoting both training efficiency and
dual-system adaptability. Its connector-driven ap-
proach allows for controllable variation in reason-
ing form while maintaining semantic coherence,
offering a scalable path toward more flexible and
cognitively grounded reasoning systems.

3 Methodology

Building on recent advances in reasoning models —
which demonstrate significant performance gains
through mechanisms such as self-reflection, back-
tracking, and self-correction — ours, CAC-CoT,
adopts a structured approach that explicitly injects
diverse connector phrases into the training data. By
deliberately guiding the model’s reasoning behav-
ior through these connectors and tightly controlling
the length of reasoning traces compared to conven-
tional Long-CoT datasets, CAC-CoT enables the
emergence of a robust dual-system reasoning capa-
bility. This design allows the model to adaptively
balance concise, intuitive responses for System-1
tasks with deeper, structured reasoning for System-
2 challenges, thereby achieving strong and general-
izable performance across both cognitive regimes.
The synthetic data generation prompts and the cor-
responding generation logic can be found in Ap-
pendix B, in Table 9 and Algorithm 1, respectively.

19517

3.1 Connector-Aware CoT

In reasoning models, a variety of connectors (e.g.,
Wait, Hmm, Alternatively) are often used to facil-
itate the flow of reasoning, particularly through
mechanisms such as self-reflection and backtrack-
ing. Inspired by this observation, we propose a data
construction method that explicitly injects connec-
tors into the reasoning process. This encourages the
model to maintain or even enhance its reasoning
performance by following a structured and reflec-
tive approach. The key components of our method
are as follows: (1) Insert checkpoints after each
reasoning step for reassessment; (2) use reflection
connectors at checkpoints to signal uncertainty and
enable revision of faulty logic; (3) use confidence
connectors when prior logic is valid to confirm rea-
soning and move forward; (4) begin with an inten-
tionally flawed reasoning path to promote reflective
correction and generate extended traces.

By prompting verification at every reasoning
step and initially inducing errors to ensure that
reasoning chains remain appropriately maintained,
and by applying confidence and reflection connec-
tors as needed, we steer the process to achieve both
exploration and convergence. Details on connec-
tor usage are provided in Section4.4, and the types
of connectors are summarized in Table 10 of Ap-
pendix B.

3.2 Compact CoT

Reasoning models often suffer from excessively
long reasoning traces, which can lead to inef-
ficiency and even performance degradation on
System-1 thinking tasks. To mitigate this issue, im-
pose explicit termination constraints by limiting the
number of validations, bounding the trace length,
and defining clear stopping conditions. Moreover,
the two types of connectors — reflection connector
and confidence connector — further enhance the
compactness of the reasoning steps, with the con-
fidence connector in particular facilitating concise
reasoning process.

By alternating these two types of connectors,
selectively guide the model to either expand or con-
verge its reasoning process. This prevents unneces-
sary elaboration and encourages timely termination,
preserving overall reasoning performance while
significantly improving performance on System-1
tasks. The termination strategy consists of the fol-
lowing rules: (1) Disallow consecutive use of con-
nectors to avoid incoherent chaining of reasoning

steps; (2) skip further validation if the same answer
is produced more than once; (3) invoke the termi-
nation condition if the reasoning becomes unclear
or overly repetitive; and (4) trigger termination if
the reasoning trace exceeds a predefined length or
the number of validations surpasses a threshold.

By preventing reasoning steps from expanding
excessively, we ensure suitably concise reasoning
traces. In particular, by imposing length limits and
instructions to avoid overly repetitive steps, we
achieve efficient reasoning. While triggering the
termination condition does not directly improve
accuracy, it prevents trace length blow-up during
data generation. As shown in Section 4.4, the con-
fidence connector terminates further progression
upon successful inference, thereby promoting com-
pactness.

4 Experiments

4.1 Experimental Setup
In this section, we describe our experimental setup
and present the main findings of the dual-system
benchmark.

4.1.1 Benchmarks
For analytical System-2 thinking, we select widely
used math-centric datasets of escalating difficulty —
AMC, AIME, GPQA, GSM8K and MATH. Collec-
tively, these benchmarks pose problems that resist
easy solutions, driving the model to explore multi-
ple angles and engage in deep reasoning, making
them suitable for validation analytical System-2
thinking. For intuitive System-1 thinking, we fol-
low the evaluation metrics of S1-Bench (Zhang
et al., 2025), a collection of commonsense and
rapid-inference questions that can usually be solved
with minimal deliberation. By contrasting perfor-
mance across these two suites, we can measure
whether CAC-CoT preserves fast, concise intuition
while enhancing deep analytical skill.

4.1.2 Baselines
To contextualize the impact of CAC-CoT, we
benchmark against three recent models that rely
solely on SFT over Long-CoT data to achieve sub-
stantial gains in reasoning performance via System-
2 thinking. s1.1 (Muennighoff et al., 2025a), LIMO
(Ye et al., 2025a), and Bespoke-Stratos (Labs,
2025) all rely on SFT over a compact Long-
CoT corpus synthesized by powerful reasoning
engines (R1, R1-Distill-Qwen-32B, and QwQ, re-
spectively) (Guo et al., 2025; DeepSeek-AI, 2025;

19518

Table 1: System 1 thinking performance across models on S1-Bench. Comparison of evaluation metrics (Acc@5,
Pass@1, Success, ART) for English (EN) and Chinese (ZN) tasks. Qwen-2.5-7B-Instruct is evaluated under
loose formatting, while all other models are evaluated under strict formatting. CAC-CoT-7B (Ours) achieves
strong accuracy with the lowest average reasoning length (ART), demonstrating superior efficiency and balanced
performance across all categories. Formatting: The AVG row is highlighted in bold, while notable values in all
other rows are underlined for emphasis.

Models Task Type EN ZN
Acc@5 ↑ Pass@1 ↑ Success ↑ ART ↓ Acc@5 ↑ Pass@1 ↑ Success ↑ ART ↓

Qwen2.5-7B-Instruct

analysis_question 100.0 100.0 100.0 49.8 94.44 96.39 100.0 37.76
instruction_following 26.47 57.06 100.0 6.79 13.79 21.38 100.0 10.54
knowledge_question 62.75 80.00 100.0 48.40 13.21 25.28 100.0 46.02
reasoning_question 66.67 74.67 100.0 67.08 41.67 62.08 100.0 51.61

AVG 63.97 77.93 100.0 43.02 40.78 51.28 100.0 36.48

Bespoke-Stratos-7B

analysis_question 100.0 100.0 100.0 830.43 75.0 95.24 99.17 408.97
instruction_following 58.82 96.69 88.82 1026.77 65.52 95.59 93.79 771.93
knowledge_question 100.0 100.0 100.0 830.62 88.68 97.36 100.0 460.63
reasoning_question 93.33 98.66 99.67 836.27 77.08 94.98 99.58 545.82

AVG 88.04 98.84 97.12 881.02 76.57 95.79 98.14 546.84

s1.1-7B

analysis_question 74.67 99.16 94.93 573.77 63.89 99.39 91.11 299.44
instruction_following 47.06 98.55 81.18 2041.02 41.38 99.19 84.83 1109.58
knowledge_question 80.39 100.0 94.12 848.53 84.91 100.0 96.23 329.6
reasoning_question 70.0 99.28 92.67 1088.92 41.67 99.48 80.83 490.29

AVG 68.03 99.25 90.73 1138.06 57.96 99.25 88.25 557.23

LIMO-7B-reproduced

analysis_question 49.33 85.91 96.53 806.91 5.56 60.79 63.06 368.22
instruction_following 17.65 89.52 61.76 1633.84 41.38 90.29 71.03 1111.96
knowledge_question 72.55 92.21 95.69 975.48 35.85 96.24 70.19 573.94
reasoning_question 56.67 81.56 94.0 1144.3 45.83 78.0 83.33 643.32

AVG 49.05 87.30 87.00 1140.13 32.16 81.33 71.90 674.36

CAC-CoT-7B (Ours)

analysis_question 97.33 99.2 100.0 273.97 90.28 98.33 99.72 174.12
instruction_following 67.65 98.12 94.12 306.82 65.52 96.35 94.48 287.83
knowledge_question 84.31 99.18 96.08 256.12 84.91 99.61 97.36 177.47
reasoning_question 95.00 98.67 100.0 308.13 85.42 97.49 99.58 226.16

AVG 86.07 98.79 97.55 286.26 81.53 97.95 97.78 216.39

Team, 2025). Despite the modest data volume, each
baseline is reported to extract unexpectedly strong
reasoning ability from its target model. s1.1 and
Bespoke-Stratos are evaluated exactly as released
in huggingface (SimpleScaling Team, 2024; Labs,
2024), maintaining full reproducibility. but, LIMO
was experimented on the 32B model, and no exper-
imental results were reported for the 7B model; we
therefore reproduce the same method in ours (s1.1
training method), and perform an identical SFT run
on Qwen-2.5-7b-Instruct (Team, 2024) checkpoint
to ensure a fair comparison.

4.1.3 Training Details

Training. For fine-tuning, we adopted Qwen-2.5-
7B-Instruct as the base model. Our training fol-
lowed the same hyperparameter configuration used
in s1.1 to ensure comparability. Further implemen-
tation details, including batch size, optimizer set-
tings, and training duration, are provided in the
Appendix A.

Datasets. We generated our training data us-

ing general-purpose LLMs, Gemini-2.0-Flash and
GPT-4o (OpenAI et al., 2024), cost-effective yet
capable frontier models. The performance of our
method (Ours) reported in Section 4 is based on
synthetic data generated with Gemini-2.0-Flash. To
examine whether training signals may have been in-
fluenced by the style and bias of a single model, we
additionally report results using GPT-4o generated
data in Appendix C.1. During the data generation
process, we filtered out instances that exhibited
generation errors or failed to follow our specified
formatting instructions. As a result, the total us-
able output was reduced. To ensure sufficient cov-
erage and diversity, we supplemented this data with
samples from the LIMO and s1 datasets (Ye et al.,
2025b; Muennighoff et al., 2025b). Specifically, we
removed any duplicates between LIMO and s1 and
excluded all corrupted or invalid generations. Af-
ter this filtering process, we finalized a training set
consisting of 1,391 examples. Details of the data
generation process are provided in Appendix B.

19519

4.2 System 1 Thinking

As summarized in Table 1, our experiments reveal
that CAC-CoT consistently achieves strong, state-
of-the-art results on System-1 tasks.

We evaluate our method on the S1-Bench suite,
which consists of tasks solvable via quick, intuitive
reasoning (“System-1” thinking). These tasks gen-
erally require little to no step-by-step deduction,
so an effective effective should answer accurately
without over-elaborating. On this benchmark, it per-
forms on par with or slightly better than the base-
lines in terms of accuracy: all methods achieve high
scores on these easier queries (as expected), but
importantly, ours does not sacrifice performance
on simple tasks despite its emphasis on CoT. In
fact, CAC-CoT attains the highest overall ACC@5
and PASS@1 on S1-Bench (Table 1), albeit with
marginal improvement since the baseline perfor-
mance is near-saturated.

Crucially, its responses on System-1 tasks are
compact and to-the-point, highlighting adaptability.
Whereas naive CoT prompting might introduce un-
necessary steps or verbiage for trivial questions, our
approach generates minimal reasoning — or some-
times goes straight to the answer — when extensive
explanation is unnecessary. Our average reasoning
trace length is the shortest among all evaluated
methods on S1-Bench (Table 1, ART), indicating
that it avoids “overthinking” simple problems.

This connector-aware strategy compresses rea-
soning traces to roughly one-third the length of
baselines while preserving — and in some cases
improving — accuracy. By constraining unneces-
sary expansion of the CoT, it avoids overthinking
pitfalls and shows that instruction-following archi-
tectures — when guided by targeted connector sig-
nals — can overcome the compliance weakness of
seen in previous studies on Long CoT reasoning.
Empirically, this design delivers over 20% accuracy
gain compared to both s1.1 and LIMO, confirm-
ing its strength on straightforward System-1 tasks
without sacrificing deliberative performance.

4.3 System 2 Thinking

CAC-CoT maintains strong performance on
System-2 benchmarks, demonstrating compara-
ble reasoning ability to prior Long-CoT baselines.
While there is a slight performance penalty relative
to baseline models — whose results are detailed
in Table 2 — the overall degradation is minor, and
Ours successfully preserves analytical reasoning ca-

Figure 2: Compactness of Chain-of-Thought Traces
by Model. Scatter plot of reasoning-trace length (y-axis)
versus connector count (x-axis) for AMC23 outputs.
Points farther toward the lower-left denote shorter, more
compact traces.

pabilities without relying on large-scale reasoning-
specialized traces.

A key distinction lies in the construction of our
training data. Unlike existing approaches that de-
pend heavily on dedicated reasoning models to
generate Long-CoT corpora — often resulting in
verbose outputs with excessive connector usage
— it employs a connector-aware generation strat-
egy based on Gemini-2.0-flash, a general-purpose
but instruction-aligned model. This allows us to
retain the reasoning efficacy of connector-based
CoT without inflating either the length of reason-
ing traces or the frequency of connector insertions.
As shown in Figure 2, our outputs are significantly
more compact, with the CAC-CoT cluster consis-
tently positioned in the lower-left region, indicat-
ing fewer connectors and greater efficiency than
competing models. In summary, CAC-CoT offers
a principled trade-off: it slightly underperforms the
strongest reasoning-optimized baselines, yet does
so with far more economical prompting and with-
out the bloat of overly long reasoning chains. This
makes it a compelling choice for efficient, scal-
able reasoning under constrained data and compute
regimes.

4.4 Connector Usage

To better understand the efficiency and structure of
reasoning under CAC-CoT, we jointly analyze the
distribution of connector usage and output length
across both the training data and inference outputs,
comparing against baselines (Table 3 , Figure 2).
These two aspects — connector count and sequence

19520

Table 2: System 2 thinking performance across benchmarks. Accuracy comparison on five reasoning benchmarks,
including AMC23, AIME24, GSM8K, GPQA Diamond and Math500. The row in-between highlights the difference
between CAC-CoT-7B (Ours) and the best baseline in each column (orange: negative, blue: positive).

Models AMC23 AIME24 GSM8K GPQA Diamond Math500 AVG

Qwen2.5-7B-Instruct 55.00 6.67 79.98 33.84 75.00 50.09
s1.1-7B 55.00 13.33 90.67 39.39 79.40 55.55
LIMO-7B-reproduced 57.50 13.33 88.55 35.35 78.20 54.58
Bespoke-Stratos-7B 52.50 23.33 88.25 43.94 80.20 57.64

–5.0 +3.33 +5.39 +4.54 –7.0 +0.26
CAC-CoT-7B (Ours) 50.00 10.00 85.37 38.38 68.00 50.35

Table 3: Connector usage comparison between open-
source LongCoT corpora and our corpus. Our corpus
yields significantly shorter reasoning traces with lower
connector density compared to widely used open-source
LongCoT datasets. Len: average trajectory length (to-
kens). Conn/1K: connectors per 1,000 tokens. # Sam-
ples: number of samples.

Dataset Len Conn/1K # Samples

S1K-1.1 9291.62 5.55 1k
LIMO 6984.09 2.97 0.8k
BESPOKE 4452.22 5.13 16.7k
OURS 1843.43 2.65 1.4k

length — serve as proxies for reasoning verbosity
and structural control, and offer insight into how
different models manage the trade-off between ex-
pressiveness and conciseness. Table 3 summarizes
connector usage and token lengths for our training
corpora versus the baselines. The Bespoke dataset
averages approximately 4500 tokens per reasoning
trace with 5 connectors per 1000 tokens, while s1K
averages around 9000 tokens and 5.5 connectors
per 1000 tokens. In contrast, our connector-aware
data exhibits a far more controlled structure, with
an average trace length of only 1850 tokens and
just 2.5 connectors per 1000 tokens. This demon-
strates that our data construction yields an efficient
reasoning corpus, which in turn benefits inference.
Figure 2 shows connector counts and token lengths
at inference time. As evident, the compact structure
of the training data carries over to outputs: on aver-
age the model uses only about 20 connectors and
produces fewer than 200 tokens per response. Base-
line models, by comparison, sometimes exceed 500
tokens or include over 70 connectors. Together with
the accuracy efficiency improvements reported in
Sections 4.2 and 4.3, these results confirm that our
connector-aware approach delivers both concise

and efficient reasoning.
Additionally, we perform a connector-aware

qualitative analysis on the generated training data.
Table 4 displays how the data patterns are struc-
tured before and after each connector. The first
is the reflection connector, which reflects known
mechanisms such as self-reflection and backtrack-
ing. Theses connectors encourage exploratory or
verification-oriented reasoning. The second type
is the confidence connector, which signals confir-
mation of the current reasoning path or indicates
termination of the reasoning process. The text seg-
ments before and after each connector reflect its
intended function, demonstrating how the logic is
shaped in alignment with the connector type.

The connector generation procedure is described
in Appendix C.2, and additional ablation studies
on connectors are provided therein.

4.5 Impact of Compactness and Connector
To separate the contributions of compactness and
connector usage, we conducted an additional study
with two separate synthetic datasets: one gener-
ated using only connector-aware (Only Connector-
Aware) and the other using only compactness (Only
Compact). The results are shown in Table 5

When excluding connectors and applying only
compactness, the overall length of synthetic data
was greatly reduced. However, the System-2 aver-
age score dropped by about 10% compared to the
base score. This indicates that the self-reflection
and confidence signals provided by connector-
aware reasoning substantially enhance reasoning
performance, particularly in challenging System-2
tasks. Interestingly, applying compactness alone
improved System-1 performance, suggesting that
compactness can be effective for simpler tasks,
whereas connectors provide essential scaffolding
for more complex reasoning scenarios.

19521

Table 4: Usage of Reflection and Confidence Connectors. The light-blue highlighted phrases represent reflection
connectors, which typically lead to revalidation or exploration of alternative reasoning paths. In contrast, the
light-orange highlighted phrases indicate confidence connectors, which are usually followed by concretization of
reasoning, confirmation of the current logic, or a transition toward final conclusions.

Reflection Connector I might have overlooked something. Let’s pause and rethink this. The
pattern doesn’t seem obvious. Let’s re-evaluate that approach. Instead of
trying to find a pattern, let’s try to show that there are infinitely many losing
positions.

This doesn’t lead where we want it to. Let’s pause and rethink this. Consider
the Sprague-Grundy theorem. Let g(n) be the Grundy value of n pebbles.

However, this might not be the right path because the problem says that
∆Erms depends on the rms value of the component of velocity along the
line of sight. We used the full kinetic energy expression, but we should have
used only one component. Let’s re-evaluate that approach.

Now let’s move to the equation for y(t).
y(t) =

∫ t
0 e

−2(t−s){2x(s) + 3y(s)}ds. y(t) = e−2t ∗ (2x(t) + 3y(t)).
Taking the Laplace transform: Y (p) = L{e−2t}L{2x(t) + 3y(t)}.
Y (p) = 1

p+2(2X(p) + 3Y (p)). Y (p) = 1
p+2(2(

2
p − 1

p+1) + 3Y (p)).

Y (p)(1− 3
p+2) =

2
p+2(

2
p − 1

p+1). Y (p)(p+2−3
p+2) = 2

p+2(
2(p+1)−p
p(p+1)).

Y (p)(p−1
p+2) =

2
p+2(

p+2
p(p+1)). Y (p)(p−1

p+2) =
2

p+2
p+2

p(p+1) .

Y (p) = 2
p(p+1)

p+2
p+2

1
p−1
p+2

. Y (p) = 2
p(p+1)

p+2
p−1 .

Hmm, that might be a dead end. Y (p) = 2(p+2)
p(p+1)(p−1) . Using partial

fractions: 2(p+2)
p(p+1)(p−1) =

A
p + B

p+1 + C
p−1 .

2(p+ 2) = A(p+ 1)(p− 1) +Bp(p− 1) + Cp(p+ 1).
2p+ 4 = A(p2 − 1) +B(p2 − p) + C(p2 + p).
2p+ 4 = (A+B + C)p2 + (−B + C)p−A.

Confidence Connector Now that’s convincing, it really does. Let us assume that for some m,
4m+ 2 is a losing position. Now we want to show that we can find
infinitely many numbers of the form 4m+ 2 are losing.

Wow, that actually makes a lot of sense now. Let an be a losing position if
and only if g(an) = 0. We know g(0) = 0 and g(2) = 0, so 0 and 2 are
losing positions. We want to find infinitely many losing positions. Let’s find
g(n) for n ≤ 20.

Wow, that actually makes a lot of sense now.
We have N = 22011 · 2025078 (mod 1000). We have 2025078 ≡ 78
(mod 1000). Also, we have 22011 ≡ 211 (mod 1000), since 2100 ≡ 376
(mod 1000). Also 210 = 1024 ≡ 24 (mod 1000). Then 211 = 2048 ≡ 48
(mod 1000). So, N ≡ 48 · 78 ≡ 3744 ≡ 744 (mod 1000). Everything fits
together nicely.

Looks consistent with earlier steps. I think this is the correct approach using
only one degree of freedom to determine the temperature.

19522

Table 5: Comparison across restricted variants. Comparison of synthetic data lengths under individual constraints
on connector-awareness and compactness, with corresponding impact on System-2 (S2) and System-1 (S1) perfor-
mance (AVG, ACC@5, ART).

Methods Avg Token Len. S2 AVG S2 ART S2 ART (Incorrect) S1 AVG S1 ART

Only Connector-Aware 1,856 50.166 1973.2 2585 85.07 247
Only Compactness 1,228 45.42 1053.2 1242 92.65 104
Connector-Aware + Compactness (CAC-CoT) 1,843 50.35 1681.8 2125 83.92 252

Comparing Ours (Connector-Aware + Compact)
with Only Connector-Aware revealed almost no
difference in average System-2 scores, implying
that Only Connector-Aware is already sufficient to
maintain reasoning quality. Nevertheless, ART de-
creased by approximately 300 tokens in System-2
tasks and by about 450 tokens in incorrect cases.
This demonstrates that compactness reduces unnec-
essary tokens and improves reasoning efficiency,
particularly by preventing overly long and unsuc-
cessful reasoning paths.

5 Conclusion

We present a prompt-based, connector-aware com-
pact chain-of-thought framework that automati-
cally generates high-quality reasoning traces with
general-purpose LLMs such as Gemini-2.0-Flash
and GPT-4o and trains models exclusively through
SFT. By enforcing depth limits and explicit con-
nector cues, our method produces concise yet co-
herent rationales that improve both reliability and
efficiency. Extensive experiments confirm its ef-
fectiveness: the approach consistently surpasses
strong baselines across intuitive System-1 and ana-
lytical System-2 benchmarks while operating with
significantly lower computational overhead.

Limitations

The findings reported here rest on notable con-
straints. First, all experiments were performed with
a single model family, Qwen, leaving open the ques-
tion of whether comparable improvements would
materialize for other widely used backbones such
as LLaMA or Gemma.

Second, no quantitative comparison was made
against RL-based models. While our study demon-
strates a methodology that efficiently and effec-
tively enhances reasoning in general-purpose Lan-
guage Models such as Qwen2.5-7B-Instruct, recent
advances show that RL-based models are achiev-
ing increasingly strong reasoning performance.

Whether our approach can be optimized for RL-
based models remains an open question. Given the
differing characteristics between general-purpose
and RL-based Language Models, adapting the pro-
posed method for RL-based settings represents an
important direction for future work.

Third, while categorizing connectors into con-
fidence and reflection types may be considered a
strength of our methodology, the construction of
the connector pool itself was based on heuristic
rules. This design choice, though practical, intro-
duces a potential source of bias and limits the sys-
tematic generalizability of the results. Future work
could explore more principled or data-driven ap-
proaches for defining connector categories to en-
hance the robustness of evaluation.

Broadening the range of backbone models and
extending evaluation to RL-based models would
therefore provide a more rigorous test of the gen-
eralizability, robustness, and transferability of the
proposed approach.

References
Shivam Adarsh, Kumar Shridhar, Caglar Gulcehre,

Nicholas Monath, and Mrinmaya Sachan. 2024.
Siked: Self-guided iterative knowledge distilla-
tion for mathematical reasoning. arXiv preprint
arXiv:2410.18574.

Anthropic. 2025. Claude 3.7 sonnet system
card. https://assets.anthropic.
com/m/785e231869ea8b3b/original/
claude-3-7-sonnet-system-card.pdf.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,
Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wanxiang Che. 2025. Towards
reasoning era: A survey of long chain-of-thought for
reasoning large language models. arXiv preprint
arXiv:2503.09567.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, and 1 others.
2024. Do not think that much for 2+ 3=? on

19523

https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf

the overthinking of o1-like llms. arXiv preprint
arXiv:2412.21187.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.
Preprint, arXiv:2501.12948.

Google. 2025. Gemini 2.5 pro preview model
card. https://storage.googleapis.
com/model-cards/documents/gemini-2.
5-pro-preview.pdf. Also published on the
Google AI and DeepMind Blogs.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed El-Kishky, Aiden Low, Alec Helyar,
Aleksander Madry, Alex Beutel, Alex Carney, and 1
others. 2024. Openai o1 system card. arXiv preprint
arXiv:2412.16720.

Daniel Kahneman. 2011. Thinking, fast and slow.
macmillan.

Udo Kannengiesser and John S Gero. 2019. Design
thinking, fast and slow: A framework for kahneman’s
dual-system theory in design. Design Science, 5:e10.

Bespoke Labs. 2024. Bespoke-stratos-7b. Accessed:
2025-05-20.

Bespoke Labs. 2025. Bespoke-stratos: The unrea-
sonable effectiveness of reasoning distillation.
https://www.bespokelabs.ai/blog/bespoke-stratos-
the-unreasonable-effectiveness-of-reasoning-
distillation. Accessed: 2025-01-22.

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xi-
angxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, and
1 others. 2025a. Llms can easily learn to reason
from demonstrations structure, not content, is what
matters! arXiv preprint arXiv:2502.07374.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025b.
Limr: Less is more for rl scaling. arXiv preprint
arXiv:2502.11886.

Yuetai Li, Xiang Yue, Zhangchen Xu, Fengqing Jiang,
Luyao Niu, Bill Yuchen Lin, Bhaskar Ramasubra-
manian, and Radha Poovendran. 2025c. Small mod-
els struggle to learn from strong reasoners. arXiv
preprint arXiv:2502.12143.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025a. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025b. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

Richard Yuanzhe Pang, Weizhe Yuan, He He,
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason
Weston. 2024. Iterative reasoning preference opti-
mization. Advances in Neural Information Process-
ing Systems, 37:116617–116637.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpqa:
A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling.

Si Shen, Fei Huang, Zhixiao Zhao, Chang Liu, Tian-
sheng Zheng, and Danhao Zhu. 2025. Long is more
important than difficult for training reasoning models.
arXiv preprint arXiv:2503.18069.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling LLM Test-Time Compute Op-
timally can be More Effective than Scaling Model
Parameters. arXiv preprint arXiv:2408.03314.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634–8652.

SimpleScaling Team. 2024. s1.1-7b model on
hugging face. https://huggingface.co/
simplescaling/s1.1-7B. Accessed: 2025-
05-19.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, and 1 oth-
ers. 2025. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint
arXiv:2503.16419.

Swabha Swayamdipta, Roy Schwartz, Nicholas Lourie,
Yizhong Wang, Hannaneh Hajishirzi, Noah A Smith,
and Yejin Choi. 2020. Dataset cartography: Map-
ping and diagnosing datasets with training dynamics.
arXiv preprint arXiv:2009.10795.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Qwen Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

19524

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf
https://huggingface.co/bespokelabs/Bespoke-Stratos-7B
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://huggingface.co/simplescaling/s1.1-7B
https://huggingface.co/simplescaling/s1.1-7B
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Un-
derstanding chain-of-thought length in llms. arXiv
preprint arXiv:2502.07266.

Haoran Xu, Baolin Peng, Hany Awadalla, Dongdong
Chen, Yen-Chun Chen, Mei Gao, Young Jin Kim,
Yunsheng Li, Liliang Ren, Yelong Shen, and 1 others.
2025a. Phi-4-mini-reasoning: Exploring the limits
of small reasoning language models in math. arXiv
preprint arXiv:2504.21233.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi
Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia
Kang, Jiaming Ji, Yingying Zhang, and 1 others.
2025b. Redstar: Does scaling long-cot data un-
lock better slow-reasoning systems? arXiv preprint
arXiv:2501.11284.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. 2023a.
Tree of thoughts: Deliberate problem solving with
large language models. Advances in neural informa-
tion processing systems, 36:11809–11822.

Yao Yao, Zuchao Li, and Hai Zhao. 2023b. Be-
yond chain-of-thought, effective graph-of-thought
reasoning in language models. arXiv preprint
arXiv:2305.16582.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025a. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025b. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Wenyuan Zhang, Shuaiyi Nie, Xinghua Zhang, Zefeng
Zhang, and Tingwen Liu. 2025. S1-bench: A sim-
ple benchmark for evaluating system 1 thinking ca-
pability of large reasoning models. arXiv preprint
arXiv:2504.10368.

OpenAI, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, et al. 2024. GPT-
4o System Card. arXiv preprint arXiv:2410.21276.

Schiffrin, Deborah. 1987. Discourse Markers. Cam-
bridge University Press.

19525

https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387

A Implementation and Training
Configuration

To enable a fair comparison with existing baselines,
we adopt the same training setup used for s1.1-7B
(SimpleScaling Team, 2024; Muennighoff et al.,
2025a) and fine-tune our model on the proposed
reasoning dataset. Specifically, we use Qwen2.5-
7B-Instruct with the same hyperparameters as in
prior work. The model is trained for 5 epochs with
a batch size of 16 and a gradient accumulation step
of 4, using four NVIDIA A100 80GB GPUs. How-
ever, unlike previous datasets, our reasoning data
contains relatively long samples (approximately
2,000 tokens on average), and thus we set the block
size to 4,000 to ensure full context coverage dur-
ing training. We also reproduce the LIMO baseline
(denoted as LIMO-Reproduce) under the same hy-
perparameter settings for performance comparison.
The only difference is the block size, which we set
to 13,000 due to the length of the input and GPU
memory constraints. The full training configuration
is summarized as follows:

Table 6: Training Configuration

Parameter Value

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Scheduler Cosine
Learning Rate 1× 10−5

Per Device Train Batch Size 1
Gradient Accumulation Steps 4
Block Size 4000
Weight Decay 1× 10−4

Hardware 4×NVIDIA A100 (80GB)

B Training Datasets

Table 9 and Table 10 illustrate the exact prompt for-
mat and connector types used during the reasoning
data generation process. Table 9 presents the input
format employed to elicit step-by-step reasoning
traces, while Table 10 highlights the use of both
confidence and reflection connectors introduced to
guide expansion or convergence during reasoning.
In addition, Algorithm 1 outlines the constraint
strategies we adopted to control the reasoning flow
and ensure coherence, including how specific con-
nector types were encouraged under various gen-
eration conditions. To mitigate excessive data loss
caused by constraint filtering, we incorporate ad-
ditional samples from the s1 and LIMO datasets.
We then perform a thorough deduplication across
all sources to preserve the uniqueness and integrity

Figure 3: Connector redundancy distribution across
datasets. Histograms of connector redundancy per sam-
ple (average number of uses per unique connector) for
each dataset.

of the training data. This results in an initial set
of 1,429 instances. After post-validation filtering,
we retain 1,391 unique samples. This number may
slightly vary depending on the generation behav-
ior of the frontier model used during reproduction.
As shown in Figure 3, CAC-CoT (Ours) exhibits
the lowest average redundancy, indicating more di-
verse and less repetitive connector usage compared
to other baselines.

Furthermore, Table 12 provides illustrative in-
ference examples of reasoning traces and connec-
tor usage from s1.1-7B and CAC-CoT-7B on an
AMC problem, demonstrating how training con-
nector strategies directly influence inference-time
behavior.

C Ablation Studies

C.1 Model Reliance on Synthetic Data

To examine the potential model dependency of
our synthetic data, we generated datasets not only
with Gemini-2.0-Flash but also with GPT-4o, while
keeping the rest of the generation process un-
changed. As shown in Table 7, the dataset produced
by GPT-4o was approximately half the average
length of that generated by Gemini-2.0-Flash. Con-
sequently, while there was a modest decrease in
performance on System-2 tasks, the GPT-4o-based
data achieved higher accuracy on System-1 tasks
and exhibited nearly twice the ART efficiency com-
pared to Gemini. Moreover, qualitative inspection
confirmed that connector-based reasoning was pre-
served, with only stylistic differences.

Based on these findings, we acknowledge that
some degree of model-specific influence may ex-
ist. However, the results also indicate that the

19526

Table 7: Model Reliance on Synthetic Data Synthetic data lengths across model variants (Gemini-2.0-Flash and GPT-4o), along
with their impact on System-2 (S2) and System-1 (S1) performance (AVG, ACC@5, ART).

Methods Avg Token Len. S2 AVG S2 ART S1 AVG S1 ART

CAC-CoT (Gemini-2.0-Flash) 1,843 50.35 1,681.8 83.92 252
CAC-CoT (GPT-4o) 864 48.186 796.0 90.75 327

Table 8: Connector Reliance on Synthetic Data Impact of connector variants on System-2 (S2) and System-1 (S1) performance
(AVG, ACC@5, ART).

Methods S2 AVG S2 ART S1 AVG S1 ART

CAC-CoT (Base Connectors) 50.35 1,681.8 83.92 252
CAC-CoT (Augmented Connectors) 48.03 1482.0 86.25 217

Table 9: CAC-CoT prompt for synthetic reason-
ing. it consists of Thinking and Answer sections. Teal
highlights Connector-Aware rules, and brown high-
lights Compactness rules. The bold tokens reflec-
tion_connector and confidence_connector refer to a
fixed connector list provided in Table 5, and the bold
token question is supplied anew for each generation.

Thinking
Explain your reasoning step by step, including assumptions,
logic, edge cases, and background knowledge. Do not state
the final answer here.

Follow these rules:
1. Pause after each step to review logic.
2. Use {reflection_connector} (or similar phrases)
expressions for uncertainty.
3. Use {confidence_connector} expressions (or simi-
lar phrases) to confirm valid logic.
4. Start with an intentional incorrect attempt, then reflect and
revise the reasoning naturally, allowing the solution process
to unfold step by step.
5. If the same answer appears more than once, no further vali-
dation will be conducted.
6. Do not use connectors consecutively. (especially at the end)
7. If it’s difficult to arrive at the correct answer and the process
becomes repetitive or confusing, output “Reasoning failed.
Unable to provide an answer.” and terminate.
8. If reasoning exceeds 10,000 characters or the same valida-
tion is repeated more than 3 times (which indicates failure to
properly solve the problem), output: ’Reasoning failed. Unable
to provide an answer.’ Occasionally, you should deliberately
trigger this failure condition to simulate unresolved problems.

Wrap the reasoning between <thinking> and </thinking>.

Answer
Provide only the final answer between <answer> and </an-
swer>, starting with ’Final Answer:’.

Question
{question}

Output Format

<thinking> (thinking trajectories) </thinking>

<answer> ~~ (Final Answer: final answer) </answer>

connector-based reasoning framework does not
narrowly depend on the biases of a particular
model. Instead, it can reproduce Dual-System per-
formance improvements even when applied to dif-
ferent general-purpose models, suggesting that our
approach constitutes a model-agnostic method for
synthetic data generation.

C.2 Robustness to Connector Choice
In this study, to conduct research on efficient syn-
thetic data generation based on connectors, we
created connectors in the following order: (1) ran-
domly creating four initial connectors (set by the
authors), (2) expanding them into sets of 20 via
ChatGPT, and (3) using them without manual edit-
ing. The resulting set of connectors, referred to
as Base Connectors , is presented in Table 10. To
verify whether the generated connectors were not
overly fitted to the experimental models, we con-
ducted an ablation study. First, we collected connec-
tors based on previous work, by examining the lit-
erature on discourse markers (Schiffrin, 1987), and
second, we augmented them following the same
procedure as in our study and then fixed the con-
nectors. We denote these as Augmented Connec-
tors. The Augmented connectors are provided in
Table 11, and the performance of the models trained
using these connectors is reported in Table 8.

As a result of the experiments, although ART
slightly decreased in both System-2 and System-1,
the overall performance remained nearly the same.
This indicates that, in our study, the specific choice
of connectors does not significantly affect perfor-
mance. However, we believe that examining the
detailed influence of connectors (generalization,
optimization) is an important future research direc-
tion. We leave this as part of our Future Work.

19527

Table 10: Base Connectors. Connectors used during
data generation. The Confidence and Reflection Con-
nectors are provided as list inputs at generation time.

Confidence Connectors
• Wow, that actually makes a lot of sense now.
• Ah, now I get it. Seeing it this way really boosts

my confidence.
• It all makes sense now, this gives me a solid foun-

dation to move forward.
• Now that’s convincing, it really does.
• That’s quite clear now.
• This seems logically sound.
• This matches the logical expectation.
• I can see the reasoning fits well here.
• Yes, that checks out.
• Everything fits together nicely.
• Right, that was the missing piece.
• Indeed, this supports the claim well.
• Up to this point, the logic remains solid.
• That was a clean deduction.
• Looks consistent with earlier steps.
• There’s no contradiction here.
• That’s internally consistent.
• Solid logic so far.
• This explanation holds up.
• Now everything is falling into place.

Reflection Connectors
• However, this might not be the right path because
• We should verify this step before moving on.
• Let’s break this down into simpler steps.
• Working backwards, we see that we need. . .
• Wait, that doesn’t seem to follow.
• Hmm, that might be a dead end.
• That step could be flawed.
• There could be a mistake here.
• This seems inconsistent with earlier logic.
• This doesn’t lead where we want it to.
• That assumption might be too strong.
• Let’s re-evaluate that approach.
• Not quite the result we hoped for.
• Possibly an error in reasoning here.
• This result feels suspicious.
• I might have overlooked something.
• Let’s pause and rethink this.
• That logic seems a bit shaky.
• This contradicts a previous result.
• Needs further inspection before continuing.

Table 11: Augmented Connectors. Connector sets de-
rived from prior literature and augmented using our
method, serving as inputs for the ablation study.

Confidence Connectors
• Exactly.
• Right, that makes sense.
• Yes, that checks out.
• Perfect, I’m convinced.
• That follows logically.
• Crystal clear now.
• All consistent so far.
• Indeed, that supports the claim.
• Looks solid to me.
• Everything lines up.
• No contradictions here.
• Good, that was the missing piece.
• Makes perfect sense.
• Now it’s obvious.
• That’s a neat deduction.
• Seems sound.
• This explanation holds.
• Great, let’s proceed.
• That fits perfectly.
• All clear, moving on.

Reflection Connectors
• Wait, that might be off.
• Hold on, let’s double-check.
• Hmm, this seems inconsistent.
• Could be a mistake here.
• That doesn’t follow, does it?
• Let’s rethink this step.
• This path feels risky.
• We may have overlooked something.
• That assumption seems too strong.
• Possibly a dead end.
• Let’s pause and verify.
• That contradicts earlier reasoning.
• Not quite the result we wanted.
• Needs a closer look.
• Error suspected here.
• Might need to backtrack.
• This logic feels shaky.
• I’m not convinced yet.
• Could we revise this?
• Let’s inspect this further.

19528

Algorithm 1: CAC-CoT Data Generation and Selection

1: Input: Datasets Qs1 and QLIMO
2: Output: Final generated set DCAC-CoT
3: D contains the reasoning trace and answer for Q
4: QALL ← Qs1 ∪QLIMO
5: combine s1 and LIMO
6: RemoveExactDuplicates(QALL)
7: exact duplicate removal
8: RemoveNearDuplicates(QALL)
9: Levenshtein cleaning

10: Qdeduplicated ← Deduplicated Set with s1 and LIMO (target = 1429)
11: DCAC-CoT ← ∅
12: Initialize output set
13: for q ∈ Qdeduplicated do
14: (r, a)← GENERATE(q)

Generate r and a through connectors conditioned on logic validity (confidence and
reflection) with a general-purpose LLM (e.g., Gemini-2.0-Flash).

if ConstraintsSatisfied(r, a) then
DCAC-CoT ← DCAC-CoT ∪ {(q, r, a)};

else
for i← 1 to 5 do

(r, a)← GENERATE(q);
if ConstraintsSatisfied(r, a) then
DCAC-CoT ← DCAC-CoT ∪ {(q, r, a)};

end
end
if not ConstraintsSatisfied(r, a) then

Drop(q) exclude after 5 failures
end
end if

end
end for

15: end
16:
17: Function ConstraintsSatisfied(r, a):
18: if |r| < 100 ∨ |r| > 30000 then
19: return false;
20: end
21: if format violation then
22: return false;
23: end
24: if (‘thinking’ contains answer token) or (‘answer’ contains thinking token) then
25: return false;
26: end
27: return true;

19529

Table 12: Example reasoning traces and connector usage from s1.1-7B and CAC-CoT-7B on an AMC problem.
Sample outputs for a single problem, with connector phrases in bold. s1.1-7B exhibits frequent repetition and
unstructured connector use (“Wait, no.”), leading to meandering reasoning. In contrast, CAC-CoT-7B employs
explicit, context-aware connectors to structure its reasoning, including self-correction and targeted re-evaluation,
resulting in more coherent and efficient problem solving.

Question You are playing a game. A 2× 1 rectangle covers two adjacent squares (oriented either horizontally or
vertically) of a 3× 3 grid of squares, but you are not told which two squares are covered. Your goal is to
find at least one square that is covered by the rectangle. A "turn" consists of you guessing a square, after
which you are told whether that square is covered by the hidden rectangle. What is the minimum number
of turns you need to ensure that at least one of your guessed squares is covered by the rectangle?

s1.1-7B Okay, so I need to figure out the minimum number of turns required to guarantee that at least one of the
guessed squares is covered by a randomly placed 2x1 rectangle on a 3x3 grid.

Let me start by visualizing the problem. First, the grid is 3x3, which means there are 9 squares. The
hidden rectangle is either horizontal or vertical and covers two adjacent squares. So, there are two
possible orientations: the rectangle can be placed horizontally (covering two squares in a row) or
vertically (covering two squares in a column). For each orientation, the possible positions vary. Let me
count the number of possible rectangles. For horizontal rectangles: in a 3x3 grid, there are 2 possible
rows (top or middle) and each row can have 2 starting positions (left or center).

Wait, no.
Wait, in a row of 3 squares, how many horizontal dominoes can be placed? Let’s see. Each horizontal
domino covers two adjacent squares. In a row of 3, you can place it starting at the left (covers squares
1-2) or starting at the center (covers squares 2-3). So, each row has 2 horizontal dominoes. Since there
are 3 rows, but the problem says "covers two adjacent squares" which can be in any orientation.

Wait, no.
Wait, the problem says a 2x1 rectangle covers two adjacent squares. So, either horizontally or vertically.
So, horizontal dominoes are in rows, vertical dominoes are in columns. So, for horizontal dominoes:
each row can have 2 possible positions. There are 3 rows, so total horizontal dominoes: 3*2 = 6. For
vertical dominoes: each column can have 2 possible positions. There are 3 columns, so total vertical
dominoes: 3*2 = 6. So total possible rectangles: 6 + 6 = 12.

Wait, but the problem states that the rectangle is placed randomly. So, the hidden rectangle can be any
of these 12 possibilities.

...

Thus, the smallest hitting set requires **four** squares, ensuring all possible dominoes are covered. 4

CAC-CoT-7B Let’s start with an incorrect attempt. Suppose we guess squares one by one until we find a covered
square. In the worst case, we might guess squares that are not covered. The rectangle can cover at most
2 squares. So, if we guess 3 squares, at least one of them must be covered. Thus, the minimum number
of turns is 3.

However, this might not be the right path because it doesn’t consider the optimal strategy. Let’s
re-evaluate that approach. We want to minimize the number of turns while guaranteeing that we find a
covered square. The rectangle can be placed in different orientations (horizontal or vertical) and in
different positions on the 3× 3 grid. Consider the first turn. If we guess the center square, what is the
probability that it’s covered? If the rectangle is oriented horizontally, the center square is covered if the
rectangle spans the middle row. If the rectangle is oriented vertically, the center square is covered if the
rectangle spans the middle column. In either case, the probability is 1/3. However, knowing the center
square is not covered doesn’t help much.

...

If we make only 3 guesses, it might happen that none of them are covered. For example, we guess the
center and two squares in the same L-shaped region that does not contain the rectangle. Now that’s
convincing, it really does. The minimum number of turns is 4.

19530

