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Abstract
Multimodal emotion recognition in conversa-
tion (MERC) aims to identify speakers’ emo-
tional states by utilizing text, audio, and visual
modalities. Although recent large language
model (LLM)-based methods have demon-
strated strong performance, they typically
adopt static fusion strategies that integrate all
available modalities uniformly. This overlooks
the fact that the necessity of multimodal cues
can vary significantly across utterances. In
this work, we propose an adaptive modality
selection framework for MERC. The core of
our approach is a modality selection module
based on Group Relative Policy Optimization
(GRPO), which enables a LoRA-tuned LLM
to reason about the necessity of multimodal
input via chain-of-thought (CoT) generation.
This process does not require manually labeled
modality selection data and is trained in a fully
unsupervised manner. The selected modality
configuration is then provided as input to a
downstream emotion classifier, which is also
implemented using a LoRA-tuned LLM and
trained to predict emotional states. Experimen-
tal results on benchmark multimodal dialogue
datasets show that our method consistently out-
performs strong baselines, demonstrating the
effectiveness of adaptive modality selection in
improving recognition accuracy. Our code is
available at https://github.com/youflya
way/Modality-Selection-Enhanced-LoR
A-Tuned-LLMs.

1 Introduction

Multimodal Emotion Recognition in Conversations
(MERC) aims to identify the speaker’s emotion by
combining text, audio, and visual signals. Exist-
ing studies (Majumder et al., 2019; Li et al., 2022;
Hu et al., 2022c; Li et al., 2023a) have primarily
focused on multimodal feature fusion and align-
ment, yielding better results than unimodal base-
lines. Recently, Large Language Models (LLMs)
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have achieved significant results in a variety of natu-
ral language processing tasks due to their powerful
context modeling and reasoning capabilities. Some
researchers have applied LLMs to emotion recog-
nition tasks. InstructERC (Lei et al., 2023a) for-
mulates emotion recognition as a generative task,
introducing retrieval-based templates and emoti-
con alignment mechanisms to model speaker in-
teractions. VoiceERC (Wu et al., 2025) trans-
forms speech features into natural language de-
scriptions in a way that enables multimodal emo-
tion analysis without architectural changes. Dia-
logueLLM (Zhang et al., 2023) implements MERC
using an end-to-end supervised instruction fine-
tuning method by converting conversation videos
into textual descriptions that will be used as com-
plementary knowledge to construct high-quality
instructions. Similarly, TextMI (Hasan et al., 2023)
and (Richet et al., 2024) converts audio and visual
inputs into structured textual descriptions, effec-
tively reducing model complexity while preserving
task performance.

Although LLM-based methods show advantages
in multimodal emotion recognition tasks, they
mainly use a fixed multimodal usage strategy, ignor-
ing that different utterances may require different
combinations of modalities. When there are seman-
tic breaks or cryptic expressions in the conversation
text, other modal cues in the historical conversa-
tion can effectively complement the key contextual
information; while when the text contains suffi-
cient emotion cues (e.g., explicit emotion words,
intention indicators, or contextual markers), the in-
troduction of multimodal features may cause the
model to focus excessively on redundant informa-
tion. As illustrated in Figure 1a, Joey’s utterance
in the Friends dataset is emotionally ambiguous in
text alone, but visual and acoustic cues from earlier
turns help clarify the emotional state. Conversely,
in Figure1b, the teacher’s statement already pro-
vides sufficient semantic signals, allowing accurate
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Joey

Visual Audio Text

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

𝑢6

Push!  [joy]

Push 'em out, push 

'em out, harder, harder.  

[joy]

Push'em out, push'em

out, way out!  [joy]

Let's get that ball and 

really move, hey, hey, 

ho, ho.  [joy]

Let’s I was just yeah, 

right. [joy]

Push!  [joy]

(a) Emotion requiring visual and acous-
tic cues (Joey)

Rachel

Visual Audio Text

The Teacher

Text Audio Visual

𝑢1

𝑢2

𝑢3

𝑢4

𝑢5

How would you 

characterize the theme 

of this book, uh let's 

see here , Rachel 

Green?  [neutral]
Umm, well I would 

have to say that it's a, 

it's tragic love story.  

[neutral]

Well, that‘s sort of a 

given, but yes. Anyone 

else?  [neutral]

Oh-oh-oh, symbolism! 

And uh, the-the uh, 

wildness of the mores, 

which  [joy]Excellent! What 

Rachel has shrewdly 

observed here [joy]

(b) Emotion recognizable from text alone (Rachel)

Figure 1: Examples of utterances with varying modality dependencies from the MELD dataset.

recognition based solely on the textual modality.
To address the limitations of fixed modality us-

age, we propose a MERC framework centered on
adaptive modality selection. The goal is to dynami-
cally determine whether to incorporate multimodal
information based on contextual needs, thereby im-
proving modality utilization. The method adopts
a two-stage structure: in the first stage, the model
learns in an unsupervised setting whether the cur-
rent utterance requires multimodal cues from the
historical conversation. We introduce a reinforce-
ment learning mechanism based on Group Relative
Policy Optimization (GRPO) (Shao et al., 2024)
to train a LoRA-tuned (Hu et al., 2022b) LLM as
a modality selector. Instead of using an explicit
value function, the model leverages the average
reward from multiple outputs for the same input
as a learning signal. In the second stage, the se-
lected unimodal or multimodal inputs are used to
construct prompts for LoRA-based fine-tuning of
the LLM on supervised emotion-labeled data, en-
abling the final emotion classification. The main
contributions are as follows:

(1) We identify the limitation of fixed modality
usage in MERC and propose a parameter-efficient
two-stage framework that integrates modality se-
lection with emotion recognition. By dynamically
determining whether to incorporate multimodal in-
formation based on contextual needs, our method
enables flexible adaptation to varying modality de-
mands across different conversational scenarios,
thereby enhancing emotion classification perfor-
mance.

(2) We design a modality adaptive selection strat-
egy based on GRPO, which guides LLM to learn
when to introduce multimodal information under
unlabeled conditions, and improves the model’s

ability to perceive the differences in modal de-
mands in different contexts.

(3) Experiments on benchmark datasets demon-
strate that our framework consistently outperforms
competitive baselines across core metrics, validat-
ing the effectiveness and generalizability of the
proposed adaptive modality selection mechanism.

2 Related Work

2.1 Emotion Recognition in Conversation

Following over a decade of development, numer-
ous works have emerged in the domain of Emo-
tion Recognition in Conversation (ERC). These
works can be broadly categorized into four groups:
Approaches that have been developed include
transformers-based, GNN-based, recurrent-based
and large language models methods.

Transformer-based approaches (Li et al., 2020;
Song et al., 2022; Liu et al., 2023; Chudasama
et al., 2022) seek to capture long-range emotional
correlations in conversation by either adopting the
vanilla Transformer architecture or modifying its
self-attention blocks to conversational data. GNN-
based works (Ghosal et al., 2019; Ishiwatari et al.,
2020; Shen et al., 2021; Li et al., 2023b) use
graphs to model human interactions in conversa-
tional scene as well as the effects between differ-
ent modalities, i.e. speakers, utterances and multi-
modal features. Recurrent-based works (Hu et al.,
2023; Lei et al., 2023b; Hazarika et al., 2018; Ma-
jumder et al., 2019) rely on LSTM or GRU-based
encoders, often augmented with attention mech-
anisms, to track speaker-specific emotional state
while maintaining a coherent view of the global
conversation context.
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2.2 Large Language Models for Emotion
Recognition

LLMs have rapidly migrated from general-purpose
NLP to specialized downstream tasks, including
ERC. InstructERC (Lei et al., 2023a) prompts
LLMs to predict emotion labels through instruction
tuning, introducing a retrieval template module and
emotional alignment tasks that grounds generation
in conversational context. BiosERC (Xue et al.,
2024) enriches the prompt with the speaker’s bi-
ographical information automatically distilled by
LLMs, helping better understand emotional inter-
actions in the conversation. CKERC (Fu, 2024)
design prompts to generate interlocutors’ common-
sense based on historical utterances with large lan-
guage model. VoiceERC (Wu et al., 2025) incor-
porates emotional cues from speech into the model
input for a more comprehensive understanding of
the speaker’s emotional state.

3 Method

The proposed method follows a two-stage frame-
work, as illustrated in Figure 2. First, the GRPO-
guided modality selector determines whether mul-
timodal cues from the historical context are neces-
sary for the current utterance in an unsupervised
manner. Second, a LoRA-tuned LLM performs
emotion classification based on the selected input
configuration (text-only or multimodal). Prior to
these two stages, we transform raw acoustic and vi-
sual inputs into structured textual descriptions, en-
suring compatibility with the LLM-based prompt-
ing paradigm.

3.1 Problem Formulation

Assume the multimodal dataset contains multiple
conversations, each consisting of K utterances. For
the k-th utterance, we define its associated multi-
modal input as:

Mk = {uk, audiok, videok, yk} (1)

where uk denotes the text of the k-th utterance,
audiok and videok represent the corresponding raw
audio and visual inputs respectively, and yk is the
associated emotion label.

The task consists of two sub-objectives:
(1) Modality Selection: Learn a policy πθ to

decide whether to incorporate audio and visual de-
scription in addition to the text input for emotion
recognition.

(2) Emotion Recognition: Train a classifier to
predict the emotion label.

3.2 Multimodal Feature Processing
To unify all input modalities into a format suit-
able for LLM-based processing, we convert the
raw audio and visual signals into structured textual
descriptions using pretrained modality-specific en-
coders. These descriptions are then integrated with
textual content to support downstream modeling.

For each utterance uk, we process its associated
audio segment audiok using Qwen2-Audio (Chu
et al., 2024), which generates a textual description
aligned with the speech content:

C
(k)
aud = Qwen_Audio(prompt, audiok) (2)

Here, C(k)
aud captures emotional cues such as tone,

pitch, and rhythm that complement the textual ut-
terance.

Each utterance uk is also assigned a visual input
videok. We employ Qwen2-VL (Wang et al., 2024)
to generate a structured textual description of the
video:

C
(k)
vid = Qwen_VL(prompt, videok) (3)

This output captures high-level scene semantics
and character interactions.

3.3 GRPO-Guided Modality Selection
To dynamically determine whether to incorporate
multimodal information, we formulate modality
selection as a binary reasoning task. Given the his-
torical context of the current utterance, the model
must decide whether additional audio or visual
modalities are needed to enhance emotion under-
standing. We implement the modality decision
model using an LLM with LoRA adapters (Hu
et al., 2022b), which generates structured natu-
ral language responses indicating the necessity of
multimodal information. The model is prompted
with the current utterance, its dialogue history, and
modality descriptions.

Since no ground-truth labels are available for
modality usage, we employ GRPO (Shao et al.,
2024)—a reinforcement learning method that opti-
mizes the generation policy by sampling multiple
candidate responses and assigning rewards based
on carefully designed reward functions, thus avoid-
ing the need for explicit supervision. GRPO allows
the model to learn CoT reasoning and modality se-
lection without requiring ground-truth. It explores
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(1). GRPO-Guided Modality Selection

Joey: “Push!”
Joey: “Push 'em out…

𝑢

Policy 
Model

Joey: “Push!”
Joey: “Push 'em out, push 'em out, harder, 
harder.”

Context
LoRA

LLM

The speaker's tone is excited.
The speaker's tone is ...

The man appears to be speaking to the patient, ... 

Multimodal Descriptions

Joy

Output

(2). Emotion Recognition

Multimodal

Selection

No

Yes
History 
window

Figure 2: The proposed two-phase framework: (1) GRPO-Guided Modality Selection learns whether to use multi-
modal context; (2) LoRA-tuned LLM performs emotion recognition based on the selected modality configuration.

multiple reasoning paths, receives feedback via
well-designed rewards, and gradually converges to
better strategies. Compared to other RL algorithms
like PPO (Schulman et al., 2017), GRPO does not
require training an additional value model, which
simplifies optimization and reduces overhead.

3.3.1 Question Definition

We frame the modality selection process as a
prompt-based reasoning task, allowing LLMs to
decide whether multimodal inputs are necessary.
Specifically, the prompt q consists of three compo-
nents: a natural language instruction that describes
modality selection question, a decision flow, and a
historical dialogue content that includes both tex-
tual and modality descriptions. It is defined as:

q = {Question, Decision Flow, Context},

Context =
{
(u1, C

(1)
aud), . . . , (uk, C

(k)
aud), C

(k)
vid

}

(4)
Here, q is a fixed instruction designed to elicit rea-
soning about whether multimodal inputs are re-
quired for the target utterance (see Figure 8 in Ap-
pendix A.1).

By embedding textual, auditory, and video in-
formation in a unified template, the prompt en-
ables model to jointly consider heterogeneous cues,
thereby enhancing the reliability of modality selec-
tion.

3.3.2 Response Sampling and Group Rewards
The optimization process involves two models: a
trainable policy model πθ and a frozen reference
model πref, both initialized with the same parame-
ters. During training, πref serves as a stable baseline
to constrain the learning dynamics of πθ.

For each prompt q, we sample a group of re-
sponses o = {o1, o2, . . . , oG} from the previous
version of the policy πold, where πold = πθ before
the latest update. These responses are grouped into
G sets, each with potentially different lengths |oi|.

Each response oi is scored using a composite
reward function, producing group-wise rewards
r = {r1, r2, . . . , rG}. The overall reward R(oi)
considers three components: format consistency,
semantic relevance, and output length control, de-
tailed as follows.

Format Reward Function. To encourage a con-
sistent reasoning structure, we require each re-
sponse to follow a predefined format: <think>...
</think><answer>... </answer>. If o con-
forms to this format, we assign a reward of 1; oth-
erwise, 0:

Rformat(o) =

{
1, if o follows the format
0, otherwise

(5)

Response Reward Function. Since no ground-
truth labels exist for modality requirements, we
adopt a format-aligned reward function based on
a predefined output template. Specifically, if the
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model’s response strictly adheres to the target struc-
ture, a positive reward is issued; otherwise, it is
penalized:

Rresponse(o) =





1, if o contains prompt
aligned response to q

−0.5, otherwise
(6)

This reward is not based on detecting emotion- or
modality-related semantic keywords. Instead, it is a
format-constrained reward that checks whether the
model’s response strictly adheres to a predefined
template. Specifically, the model is prompted to
follow this structure:

• Is it recommended that the Caption be re-
tained?(Yes, the captions should remain / No,
the captions should be removed)

• Brief reasons why the Caption should be re-
tained or not.

A positive reward is issued only if the model’s
response contains exactly one of the following
phrases: "Yes, the captions should remain" or "No,
the captions should be removed." Any other phras-
ing even if semantically correct is penalized. This
pattern-based reward serves to enforce format reg-
ularity in outputs, especially in the early reinforce-
ment learning phase. As training progresses, the
model converges toward stable use of the expected
pattern.

Overlength Reward Function. Using only re-
sponse reward may encourage the model to stop rea-
soning early, once it reaches a seemingly valid but
shallow answer (Liu et al., 2025; Yu et al., 2025).
To mitigate this, we introduce an overlength penalty
that discourages both excessively short and overly
long outputs.

We define two length thresholds: Lcache (desired
minimal reasoning length) and Lmax (maximum
acceptable length). Let |o| denote the token length
of the generated response o. The overlength reward
function is defined as:

Roverlength(o) =





0, |o| ≤ Lcache
Lmax−|o|

Lmax−Lcache
, Lcache < |o| ≤ Lmax

−1, |o| > Lmax
(7)

This function penalizes overly long responses
while allowing flexibility within a length tolerance
interval.

The total reward for each response o is then com-
puted as the unweighted sum of three components:

Rtotal(o) = Rformat(o)+Rresponse(o)+Roverlength(o)
(8)

These reward functions jointly guide the model
to generate well-structured, semantically accurate,
and appropriately long responses when reasoning
about whether multimodal features are necessary.

CoT-inspired prompting Modality Reasoning.
To assess the necessity of multimodal informa-
tion, we adopt a Chain-of-Thought (CoT)-inspired
prompting strategy (Wei et al., 2022). Rather than
relying on open-ended reasoning, our method em-
beds a step-by-step Decision Flow into the input
prompt. As illustrated in Figure 9 in Appendix A.1.

By combining decision structure and natural lan-
guage reasoning, our CoT-style prompting strat-
egy not only enhances interpretability, but also
improves the accuracy and robustness of adaptive
modality selection. We empirically validate the
effectiveness of this mechanism in the experiments
that follow.

3.3.3 Advantage Estimation and Policy
Updating

To train the modality selection policy, we adopt
a group-based optimization strategy. For each
prompt q, we sample a group of responses
{o1, o2, . . . , oG} from the current policy πθ (or its
frozen copy πθold). Each response oi is assigned a
scalar reward ri, and the group-wise normalized
advantage for token t in oi is estimated as:

Âi,t =
ri − mean(r)

std(r)
(9)

The policy is then updated using a clipped objec-
tive to stabilize learning:

J ∗(θ) = Eo∼πθ

[
min

(
ratio·Â, clipped

)

− β DKL
[
πθ∥πref

]]
(10)

Here, ratio denotes the likelihood ratio between
the current and old policy at each token, and DKL
is the token-level KL divergence from the frozen
reference model πref to prevent policy drift. The
old policy πold is periodically updated to match πθ.
Here, πθ denotes the LoRA-tuned LLM, and the
optimization is applied only to the LoRA modules.
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This training strategy equips the model with chain-
of-thought reasoning ability, allowing it to deliber-
ate over each historical conversation window and
decide whether multimodal cues are needed.

3.4 LoRA-Tuned LLMs for Emotion
Recognition

In the second phase, we perform emotion classi-
fication using an LLM fine-tuned with LoRA for
efficient parameter adaptation. Based on the output
of the modality selection stage, the LLM receives
either a text-only prompt or a prompt augmented
with structured audio and visual descriptions. The
input follows a unified template, as shown in Fig-
ure 10 in Appendix A.1, where modality-specific
fields are conditionally included. Formally, the
prompting input x is defined as:

x =





prompting(u), if multimodal
selection is No

prompting
(
u,Caud, Cvid

)
, otherwise

(11)
This setup allows the model to flexibly adapt to

different modality configurations while maintain-
ing low training cost. We fine-tune the LLM using
LoRA to predict the target emotion label ŷk given
the input prompt x. The model is optimized with
standard cross-entropy loss between predictions
and ground-truth labels. At inference time, the
model directly generates the emotion label based
on the constructed prompt.

4 Experiments and Results

4.1 Dataset

We conduct experiments on two benchmarks:
MELD (Poria et al., 2018) and IEMOCAP (Busso
et al., 2008), covering 6–7 emotion categories.
Dataset statistics are provided in the Appendix A.2
(Table 3).

4.2 Baselines

We compare our method against two categories
of baselines: (1) including DialogueRNN (Ma-
jumder et al., 2019), MMGCN (Hu et al., 2021),
DialogueTRM (Mao et al., 2021), MM-DFN (Hu
et al., 2022a), EmoCaps (Li et al., 2022), and
MPT-HCL (Zou et al., 2023), which are built on
transformer-, recurrent-, or GNN-based encoders
with multimodal fusion modules; and (2) including
InstructERC (Lei et al., 2023a), BiosERC (Xue

et al., 2024), and VoiceERC (Wu et al., 2025),
which leverage LLM-based backbones. Details and
experiment settings are provided in Appendix A.3
and Appendix A.4.

4.3 Main Results
The experimental results are shown in Tables 1.
We report both accuracy (ACC) and weighted F1
score (w-F1) to evaluate model performance. Our
proposed method achieves the best overall perfor-
mance, surpassing all fine-tuned LLM baselines on
both datasets. Specifically, it improves w-F1 by
1.65% on IEMOCAP and 0.94% on MELD com-
pared to InstructERC, demonstrating the effective-
ness of adaptive multimodal integration guided by
our two-stage framework. On the MELD dataset,
fine-tuned LLMs consistently outperform tradi-
tional models based on BERT, Transformer, or
GNN architectures. This performance gap may
stem from MELD’s more diverse and open-domain
conversational scenarios, where LLMs better lever-
age their reasoning capabilities. In contrast, on
the laboratory-recorded IEMOCAP dataset with
richer and more structured multimodal cues, pre-
trained models perform competitively, highlighting
the benefit of detailed audio-visual information in
controlled settings.

We also observe that VoiceERC, which incorpo-
rates fixed multimodal descriptions into LLMs, per-
forms slightly better than InstructERC on IEMO-
CAP but underperforms on MELD. One possi-
ble explanation is that directly introducing mul-
timodal information may not always be benefi-
cial—especially when textual content is already
sufficient or when irrelevant modalities introduce
noise. In contrast, our adaptive selection mech-
anism allows the model to leverage multimodal
cues more selectively and effectively, leading to
consistent improvements.

4.4 Ablation Study
We conduct ablation studies to assess the contribu-
tion of key components in our framework. Specifi-
cally, we consider the following variants:

• w/o GRPO & modality desc: Both the se-
lection policy and multimodal inputs are re-
moved. The model is thus reduced to standard
text-only reasoning over the current window,
without any modality adaptation.

• w/o GRPO: We disable the GRPO-based
modality selection while retaining multimodal
descriptions for each conversation window.
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Model
IEMOCAP MELD

ACC w-F1 ACC w-F1

DialogueRNN 69.38 69.37 66.70 65.31
MMGCN 69.62 69.61 66.40 65.21
DialogueTRM 69.87 69.91 66.70 65.76
MM-DFN 69.87 69.91 66.55 65.48
EmoCaps – 71.77 – 64.00
MPT-HCL 72.83 72.51 65.86 65.02
TelME – 70.48 – 67.37

InstructERC – 71.39 – 69.15
BiosERC – 69.02 – 68.72
VoiceERC – 72.59 – 67.60

Ours 72.95 73.04 71.00 70.09

Table 1: ACC and w-F1 scores of different models on
the IEMOCAP and MELD datasets.

This prevents the model from dynamically
deciding whether to incorporate additional
modality information.

• w/o overlength reward: The overlength
penalty is excluded during modality policy
training. This allows us to isolate the effect of
reasoning length control on selection quality.

From Table 2, we can observe that removing GRPO
leads to a notable performance drop, indicating that
dynamic modality selection is critical for context-
aware emotion recognition. When textual input
already conveys rich affective content, multimodal
signals may become redundant or even distracting.
Conversely, in semantically ambiguous contexts,
multimodal cues provide complementary informa-
tion that enhances prediction accuracy.

Performance degrades further when both GRPO
and modality descriptions are removed, suggesting
that structured multimodal cues are beneficia. How-
ever, this benefit is highly context-dependent. As
shown by the performance of VoiceERC, which in-
corporates full multimodal information without se-
lection, addition of modality inputs may not always
help. This reinforces the importance of adaptive
and context-aware modality integration.

The overlength reward mainly constrains the
response length to encourage balanced reasoning
traces. Its removal leads to a moderate drop in per-
formance, as the policy still leverages GRPO and
contextual inputs, though with increased variance
in output quality.

Method IEMOCAP MELD

Ours 73.04 70.09
w/o GRPO 72.00 69.57
w/o GRPO & modality desc. 71.32 69.23
w/o overlength reward 72.26 69.65

Table 2: W-F1 scores under different ablation settings
on IEMOCAP and MELD.

4.5 Impact of Historical Window Length

We analyze the impact of historical window length
on model performance. As shown in Figure 3, the
blue curve represents our method, which selectively
incorporates multimodal information based on con-
textual relevance, while the red curve corresponds
to a uniform strategy that indiscriminately adds
multimodal inputs to all windows. Our adaptive
strategy consistently outperforms the fixed inte-
gration baseline across all window lengths. The
performance gap becomes more pronounced as the
window length increases, indicating that selective
integration is particularly beneficial in longer con-
texts, where irrelevant or redundant cues may oth-
erwise impair emotion understanding. Moreover,
we observe that medium-length windows (10–15
utterances) yield the best overall performance, sug-
gesting that a balanced context span is beneficial.

[0-5) [5-10) [10-15) [15-20) [20-)
History window

68.0

68.5

69.0

69.5

70.0

70.5

w
-F

1

Ours
w/o GRPO

Figure 3: Performance comparison across different his-
tory window lengths on MELD.

4.6 Fine-Grained Emotion Analysis

Figure 4 depicts a fine-grained comparison of four
methods: EmoCaps, MPT-HCL, TelME, and Ours
across the seven emotion categories on MELD, us-
ing per-class F1 as the evaluation metric. The black
polygon representing our method consistently en-
closes the largest area, indicating both superior
average performance and a more balanced distribu-
tion across emotion types.
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Figure 4: Performance of different methods on MELD

4.7 Impact of Backbone Language Model

To isolate the effect of the backbone language
model, we substitute only the LLM while keep-
ing all other modules unchanged, and report the
resulting w-F1 scores on MELD(Figure 5):

Incorporating full multimodal descriptions into
every conversation window yields consistent ab-
solute improvements of 0.5–0.9% w-F1 over the
text-only baseline. Building on this, our GRPO-
based selective integration strategy further im-
proves performance by 0.4–0.8% W-F1, demon-
strating that targeted multimodal integration effec-
tively balances informativeness and redundancy.
Among all backbones, LLaMA3-8B (Grattafiori
et al., 2024) attains the highest absolute scores, fol-
lowed by GLM4-9B (GLM et al., 2024) and then
Qwen2-7B (Yang et al., 2024a), each exhibiting
comparable relative gains.
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Figure 5: Performance comparison of different base
model on MELD

4.8 Comparison of text-only and
vision-language backbone models

To evaluate the impact of introducing vision-
language backbone models, we compare four large
models under identical fine-tuning settings on
the MELD dataset: LLaMA2-7B (Touvron et al.,
2023), Qwen2-7B (Yang et al., 2024a), Qwen2-VL-
7B (Wang et al., 2024), and MiniCPM-V-2.6-8B
(Yao et al., 2024), and report their w-F1 scores (Fig-
ure 6). All models are fed with the same conversa-
tion transcripts; additionally, the vision-language
models (Qwen2-VL-7B, MiniCPM-V-2.6-8B) re-
ceive aligned video clips corresponding to the tar-
get utterance. Owing to GPU constraints, we pro-
vide only the clip corresponding to the target utter-
ance.

We observe that the text-only LLMs consis-
tently outperform their vision-language counter-
parts. This suggests that at the 7B scale, intro-
ducing raw visual inputs through vision-language
models may dilute the model’s capacity for effec-
tive conversation-level reasoning. A likely expla-
nation is that processing video requires allocating
model parameters to vision encoding, thereby re-
ducing resources available for language understand-
ing, which is critical for this task. These results
highlight that simply switching to vision-language
backbones does not guarantee better performance.
Instead, they reinforce the need for selective and
context-aware multimodal integration, rather than
unconditional fusion.

LLaMA2-7B Qwen2-7B Qwen2-VL-7B MiniCPM-V-2.6-8B
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Figure 6: Comparison of text-only and vision-language
backbone models on MELD

4.9 Error Analysis
Although our method achieves excellent perfor-
mance, it still fails to detect certain emotion cate-
gories. We analyzed the confusion matrices of the
test set on MELD. As shown in Figure 7, it can be
seen that (1) Joy is often misclassified as surprise
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or neutral, and vice versa. Similarly, disgust and
anger are frequently confused. This suggests that
emotions with overlapping arousal characteristics
are harder to distinguish, even for LLMs with mul-
timodal cues. (2) MELD contains an imbalanced
distribution of emotion categories. Less frequent
categories such as fear and disgust show lower pre-
diction accuracy due to limited training signals and
greater overlap with neighboring emotional states.
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43 24 1087 58 9 6 29

12 85 73 7 2 3 26

183 4 42 27 2 1 22

Figure 7: The confusion matrices of the test set on
MELD. The rows and columns represent predicted and
true labels respectively.

4.10 Case Study
We present two cases (visualized in Appendix A.4,
Figure 11) to illustrate the robustness of our
method. In the first example, the utterance “Push!”
contains limited semantic information in text. Our
method successfully integrates audio-visual cues to
infer the speaker’s joyful encouragement. In con-
trast, when textual cues already clearly convey af-
fect (e.g., “Excellent!” after a correct answer), mul-
timodal addition causes over-reliance on visually
salient but redundant cues, leading to misclassifica-
tion. Our approach selectively filters unnecessary
modalities, yielding accurate predictions in both
cases.

These cases confirm that GRPO-guided selection
improves robustness by introducing multimodal
features only when beneficial, while avoiding the
potential noise introduced by indiscriminate fusion.

5 Conclusion

In this paper, we propose a novel two-stage frame-
work for MERC, which integrates structured multi-
modal descriptions and adaptively determines their

necessity for each input. Unlike prior works that ap-
ply fixed fusion strategies, our method selectively
incorporates audio and visual cues based on con-
textual relevance, improving the robustness and
interpretability of emotion recognition. Experi-
ments on two benchmark datasets demonstrate that
our approach achieves competitive performance.
Moreover, the framework is simple and readily ap-
plicable to a wide range of dialogue understanding
tasks.

Limitations

Despite the strong performance of our method,
it has two limitations. First, due to computa-
tional constraints, we evaluate only models with
fewer than 10B parameters. Second, our current
method adopts a pipeline framework, which decou-
ples modality selection and emotion classification.
While this design offers modular interpretability
and flexible adaptation, it may limit end-to-end
optimization, which is worth exploring in future
work.
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A Appendix

A.1 Prompt
Question Prompt As illustrated in Figure 8, each
conversation window is accompanied by a three-
part multimodal necessity prompt constructed:

• Question. A fixed instruction that prompts
the model to determine whether multimodal
descriptions are necessary for classifying the
emotion of the target utterance.

• Decision Flow. A step-by-step reasoning tem-
plate guiding the model through: (1) whether
the emotion can be clearly inferred from text
alone, (2) whether audio or visual cues offer
supplementary or clarifying information, and
(3) whether multimodal signals contradict the
textual content. This structure encourages ex-
plicit reasoning.

• Context. A multimodal context compris-
ing the dialogue history, each utterance ui is
paired with its corresponding audio descrip-
tion C

(i)
aud and only the target utterance uk is

additionally accompanied by a visual descrip-
tion C

(k)
vid , and the underlined target utterance

uk.

Please determine if the target utterance needs to rely on 
video and audio descriptions for emotion categorization 

according to the following steps:

1. Can emotion be clearly determined from text alone?
2. Do audio features or visual cues provide 

additional/clarifying evidence?
3. Do multimodal signals contradict textual content?

Question

Decision Flow

Joey: “Push!”(The speaker's tone is excited.)
Joey: “Push 'em out, push 'em out, harder, harder.”(The 
speaker's tone is intense and forceful, with a striking 
intensity in their voice.)
The man appears to be speaking to the patient, possibly 
offering comfort or encouragement. 
Target utterance: Joey: “Push 'em out, push 'em out, harder, 
harder.”

Context

Figure 8: Question Prompt Example. The prompt con-
sists of three components: an instruction (Question), a
step-wise decision guide (Decision Flow), and a mul-
timodal context (Context). Green text indicates audio
descriptions C

(i)
aud, red text denotes the visual descrip-

tion C
(k)
vid , and the underlined sentence marks the target

utterance uk.

Response Template Figure 9 shows the chain-
of-thought response produced by our model af-

ter receiving the question prompt: reasoning
steps are enclosed within <think>...</think>,
followed by a binary decision enclosed in
<answer>...</answer>. The <think> block
records the model’s deductions according to the
three checkpoints in the Decision Flow, while
the <answer> block provides the final decision on
whether to retain multimodal inputs. This struc-
tured output allows for consistent supervision and
facilitates learning under reinforcement learning
settings, where outputs that match the expected
format are positively rewarded.

By chain-of-thought reasoning, enhances the in-
terpretability and robustness of the multimodal se-
lection process.

<think>1. The target utterance "Push 'em out, push 'em
out, harder, harder" is emotionally clear and implies 
urgency and intensity.
2. The audio caption provides context but does not add 
significant emotional clarity since the text already conveys 
the emotion.
3. The image caption describes a medical setting but does 
not provide additional emotional context.</think>
<answer>No, the captions should be removed.</answer>

Figure 9: Response Example. The model produces struc-
tured reasoning steps within <think>...</think> fol-
lowed by a binary decision in <answer>...</answer>.
In this case, it determines that the multimodal features
are redundant for emotion understanding.

Emotion Recognition Prompt Figure 10
presents the inference prompt template used for
emotion classification. The user instruction defines
the model as a sentiment expert, provides the
conversation context and target utterance uk, and
conditionally appends audios Caud and video
description C

(k)
vid whenever the modality selection

module indicates their necessity. The assistant
must respond with a single emotion label ei.

User

Now you are expert of sentiment and emotional analysis. The following 
conversation noted between…
Given the conversation and the characteristics of these speakers,  {speaker 

utterance 𝑢𝑗}({speaker audio description 𝐶𝑎u𝑑})

Given the description of video, {video description 𝐶𝑣𝑖d}

Please select the emotional label of {utterance 𝒖𝒌} from <emotion labels>:

-------------------------------------------------------------------------------------------

Assistant

{emotional label 𝒆𝒊}

Figure 10: Prompting template for emotion classifica-
tion. Audio and visual descriptions (green) are included
only if selected by the modality decision model.
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Dataset conversations utterances classes
train dev test train dev test

IEMOCAP 108 12 31 5163 647 1623 6
MELD 1038 114 280 9989 1109 2610 7

Table 3: The statistics of datasets.

A.2 Datasets

MELD contains 1,433 conversations and 13,708
utterances, each utterance is labeled with one of
seven emotions: neutral, surprise, fear, sadness, joy,
disgust, and anger.
IEMOCAP contains 153 conversations and 7,433
utterances. Each utterance is labeled with one of
six emotions: happy, sad, neutral, angry, excited,
and frustrated.

A.3 Baselines

DialogueRNN(Majumder et al., 2019): It models
speaker and sequential information in conversa-
tions through three different GRUs.
MMGCN(Hu et al., 2021): It utilizes the GCN net-
work to obtain contextual information, which not
only effectively exploits multimodal dependencies,
but also makes full use of speaker information.
DialogueTRM(Mao et al., 2021): It extends the
concept of emotion dynamics to multi-modal
settings and proposes a transformer module for
simultaneously modeling the intra-modal and
inter-modal emotion dynamics.
MM-DFN(Hu et al., 2022a): It designs a graph-
based dynamic fusion module to fuse multimodal
contextual features, which reduces redundancy and
enhances complementarity between modalities.
EmoCaps(Li et al., 2022): It proposes a new
structure, Emoformer, to extract multimodal
emotion vectors from different modalities and
fuses them with sentence vectors to be an emotion
capsule.
MPT-HCL(Zou et al., 2023): It designs a Mul-
timodal Prompt Transformer (MPT) to perform
cross-modal information fusion and uses the
Hybrid Contrastive Learning (HCL) strategy to
optimize the model’s ability to handle labels with
few samples.
TelME(Yun et al., 2024): It incorporates
cross-modal knowledge distillation to transfer
information from a language model acting as
the teacher to the non-verbal students, thereby
optimizing the efficacy of the weak modalities and

then combine multimodal features using a shifting
fusion approach.
InstructERC(Lei et al., 2023a): It introduces a
simple but effective retrieval template module
and two additional emotion alignment tasks to
implicitly model the dialogue role relationships
and future emotional tendencies in conversations.
BiosERC(Xue et al., 2024): It extract the “bio-
graphical information” of the speaker within a
conversation as supplementary knowledge injected
into the model to classify emotional labels for each
utterance.
VoiceERC(Wu et al., 2025): It translates speech
characteristics into natural language descriptions,
allowing LLMs to perform multimodal emotion
analysis via text prompts without any architectural
changes.

Hyperparameter Value

Batch 8
Epoch 3

First Stage Learning Rate 5e-6
Second Stage Learning Rate 5e-5

LoRA r 8
LoRA alpha 16

LoRA dropout 0.1
Group Generations 4

Table 4: Training hyperparameters used for both
the GRPO-guided modality-selection and LoRA-tuned
emotion-recognition stages.

A.4 Experiment Setup

During the GRPO-guided Modality Selection stage,
we adopt Qwen2.5-7B (Yang et al., 2024b) as the
backbone model. In the subsequent LoRA-tuned
LLMs for Emotion Recognition stage, all models,
including our method and LLM baselines, are im-
plemented with the LLaMA2-7B (Touvron et al.,
2023) to ensure fair comparisons across experi-
mental settings. To curb the number of trainable
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Modality Utterance True Label w/o GRPO & modality desc. w/o GRPO Ours

U3: Push 'em out, push 'em out, way 

out! 

U4: Let's get that ball and really move, 

hey, hey, ho, ho. 

U5: Let’s I was just yeah, right. 

U6: Push!

Joy

Joy

Joy

Joy

Joy

Joy

Joy

Anger

Neutral

Joy

Joy

Joy

Joy

Joy

Joy

Joy

Modality Utterance True Label w/o GRPO & modality desc. w/o GRPO Ours

U2: Umm, well I would have to say that 

it's a, it's tragic love story.

U3: Well, that‘s sort of a given, but yes. 

Anyone else? 

U5: Excellent! What Rachel has 

shrewdly observed here 

Neutral

Joy
U4: Oh-oh-oh, symbolism! And uh, the-

the uh, wildness of the mores, which 

Neutral

Neutral

Joy

Neutral

Neutral

Neutral

Neutral

Joy

Neutral

Joy Joy Joy Joy

Neutral

Figure 11: case study

parameters while minimizing performance degra-
dation, we apply LoRA. Our models are trained on
two RTX 4090 GPUs (24 GB each) due to compu-
tational constraints. The remaining hyperparameter
configurations are summarized in Table 4. To en-
sure robustness, we averaged the results from three
independent runs.
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