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Abstract

Large vision-language models (VLMs) often
struggle to generate long and factual captions.
However, traditional measures for hallucina-
tion and factuality are not well suited for eval-
uating longer, more diverse captions and in
settings where ground-truth human-annotated
captions are unavailable. We introduce OV-
Fact, a novel method for measuring caption
factuality of long captions that leverages open-
vocabulary visual grounding and tool-based ver-
ification without depending on human annota-
tions. Our method improves agreement with
human judgments and captures both caption
descriptiveness (recall) and factual precision in
the same metric. Furthermore, unlike previous
metrics, our reference-free method design en-
ables new applications towards factuality-based
data filtering. We observe models trained on an
OVFact-filtered (2.5-5x less) subset of a large-
scale, noisy (VLM-generated) pretraining set
meaningfully improve factuality precision with-
out sacrificing caption descriptiveness across a
range of downstream long caption benchmarks.

1 Introduction

Large vision-language models (VLMs) are funda-
mental to a range of grounded language under-
standing applications, including multimodal AI as-
sistants and tools (Achiam et al., 2023; Georgiev
et al., 2024). These models have grown in capa-
bility from generating short sentence descriptions
(Socher et al., 2014; Karpathy and Fei-Fei, 2015) to
long paragraphs (Beyer et al., 2024; Steiner et al.,
2024; Chen et al., 2024b). However, long caption
models struggle to maintain factuality1 over these
long descriptions (Kaul et al., 2024), including hal-
lucinations of objects that are not present in the

*Work done as a Student Researcher at Google DeepMind
1Here, we specifically focus on object-level caption fac-

tuality: whether noun phrases in VLM-generated text are
accurate to the original visual input, and vice-versa, whether
key objects are reflected in the description.

Figure 1: Measuring and improving factuality. We
propose OVFact, a method for measuring and improving
open-vocabulary factuality of vision-language models
(VLMs) in long captioning. (top) Unlike prior work
tailored for short captions or specific datasets, OVFact
is reference-free and does not require annotated ground-
truth. (bottom) Our flexible design enables a new
factuality-based data filtering application, where mod-
els trained on OVFact-filtered datasets show improved
factuality on downstream benchmarks with 2.5-5x less
(higher-quality) training data and without compromis-
ing caption descriptiveness.

input image. As such, there is a crucial need to
both measure and improve this limitation.

Prior work for measuring factuality for VLMs
has been promising but limited. Question-
answering approaches (Li et al., 2023; Jiang et al.,
2024; Huang et al., 2024; Guan et al., 2024) are
indirect, and do not assess if a particular output
from a model is factual or not (Kaul et al., 2024), as
is important in safety-critical settings (Bommasani
et al., 2021). On the other hand, metrics for di-
rectly assessing caption text (Rohrbach et al., 2018;
Kaul et al., 2024; Petryk et al., 2024; Ben-Kish
et al., 2024; Qiu et al., 2024) have traditionally
been tailored for short captions or specific datasets
with limited vocabularies (e.g., MS-COCO (Lin
et al., 2014)). Notably, many of these methods
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shown in Fig. 1 also rely on ground-truth human
annotations, which means they do not work well
when such references are unavailable (Petryk et al.,
2024), as is often the case when VLMs are de-
ployed at scale. Finally, these metrics often do not
capture “recall”, the coverage of detailed objects
in the caption (Rohrbach et al., 2018; Petryk et al.,
2024). This leads to a conflicting incentive for
long caption models to output short, conservative
text with fewer objects, reducing the risk of a mis-
take but sacrificing important details (Xue et al.,
2024). The simultaneous lack of these attributes in
prior metric designs, highlighted in Fig. 1, also in-
hibits integrations with techniques that potentially
improve factuality in long caption models. For ex-
ample, outputs from strong VLM models have been
used to generate large-scale pretraining datasets for
long captions (Chen et al., 2024b; Awadalla et al.,
2024), but these captions can be prone to factuality
errors. Automatically filtering this data to ensure
higher quality with previous metrics is not possible
since this would require human ground truth. Thus,
there is a critical need for a unified, reference-free,
open-vocabulary method for both measuring and
improving factuality in long captions and models.

In this work, we make the following contribution:
(i) we introduce OVFact, a new method for measur-
ing and improving open-vocabulary factuality in
vision-language models (VLMs) that output long,
descriptive captions. Our method leverages open-
vocabulary visual grounding and tool-based ver-
ification to operate robustly in settings without
human annotations. It combines aspects of both
precision (minimizing object hallucinations) and
recall (ensuring coverage of diverse objects) in
the same metric. We validate the combination
of these tools with careful analysis and observe
that our method improves agreement with human
judgments for a range of VLM model outputs,
particularly in reference-free settings. (ii) by ad-
dressing the combination of limitations in previous
metrics, our method design enables new applica-
tions towards factuality-based data filtering. We
observe that models trained on an OVFact-filtered
subset (with 2.5-5x size reduction) of a large-scale,
noisy (VLM-generated) pretraining set (Chen et al.,
2024b) meaningfully improve factuality precision
without sacrificing caption descriptiveness across
a range of downstream benchmarks (Onoe et al.,
2024; Pont-Tuset et al., 2020; Rohrbach et al.,
2018). These findings are consistent across dif-
ferent model scales and are further validated with

human evaluation.

2 Related Work
Object-level factuality in VLMs. VLMs, which
are natural extensions of LLMs (Team et al., 2024;
Touvron et al., 2023; Achiam et al., 2023), exac-
erbate existing issues with hallucinations by intro-
ducing an additional visual modality for potential
errors (Sun et al., 2023; Cui et al., 2023; Bai et al.,
2024; Bang et al., 2023). A significant line of
work (Li et al., 2023; Jiang et al., 2024; Sun et al.,
2023; Huang et al., 2024; Guan et al., 2024; Wu
et al., 2024; Wiles et al., 2024) relies on question-
answering style verification, where an instruction-
tuned VLM is expected to answer whether a partic-
ular fact about an image is valid. However, such
an approach suffers from several limitations: First,
the lack of interpretability makes understanding
where the model fails challenging. In the case of
binary (yes/no) questions, there is a high probabil-
ity (50%) of the model answering correctly, but for
the wrong reason. Second, the QA abilities of the
models do not necessarily translate into captioning
capabilities (Kaul et al., 2024).

The alternative approach is to check if the
facts mentioned in a model’s output align with
what is shown in the input images. So far, this
has been limited to the presence of objects de-
fined in classic captioning datasets with ground-
truth annotations. For instance, the seminal work,
CHAIR (Rohrbach et al., 2018), is strictly bound
to the MS COCO dataset (Lin et al., 2014) as it
requires a dataset with paired captions and object-
label annotations. CHAIR extracts nouns from
a predicted caption using traditional NLP tech-
niques and verifies their presence in an image using
ground-truth object annotations. THRONE (Kaul
et al., 2024), ALOHa (Petryk et al., 2024), and
VALOR-BENCH (Qiu et al., 2024) improve on
CHAIR by employing an LLM to parse gener-
ated free-form captions. While those methods
can handle concepts outside of MS COCO classes,
they can only do so to a limited extent. During
parsing, THRONE only considers a closed set of
objects specifically defined within a dataset (MS
COCO or Object365 (Shao et al., 2019)). VALOR-
BENCH (Qiu et al., 2024) only operates on a care-
fully selected small subset of images from Visual
Genome (Krishna et al., 2017). ALOHa relaxes
CHAIR’s string matching with a text similarity be-
tween annotated and predicted objects, yet also
assumes access to an exhaustive list of human-
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Figure 2: OVFact overview. Our reference-free method assesses two aspects of long captioning – precision and
descriptiveness (recall) – in a unified manner, without requiring ground-truth reference annotations. We process a
model output caption into a set of candidate entities C, and assess which subset G is groundable in the input image
with open-vocabulary detection and segmentation tools. Precision is then measured as a ratio of entities remaining
(e.g. above“red blanket” and “white curtains”detected as hallucinated). To measure descriptiveness, we assess a
large open-vocabulary concept set V and identify which concepts are grounded in the image R, then measure their
recall within the candidate entities from the VLM C caption using maximum similarity scoring. Unlike prior work
(Petryk et al., 2024; Rohrbach et al., 2018; Kaul et al., 2024), our method can be directly applied to assess factuality
in settings where only model-generated caption outputs are available, such as data filtering.

annotated references in the image. In contrast,
OpenCHAIR (Ben-Kish et al., 2024) introduces
its dataset to measure hallucination by generating
images with a text-to-image model (Podell et al.,
2023) encompassing concepts different from MS
COCO. However, the overall approach still relies
on ground-truth references, and since the accom-
panying captions are in MS COCO style, they are
very short and typically describe a single object.
In our work, we aim to measure the factuality of
captions beyond predefined concepts, datasets, and
human annotations, by creating a reference-free,
open-vocabulary metric that also incorporates both
precision and recall. Crucially, our metric being
reference-free allows for applicability to filtering of
large-scale pretraining datasets, as discussed next.

Data filtering. Data filtering for contrastive
image-text pretraining (Radford et al., 2021) on
web-scale data has shown it can lead to stronger
models and improved training efficiency (Fang
et al., 2023; Gadre et al., 2024; Xu et al., 2024;
Evans et al., 2024; Udandarao et al., 2024). Mean-
while, data filtering for generative VLMs training
has seen less attention, discussing data curation for
instruction fine-tuning (Wei et al., 2023; Chen et al.,
2024c; Cao et al., 2023). Their primary focus, how-
ever, is to improve the instruction-following of the
model and not on the factual quality of captioning
outputs as we do here. Li et al. (2024) considers
data curation for image captioning models by filter-
ing or replacing examples with high training losses
on small-scale datasets with human-annotated short
captions. In contrast, our proposed metric can op-
erate on large-scale pretraining datasets with noisy

(VLM-generated) long captions in terms of their
factuality; we show this leads to consistent im-
provements across a range of measures. Crucially,
this application is only possible as our metric is
reference-free and does not require ground-truth
object annotations like prior works (Petryk et al.,
2024; Rohrbach et al., 2018; Kaul et al., 2024).

3 Method

We detail OVFact in Sec. 3.1 to measure open-
vocabulary object factuality and then describe how
our proposed metric can be used for data filtering
to improve a VLM’s factuality in Sec. 3.2. Finally,
Sec. 3.3 summarizes how OVFact addresses the
limitations of existing approaches.

3.1 OVFact
Overview. Our goal is to derive an interpretable,
flexible, and reliable method for assessing the fac-
tuality of long captions. Because our approach
should generalize to any caption, regardless of its
source dataset or vocabulary, we avoid reliance on
dataset-specific terms. We achieve this by verify-
ing the correctness of visual entities and their at-
tributes mentioned in a caption. Specifically, given
a pair of image x∈RH×W×3 and caption y, we
first parse y to extract a set of candidate entities.
We then verify their presence in the image x by run-
ning image grounding tools. To avoid promoting
non-descriptive captions, we design a recall-based
metric that compares candidate entities against ref-
erence entities extracted either from ground-truth
captions (when reliable) or from grounding tools
with a large vocabulary of concepts. The high-level
overview of our approach is presented in Fig. 2.
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Caption parsing. We start by parsing y to extract
candidate entities. To do so, we prompt an LLM to
generate a list of objects mentioned in y by specifi-
cally instructing an LLM to output all objects with
their visual attributes, ignoring abstract concepts
with no visual presence, such as sound and atmo-
sphere, often present in long VLM descriptions.
We provide the prompt details in the Appendix A.6.
We denote the resulting candidate entity set as C.

Entity grounding. Having obtained the set C, we
then validate the presence of each one of the can-
didate entities ci ∈ C within image y. Note that
c is a free-form text; thus, verifying the presence
of associated concepts with no prior access to a
vocabulary poses a challenge. To address this, we
first utilize a state-of-the-art open-vocabulary ob-
ject detector (Minderer et al., 2024). Specifically,
we feed each ci to a detection model as a separate
query. We then define the candidate entity, ci, as
being grounded if its detection confidence score
exceeds a threshold value. This yields an initial set
of grounded entities, GD, where GD ⊂ C.

In our empirical studies, we observed that long
image captions often include much more details
about surroundings and "stuff-like" (Kirillov et al.,
2019; Forsyth et al., 1996) concepts (e.g., water,
sky, concrete) which object detectors typically miss.
Thus, we incorporate an additional grounding step
using an open-vocabulary semantic segmentation
model. Each candidate entity ci is input to a seg-
mentation model to obtain a grounded set GS ⊂ C.
Our final resulting set of all grounded entities is
then G = GD ∪ GS .

OVFact Scoring. We leverage the parsing and
grounding outputs to measure the overall factuality
of caption y. Focusing on the specific challenges of
long captioning, we assess two key aspects: preci-
sion and descriptiveness. While prior metrics (e.g.,
Rohrbach et al., 2018) are more precision-focused,
this is not as suitable for our setting, as this rewards
short captions with fewer potential mistakes but few
details. By unifying both aspects (in a reference-
free manner), we can also apply our single metric
for downstream applications (e.g. filtering).

Calculating Precision. We define the precision
of a caption as the ratio between the count of the
grounded entities G and candidate entities C:

OVFactPrec =
|G|
|C| (1)

Calculating Recall. To measure descriptiveness,
we design an additional metric interpreted as tra-
ditional recall. We first obtain an approximate set
of entities appearing in y. In an ideal scenario, i.e.
when considering fully annotated datasets like MS
COCO (Lin et al., 2014), one could use object-level
annotations in the dataset as references R. How-
ever, MS COCO is the only dataset to date with
both human-annotated captions and object detec-
tion labels, although the captions are very short and
thus not descriptive.

Assuming ground-truth captions are human-
annotated and give an exhaustive description of
a scene, a possible solution to this problem is ex-
tracting R from ground-truth captions by employ-
ing the parsing introduced before, which we pro-
pose in our approach. However, if the ground-truth
captions are unreliable, e.g. for VLM-generated
datasets, we also consider a general case to obtain
R by prompting the grounding tools given a large
enough vocabulary of concepts V .

We then measure the recall of reference entities
C in R. To facilitate the open-vocabulary aspect of
our approach (as entities in both sets are free-form
texts), we first compute text embeddings for each
ci ∈ C and for all rj ∈ R; f(ci) → c⃗i ∈ RD and
f(rj) → r⃗j ∈ RD. We then calculate the similarity
between feature representations from the two sets
of entities with the cosine similarity Sij =

r⃗j ·c⃗i
|r⃗j ||c⃗i| .

We define recall by selecting a maximum similarity
score for each reference entity and report as a final
score an average of all rj ∈ R, that is:

OVFactRec =
1

|R|

|R|∑

j=1

|C|
max
i=1

Sij (2)

Final metric. Finally, to encompass both the pre-
cision and descriptiveness of y into one metric (our
full OVFact), we calculate our unified F1 score:

OVFactF1 =
2 · OVFactPrec · OVFactRec

OVFactPrec + OVFactRec
(3)

3.2 OVFact for Data Filtering
The generalized case of OVFact (Fig. 2) can be
completely reference-free. This is particularly ben-
eficial, as it can be applied to any set of image and
caption pairs and is not limited to only clean, fully-
labelled datasets. This becomes particularly impor-
tant when considering a growing number of LLM-
generated caption datasets (Chen et al., 2024b; Arai
et al., 2025). One important application of OV-
Fact is data filtering, where our metric serves as a
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scoring function for pruning incorrect samples, e.g.
including hallucinated objects.

Consider a dataset of (image x, caption y) pairs,
where y is generated at scale using a large VLM,
and this data is intended to help train other mod-
els, as done in (Chen et al., 2024b). Using the
process described in previous sections, our data
filtering approach consists of extracting OVFactF1

scores for each (x, y) pair. Because our method is
reference-free, we do not need additional human-
generated ground-truth object labels. We then sort
the pairs based on their OVFactF1 and select the
top X% depending on the assumed data pruning
ratio. This simple technique can result in a sig-
nificantly improved performance in factuality for
long captioning models without compromising de-
scriptiveness. We demonstrate it experimentally in
Sec. 4.3.

3.3 Discussion

Having introduced OVFact, we now revisit
closely related work to highlight key differences.
CHAIR (Rohrbach et al., 2018) is a popular met-
ric to measure hallucinations, but is strictly bound
to the COCO dataset, both for the instance-level
CHAIRi= |{hallucinated objects}|

|{all objects mentioned}| and caption-level

CHAIRs = |{sentences with hallucinated object}|
|{all sentences}| . More-

over, CHAIR can be artificially improved by sim-
ply not predicting any objects. This occurs when a
caption genuinely contains no objects or when pre-
dicted entities fall outside the COCO vocabulary.
THRONE (Kaul et al., 2024) improves CHAIR’s
string matching with LLM-based parsing, which
can handle free-form captions. However, the pars-
ing output is still limited to categories defined in
the evaluation set (the LLM is prompted about a
predefined list of objects). While THRONE could
be extended to datasets other than MS COCO, it
would require annotated object detection labels for
the final score, rendering it unsuitable for reference-
free or object-annotation-free setups. In contrast
to CHAIR, THRONE assesses both precision and
recall of a caption as we do in this work.
ALOHa (Petryk et al., 2024) also addresses the
closed-vocabulary limitation of CHAIR by using
similarity scores between text embeddings of refer-
ence and candidate entities. As in our approach, a
language model is used to parse the candidate enti-
ties. However, the reference set is constructed from
ground-truth reference captions and additional ob-
ject detections (Carion et al., 2020). In contrast to

In the image, a young 
woman with long red 
hair is sitting [...] She is 
wearing a white t-shirt 
and sunglasses. Behind 
her is a [...]

ALOHaoCandidates References  
(Detections of 
COCO classes)

young woman

red hair
white t-shirt

sunglasses

person

cell phone
0.52
0.37

No matches 
(too few “references”)?

Long Caption

ALOHa = min(ALOHao) 0.37

(object level 
match scores)

❌
[...]

(no hallucinations) (parsed from caption)

Figure 3: Limitations of ALOHa in a reference-free
setting. We present an example from ShareGPT4v (i.e.,
with no access to ground-truth references). ALOHa’s
reference matching forces comparisons of detected
classes with what has been described, an issue exacer-
bated in a reference-free setting when ground-truth hu-
man annotations of objects are unavailable. Our method
is more robust to such cases.

our approach, ALOHa performs Hungarian match-
ing (Kuhn, 1955) on the similarity matrix, S, be-
tween candidates and references. This difference is
significant because Hungarian matching enforces a
one-to-one correspondence between candidates and
references and is therefore particularly sensitive to
having an exhaustive and precise list of references,
as illustrated in Fig. 3: If there are not enough refer-
ences to match with the candidates (i.e., |R| < |C|),
ALOHa will ignore the unmatched candidates, lead-
ing to a misleading score. Moreover, when R is
incomplete, the one-to-one matching will force as-
sociations between unrelated concepts (in Fig. 3,
“sunglasses” is forced to match the reference “cell
phone”). Finally, ALOHa favors shorter captions,
as fewer candidates have a higher chance of being
correctly matched to their references. These lim-
itations of ALOHa are particularly evident when
using it as a metric for data filtering, which we
show experimentally in the next section.

4 Experiments
In this section, we first describe our overall experi-
mental setup and technical details in Sec. 4.1. Next,
in Sec. 4.2, we discuss the verification of OVFact as
a method for measuring factuality, including abla-
tion studies of its components. Finally, in Sec. 4.3,
we present results for improving factuality, apply-
ing OVFact for data selection.

4.1 Experimental setup
Implementation details. We use the state-of-the-
art open-source LLM Gemma2-27b (Team et al.,
2024) for caption parsing and OWL-ViTv2 (Min-
derer et al., 2024) and OpenSeg (Ghiasi et al., 2022)
for entity grounding. We consider an extensive
vocabulary V of open-vocabulary concepts (as dis-
cussed in Sec. 3.1). Specifically, we take the union
of concepts from standard datasets, i.e. Visual
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DOCCI Loc. Nar.

Gemma parsing 0.97 0.97
CHAIR parsing 0.02 0.28
POS + CHAIR 0.79 0.58
Entity grounding 0.72 0.79

w/o detection 0.46 0.67
w/o segmentation 0.62 0.64

Table 1: Validation of OVFact components. We mea-
sure the specificity of each of the steps in our method
on 100 DOCCI qual dev split and 100 random samples
from Localized Narratives train set. See Sec. 4.2.

Genome (Krishna et al., 2017), LVIS (Gupta et al.,
2019), Open Images (Kuznetsova et al., 2020) and
Objects365 (Shao et al., 2019), resulting in a to-
tal of 2792 unique concepts. To encode entities
for OVFactRec computation, we use the SigLIP-
So400m/14 (Zhai et al., 2023) text encoder. Addi-
tional details are in Appendix A.5.

Datasets and Evaluation metrics. To validate
the effectiveness of our approach, we conduct ex-
periments on multiple captioning datasets with dif-
ferent levels of complexity.
• ShareGPT4v (Chen et al., 2024b) is a large
dataset of automatically generated long captions
by GPT4v (Achiam et al., 2023). It consists of
approximately 100k samples of an average length
of 950 characters. We use the ShareGPT4v dataset
as the primary training dataset for data selection
experiments as the VLM-generated captions are
noisy, but widely adopted for training (Liu et al.,
2024; Lu et al., 2024; Tong et al., 2024).
• DOCCI (Onoe et al., 2024) is a recent human-
annotated dataset of detailed, high-quality cap-
tions (average length of 642 characters), with im-
ages sourced from voluntarily contributed, private
archives (guaranteed to be no overlap with VLM
training sets). Its caption length and diversity mean
it is the most challenging published dataset for
long, detailed captions. We select its test set with
5k samples as our downstream evaluation set.
• Localized Narratives (Pont-Tuset et al., 2020)
consists of long, human-annotated captions which
average 206 characters. We report the downstream
evaluation of our method on the COCO validation
split to complement our analysis further.
• MS COCO (Lin et al., 2014) is the standard
for measuring hallucinations as it includes bound-
ing box annotations for 80 different object classes.
However, captions are short (only 52 characters on
average). Following standard practice (Rohrbach
et al., 2018; Kaul et al., 2024; Petryk et al., 2024),
we report CHAIR on the val split to show general-

ALOHa OVFactPrec OVFactRec

Human agreement 48.6% 72.1% 80.7%

Table 2: OVFact improves alignment with hu-
man judgments. We extend the analysis by Onoe
et al. (2024) on DOCCI over 4 VLMs, observing that
OVFactPrec shows higher agreement with human judg-
ment compared to prior work (ALOHa). We highlight
that (1) OVFact is reference-free, while ALOHa here is
given references from ground-truth captions, and (2) our
method also captures recall (descriptiveness) and shows
high agreement with human judgments (OVFactRec).
See Appendix A.1 for further details.

ization of our method to prior, standard settings.

4.2 OVFact for Measuring Factuality

To assess the reliability of our proposed method,
we validate its performance on manually annotated
subsets from the DOCCI qual dev split and 100
randomly sampled image-caption pairs from the
Localized Narratives train split. We manually an-
notate entities in ground-truth captions and then
compute and measure the performance of each step
in our approach, which we report in Tab. 1. First,
we measure the specificity of the caption parsing
stage, which is measured as the ratio of entities
extracted by Gemma to annotated entities. We also
show an ablation of Gemma parsing by compar-
ing it to string matching on the limited CHAIR
vocabulary (CHAIR parsing), as well as to a vari-
ant of string matching enhanced with POS Tagging
(Honnibal et al., 2020). Our caption parsing demon-
strates robust performance, achieving a specificity
of 97% on both datasets.

We further analyze the specificity of the entity
grounding component discussed in Sec. 3.1, calcu-
lated as the ratio of correctly grounded entities to
all annotated entities in the ground-truth captions.
Overall, we observe a difference in the specificity
of entity grounding between the two considered
datasets, most likely because the DOCCI descrip-
tions are much more detailed, with numerous ex-
amples of specific objects. We also analyze in
Tab. 1 separate components of our grounding stage
and conclude that the use of object detection and
segmentation proves crucial for both datasets, pro-
ducing a specificity improvement of up to 0.26 in
DOCCI compared to the use of segmentation alone.

Finally, in Tab. 2, we extend the human study
analysis from Onoe et al. (2024) over four state-
of-the-art long caption models applied to the
DOCCI dataset and observe that our model aligns
well with human preferences for both OVFactPrec
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Figure 4: Data filtering comparison measured with OVFactF1. We present the results of ShareGPT4v filtering
for different data ratios, with zero-shot evaluations on DOCCI test and Localized Narratives val sets averaged over
3 training runs. ’---’ indicates model trained on full ShareGPT4v dataset. OVFact significantly improves (↑) on
factuality over prior work, particularly as we filter more examples (resulting in a smaller, higher-quality training
set). We also report an OVF-ALm baseline, which shows the impact of using ALOHa’s (brittle) matching with our
OVFact method. We highlight our gains in factuality come without compromising descriptiveness or quality.
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Figure 5: Generalization to CHAIR benchmark. We also measure zero-shot evaluation on the CHAIR benchmark,
highlighting how our filtering improves on traditional metrics and settings too. Light-blue shading marks variance
of the random baseline. Our filtering method results in fewer hallucinations at the instance and sentence level
(CHAIRi, CHAIRs; lower ↓ is better), maintaining or improving recall (higher ↑ is better) of generated captions.

and OVFactRec. We also compare the results
of ALOHa in the original setup with ground-
truth references and observe that OVFactPrec is
more aligned with human judgments compared to
ALOHa. We provide details and results of this
analysis in Appendix A.1.

4.3 OVFact for Improving Factuality

Experimental setup. For our data filtering ex-
periments, we consider how OVFact can be used
to score and filter a large-scale, noisy training
dataset with generated VLM captions (ShareGPTv,
Sec. 4.1), selecting the top X% with the highest
OVFact. We validate our approach by considering
how supervised fine-tuning on these filtered sets
can improve a representative open-source state-of-
the-art VLM, PaliGemma 2 (Steiner et al., 2024),
on downstream zero-shot long caption evaluations
(details Sec. 4.1). We report here the results with
PaliGemma 2 (3B) model, and discuss results with
additional sizes in Appendix A.2 and give more
training details in Appendix A.5.

Filtering Baselines. To our knowledge, OVFact
is the first open-vocabulary, reference-free method
for measuring factuality in long captions, and prior
methods that require ground-truth human refer-
ences inherently cannot work in this data filtering

setting, where only the noisy VLM-generated cap-
tions are available. Nonetheless, in addition to
Random filtering, we consider the following:
• Perplexity: we obtain a perplexity score predicted
by the base, pre-trained PaliGemma 2 model for
each sample. We then select samples with the low-
est perplexity score and discard high-loss samples
similarly to Li et al. (2024).
• ALOHa: we implement a reference-free variation
of ALOHa, where we only rely on a set of detected
objects for each image. For consistent compari-
son, we apply the same base models/tools as in
OVFact (Gemma 2, etc.) with vocabulary, match-
ing method, etc. settings from the original paper.
Samples with the highest ALOHa “caption-level”
score (Petryk et al., 2024) are selected for training.
• OVFact + ALOHa matching (OVF-ALm): to
better measure the limitations of ALOHa’s match-
ing in our reference-free setting (see Sec. 3.3), we
introduce a stronger hybrid baseline OVF-ALm,
where initial parsing and grounding are with our
OVFact full open-vocabulary concept set V → R,
and we apply ALOHa’s matching algorithm at the
end to obtain the final caption-level score for selec-
tion.

Results. Fig. 4 presents the results of applying
various data filtering methods and their down-
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Figure 6: Data-filtering ablation study. We train
PaliGemma 2 on filtered subsets of ShareGPT4V (with
ablations of our method), and evaluate models zero-shot
on the DOCCI test set. Note, the top-right corner is the
best. Filtering with full OVFact (purple) yields models
with the best trade-off between precise and descriptive
captions.

stream performance on DOCCI and Localized Nar-
ratives datasets, evaluated using our proposed met-
ric (OVFactF1). Results are averaged over three
independent training runs for each method. The
dashed line indicates the performance of a model
trained on the full ShareGPT4v dataset. Our filter-
ing method consistently outperforms all other meth-
ods across all data ratios on both datasets, with the
most pronounced improvements observed at lower
data ratios, suggesting that the original dataset con-
tains a large amount of noise. Interestingly, both
perplexity- and ALOHa-filtering baselines perform
comparably to random sampling. ALOHa’s strict
reliance on reference data makes it unsuitable for
data filtering. Our strong hybrid baseline OVF-
ALm gives a positive signal for filtering yet still
underperforms our proposed approach due to inher-
ent limitations (Sec. 3.3).

We also analyze the impact of our data selection
method on the traditional CHAIR setting to assess
generalization. Fig. 5 presents the performance
of models trained on varying sizes of ShareGPT4v
data, evaluated on both (sentence) CHAIRs and
(instance) CHAIRi in a zero-shot manner. In addi-
tion, we report recall following standard protocols
in prior work (Favero et al., 2024). Our method
achieves the best results on CHAIR, particularly
when using smaller training datasets. Notably, im-
proved hallucination scores are accompanied by
comparable or even higher recall values, demon-
strating the effectiveness of our method in balanc-
ing the precision and recall of generated captions.

We further analyze the impact of our data se-
lection method on the performance of VLMs with
varying parameter sizes and observe that our data

selection consistently improves performance across
all model sizes, as detailed in Appendix A.2.

Ablation studies. We study other variants of our
filtering method in Fig. 6, where we present a
trade-off between OVFactPrec and OVFactRec mea-
sured with OVFact when evaluating zero-shot on
the DOCCI test set. In particular, we experiment
with Precision only approach, where we run our
data selection process based on OVFactPrec of orig-
inal captions in ShareGPT4v. Similarly, we apply
the same process but with OVFactRec, which we
denote Recall only. We compare all the variants
against the full ShareGPT4v dataset (No filtering).
First, we notice that Recall only approach results
in a slight improvement on OVFactRec over full
data training, yet clearly outperforms other vari-
ants in terms of OVFactPrec. On the other hand,
Precision only filtering decreases OVFactRec with
the decrease in training data size. Finally, filtering
with OVFactF1(full OVFact) achieves a sweet spot
between the two aspects, with a model trained with
40% data improving OVFactPrec by 3 points with
respect to the model trained with the entire dataset,
yet staying almost on par in terms of OVFactRec.

Qualitative examples. We include qualitative
analysis of our method in the Appendix A.3, includ-
ing comparative analysis of both filtered examples
from ShareGPT4V and of the outputs of the models
trained on our higher-quality filtered set.

Human evaluation. Since traditional caption
metrics (BLEU, CIDEr, etc.) are not well-suited
for assessing general quality for long captions, as
noted by (Onoe et al., 2024), we also perform a
side-by-side comparison of captions generated by a
model trained on our higher-quality filtered set (the
top 20%, ranked by our method) compared with
one trained on the full dataset. Our results indicate
that humans preferred the outputs from the model
trained on the filtered subset 68.2% of times, even
with 5x less training data (see Appendix A.4).

5 Conclusions

We introduced OVFact, a novel method for mea-
suring caption factuality that leverages open-
vocabulary visual grounding and tool-based ver-
ification. Unlike previous metrics, OVFact is not
dataset-specific and effectively evaluates the fac-
tuality of long, descriptive captions. We further
demonstrated how OVFact can be used to improve
the factuality of VLMs by using it as a metric for
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data filtering. We show that models trained on an
OVFact-filtered subset (2.5-5x smaller) of a large-
scale, noisy (VLM-generated) pretraining set mean-
ingfully improved factuality precision without sac-
rificing caption descriptiveness when evaluating
zero-shot on various downstream datasets.

6 Limitations & Future Work

Potential risks and considerations for broader
impacts. Large Vision-Language Models present
several significant challenges and risks that require
careful consideration (Bommasani et al., 2021;
Mitchell et al., 2019; Gebru et al., 2021). These
models can potentially propagate harmful biases
present in training data (Howard et al., 2024). From
a technical perspective, VLMs may hallucinate de-
tails or generate false visual interpretations, which
could be problematic in high-stakes, safety-critical
applications like medical imaging or autonomous
systems (Chen et al., 2024a; Rohrbach et al., 2018).
Our work is a step towards both measuring and
improving the factuality of VLMs. We believe that
an automated way to detect and improve halluci-
nations is an important challenge with a growing
amount of AI-generated content and datasets, and
that a version of our method can be helpful for set-
tings where AI is deployed at scale, and it would be
necessary to assess the factuality of VLM outputs
in real-time as part of a larger system. However,
our work, as it is presented here, should be con-
sidered an academic exploration into this direction,
and extensions for deployment settings will require
additional work to ensure proper mitigation of po-
tential risks is in place. We detail additional aspects
for consideration for both the “measurement” and
“improvement” aspects of our work:
Measuring Factuality. Our method is motivated
by the limitations of prior work, and succeeds
in improving several aspects (e.g., reducing the
dependence on ground-truth references noted in
Petryk et al. (2024), etc.). However, our OVFact
method operates by leveraging base vision and lan-
guage models as tools, and while we worked to
reduce the impact of potential errors in individual
tools by composing them together (e.g., combining
both detection and segmentation models to lever-
age their relative strengths), our method inherits
and remains sensitive to their intrinsic limitations.
We characterize the quantitative performance of
these components in Sec. 4.2, but to expand, we
observe that challenging visual inputs (e.g., with

heavily occluded, very fine-grained, or distant ob-
jects or parts) would often prove difficult for tools
to properly ground. We anticipate that future mod-
els for these tasks, with further refinements in pre-
training data and architecture designs, will help
to alleviate this, as these are an active area of re-
search (Myers-Dean et al., 2024). Similarly, the
pre-training domain for these tools is important:
while our datasets were on general images, to ap-
ply our general framework to specialized domains
(e.g., medical image analysis (Chen et al., 2024a))
more bespoke models will be necessary. Further,
the pre-training data for these models will be poten-
tial sources of bias inherited by the general frame-
work, and will need to be considered for deploy-
ment settings. Finally, we also consider here the
limitations in the definition and scope of “factu-
ality” we consider here: as noted in the footnote
on the first page, our focus was on object-level
caption factuality, whether noun phrases in VLM-
generated text were both accurate to (precision) and
descriptive of (recall) the original visual input. We
believe expanding this scope to include additional
attributes (e.g., described inter-object relationships
and dependencies) and domains (e.g., verbs, mo-
tion, adverbial phrases as particularly important
in videos, is an exciting direction for future work.
Similarly, investigating factuality in the context of
external databases of multimodal visual knowledge
(e.g., Mensink et al., 2023) would be an interesting
direction for future work.
Improving Factuality. We investigate one poten-
tial direction to improve factuality: by leveraging
our new reference-free, open-vocabulary method,
we can apply our method to filtering large-scale
pretraining data for a set widely adopted by the
community (Liu et al., 2024; Lu et al., 2024; Tong
et al., 2024), showing our models achieve substan-
tial gains on factuality and quality, with 2.5 - 5x
less training data. However, while this filtered data
is higher-quality, our method would need to be in-
tegrated as part of a larger framework to facilitate
further corrections (e.g., by human annotators) to
edit and further refine the captions themselves –
this would be an interesting direction for future
work. Filtering data has been recently shown in
other contexts (contrastive vision-language models,
e.g., for CLIP-style models for image retrieval) to
unintentionally reduce accuracy in low-resource
domains, e.g., in multilingual and multicultural
contexts not well-represented by existing (largely
English-centric) multimodal evaluations (Pouget
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et al., 2024). Exploring how our method could po-
tentially complement this analysis in long caption-
ing settings would be an interesting direction for
further study. Finally, there is a growing body of lit-
erature on measuring factuality of generative visual
models (e.g., Wiles et al., 2025; Lee et al., 2024);
while our focus is on long caption generation, these
models generate visual data (images, videos) with
similar base architectural designs. We believe that
exploring connections between our method and re-
lated work in that space could prove to be a fruitful
direction.
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A Appendix

A.1 OVFact and Human Alignment

We include here the details and the results of the hu-
man alignment analysis. We extend the analysis of
human studies in DOCCI (Onoe et al., 2024). We
compare 4 models: InstructBLIP (Dai et al., 2023),
LLaVA-1.5 (Liu et al., 2023), GPT4v (Achiam
et al., 2023) and PaLI-5B (Chen et al., 2023) fine-
tuned on DOCCI. We conduct side-by-side (S×S)
comparisons between all 6 pairs of models (the
original study focused on 3 of these), where partic-
ipants are asked to provide a preference between
model A or model B in two areas: Precision and
Descriptiveness (Recall). We randomly swap mod-
els while displaying them to ensure that there is no
side bias. Annotations are made by four different
annotators, and each sample has at least two judg-
ments. Participants select one of the three options:
A is better, Neutral, B is better. We then com-
pare for each sample whether human judgments
for Recall correspond to OVFactRec (OVFactRec

(model A) > OVFactRec (model B) ), and the same
for OVFactPrec, whether they correspond to hu-
man preference on the Precision scale. In other
words, if we present outputs from two models A
and B (randomly shuffled for each A × B pair),
does our metric (the difference between OVFact(A)
and OVFact(B)) match with what humans prefer,
for precision and recall?

Additionally, we compare with other base-
lines, particularly ALOHa, against Human pref-
erence in Precision, though notably we provide
ALOHa access to references parsed from human-
annotated ground-truth captions (not available to
our reference-free metric) to make it a strong com-
parison point. We also consider the CLIP-Image-
Score proposed in (Ge et al., 2024), which mea-
sures factuality with an indirect approach: an image
generation model is applied to the output caption
under consideration, and CLIP similarity is mea-
sured between the original image and this gener-
ated one – we implement this metric with the same
image generation model (Stable Diffusion XL) as
in the original paper. Tab. A1 details the results,
which complement Tab. 2 from the main paper.
We present S×S comparisons between all combi-
nations of pairs of discussed VLMs, and observe
consistent improvements throughout the range of
output styles and capabilities, indicating the gen-
eral applicability of our method. We highlight that
our method, with its grounding and explicit preci-
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Figure A1: Model size study as a Precision-Recall
curve. We analyze the impact of applying our data
filtering strategy to various PaliGemma2 model sizes on
DOCCI test measured with OVFact. Note that the best-
performing models are closest to the top-right corner.
Our method consistently improves models’ performance
across different model sizes.

sion/recall measures, matches substantially better
with human judgment than both ALOHa and CLIP-
Image-Score2.

A.2 Model size study

In the main paper, our analysis was primarily on the
3B version of PaliGemma 2. We analyze the impact
of our data selection method on the performance
of Vision-Language Models (VLMs) with varying
parameter sizes. Figure A1 presents the trade-off
between OVFactPrec and OVFactRec measured on
the DOCCI test set for several PaliGemma2 vari-
ants. Across all model sizes, our data selection
method improves performance. As the amount of
training data increases, we observe a consistent
trend: precision decreases while average similar-
ity (OVFactRec) increases. This trade-off is most
pronounced for the smallest model, suggesting the
importance of balancing precision and recall, es-
pecially for models with limited capacity. Interest-
ingly, the largest (10B parameter) model consis-
tently achieves slightly higher OVFactRec scores
than smaller models, but often at the cost of slightly
lower OVFactPrec.

2Image generation models have known issues with faithful
generation for long input prompts (Wiles et al., 2025) and
these results suggest this kind of indirect, multi-stage genera-
tion approach may not (yet) be well-suited for the large-scale
filtering applications explored here.
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Agreement rate % with Human Judgments
Precision Recall

S×S model comparison ALOHa CLIP-Image-Score OVFactPrec CLIP-Image-Score OVFactRec

GPT4v × LLaVA-1.5 55.6 66.7 88.9 75.0 91.7
GPT4v × PaLI-5B 46.2 38.5 53.8 60.0 73.3

GPT4v × InstructBLIP 25.0 58.3 50.0 53.3 80.0
LLaVA-1.5 × PaLI-5B 58.8 58.8 82.3 70.0 90.0

LLaVA-1.5 × InstructBLIP 50.0 40.0 70.0 25.0 75.0
InstructBLIP × PaLI-5B 54.5 54.5 90.9 30.0 69.2

Overall (Tab. 2) 48.6 52.7 72.1 55.4 80.7

Table A1: OVFact improves agreement with side-by-side (S×S) human evaluations. Here, we show the extended
analysis from Tab. 2. We extend the initial human study from Onoe et al. (2024), which compared the outputs of a
fine-tuned PaLI-5B (Chen et al., 2023) against each of 3 other state-of-the-art models (GPT4v (Achiam et al., 2023),
InstructBLIP (Dai et al., 2023), and LLaVa-1.5 (Liu et al., 2024)). We report the agreement rate (%) of our method
vs. the judgment of human annotators for which model’s output has higher precision or recall (see Sec. A.1), and
show results for all 6 pairs of the 4 models. Our model significantly improves on capturing precision compared to the
SOTA metric in prior work (ALOHa (Petryk et al., 2024)), even when provided references from ground truth (GT)
captions. In contrast, our metric is fully reference-free. We also report the agreement between our method and human
recall judgments, demonstrating a high level of agreement. We also include the results for CLIP-Image-Score (Ge
et al., 2024), which incorporates image generation models to indirectly measure hallucination - we find our method
substantially improves over this technique as well.

A.3 Qualitative examples

Qualitative: Data filtering. We present in Fig. A2
qualitative examples of our method, applied to data
filtering. In particular, we present two examples
from the ShareGPT4v dataset, showing how our
method improves over our strongest baseline (our
hybrid OVF-ALm method, which illustrates the
brittle nature of the ALOHa matching method).
For each example, we show the matching results
for OVF-ALm to contextualize why this method
incorrectly includes or does not include that exam-
ple. We also show the recall-precision breakdown
of OVFact score and the detected hallucinations by
our method. The left image is an example that was
filtered out by our method from the training mixture
at a 0.4 data ratio but was kept in the baseline OVF-
ALm (our strongest baseline, with ALOHa match-
ing). Our method correctly identifies "tree" as a
hallucination, while the compared baseline misses
it. The right image is an example with a clean cap-
tion within the 0.4 data ratio mixture of Ours, and
is (incorrectly) not included in the baseline filtered
set due to enforced one-to-one matching between
"brown white fur" and "dog collar".

Qualitative: Model outputs. We also present
in Fig. A5 example outputs from two trained
PaliGemma 2 models, one on the full training set,
and one on our OVFact-filtered training set, with
5x less training data; i.e., a model trained on the
full ShareGPT4v vs. our subset. Both models

depicted are run zero-shot on the Localized Nar-
ratives downstream dataset. We observe that our
qualitative model outputs (on both DOCCI and
Localized Narratives) consistently have improved
factuality precision, without compromising descrip-
tiveness/recall. We also provide S×S quantitative
analysis with human evaluation in Sec. A.4.

A.4 Models trained with OVFact-filtered data:
Traditional Metrics and Human
Evaluations

As mentioned in the main results section, our
method improves factuality without compromising
descriptiveness. In the main paper, we describe re-
sults across challenging long-caption downstream
benchmarks and also show consistent results with
prior/standard metrics (CHAIR) on specific do-
mains (MS-COCO).
Traditional metrics. Regarding traditional over-
all quality metrics, as noted by Onoe et al. (2024),
metrics that may provide a signal for short captions
(e.g., BLEU, CIDEr, etc.) do not provide a mean-
ingful signal for long, descriptive captions when
compared with human preferences. Thus, we do
two things to evaluate models trained on our fil-
tered subsets: (1) we report perplexity to ensure we
are not sacrificing this for our other metrics gains,
and (2) we provide human preference analysis of
a model trained on our split vs. a model trained
on the full dataset. Our gains in factuality reported
in the main paper do not come at undue cost to
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This image captures a winter scene featuring a fire hydrant. The fire 
hydrant, [...] has a chain attached to it, possibly for security or 
functionality purposes [...]. The fire hydrant is partially buried in the 
snow, suggesting recent snowfall or a cold climate. The background of 
the image is mostly covered in snow, with a few trees visible in the 
distance [...].
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This image captures a charming scene [...]. At the center of 
the frame is a small dog with a coat of long, brown and 
white fur. The dog, wearing a black collar, is sitting 
comfortably on top of a closed white toilet lid. The toilet 
is positioned against a light blue wall, and the floor 
beneath [...]. 

OVF-ALm

Hallucinations: None

OVFactPrec  1.0
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Figure A2: Qualitative example of our filtering approach. We present two examples from the ShareGPT4v
dataset, showing how our method improves over our strongest baseline (our hybrid OVF-ALm method, which
illustrates the brittle nature of the ALOHa matching method). For each example, we show the matching results for
OVF-ALm to contextualize why this method incorrectly includes or does not include that example (Note that the
OVF-ALm “score” is the minimum value of the set as with ALOHa, i.e., 0.78 on the left and 0.55 on the right).
We also show the recall-precision breakdown of OVFact score and the detected hallucinations by our method.
(left) Example that was filtered out by our method from the training mixture at a 0.4 data ratio but was kept in the
baseline OVF-ALm (our strongest baseline, with ALOHa matching). Our method correctly identifies "tree" as a
hallucination, while the compared baseline misses it. (right) Example with a clean caption within the 0.4 data ratio
mixture of Ours, and is (incorrectly) not included in the baseline filtered set due to enforced one-to-one matching
between "brown white fur" and "dog collar". See Sec. A.3.

Figure A3: Qualitative example of trained model out-
puts. We present an example comparison of two trained
PaliGemma 2 models, (top) one on the full training set,
and (bottom) one on our OVFact-filtered training set,
with 5x less training data; both models are run zero-shot
here on the Localized Narratives downstream dataset.
We observe our model outputs consistently have lower
rates of hallucination, without compromising descrip-
tiveness. See Sec. A.3.

perplexity (a traditional metric for assessing the
overall diversity of the caption, more suitable for
long captions) across both DOCCI and Localized
Narratives.
Specifically, at the 20% ratio (numbers below are
(DOCCI, Localized Narratives) zero-shot evalua-
tions):
• Random filtering: (2.605± 0.004,2.955± 0.010)

• Perplexity filtering: (2.601± 0.002, 2.938± 0.006)

• ALOHa filtering: (2.603± 0.003, 2.958± 0.001)

• OVF-ALm filtering: (2.610± 0.003, 2.944± 0.008)

• Ours: (2.610± 0.003, 2.956± 0.001)

We emphasize that in the above, our goal is to show
that the perplexity for all models is effectively in
the standard deviation window of the random fil-
tering baseline – in other words, our metric does
not sacrifice perplexity to achieve all the gains we
observe in factuality precision and recall. We also
reiterate that developing strong metrics for long
caption settings remains an open problem, one in
which we hope OVFact can play a supporting role.
Finally, we note that even for the perplexity metric,
the perplexity filtering does not seem to gain an
advantage – while prior work (Li et al., 2024) ob-
served promising results applying perplexity/loss
filtering, this was only in the setting of small-scale,
short sentences with human-generated captions; in
our setting, with model-generated noisy data at a
large-scale, it seems this signal is not as clear and
does not result in models that will then generalize
well zero-shot to new downstream datasets.

Human evaluation (Model outputs). Finally, we
validate our method on a stronger metric: human
preference. We run a similar evaluation as we did
with the metric analysis, but this time, we compare
our model trained on our OVFact-filtered data (5x
less than the full set) against a model trained on
the full set. We use images from DOCCI qual test
dataset and ask 3 independent annotators to give
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their preference. In this side-by-side comparison,
model outputs for the same image are compared,
and the order of model A (left) and model B (right)
in the UI is randomized to prevent order bias and
we repeat this for the DOCCI evaluation set with
at least two human evaluations per image like be-
fore. This time, we care about model preference,
and the question posed to evaluators asked about
general quality with both descriptiveness and ac-
curacy. We observe that humans select our model
over the model trained on the full dataset with a
strong preference rate of 68.2%. This indicates
that our metric improvements correlate with over-
all quality improvements and that models trained
on our filtered subset have higher quality with 5x
less training data.

A.5 Additional experimental details
We implement our approach in the Big Vi-
sion (Beyer et al., 2022) codebase in JAX (Brad-
bury et al., 2018) and choose models for our exper-
iments and base model tools with non-restrictive
open-source licenses (all models are used in accor-
dance with intended usage). Our implementation
details consist of two key aspects: (1) the model
training for the data filtering experiments and (2)
our open-source models (tools) that are used for
our metric. We elaborate on key details below and
plan to release further supporting material to fa-
cilitate the adoption of our method in the broader
community.

We train all our PaliGemma 2 (Steiner et al.,
2024) models with input images of size 448 x 448,
following the best practices outlined in the orig-
inal paper. Our main experiments in the paper
focus on the PaliGemma 2 model with 3B param-
eters (SigLIP-So400m encoder with 14x14 pixel
patches, yielding 1024 tokens per image, and a 2B
parameter LLM decoder), but we show results for
other model sizes in Section A.2. We train our
model with a batch size of 128 (image, caption) ex-
amples for 5 epochs over the full input large-scale
training set. Following (Steiner et al., 2024), we
use the Adam optimizer (Kingma and Ba, 2015)
with default hyperparameters (b2 = 0.999, grad clip
norm = 1.0, etc.) throughout and adjust the learn-
ing rate for the different model sizes (e.g., learning
rate 1e-6 for 3B). The model card for PaliGemma
2, detailing its pre-training data mixture, is avail-
able through the official model release on GitHub
and Huggingface, which can be found in the paper
(Steiner et al., 2024).

You are an assistant that parses visually present objects from an image caption. Given an image 
caption, you list ALL the objects visually present in the image or photo described by the captions 
in a python list. Strictly abide by the following: 
1. Include all visual attributes and adjectives that describe the object, if present. 
2. Do not include objects that are mentioned but have no visual presence in the image, such as 
light, sound, or emotions.
3. Always give the singular form of the object, even if the caption uses the plural form. 
4. Return only a python list.
I will give you some examples. Image caption: A cozy room illuminated by a warm fireplace and soft 
candles. A large painting hangs on the wall, while a small painting adorns the opposite side of 
the fireplace. A wooden desk sits in the center of the room, with a book open on its surface. A 
white candle burns brightly on the desk, casting long shadows across the room. A blue and white 
vase sits on the fireplace, while a white candle burns on the table. The room is filled with a 
sense of tranquility and elegance. Answer: ['room', 'fireplace', 'candle', 'large painting', 
'small painting', 'wooden desk', 'book', 'white candle', 'blue and white vase', 'table', 'white 
candle', 'wall']. Image caption: A row of slot machines in a casino, illuminated by a light 
fixture on the ceiling. The machines are made of wood and have a brown frame. The screens are 
colorful and the buttons are red. The chair is blue and the ceiling fan is on. The wall is white 
and the ceiling is brown. The slot machine is in a wooden cabinet and the coin slot is on the 
front of the machine. Answer: ['slot machine', 'casino', 'ceiling', 'wooden machine', 'brown 
frame', 'colorful screen', 'red button', 'blue chair', 'ceiling fan, 'white wall', 'brown  
ceiling', 'slot machine', 'coin slot', 'wooden cabinet']

Figure A4: Gemma 2 prompt. We provide the prompt
details above for the Gemma 2 parsing step, which maps
the input text y to the candidate set C.

For our tools, as discussed in Sec. 4.1, we
use state-of-the-art open-source models to ensure
the broader community can also run our method
with consistent results. We leverage for our
LLM Gemma2-27b (Team et al., 2024) for cap-
tion parsing (see Sec. A.6 for prompt), and OWL-
ViTv2 (Minderer et al., 2024) and OpenSeg (Ghiasi
et al., 2022) for entity grounding (open-vocabulary
detection and segmentation). As per Sec. 3.1, to
assess descriptiveness (recall) in a reference-free
manner, we consider an extensive vocabulary V of
open-vocabulary concepts. Specifically, we take
the union of concepts from standard datasets, i.e.
Visual Genome (Krishna et al., 2017), LVIS (Gupta
et al., 2019), Open Images (Kuznetsova et al., 2020)
and Objects365 (Shao et al., 2019), resulting in a
total of 2792 unique concepts. To encode enti-
ties for OVFactRec computation, we use SigLIP-
So400m/14 (Zhai et al., 2023) text encoder. We
also highlight that our OVFact is intended to be a
general framework that can continue to incorporate
other base models as these continue to improve.

A.6 LLM prompt

We present the LLM prompt we use for caption
parsing in Fig. A4. As discussed in the main paper,
our goal for the model is to ensure that it captures
key, groundable objects from the input text y (VLM
/ model caption) and to output a final candidate set
C for later use in our method.

A.7 Discussion on efficiency

We design our method with efficiency and scalabil-
ity in mind since we explore a novel application of
our method to large-scale pretraining datasets.

We note that the grounding tools (OWL-ViT,
OpenSeg) we chose in this work have a “late fusion”
architecture, which means that they are extremely
scalable in terms of the number of text queries.
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Number of text concepts 1 30 300 2,792 (Ours) 300,000 (>100x Ours)

Runtime in miliseconds 7.35 ± 0.12 7.54 ± 0.13 7.57 ± 0.32 7.58 ± 0.24 12.93 ± 0.26

Table A2: Runtime scaling experiments of OWL-ViT w.r.t. number of prompted text queries (concepts). We
validate that our method scales well with an increased number of concepts V .

Figure A5: UI interface example. We show a screen-
shot of our UI for our human studies of S×S compar-
isons (blurring the image and removing the captions).
We extend the analysis from (Onoe et al., 2024). See
Sec. A.1 and Sec. A.4 for discussions of human evalua-
tions of our method: we show consistent improvements
over key baselines, for both measuring agreement and
better quality model outputs for models trained on our
filtered subset.

This is because the input image and text queries can
be embedded separately, text embeddings are only
used at the “end” of the network (the bulk of visual
processing is query-agnostic), and text embeddings
can be cached and reused across different inference
calls. To illustrate by example, we focus on our
OWL-ViT model in detail below.

This is confirmed by the table below, where in-
creasing the number of text queries from 1 to 2792
(the total size of our reference set), increases the
runtime by only 3% (< 1 millisecond). Note that the
timing was performed on an NVIDIA A100 GPU
using an image resolution of 448 x 448. While we
precomputed text embeddings for the above table,
we note that it only takes 0.84 ms to compute all
2792 text embeddings, which is an order of mag-
nitude less than the rest of the network (and which
needs to be only done once).
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