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Abstract

As they become increasingly multilingual,
Large Language Models (LLMs) exhibit more
language confusion, i.e., they tend to gener-
ate answers in a language different from the
language of the prompt or the answer lan-
guage explicitly requested by the user. In this
work, we propose ReCoVeR (REducing lan-
guage COnfusion in VEctor Representations),
a novel lightweight approach for reducing lan-
guage confusion based on language-specific
steering vectors. We first isolate language vec-
tors with the help of multi-parallel corpus and
then effectively leverage those vectors for ef-
fective LLM steering via fixed (i.e., unsuper-
vised) as well as trainable steering functions.
Our extensive evaluation, encompassing three
benchmarks and 18 languages, shows that Re-
CoVeR effectively mitigates language confu-
sion in both monolingual and cross-lingual se-
tups while at the same time—and in contrast
to prior language steering methods—retaining
task performance. Our data code is available at
https://github.com/hSterz/recover.

1 Introduction

Large Language Models (LLMs) are becoming
increasingly multilingual (Aryabumi et al., 2024;
Team et al., 2025), progressively demonstrating
more and more of their abilities across a broader
set of natural languages. Broadening language sup-
port, however, increases the risk of language con-
fusion (Marchisio et al., 2024): the phenomenon
where an LLM answers in a language that is dif-
ferent from the language that the user—explicitly
or implicitly—requested, or switches the language
mid-reply. For instance, Marchisio et al. (2024)
report GPT4o has a line-level pass rate of 88%
for the Cross-LC Portuguese subset of the LCB.
Thus, a non-negligible proportion of the generated
lines are not in the expected language. While lan-
guage confusion is not a frequent phenomenon in
all languages, it has a detrimental effect on the user

Répondre en Allemand!,Pourquoi un ballon à l'hélium s'élève-t-il dans les airs ? 
Answer in German!,Why does a helium balloon rise into the air?

Antworte auf Französisch!,Wie heißt der der Erde am nächsten liegende Stern? 
Answer in French! What is the name of the star closest to Earth?

Un ballon à l'hélium s'élève dans les airs en raison de la propriété 
physique des gaz. L'hélium est un gaz plus léger que l'air 
ambiant, qui est principiellement composé de nitrogène (78 %), 
d'oxygène (21 %) et d'argon (1 %). […]

A helium balloon rises into the air due to the physical properties of gases. Helium is a 
gas that is lighter than ambient air and is mainly composed of nitrogen (78%), oxygen 
(21%), and argon (1%).

Le prochain astre le plus proche de la Terre est le Soleil.

The next closest star to Earth is the Sun.

Der der Erde am nächsten liegende Stern ist Proxima Centauri.

The star closest to Earth is Proxima Centauri.

Ein Ballon, der mit Helium gefüllt ist, steigt in die Luft auf, weil 
Helium eine geringere Dichte als die Luft hat. Die Dichte ist die 
Masse pro Volumen eines Stoffes.[…] 
A balloon filled with helium rises into the air because helium has a lower density than air. 
Density is the mass per volume of a substance.

Figure 1: Generated answers for Llama 3.1 without and
with ReCoVeR.

experience. Switching to a language that the user
did not specify is likely to completely prevent the
user from understanding the generated response.
An inability to interact with users in their preferred
language(s) hinders the global adoption of LLMs
and—given that confusion is more prevalent for
low-resource languages—exacerbates the exclusiv-
ity of state-of-the-art language technology. Such
inconsistencies also complicate evaluation, as met-
rics that assume stable language output may over-
estimate true model performance.

Intuitively, language confusion can be somewhat
mitigated with in-context examples (i.e., few-shot
in-context learning, ICL) in the desired response
language as well as via multilingual instruction-
tuning (Marchisio et al., 2024), but these assume
existence of labeled data in each target language
of interest. In contrast, Yunfan et al. (2025) pro-
pose an unsupervised inference-time intervention
to mitigate language confusion based on language
vectors that are added to hidden representations in
the forward pass. While an inference-time solution,
this approach suffers from two key drawbacks: (1)
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language vectors are computed jointly, i.e., depen-
dent to one another, which means that all language
vectors need to be recomputed from scratch when
adding a new language; (2) while it improves lan-
guage fidelity, it actually harms task performance
(e.g., answer accuracy in question answering).

Contributions. In this work, we introduce a novel
lightweight approach for reducing language con-
fusion with language vectors, dubbed ReCoVeR
(REducing language COnfusion in VEctor Repre-
sentations), illustrated in Figure 2. We use multi-
parallel data to pre-compute (1) language vectors
for each Transformer layer (as average represen-
tations over all in-language input samples and all
token positions) and then (2) language-agnostic,
content vectors as averages of all language-specific
vectors. By subtracting the content vectors from the
language vectors, we obtain the language-specific
representations (i.e., the steering vectors), which
finally allow us to mitigate language confusion at
inference time by means of simple arithmetic oper-
ations. We also experiment with trained interven-
tions that learn how to compute the steering vector
from the individual language vectors.

Conceptually, like the concurrent work of Yun-
fan et al. (2025), ReCoVeR adds (and subtracts)
language-specific representations from intermedi-
ate token representations, but the way we compute
and apply language vectors allows for seamless
addition of new languages, without the need to re-
compute language vectors for all existing languages
(see Figure 1 for example generations of Llama).
Our extensive evaluation focuses on language con-
fusion in both monolingual and cross-lingual se-
tups and encompasses 18 typologically diverse lan-
guages. ReCoVeR effectively reduces language
confusion across the board, and crucially—unlike
the concurrent approach (Yunfan et al., 2025)—
largely retains task performance.

2 Background and Related Work

We first provide a brief overview of the body of
work on manipulating LLMs via steering vectors
and then describe the existing work on using steer-
ing vectors for mitigating language confusion.

Steering Language Models. Hidden representa-
tions of LLMs conflate semantic content of the
input text (i.e., prompt) with other aspects such as
language, script, or style (Bricken et al., 2023); the
tokens that the LLM generates are predicted from
representations that mix all these aspects. The body

of work on representation engineering aims to dis-
entangle the contributions of different aspects in
hidden representations, in order to accentuate or
attenuate an aspect of interest, steering that way the
behavior of an LLM in the desired direction (Zou
et al., 2023; Turner et al., 2023; Wang et al., 2025).

Representation steering (Stolfo et al., 2025;
Stoehr et al., 2024; Zhang and Viteri, 2025; Sub-
ramani et al., 2022; Hernandez et al., 2024), as a
predominant form of representation engineering,
captures the representations of particular concepts
(e.g., truthfulness or toxicity), as encoded in the
representation spaces of LLM’s layers, and then
modifies hidden representations of the input with
these concept representations: this has the goal of
steering the model behavior in the direction of the
concept (e.g., towards more truthful or less toxic
generations). The success of representation steer-
ing can be explained by the linear representation
hypothesis, which posits hidden representations to
be linear combinations of aspect/concept vectors
(Park et al., 2024). The most common ways of com-
puting concept vectors is (i) by contrasting repre-
sentations obtained from a set of positive examples
which exhibit the desired behavior (e.g., non-toxic
generations) against those obtained from a set of
negative examples which do not exhibit the desired
behavior (e.g., toxic generations) (Jorgensen et al.,
2024; Rimsky et al., 2024; Cao et al., 2024) or (ii)
by means of linear probing, identifying the most
concept-sensitive dimensions of the hidden repre-
sentations (Alain and Bengio, 2017; Yunfan et al.,
2025). The desired behavior is then induced by
adding (or subtracted) the concept vectors from
from hidden states at inference time (Singh et al.,
2024; Liu et al., 2024).

Steering to Mitigate Language Confusion. The
expected language of an LLM’s response is given
either (i) implicitly, where the model is expected to
provide the answer in the language of the prompt
or (ii) explicitly, with the language of the response
specified as part of the prompt (e.g., ’What is the
capital of France? Answer in German!’), i.e., the
expected answer language differs from the prompt
language. Throughout the paper, we refer to the
former as monolingual language confusion (Mono-
LC) and denote the latter as cross-lingual language
confusion (Cross-LC). Intuitively, state-of-the-art
LLMs suffer from language confusion more in
cross-lingual than in monolingual setups (Marchi-
sio et al., 2024). As we show in §5, owing to their
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Figure 2: Illustration of ReCoVeR. 1. The language vectors are computed based on the hidden representations on
multi-parallel text. 2. The language representations are obtained by subtracting content from language vectors.
These language representations can be used in A) unsupervised arithmetic steering and B) learned steering module.

English-centric nature, LLMs especially struggle
with Cross-LC when the prompt is not in English.

Language confusion occurs when the model
answers in the wrong language or switches be-
tween languages during generation (Marchisio
et al., 2024). Tang et al. (2024b) find that specific
neurons encode the language information, which
points to representation steering as a suitable frame-
work for mitigating language confusion: if we can
find reliable concept vectors for languages, we
could steer the generations towards the target lan-
guage. Following this intuition, in their language
steering at inference (LSI) approach Yunfan et al.
(2025) capture language vectors by identifying the
most language-sensitive dimensions in the hidden
states via linear probing. For each language l, LSI
obtains a representation mask Ml that describes
which dimensions are relevant for correctly pre-
dicting l. Next, LSI determines the difference be-
tween hidden representations when prompted with
an instruction-only target language prompt V ∗

l and
a prompt with an additional in-context example
Vl, following (Marchisio et al., 2024), who report
that in-language examples in the context reduce
language confusion. Vl is the language mask ap-
plied to the hidden state: Vl = Ml ⊙ h. They then
compute the language representation (layer i):

r
(i)
l =

1

K

N∑

k=1

V
(i)
l,k ,−V

(i)∗
l,k . (1)

Here, K is the number of prompts. Intuitively, this
formula reduces the tendency to answer in the dom-
inant language, i.e., English. Finally, to steer the
representations at inference towards the target lan-

guage, they add r
(i)
l (scaled with the hyperparame-

ter γ) to the corresponding hidden representations
h(i): ĥ(i) = h(i) + γr

(i)
l .

LSI comes with three prominent drawbacks.
First, being based on the language classification
probe to produce language-specific masks, LSI pro-
duces language vectors rl that directly depend on
the set of languages for which the probe is trained;
this prevents an easy post-hoc addition of new tar-
get languages as that requires retraining the probe
and recomputing rl vectors for all existing lan-
guages too. Second, language representations rl
are computed focusing on the dominant LLM lan-
guage: this, however, limits the applicability of
LSI as it cannot be used for mitigating Cross-LC
for non-English prompts. Finally, the reduced lan-
guage confusion that LSI achieves comes at the
cost of a substantial loss of task performance (see
§5). We believe that this is because LSI only steers
(i.e., changes) hidden representations in a subset of
dimensions (i.e., the most language-specific dimen-
sions, as identified by the probe). This makes the
steered representations more likely to fall out the
output representation distribution of the layer and
as such they “confuse” the rest of the model.

3 Lightweight Language Steering

We introduce ReCoVeR (REducing language COn-
fusion in VEctor Representations), a lightweight
language steering approach that addresses the short-
comings of the existing approaches. ReCoVeR
uses a (readily available) multi-parallel dataset with
a large language coverage to estimate language-
specific vectors and, unlike ICL- and fine-tuning-

19392



based mitigation of LC (Marchisio et al., 2024),
does not require labeled task data in target lan-
guages. ReCoVeR computes language represen-
tations in relation to the average representations
across all languages: as such, ReCoVeR is able to
support Cross-LC with non-English prompts. Im-
portantly, ReCoVeR steering vectors for new lan-
guages can easily be computed post-hoc, without
the need to recompute the steering vectors of exist-
ing languages, which is one of the key drawbacks
of LSI (Yunfan et al., 2025).

Steering comprises two sub-problems. The first
one is isolating the vector that captures how a con-
cept (in our case, a language) is encoded in LLM’s
hidden representations (§3.1). The second subprob-
lem is designing the steering strategy, i.e., how to
use the concept (language) vectors to manipulate
the hidden representations so that the model gen-
erates text with the desired properties (in our case,
in the desired target language). To this end, we
explore both unsupervised (§3.2) and supervised
strategies (i.e., learning how to combine language
vectors for optimal steering; §3.3).

3.1 Isolating Language Vectors

We start from the following intuitive hypothesis:
differences in hidden representations obtained for a
pair of parallel texts, i.e., texts that are mutual trans-
lations, primarily stem from how the LLM encodes
the input language. Because of this, we propose
to use a multi-parallel corpus to isolate language
representations. For each language l ∈ L covered
by the multi-parallel corpus DL, we compute one
language vector v(i)l for each transformer layer i
(from 1 to N ) as the mean of the hidden represen-
tations of layer i, averaged across all tokens of all
input samples in language l (i.e., across all tokens
of Dl, the monolingual portion of DL):

v
(i)
l =

1

|Dl|
∑

x∈Dl

1

P

P∑

p=1

h(i)p (x)

where h
(i)
p denotes the hidden representation of

the p-th token of the input prompt x at the output
of the i-th layer.1 The obtained language vectors
v
(i)
l , however, still conflate the representation of the

language l with the aggregate representation of the
“content” of our multi-parallel corpus DL. In order

1We exclude the representations of the first token in each
sample, i.e., the ’beginning of sequence’ token, assuming that
its representation encodes the input language less prominently.

to obtain language representations r(i)l that are to
be effectively used for language steering, we first
need to eliminate the corresponding “content” rep-
resentations c(i) from respective language vectors
v
(i)
l . To this end, we assume that we will obtain the

language-agnostic content vector c(i) by averaging
language vectors v(i)l across all languages l ∈ L:

c(i) =
1

|L|
∑

l∈L
v
(i)
l

We then obtain the language representations by
subtracting the content vectors from respective lan-
guage vectors: r(i)l = v

(i)
l − c(i). We next seek to

exploit the language representations rl computed
from the multi-parallel corpus DL to steer the LLM
towards generations in the target language l.

3.2 Unsupervised Language Steering

We are looking to integrate r
(i)
l into the hidden

representations, output of the i-th layer, in a man-
ner that fulfills two mutually conflicting objectives:
(1) we need enough information from r

(i)
l to steer

the generation towards l and at the same time (2)
change the hidden representations as little as pos-
sible, in order to prevent model collapse. We find
that, for Mono-LC, L2-normalizing the rl and scal-
ing it (with a hyperparameter α) yields steering
vectors that can achieve both goals:

ĥ(i) = h(i) + α
r
(i)
l

|r(i)l |
(2)

For Cross-LC, where the prompt is in a source
language and the expected answer is in a differ-
ent target language, we need an additional steering
component to discourage the LLMs from generat-
ing the answer in the language of the prompt. To
this end, we set our final steering vector to the dif-
ference between r

(i)
target and r

(i)
source, i.e., we steer

the representations towards the target language and
away from the source language (and we again L2-
normalize and scale the steering vector):

ĥ(i) = h(i) + α
r
(i)
target − r

(i)
source

|r(i)target − r
(i)
source|

(3)

Note that, due to the fact that ReCoVeR does not
compute language representations rl relative to any
fixed dominant/pivot language, our steering via
above language arithmetic applies to arbitrary pairs
of source and target languages in Cross-LC.
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We modify hidden representations h(i) accord-
ing to Eq. 2 (Mono-LC) and Eq. 3 (Cross-LC) for
all tokens in the input sequence except the first to-
ken, following our assumption that representations
of the sequence start token do not encode language
components. We additionally hypothesize that re-
taining the norm of hidden representations after
steering may be important for preventing model
collapse. We thus introduce an additional binary-
value hyperparameter that decides whether to re-
store the representation norms after steering, i.e.,
whether to ensure that ||ĥ(i)|| = ||h(i)||.

3.3 Learning Language Steering
We next investigate if we can learn, in a sample-
efficient manner, a steering function that is more
effective than our simple unsupervised steering
from §3.2. Aiming for sample-efficient training,
we choose our steering function to be a low-rank
intervention (with a residual), to which we input
our language representation(s) r(i)l concatenated to
a hidden representation h(i):

h
(i)
+ = ĥ(i) +AB[h(i); r

(i)
target; r

(i)
source]

with A ∈ R3d×r, B ∈ Rr×d as trainable param-
eters of the steering function. For training sta-
bility, as common in low-rank interventions, we
zero-initialize the up-projection B. ĥ(i) is defined
as:

ĥ(i) = h(i) + α
r
(i)
target − βr

(i)
source

|r(i)target − βr
(i)
source|

(4)

The above formula applies to Cross-LC and
Mono-LC. To make it compatible with Mono-LC
(where r

(i)
target = r

(i)
source) we introduce parameter

β to scale the source representation:

4 Experimental Setup

Obtaining Steering Vectors. To isolate the lan-
guage representations rl (§3.1), we need a multi-
parallel corpus DL: here, we resort to FLORES-
200 (Costa-Jussà et al., 2022), a sentence-level
multi-parallel dataset covering 200 languages.

We additionally require a training dataset for
our learnable steering function (§3.3). This dataset
should (1) contain both monolingual as well as
cross-lingual prompt-response pairs and (2) cover
a wide range of typologically diverse languages
(and a wide range of tasks), in order to enable

cross-lingual generalization of our learned steering
function. We obtain such a dataset by first sampling
4400 single-turn instances (i.e., prompt-response
pairs) from the instruction-tuning dataset Tulu v3
(Lambert et al., 2024) and then translate each of
them (with GPT-4o) by sampling the translation
language for the prompt and (independently) for the
response from the following set of languages: En-
glish, Spanish, French, German, Portuguese, Rus-
sian, Chinese, Japanese, Arabic, Hindi, Indonesian,
Hebrew, Tamil, Farsi, Thai, Polish, Dutch, Ben-
gali. We increase the likelihood of sampling mono-
lingual pairs to ensure that they are sufficiently
represented. We deliberately exclude from transla-
tion four other languages present in the evaluation
benchmarks (Italian, Korean, Turkish, and Viet-
namese) in order to test our learned steering for
(zero-shot) cross-lingual generalization.2 For de-
tails on the dataset and translation quality see A.3.

Evaluation Benchmarks. We employ three differ-
ent benchmarks for measuring language confusion.
Two of them come with task-specific annotations,
allowing us to also measure the impact of our lan-
guage steering on task performance.
Language Confusion Benchmark (LCB) (Marchi-
sio et al., 2024) covers 15 languages and serves
to measure language confusion. The correspond-
ing metrics are Line-Level Pass Rate (LPR) and
Word-Level Pass Rate (WPR). For LPR, the LLM
generations are split into lines and each line is clas-
sified by the language identification classifier; LPR
is then simply the percentage of lines in the re-
quested/expected language. WPR is the proportion
of words in the correct lines (identified for LPR)
in the correct script3. LCB consists of two por-
tions: monolingual (LLM expected to reply in the
language of the prompt) and cross-lingual (LLM in-
structed to reply in the specified language, different
from the prompt language).
MultiQ (Holtermann et al., 2024) is a multi-parallel
QA dataset covering 137 languages. We use it to
evaluate language confusion and QA accuracy4.
For the latter, as in the original work, we eval-

2Our final multilingual/cross-lingual instruction tuning
dataset contains 4400 instances covering 18 languages: we
provide the number of samples per language in Table 7 and
the training details in §A.2.

3Determining the language from a single word is challeng-
ing, as the same words can occur in multiple languages. The
script of the word serves as an approximation. As a result,
WPR is only applicable to languages with non-Latin scripts.

4We only consider correct answers in the expected lan-
guage as correct.
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uate with LLM-as-a-judge (GPT4o). We select
5 MultiQ languages for the Mono-LC evaluation.
We also create cross-lingual instances with non-
English prompts by using prompts in German,
Basque, Farsi, French, Swahili, Turkish, and Chi-
nese, including the translation of the cross-lingual
instruction ’Answer in X!’, with X as the target
language.
CrossSum (Bhattacharjee et al., 2023) is a cross-
lingual summarization benchmark. encompassing
more than 1500 language pairs. Due to computa-
tional constraints, we limit our evaluation to four
language pairs: English-Spanish, Spanish-French,
French-Turkish, and Turkish-Swahili.

Models. We experiment with three different open
multilingual instruction-tuned LLMs of varying
size and declared language support: Llama 3.1
(Grattafiori et al., 2024) (8B model; officially sup-
ports 7 languages), Qwen 2.5 (Yang et al., 2024)
(7B model; 29 languages), and Gemma 2 (Team
et al., 2024) (2B; no. languages undeclared).

Besides against the original model (i.e., with-
out any language steering), we compare the perfor-
mance of ReCoVeR against the steering with LSI
(Yunfan et al., 2025) and language-specific neu-
rons(Kojima et al., 2024). For LSI, we obtain the
language masks Ml for with samples from WikiLin-
gua (Ladhak et al., 2020) and for languages not cov-
ered by WikiLingua, we use texts from Wikipedia5.
We provide further details on LSI parameters in
Table 6. We evaluate our unsupervised steering
(§3.2; denoted as ReCoVeR) as well as our learned
steering functions (§3.3, denoted as ReCoVeR+).

5 Results and Discussion

We first show and discuss the language confusion
and task performance in Mono-LC and Cross-LC
setups and then provide further analyses for some
of the design dimensions for language steering.

5.1 Language Confusion

Monolingual Language Confusion. The Mono-
LC (i.e., where LLMs are expected to answer in
the language of the prompt) results on LCB and
MultiQ are shown in Table 1 (for detailed, per-
language results see Tables 11, 12, and 13). On
LCB, Llama and Qwen exhibit robust out-of-the-
box performance (>98% LPR), offering limited op-
portunity for further gains. Gemma’s performance

5Obtained from https://huggingface.co/datasets/
wikimedia/wikipedia

LCB MultiQ

Model LPR LPR Acc

LLama 3.1 98.7 94.5 64.4
+ LSI 99.0 95.7 52.8
+ Lang Neuron 99.2 - -
+ ReCoVeR 99.1 93.8 61.3
+ ReCoVeR+ 99.1 95.8 62.1

Qwen 2.5 98.3 90.7 61.8
+ LSI 98.0 92.7 51.0
+ Lang Neuron 96.2 - -
+ ReCoVeR 97.7 92.0 62.7
+ ReCoVeR+ 98.5 93.2 66.5

Gemma 2 88.4 91.8 38.5
+ LSI 90.2 93.5 34.8
+ Lang Neuron 89.7 - -
+ ReCoVeR 87.8 91.6 38.3
+ ReCoVeR+ 98.1 92.9 47.4

Table 1: Mono-LC results on LCB and MultiQ.

de es id sw zh

Llama 3.1 52.8 55.3 50.2 38.3 51.3
+ ReCoVeR 52.8 54.9 50.2 38.6 51.5

Table 2: MMLU accuracy for Llama 3.1 out-of-the-box
and with ReCoVeR.

is notably weaker: it more often defaults to En-
glish, regardless of the prompt language. Steering
with LSI (Yunfan et al., 2025) reduces language
confusion for all models on both LCB and Mul-
tiQ, but at the same time results in large drops
of QA accuracy on MultiQ (from -4 percentage
points (pp) for Gemma to almost -12 pp for Llama).
Our ReCoVeR variants overall mitigate language
confusion comparably or better (e.g., +8pp com-
pared to LSI for Gemma on LCB), but in contrast
to LSI, our ReCoVeR (+) language steering actu-
ally improves the QA performance for Qwen and
Gemma. The QA performance gains are particu-
larly prominent with our trained language steering,
ReCoVeR+ (+5pp for Qwen and +9pp for Gemma).
These results suggest that our language representa-
tions are not just effective on their own (ReCoVeR),
but also—considering that we train ReCoVeR+ on
merely 4400 instances (see 4)—that they enable
highly sample-efficient learning of the language
steering intervention.

Effect on Task Performance. When steering a
model toward a specific language, it is essential to
preserve task performance. To assess the impact of
language steering, we evaluate MMLU (Hendrycks
et al., 2021) translated into German, Spanish, In-
donesian, Swahili, and Chinese using Llama 3.1.
The model is prompted to output only the correct
answer option. As shown in Table 2, ReCoVeR
maintains performance across languages: the ab-
solute difference between the baseline (out-of-the-
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Model ar de es fr hi id it ja ko pt ru tr vi zh avg

LLama 3.1 90.4 95.2 95.6 94.0 91.9 89.3 93.9 78.2 90.3 91.9 90.2 95.3 94.6 83.2 91.0
+ LSI 92.8 96.9 94.9 96.0 96.5 90.9 97.0 82.4 92.0 96.7 92.6 92.8 94.8 84.2 92.9
+ Lang Neuron 94.3 95.2 95.0 95.0 95.3 86.3 95.6 89.5 92.1 92.2 95.6 97.3 98.0 89.6 93.6
+ ReCoVeR 99.2 99.7 98.6 99.7 99.3 90.1 98.6 97.6 100.0 97.0 99.7 97.9 99.0 94.8 97.9
+ReCoVeR+ 99.6 98.3 98.3 98.7 100.0 88.2 96.9 97.3 99.7 94.2 100.0 96.6 97.3 93.6 97.0

Qwen 2.5 93.2 95.5 94.7 93.4 92.5 87.3 93.1 90.1 93.6 88.6 95.4 92.5 91.9 90.9 92.3
+ LSI 94.4 92.9 92.7 90.8 94.5 86.1 90.3 89.9 92.8 88.5 94.4 91.6 90.1 90.5 91.4
+ Lang Neuron 94.4 91.1 91.5 96.5 93.0 88.7 95.8 90.7 97.9 90.6 91.8 91.3 95.9 91.8 92.9
+ ReCoVeR 97.9 97.6 95.9 95.1 96.9 86.0 95.9 94.5 97.0 92.2 98.0 95.3 96.9 93.0 95.2
+ ReCoVeR+ 98.9 99.3 98.3 97.6 98.3 91.1 98.6 99.7 98.6 92.8 98.2 97.6 97.6 91.3 97.0
Gemma 2 87.0 91.0 91.0 87.0 84.0 71.0 89.0 76.0 77.0 91.0 77.0 83.0 71.0 70.0 81.8
+ LSI 58.1 78.0 86.2 55.4 84.7 76.4 77.2 81.2 76.2 88.8 93.2 88.8 94.2 77.0 80.0
+ Lang Neuron 71.2 70.9 81.6 76.9 75.8 64.8 71.8 77.9 83.2 81.0 78.0 71.7 73.0 72.8 75.3
+ ReCoVeR 90.2 96.8 97.6 96.2 99.7 80.4 97.9 94.3 96.5 95.2 97.8 94.7 98.6 87.4 94.5

ze
ro

-s
ho

t

+ ReCoVeR+ 94.4 98.6 100.0 98.6 99.6 89.8 98.3 95.2 99.3 94.2 98.9 97.9 98.6 88.8 96.6
LLama 3.1 94.6 96.6 95.9 94.6 97.6 86.8 96.6 93.6 94.8 92.9 96.6 97.6 96.6 90.2 94.3
+ LSI 99.3 99.7 96.2 97.6 96.4 91.2 99.0 95.0 97.4 97.3 99.0 96.7 97.8 93.6 96.9
+ ReCoVeR 100.0 99.6 99.7 98.6 100.0 88.2 99.3 98.6 100.0 95.5 99.2 98.9 98.6 96.6 98.1
+ ReCoVeR+ 98.5 99.7 98.3 98.3 99.3 92.1 98.3 98.3 100.0 93.5 100.0 97.1 99.7 92.2 97.5

Qwen 2.5 94.7 95.7 97.2 95.1 93.4 84.5 93.7 89.8 83.1 90.3 95.8 95.3 93.8 90.2 92.3
+ LSI 93.6 90.1 89.8 89.0 95.1 83.7 90.0 88.2 91.9 90.4 93.9 91.8 91.3 91.3 90.7
+ ReCoVeR 100.0 99.3 99.0 98.3 99.7 90.0 98.3 99.0 99.6 97.0 99.7 96.9 98.6 95.3 97.9
+ ReCoVeR+ 99.7 98.9 99.0 99.0 99.6 92.1 99.3 97.9 100.0 96.3 99.6 97.8 100.0 95.2 98.2
Gemma 2 70.4 80.9 84.9 82.3 66.4 64.5 81.7 77.6 70.5 82.3 79.3 79.5 71.1 68.8 76.1
+ LSI 74.3 88.6 93.2 92.4 80.9 61.7 82.7 72.0 76.8 81.0 75.4 79.8 83.3 73.3 79.7
+ ReCoVeR 96.2 98.6 96.4 94.0 98.6 77.0 95.5 92.9 97.1 96.2 100.0 95.5 98.0 90.9 94.8

5-
sh

ot

+ ReCoVeR+ 98.5 99.3 98.6 96.3 100.0 91.7 98.6 97.2 99.6 93.5 99.2 98.9 97.5 92.9 97.3

Table 3: Cross-LC results on the LCB. For our learned steering function (ReCoVeR+), languages not seen during
training are highlighted in (darker) grey.

de en eu fa fr sw tr zh AVG
Model LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc

LLama 3.1 36.7 22.1 11.9 0.9 48.1 16.2 34.9 13.7 32.7 23.7 38.6 22.2 36.7 17.1 25.1 16.9 33.1 16.6
+ LSI 19.9 25.3 61.4 16.3 26.1 7.6 34.1 4.7 23.7 24.7 47.2 9.1 34.2 8.3 20.7 14.3 33.4 13.8
+ ReCoVeR 96.8 34.9 98.7 34.9 92.1 13.7 98.9 22.7 97.2 27.9 72.4 13.1 96.5 21.3 96.6 34.9 93.7 25.4
+ ReCoVeR+ 97.1 51.1 79.5 53.1 94.0 23.9 97.3 37.4 95.6 50.0 69.4 25.8 95.0 35.6 85.5 47.6 91.4 40.6

Qwen 2.5 54.9 33.7 94.8 60.8 48.0 8.6 55.9 19.4 53.5 40.0 44.1 7.1 54.2 17.1 58.8 35.9 58.0 27.8
+ LSI 47.6 27.4 92.3 55.5 42.7 5.1 54.7 12.3 55.3 31.1 39.6 5.1 46.8 15.7 48.6 38.1 53.4 23.8
+ ReCoVeR 94.6 34.2 93.2 57.9 81.1 13.2 97.2 14.7 94.5 42.6 60.0 13.6 92.7 28.7 91.4 51.9 88.1 32.1
+ ReCoVeR+ 97.3 44.2 93.2 57.9 83.3 12.7 98.2 11.4 95.5 50.0 72.6 9.6 95.4 27.3 91.5 45.5 90.9 32.3

Gemma 2 28.1 12.6 98.1 48.8 19.3 4.6 18.2 3.8 32.6 18.9 10.6 13.6 44.6 19.9 34.0 20.6 35.7 17.9
+ LSI 64.9 18.4 94.2 36.8 14.0 1.5 4.8 0.0 61.2 22.1 21.2 6.1 47.3 14.8 20.0 14.3 41.0 14.3
+ ReCoVeR 83.8 23.2 98.0 48.3 53.5 15.2 85.9 10.9 78.6 32.1 43.9 18.7 94.3 35.6 71.0 35.4 76.1 27.4
+ ReCoVeR+ 96.2 42.1 98.0 53.1 58.5 7.6 90.2 14.2 92.1 39.5 55.8 16.7 93.8 24.5 79.1 37.6 83.0 29.4

Table 4: Cross-LC (LPR) and QA results (Acc) on MultiQ. Languages not seen in ReCoVeR+ training are highlighted
in (darker) grey.

box) model and the steered model remains within
0.4 pp. With ReCoVeR we do not sacrifice task
performance to improve language confusion.

Crosslingual Language Confusion. Cross-LC re-
sults (LLM instructed to reply in a concrete lan-
guage, different from the prompt language) on
LCB, MultiQ, and CrossSum are shown in Table 3,
Table 13, Table 4, and Figure 3 (per language-pair
results in Table 10), respectively. Owing to (1)
computation of language vectors that is agnostic to
any reference language (i.e., English) and (2) com-
putation of the steering vectors using both repre-
sentation rsource of the prompt language and rtarget
of the requested answer language, both ReCoVeR
variants excel in Cross-LC: they massively out-
perform LSI across the board, for all three bench-
marks, in zero-shot and few-shot evaluation and
all three LLMs. ReCoVeR variants again outper-
form LSI most prominently for Gemma, but the
gains are often large for the other two LLMs too:

e.g., on CrossSum, ReCoVeR (+) yields +28pp
over LSI (+24pp over the original model) for Qwen
and +50pp (+46pp) for Llama. We also report the
performance of language-specific neurons on LCB.
Across all three models ReCoVeR (+) outperforms
language-specific neurons. ReCoVeR consistently
maintains or improves WPR. The additional train-
ing of ReCoVeR+ tends to improve the WPR over
ReCoVeR.

We note that all three models exhibit dramati-
cally worse Cross-LC performance on MultiQ (Ta-
ble 4) than on the LCB dataset (Table 3), e.g., 91%
vs. 33% for Llama. This is because the prompt lan-
guage in MultiQ varies and is not fixed to English
as in LCB. This shows that multilingual LLMs fail
to comply with the requested response language
much more often if the prompt is not in English.
LSI actually consistently exhibits more Cross-LC
than the corresponding base models on MultiQ
and CrossSum (Figure 3) and this is also due to
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the non-English prompts in those datasets. LSI
computes its language vectors aiming to mitigate
answering in the dominant language. However, for
non-English prompts, the model is prone to answer
in the prompt language rather than English, which
seems to render LSI inutile for cross-lingual appli-
cations with non-English prompts.

Figure 1 shows example generations of Llama
without and with ReCoVeR. Out-of-the-box Llama
struggles to follow the instruction and reply in the
correct language. Instead it replies in the source
language. In the second example the content of the
answer changes as well. ReCoVeR provides the
correct answer but the sentence, while understand-
able, is not in correct grammar.

In contrast to Mono-LC results, in Cross-LC the
unsupervised steering based on simple subtraction
of language vectors (ReCoVeR) almost matches the
performance of the learned steering (ReCoVeR+):
this suggests that the difference rsource − rtarget
already represents a very good steering vector for
Cross-LC and that the learned steering does not
capture much more than this difference either.

Generalization to Unseen Languages. On both
LCB and MultiQ, we evaluate ReCoVeR+ on sev-
eral target languages to which the model was not
exposed during training of the steering intervention.
The performance for those languages thus quanti-
fies the extent of cross-lingual generalization of our
learned steering function. The results in Table 3
(languages: it, ko, tr, vi) and Table 4 (languages:
eu, sw, tr) indicate a successful cross-lingual of the
mitigation of language confusion (i.e., ReCoVeR+
consistently matches or surpasses the performance
of ReCoVeR). The same, however, does not consis-
tently hold for task-specific performance on Mul-
tiQ: especially for Gemma, transfer of the learned
steering function of ReCoVeR+ to an unseen lan-
guage can lead to a substantial performance drop
(e.g., -8pp for Basque or -11pp for Turkish) com-
pared to the unsupervised steering (ReCoVeR). Al-
though it is worth noting that even in these cases
ReCoVeR+ almost always yields higher QA accu-
racy than the base model and steering with LSI.

5.2 Further Analyses

Leave-Out Layers. Previous work suggested
that some layers produce representations that en-
code more language information than others (Bhat-
tacharya and Bojar, 2023; Tang et al., 2024a). We
thus next measure language confusion while omit-
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Figure 3: Cross-LC (metric: LPR) and summarization
performance (Rouge-1: R1; Rouge-2: R2; Rouge-L:
R-L; and BERT-Score: BERT) on the CrossSum dataset
for the language pairs: en-es, es-fr, fr-tr, and tr-sw.

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

89.8 86.3 86.5 88.0 87.8 88.4 88.5 88.7 88.8 87.5

L10 L11 L12 L13 L14 L15 L16 L17 L18 L19

90.0 88.9 89.1 88.4 89.0 89.1 88.8 89.7 88.4 88.3

L20 L21 L22 L23 L24 L25 L26 L27 -

89.4 88.1 87.8 88.6 87.5 88.8 88.4 87.4 90.5

Figure 4: LPR for Qwen2.5 when we remove steering
from individual layers.

ting language steering in one transformer layer at a
time. We run the experiment on Qwen, using the
complex questions from LCB (languages: de, es,
hi, ja, pt, zh). Figure 4 summarizes the results: we
achieve best performance (90.5% LPR) when ap-
plying steering in all layers. We observe the largest
performance drops if we remove the steering in
layers 1 and 2: effective mitigation of language
confusion seems to require very “early” steering.
We again see larger drops if we remove steering
from higher layers (L22-L27). Our finding that
language-specific steering is more important at the
bottom and top layers than in middle layers is in
line with the hypothesis that the intermediate layers
are responsible for reasoning, and thus rely on the
English-centric representations (Zhao et al., 2024).

Steering as the Only Language Indication.
Prompts in the Cross-LC evaluation explicitly spec-
ify the expected response language: ReCoVeR
steering then mitigates language confusion and
helps LLMs generate text in the specified language.
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Figure 5: Cross-LC performance on LCB and MultiQ
without language specification in the prompt.
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Figure 6: Visualization of the language representations
of the last layer of Llama 3.1 using Agglomerative Hier-
archical Clustering.

We next investigate to which extent ReCoVeR steer-
ing alone conditions the generation language, i.e.,
when we remove the answer language specification
from the prompt. ReCoVeR thus has to steer the
model away from the implicitly specified prompt
language and towards the target language: this re-
quires stronger steering compared to prompts with
explicit language specifications, and we find that
optimal α = 2 for Qwen and α = 4 for Gemma.
For Llama, however, α = 1 remains. The re-
sults, shown in Figure 5, reveal that, for Llama
and Gemma, steering via ReCoVeR (+) alone is
more effective than steering by only specifying the
response language in the prompt (ZS).

Language Vectors. We next qualitatively analyze
language vectors rl by grouping them via hierarchi-
cal agglomerative clustering, to see if they reflect
known relations between languages (e.g., typol-
ogy/genealogy, shared script and/or shared vocabu-
lary). Figure 6 displays the resulting dendrogram
for Llama (Figure 7 shows Qwen and Gemma).
Our language steers capture, to some extent, lan-
guage families: all models generally group together
Indo-European Languages and in particular the

four Romance languages (French, Spanish, Ital-
ian and Portuguese; with Spanish and Portuguese
having consistently most similar vectors). There
is some evidence that a shared script drives the
proximity: (1) representations from all three mod-
els tend to group Latin-script languages; and (2)
Llama vectors put Chinese and Japanese close to-
gether: although Japanese is in a different language
family and also typologically dissimilar to Chinese,
it borrows Chinese scripts and a non-negligible por-
tion of Chinese vocabulary. Qwen, on the other
hand, represents Chinese similar to Hindi, Bengali,
and Tamil. These languages are from different lan-
guage families, and generally have little in common
other than geographic proximity.

Negative Result: Position-Specific Steering. In
ReCoVeR, we compute language-specific vectors
at the level of layers, i.e., we steer representations
of all tokens in a layer with the same steering vector.
Initially, however, we intended to compute/learn
position-specific steering vectors, i.e., a different
steering vector for each layer and each token posi-
tion. However, positional information largely gets
lost due to averaging across samples: because of
varying sentence structures and sequence lengths,
different positions end up with very similar repre-
sentations. Because of this, position-specific steer-
ing consistently produced worse results than layer-
level steering (we report the results in §C).

6 Conclusion

We introduced ReCoVeR, a novel lightweight lan-
guage steering approach. We first isolate language
vectors using a multi-parallel corpus and then lever-
age those vectors for effective language steering of
LLMs via (i) unsupervised steering arithmetic as
well as (ii) learnable steering intervention, trained
in a sample-efficient manner. Our extensive evalua-
tion, encompassing three benchmarks and 18 lan-
guages, shows that, in contrast to prior approaches,
ReCoVeR effectively mitigates language confusion
without jeopardizing task performance. Future
work could leverage linguistic information to ob-
tain more effective language steering, e.g., vectors
conditioned by (i) syntactic roles, exploiting mul-
tilingual dependency parsers (De Marneffe et al.,
2021) or (ii) typological features, e.g., URIEL (Lit-
tell et al., 2017), to facilitate cross-lingual general-
ization (i.e., transfer) for learning steering vectors.
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Limitations

Our experiments focus on a broad range of lan-
guages across different families, offering wide-
ranging initial insights. While this provides sub-
stantial coverage, the applicability of the current
results to the entirety of global languages requires
further investigation.

We evaluate ReCoVeR on a diverse set of state-
of-the-art multilingual model families, including
Llama, Qwen, and Gemma. These represent widely
adopted multilingual models, providing a strong ba-
sis for evaluating the generalizability of ReCoVeR.
The results suggest that ReCoVeR is likely to gen-
eralize well beyond the models tested.

We use FLORES-200 as the multi-parallel data
source to compute language representations. Al-
though it provides meaningful language represen-
tations, demonstrating that our findings extend to
other multi-parallel datasets requires further exper-
iments. Moreover, we use all available samples in
FLORES-200, and thus do not address the question
of how many samples are minimally required to
obtain meaningful language representations.
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A Trainings and Evaluation Details

A.1 Hyperparameters
ReCoVeR depends on the choice of hyperparame-
ters. Choosing suitable α and whether to restore
the norm is crucial for reducing language confu-
sion. We choose the hyperparameters based on the
performance on a smaller dataset of 600 machine
translated samples from the alpaca dataset. We
measure LPR and exclude hyperparameters that re-
sult in unreadable text; e.g. by repeating a word or
sequence of words corresponding to the language.
The hyperparameters are listed in Table 5. The
monolingual scenario requires less steering and a
smaller α, except for Qwen.

Model Version Task alpha beta norm

Llama 3.1 ReCoVeR cross 0.2 - true
ReCoVeR mono 0.05 - true
ReCoVeR+ both 0.1 0.9 true

Qwen 2.5 ReCoVeR cross 1 - true
ReCoVeR mono 2 - true
ReCoVeR+ both 1 0.9 true

Gemma 2 ReCoVeR cross 2 - false
ReCoVeR mono 0.5 - true
ReCoVeR+ both 2 0.9 true

Table 5: Hyperparameter used in the experiments, cov-
ering alpha, beta, and whether to restore the norm.

LSI requires choosing hyperparameters τ, γ.
We list the hyperparameters in 6. We base the
search space on the range used in the original
paper τ ∈ [0.02, 0.04, 0.06, 0.08, 0.1] and γ ∈
[0.2, 0.4, 0.6, 0.8, 1.0]. However, for Gemma 2 we
observe a model collapse for parameters in this
range. Therefore, we reduce γ to 0.01, generating
coherent text in the target language.

Model Task τ γ

Llama 3.1 cross 0.06 0.6
mono 0.04 0.6

Qwen 2.5 cross 0.06 0.2
mono 0.04 0.4

Gemma 2 cross 0.04 0.01
mono 0.04 0.01

Table 6: Hyperparameter used for LSI in the experi-
ments

A.2 Learnable Steering Function: Training
Details

We train ReCoVeR+ with the following hyperpa-
rameters: we train for 1 epoch with a learning rate
of 1e−6 and Adam optimiser and 0.2 dropout, and
a rank of 32. The model-specific hyperparameters
are listed in Table 5.

To isolate the influence of the language vectors
on the generated text, the input prompts are formu-
lated without explicit information specifying the
target language. This ensures that the language
selection in the output is guided by the learned
steering vectors, rather than by direct cues within
the prompts themselves.

A.3 Dataset Details
We create a multilingual instruction tuning dataset
that contains monolingual (prompt and answer are
in the same language) and crosslingual (prompt and
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answer are in different languages) samples. Table
7 shows the number of samples per language for
both. The dataset covers 18 languages from diverse
language families and with varying scripts.

Recognizing that state-of-the-art LLMs are more
prone to language confusion in crosslingual versus
monolingual generation, we have increased the pro-
portion of crosslingual samples compared to mono-
lingual samples for each language in our training
data.

To evaluate the translation qualities, we compute
the Comet-Kiwi(Rei et al., 2022) scores for the
questions and answers. We group the scores into
brackets and visualize them in Figure 8. The ma-
jority of the questions get scores > 0.8. For the
translated answers, the scores are more in the 0.6 -
0.8 bin, probably due to the long sequence length,
which makes it harder to determine whether two
sequences are translations of each other.

B Language Representations
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Figure 7: Visualization of the language representations
of the last layer of Qwen 2.5 and Gemma 2 using Ag-
glomerative Hierarchical Clustering.

C Position-Specific Steering

We explore including positions in the computation
of the steering vectors. Instead of averaging across
positions, the average hidden state is computed per

position. This increases the size of the language
vector by k times, where k is the number of po-
sitions we consider. However, results in Table 8
show that there is no advantage to having this in-
formation. In fact, it tends to harm performance.

D Detailed Results

In the main part of the paper we cover monolingual
scenarios and crosslingual summarization only ag-
gregated across all languages. Table 11 and Table
12 show the monolingual performance for the in-
dividual languages. Across both datasets, the LPR
consistently surpasses 90% for most evaluations,
indicating near-optimal performance.

The crosslingual summarization scores on Cross-
Sum are shown in Table 10. The Cross-LC LPR
is shown in Table 9. They illustrate that ReCoVeR
and ReCoVeR+ can improve Cross-LC while main-
taining or improving the summarization perfor-
mance.
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Lang Family Script Src Tgt Mono Total

ar Afro-Asiatic Arabic 256 230 51 537
bn Indo-European Bengali 230 263 65 558
de Indo-European Latin 163 244 45 452
en Indo-European Latin 207 158 30 395
es Indo-European Latin 208 177 29 414
fa Indo-European Perso-Arabic 235 221 31 487
fr Indo-European Latin 213 255 63 531
he Afro-Asiatic Hebrew 172 119 39 330
hi Indo-European Devanagari 206 186 25 417
id Austronesian Latin 182 222 35 439
ja Austronesian Han, Hiragana, Katakana 308 242 67 617
nl Indo-European Devanagari 145 178 40 363
pl Indo-European Latin 193 157 49 399
pt Indo-European Latin 156 221 39 416
ru Indo-European Cyrillic 182 153 34 369
ta Dravidian Tamil 178 195 39 412
th Kra-Dai Thai 250 213 37 500
zh Sino-Tibetan Han 153 203 45 401

Total 3637 3637 763 4400

Table 7: The number of samples that have each language as a source or target language in for the crosslingual
samples and the number of monolingual samples.

(a) Comet-Kiwi Scores on the translated Questions. (b) Comet-Kiwi Scores on the translated Answer.

Figure 8: Translation Quality based on Comet-Kiwi scores.

Model Method Cross Mono

LLaMA
+ Ours 97.9 99.1
+ Ours+Pos 96.7 98.6
∆ -1.2 -0.5

Qwen
+ Ours 95.2 97.7
+ Ours+Pos 95.8 93.3
∆ +0.6 -4.4

Gemma
+ Ours 94.5 87.8
+ Ours+Pos 89.9 89.5
∆ -4.6 +1.7

Table 8: LPR on the LCB with language representations
for each position.

Model es fr tr sw AVG

Llama 100.0 0.0 96.4 3.0 49.8±0.004

+ LSI 100.0 10.2 71.1 3.0 46.1±0.003

+ ReCoVeR 100.0 100.0 98.8 85.2 96.0±0.002

+ ReCoVeR+ 100.0 100.0 100.0 95.6 98.9±0.003

Qwen 98.3 91.8 95.1 9.6 73.7±0.007

+ LSI 97.4 75.5 92.7 20.0 71.4±0.009

+ ReCoVeR 98.8 100.0 98.8 94.8 98.1±0.006

+ ReCoVeR+ 100.0 100.0 100.0 91.9 98.0±0.002

Gemma 2 84.2 89.8 30.1 0.0 51.0±0.009

+ LSI 98.7 99.0 4.8 0.0 50.6±0.003

+ ReCoVeR 100.0 100.0 98.8 41.0 85.0±0.005

+ ReCoVeR+ 100.0 100.0 100.0 52.6 88.1±0.004

Table 9: Cross-LC results on CrossSum for the language
pairs: en → es, es → fr, fr → tr, tr → sw, denoted
by the target language, and the standard error for the
average across languages.

19403



en → es es → fr fr → tr tr → sw AVG
Model R-1 R-2 R-L Bert R-1 R-2 R-L Bert R-1 R-2 R-L Bert R-1 R-2 R-L Bert R-1 R-2 R-L Bert

LLama 3.1 0.29 0.08 0.20 0.72 0.17 0.03 0.13 0.69 0.20 0.07 0.14 0.53 0.04 0.01 0.04 0.60 0.18±0.002 0.05±0.001 0.13±0.002 0.63±0.002

+ LSI 0.28 0.07 0.19 0.71 0.15 0.04 0.11 0.67 0.16 0.04 0.11 0.45 0.04 0.01 0.04 0.60 0.16±0.003 0.04±0.001 0.11±0.002 0.61±0.002

+ ReCoVeR 0.29 0.08 0.20 0.71 0.23 0.07 0.16 0.69 0.19 0.05 0.15 0.52 0.08 0.01 0.07 0.61 0.20±0.003 0.05±0.002 0.14±0.002 0.63±0.002

+ ReCoVeR+ 0.30 0.09 0.21 0.72 0.22 0.07 0.15 0.69 0.20 0.06 0.15 0.54 0.14 0.02 0.10 0.66 0.22±0.003 0.06±0.002 0.15±0.002 0.65±0.002

Qwen 2.5 0.29 0.07 0.19 0.71 0.24 0.07 0.16 0.70 0.19 0.05 0.14 0.49 0.05 0.01 0.04 0.61 0.19±0.003 0.05±0.002 0.13±0.002 0.63±0.002

+ LSI 0.28 0.07 0.18 0.71 0.21 0.04 0.14 0.69 0.19 0.04 0.13 0.48 0.06 0.01 0.05 0.61 0.18±0.002 0.04±0.001 0.13±0.002 0.62±0.001

+ ReCoVeR 0.29 0.08 0.19 0.71 0.25 0.07 0.17 0.71 0.18 0.05 0.13 0.49 0.13 0.01 0.10 0.67 0.21±0.003 0.05±0.002 0.15±0.002 0.65±0.002

+ ReCoVeR+ 0.30 0.09 0.20 0.72 0.25 0.08 0.18 0.72 0.20 0.05 0.15 0.52 0.11 0.01 0.08 0.64 0.21±0.003 0.06±0.002 0.15±0.002 0.65±0.002

Gemma 2 0.26 0.07 0.18 0.71 0.23 0.06 0.17 0.71 0.12 0.03 0.10 0.41 0.05 0.01 0.05 0.61 0.17±0.003 0.04±0.002 0.12±0.002 0.61±0.002

+ LSI 0.27 0.07 0.19 0.71 0.19 0.04 0.13 0.69 0.07 0.01 0.06 0.35 0.04 0.01 0.04 0.61 0.15±0.002 0.03±0.001 0.10±0.002 0.59±0.002

+ ReCoVeR 0.29 0.08 0.20 0.71 0.25 0.07 0.18 0.71 0.19 0.05 0.14 0.52 0.05 0.01 0.04 0.57 0.20±0.003 0.05±0.002 0.14±0.002 0.63±0.002

+ ReCoVeR+ 0.29 0.08 0.19 0.71 0.26 0.07 0.18 0.71 0.16 0.05 0.12 0.50 0.05 0.01 0.04 0.53 0.19±0.003 0.05±0.002 0.13±0.002 0.61±0.002

Table 10: The crosslingual summarization performance in Rouge-1, Rouge-2, Rouge-L, and Bert Score on CrossSum
with the standard error for the average across languages.

Model ar de en es fr hi id it ja ko pt ru tr vi zh avg

LLama 3.1 99.7 100.0 98.5 99.0 100.0 100.0 93.0 100.0 99.0 100.0 95.5 100.0 99.0 100.0 96.5 98.7
+ LSI 100.0 100.0 99.0 99.7 99.7 100.0 93.0 100.0 99.0 100.0 99.0 100.0 99.0 99.0 98.0 99.0
+ Lang Neuron 100.0 100.0 100.0 99.7 100.0 99.0 95.0 100.0 99.0 100.0 97.5 100.0 100.0 100.0 98.0 99.2
+ ReCoVeR 99.3 100.0 99.5 99.7 99.3 99.0 97.0 99.0 100.0 99.0 98.5 100.0 97.0 100.0 99.0 99.1
+ ReCoVeR+ 99.7 100.0 99.5 98.7 100.0 100.0 94.0 99.0 100.0 100.0 96.5 100.0 100.0 99.0 99.5 99.1

Qwen 2.5 98.0 99.0 100.0 98.7 98.7 100.0 98.0 100.0 92.0 97.9 96.0 100.0 98.0 100.0 98.0 98.3
+ LSI 98.3 98.0 100.0 99.3 99.0 100.0 93.0 100.0 96.0 96.8 95.5 99.0 97.0 100.0 97.5 98.0
+ Lang Neuron 96.7 97.0 100.0 98.7 99.0 91.0 94.0 100.0 89.0 100.0 94.5 94.8 90.9 99.0 98.5 96.2
+ ReCoVeR 98.7 99.0 100.0 99.3 98.3 99.0 96.0 100.0 91.0 99.0 95.5 95.0 97.0 100.0 97.5 97.7
+ ReCoVeR+ 99.3 98.0 100.0 99.7 99.7 98.0 96.0 98.0 96.0 100.0 96.5 100.0 99.0 99.0 99.0 98.5

Gemma 2 83.2 98.0 98.5 95.7 94.3 67.0 71.0 94.0 99.0 99.0 97.0 93.0 99.0 80.0 57.5 88.4
+ LSI 92.7 96.0 98.5 97.7 97.3 87.0 68.0 97.0 91.0 97.0 92.0 95.0 94.0 84.0 66.0 90.2
+ Lang Neuron 85.2 93.9 99.5 97.7 93.3 81.0 58.0 97.0 96.0 100.0 96.5 93.0 99.0 85.0 70.0 89.7
+ ReCoVeR 82.9 97.0 98.5 95.3 93.0 66.0 70.0 95.0 95.0 100.0 96.0 93.0 100.0 78.0 56.5 87.8
+ ReCoVeR+ 98.0 100.0 100.0 99.0 99.3 100.0 90.0 100.0 98.0 100.0 96.5 99.0 100.0 99.0 93.0 98.1

Table 11: Mono-LC results on the LCB. For our learned steering function (ReCoVeR+), languages not seen during
training are highlighted in (darker) grey.

de en fr tr zh AVG
Model LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc LPR Acc

LLama 3.1 96.4 65.5 94.3 67.0 95.4 65.0 98.9 57.0 87.5 67.5 94.5 64.4
LSI 97.4 55.0 93.8 59.5 98.0 53.5 99.4 42.0 90.0 54.0 95.7 52.8
+ ReCoVeR 94.4 64.0 93.9 60.5 93.9 61.0 96.1 52.5 90.9 68.5 93.8 61.3
+ ReCoVeR+ 97.8 68.0 96.3 70.0 97.9 67.0 95.8 47.0 91.0 58.5 95.8 62.1

Qwen 2.5 90.5 67.5 92.5 59.5 90.5 58.0 89.5 35.0 90.5 89.0 90.7 61.8
LSI 93.0 43.5 93.5 59.0 93.5 52.5 92.2 22.5 91.5 77.5 92.7 51.0
+ ReCoVeR 90.0 60.0 95.5 68.5 92.5 67.0 91.2 38.0 91.0 80.0 92.0 62.7
+ ReCoVeR+ 94.3 69.0 93.4 72.5 94.2 70.5 94.9 40.5 89.4 80.0 93.2 66.5

Gemma 2 91.4 29.5 93.5 30.0 92.5 42.0 96.7 42.5 84.9 48.5 91.8 38.5
LSI 94.5 28.0 95.5 36.5 96.5 36.5 96.8 32.5 84.5 40.5 93.5 34.8
+ ReCoVeR 91.9 26.0 93.5 31.5 93.0 44.0 96.7 43.0 82.9 47.0 91.6 38.3
+ ReCoVeR+ 92.4 45.0 94.5 47.0 93.9 50.0 92.9 42.0 90.8 53.0 92.9 47.4

Table 12: The LPR and Accuracy on the monolingual setup of the MultiQ.
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Monolingual Crosslingual
ar hi ja ko ru zh avg ar hi ja ko ru zh avg

LLama 3.1 98.3 100.0 100.0 99.0 96.0 98.5 98.4 94.0 97.2 93.4 93.5 93.4 96.9 94.7
LSI 99.3 100.0 100.0 98.0 97.0 96.9 98.5 91.9 99.2 94.8 97.1 96.0 97.3 96.0
ReCoVeR 98.0 100.0 98.0 96.0 97.0 97.0 97.7 97.9 98.3 93.8 95.4 98.6 96.6 96.7
ReCoVeR+ 99.7 100.0 100.0 100.0 100.0 99.5 99.9 94.7 98.3 95.9 96.5 98.6 97.5 96.9

Qwen 2.5 100.0 99.0 98.9 100.0 98.0 99.0 99.2 94.3 96.7 89.4 95.5 93.5 96.2 94.3
LSI 100.0 100.0 99.0 98.9 100.0 100.0 99.6 94.3 98.1 89.9 95.7 94.4 94.8 94.5
ReCoVeR 99.7 100.0 98.9 100.0 95.7 99.5 99.0 96.2 98.3 91.7 95.3 94.8 88.0 94.0
ReCoVeR+ 100.0 99.0 100.0 99.0 100.0 99.5 99.6 96.7 97.5 93.8 94.8 97.1 98.4 96.4

Gemma 2 96.7 100.0 91.9 100.0 93.6 96.7 96.5 86.2 98.8 98.7 90.9 93.5 98.6 94.5
LSI 96.6 98.9 100.0 97.9 96.8 96.1 97.7 69.0 91.4 88.0 86.6 88.4 97.6 86.8
ReCoVeR 95.6 98.5 94.7 100.0 94.6 96.5 96.7 91.0 97.2 83.6 94.4 94.2 91.8 92.0
ReCoVeR+ 98.6 100.0 100.0 100.0 96.0 100.0 99.1 86.2 96.7 92.9 95.9 97.6 92.6 93.6

Table 13: WPR on the monolingual and crosslingual portion of the LCB.
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