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Abstract

As large language models (LLMs) continue to
grow in size, their practical deployment increas-
ingly relies on a range of compression tech-
niques, such as quantization, pruning, and low-
rank approximation. Especially, post-training
compression methods—which do not require
re-training—have drawn considerable interest.
Many recent methods leverage calibration data
to capture magnitude or second-order charac-
teristics of input activations. However, the role
and significance of calibration data remain un-
derexplored. In this study, we demonstrate that
the sequence length of calibration data plays a
crucial role in the effectiveness of post-training
compression methods for LLMs. We then ana-
lyze input activations and find that, within the
normalized hidden states, the embedding of the
first token exhibits characteristics opposite to
those of subsequent tokens. Building on this
insight, we introduce state-aware length cali-
bration, a technique that applies masking along
the sequence axis, specifically targeting nor-
malized hidden states. Experimental results
show that our approach improves perplexity
and zero-shot downstream tasks performance.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities across a wide range of natu-
ral language processing tasks, including text gener-
ation, translation, and question answering (Achiam
et al., 2023; Touvron et al., 2023; Dubey et al.,
2024; Abdin et al., 2024; Jiang et al., 2023). Never-
theless, their real-world deployment remains chal-
lenging due to their substantial computational and
memory overhead (Gholami et al., 2024). To over-
come these limitations, researchers have developed
various compression techniques designed to reduce
model size and enhance inference efficiency, such
as quantization, pruning, and low-rank approxima-
tion (Wan et al., 2024).
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Figure 1: (Left) Illustration of a single layer with seven
distinct linear weights W and their corresponding in-
put activations (i.e., states). (Right) Two normalized
hidden states display a tendency in which the embed-
dings of the first token and the subsequent tokens are
oriented in opposite directions. As a result, we lever-
age only a partial representation of these states when
calibrating LLMs, called state-aware length calibration.
Conversely, because the attention state and intermediate
state do not show this opposing orientation, we leverage
them directly without modification. ATTN and FFN
indicate attention and feed-forward network modules,
respectively.

Notably, post-training compression methods
have gained significant attention due to their
ability to optimize model efficiency without re-
quiring costly and time-consuming retraining.
These techniques enable the direct compression
of trained models, enhancing their practicality
for deployment on resource-constrained devices,
such as mobile devices and edge computing plat-
forms. For instance, quantization methods, such as
SmoothQuant (Xiao et al., 2023) and AWQ (Lin
et al., 2024a), reduce numerical precision to lower
computational costs. Pruning methods, such as
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SparseGPT (Frantar and Alistarh, 2023) and Wanda
(Sun et al., 2024b), focus on identifying and remov-
ing redundant or less important weights from the
model weights. Additionally, low-rank approxima-
tion methods, such as ASVD (Yuan et al., 2025)
and SVD-LLM (Wang et al., 2025), decompose
weight matrices into lower-dimensional forms.

In the context of post-training compression
framework, Frantar and Alistarh (2022) introduced
a layer-wise optimization approach, where each
layer is optimized independently to minimize per-
formance degradation. Specifically, the global com-
pression task is decomposed into a series of layer-
wise subproblems, with each layer being optimized
separately. This process leverages input activations
derived from calibration data. In particular, cal-
ibration data is used to estimate input activation
magnitudes or Hessian (i.e., second-order) infor-
mation, which is essential for achieving a more
advanced and accurate compression process.

Despite its crucial role, calibration data remains
an underexplored aspect of post-training compres-
sion. For example, calibration data is typically
sourced from randomly selected web text or pre-
training data, and constrained to a fixed length
(e.g., 2048 tokens), under the observations that
post-training compression methods are resilient to
variations in calibration data distribution (Sun et al.,
2024b; Li et al., 2023). However, Williams and
Aletras (2024) conducted a systematic analysis of
the influence of calibration data on compression
performance. They revealed that the source and
seed of the calibration data can largely influence on
the results of both post-training quantization and
pruning. Additionally, Lee et al. (2023) stated that
it is necessary to align the sequence length of the
calibration data with that of the target task.

In this paper, we present a systematic analysis
of the impact of the sequence length of calibration
data on post-training compression. Our analysis in-
volves four different LLMs, six post-training com-
pression algorithms, and two calibration datasets
to thoroughly evaluate how varying the sequence
length influences the compressed model perfor-
mance. Our main contributions are as follows:

* (Section 4) Contrary to common intuition,
we demonstrate that using shorter (< 2048)
calibration data generally yields better com-
pression performance, for most existing post-
training compression algorithms.

¢ (Section 5) We reveal that within both the at-

tention and feed-forward modules, the normal-
ized hidden states exhibit an opposite relation-
ship between the embedding of the first token
and those of subsequent tokens.

* (Section 6) Building on this key observation,
we propose state-aware length calibration, as
illustrated in Figure 1. This approach lever-
ages only a short sequence of normalized hid-
den states to enhance the effectiveness of post-
training compression.

2 Related Work
2.1 LLM Compression

Model compression techniques for LLMs have
been extensively studied to reduce computational
costs and memory usage while maintaining perfor-
mance. Quantization is a widely used method that
reduces the precision of weights, activations, and
KV caches (Xiao et al., 2023; Lin et al., 2024a;
Frantar et al., 2023; Lin et al., 2024b; Dettmers
et al., 2022; Wang et al., 2023). Pruning identi-
fies and removes less significant weights to create
a sparser model (Frantar and Alistarh, 2023; Sun
et al., 2024b; Ma et al., 2023; Xia et al., 2024).
Low-rank approximation leverages matrix factor-
ization techniques to reduce the parameter count
while preserving model expressiveness (Yuan et al.,
2025; Wang et al., 2025; Li et al., 2023; Hsu et al.,
2022). For a broader perspective on model com-
pression, readers are encouraged to explore surveys
such as Wan et al. (2024).

Post-training compression does not require re-
training; instead, it relies on calibration data. For
example, input activations of calibration data can
be used to derive first-order (i.e., X) or second-
order (i.e., XXT) statistics. While quantization,
pruning, and low-rank approximation use different
strategies to minimize compression loss, they fun-
damentally share a common reliance on calibration
to either (1) identify weights sensitive to compres-
sion (Lin et al., 2024a; Sun et al., 2024b) or (2)
adjust those weights accordingly (Lin et al., 2024a;
Xiao et al., 2023; Frantar and Alistarh, 2023; Yuan
et al., 2025; Wang et al., 2025).

2.2 Calibration Data for Compression

Most previous studies use a small amount of cali-
bration data, typically 128 examples, with a fixed
sequence length (e.g., 2048 tokens). Williams and
Aletras (2024) investigated the impact of calibra-
tion data on the performance of LLMs when apply-
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ing post-training quantization and pruning methods.
They found that the effectiveness of these compres-
sion techniques can vary significantly depending
on the source and randomness of the calibration
dataset.

Similar to ours, Lee et al. (2023) introduced
sequence-length-aware calibration, which ensures
that the sequence length of the target applica-
tion task matches that of the post-training calibra-
tion dataset. Specifically, in zero-shot Common-
SenseQA, where sequence lengths range from tens
to hundreds, OPTQ (Frantar et al., 2023) achieves
better performance when the sequence lengths are
aligned (e.g., 128) compared to when they are mis-
matched (e.g., 2048). We examine whether this
trend holds across various post-training techniques
with different sequence lengths.

3 Experiments Setup

LLMs. We utilize four LLMs for our experi-
ments: Llama2-7B (Touvron et al., 2023), Llama3-
8B (Dubey et al., 2024), Mistral-7B-v0.3 (Jiang
et al., 2023), and Phi3.5-mini-instruct (3.8B) (Ab-
din et al., 2024).

Post-training Compressions. We examine six
recent post-training compression methods. Most
algorithms use calibration data to make weights
more amenable to compression, such as scaling.

+ SmoothQuant! (Xiao et al., 2023) is a rep-
resentative weight-activation co-quantization
algorithm that mitigates the quantization diffi-
culty from activations to weights by using per-
channel scaling. For channel j, scaling factor
s is defined as max(|X;|)*/max(|W;|)1=.
We quantize both weights and activations in
8-bits, and set o to 0.7.

« AWQ? (Lin et al., 2024a) is a representative
weight-only quantization algorithm that pre-
serves salient weights. Scaling factor s is
simply defined as mean(|X|)® and then « is
searched by fast grid search to minimize quan-
tization error in a layer-wise manner. We only
quantize weights in 4-bits.

* SparseGPT? (Frantar and Alistarh, 2023)
is a second-order (un)structured pruning al-
gorithm based on inverse Hessian, where

"https://github.com/mit-han-lab/smoothquant
*https://github.com/mit-han-lab/llm-awq
3https://github.com/IST-DASLab/sparsegpt

the weight importance S;; is defined as
[[W|2/diag[(XX T + AI)~!]};;. Then, this
information is used to choose a pruning mask
and optimize the unpruned weights.

» Wanda* (Sun et al., 2024b) is a simple
(un)structured pruning algorithm without
weight update, unlike SparseGPT. In this algo-
rithm, the weight importance .S;; is defined as
Wil - [|X;]|2, then low-scored weights are
pruned.

« ASVD’ (Yuan et al., 2025) is a simple low-
rank approximation algorithm, where a scal-
ing matrix S is used to transform the weights
more decomposition-friendly. S is defined
as the diagonal matrix of the averaged mag-
nitude, similar to AWQ. However, « is not
searched; rather, it is determined as a hyper-
parameter. We set o to 0.5, following the
original paper. Furthermore, ASVD uses a
sensitivity-based rank search method that ac-
counts for variations in singular values across
different layers.

 ASVD+’ (Yuan et al., 2025) extends ASVD
by changing the transform matrix S into
Hessian-based. In detail, S is defined as a
lower triangular matrix of Cholesky decompo-
sition of XX T. This transform matrix guar-
antees a lower output error, that is explained
in SVD-LLM (Wang et al., 2025).

Calibration Data. We use two calibration
datasets: WikiText-2 (Merity et al., 2016) train
set and Pile (Gao et al., 2020) validation set. We
set the number of samples to 256 and do not use
the bos token as the first token (i.e., at position 0).
We adjust the sequence length, spanning from an
extreme minimum (e.g., 1) to a standard setting
(e.g., 2048).

Evaluation. We calculate the perplexity on the
WikiText-2 (Merity et al., 2016) validation set us-
ing a sequence length of 2048. The results are
averaged over 3 runs. The original perplexities on
WikiText-2 of Llama2-7B, Llama-3-8B, Mistral-
7B-v0.3, and Phi3.5-mini-instruct are 5.472, 6.138,
5.318, and 6.195, respectively.

*https://github.com/locuslab/wanda
>https://github.com/hahnyuan/ASVD4LLM
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\ Sequence Length

Method Dataset Model
\ 1 4 16 64 256 512 1024 2048
Llama2-7B 7.897 5508 5.511 5515 5520 5523 5525 5.528
Pile ngmaS—SB 8753  6.252 6260 6.263 6259 6.266 6263  6.261
Mistral-7B 5358 5345 5345 5348 5350 5350 5350  5.349
SmoothQuant Phi3.5-mini 6.626  6.420 6436 6469 6469 6475 6472  6.488
(W8AS) Llama2-7B 7920 5507 5511 5.515 5519 5521 5.524 5525
WikiText Ll{lmaS—SB 9368  6.254 6257 6.262 6258 6.259 6263  6.261
Mistral-7B 5354 5347 5345 5348 5350 5348 5350  5.349
Phi3.5-mini 8.508 6414 6433 6466 6466 6464 6476 6476
Llama2-7B 6.988  5.653  5.661 5.637 5.633 5634 5.628 5634
Pile Lla}maS—SB 11.057  6.841 6.816 6900 6876 6.847 6.836 6.920
Mistral-7B 5.589 5469 5461 5457 5450 5458 5458 5451
AWQ Phi3.5-mini 7.771 6.772  6.764 6753 6.762  6.749  6.606  6.579
(W4A16) Llama2-7B 7.174 5659  5.641 5.647 5.644 5643 5648  5.657
WikiText ngmaS—SB 11.421 6846 6.884 6896 6947 7.014 7.025 6.979
Mistral-7B 5598 5464 5461 5464 5454 5463 5461 5.435
Phi3.5-mini 10498 6.764 6.773 6772 6789  6.788  6.573  6.581

Table 1: Perplexity of post-training quantization methods.

‘ Sequence Length
Method Dataset Model
‘ 1 4 16 64 256 512 1024 2048
Llama2-7B 10.818 8.154 8.139 8.030 8.023 8.045 8.041 8.049
Pile Llé'ima3—SB 81.680 14.877 12.956 13.257 13.413 13.547 13.711 13.777
Mistral-7B 8.006 7.579 7.482 7.657 7.697 7.655 7.640 7.659
Phi3.5-mini 19.698 15.401 17.707 17.999 18.245 18.337 18.656 19.175
SparseGPT
Llama2-7B 10.366 8.065 7.991 7.983 7.959 7.962 7.971 7.963
WikiText Ll%ima3»8B 82.689 14.144 12.522 12.457 12.450 12.447 12.428 12.570
Mistral-7B 7.928 7.423 7.209 7.350 7.300 7.291 7.265 7.264
Phi3.5-mini 19.260 15.467 18.537 18.586 19.189 19.512 20.058 20.350
Llama2-7B 90.982 9.200 8.798 8.559 8.521 8.481 8.556 8.578
Pile Llama3-8B 238.360 14.934 14.375 14.317 14.649 14.618 14.586 14.837
Mistral-7B 17.986 8.616 8.331 8.304 8.356 8.381 8.399 8.448
Wand Phi3.5-mini 92.533 12.623 12.152 12.115 12.258 12.320 12.412 12.495
anda
Llama2-7B 88.706 8.819 8.377 8.222 8.162 8.152 8.176 8.198
WikiText Llama3-8B 229.448 14.018 13.171 12.985 13.005 12.990 13.071 13.377
Mistral-7B 16.899 8.104 7.785 7.693 7.664 7.679 7.673 7.668
Phi3.5-mini 182.069 12.142 11.541 11.480 11.630 11.685 11.690 11.815
Table 2: Perplexity of post-training structured pruning (4:8) methods.
| Sequence Length
Method Dataset Model
1 4 16 64 256 512 1024 2048
Llama2-7B 12.086 9.622 8.924 8.878 8.692 8.638 8.715 8.645
Pile LlfAima?a—SB 240.019 61.525 80.316 70.074 75.634 72.202 82.125 71.280
Mistral-7B 17.666 12.133 12.346 13.458 14.152 13.382 12.770 12.471
ASVD Phi3.5-mini 34.428 20.545 19.336 18.979 19.895 19.499 18.212 18.599
Llama2-7B 13.593 10.256 9.344 9.427 8.949 9.060 9.187 9.022
WikiText le}maS»SB 379.238 88.395 105.591 103.276 121.171 114.070 102.240 131.133
Mistral-7B 59.074 17.181 17.211 15.521 15.871 14.673 15.174 14.286
Phi3.5-mini 46.119 19.583 18.637 18.880 19.925 19.511 17.629 18.484
Llama2-7B 11.474 13.003 12.822 9.134 7.896 7.674 7.785 7.878
Pile Llama3-8B 90.929 115.969 153.634 74.189 37.271 27.435 31.299 28.774
Mistral-7B 21.636 23.358 47.590 17.565 11.476 10.922 10.395 10.060
Phi3.5-mini 92.534 46.586 42.126 19.623 16.535 15.463 15.332 17.070
ASVD+
Llama2-7B 12.554 13.424 11.763 8.141 7.011 6.797 6.987 7.171
WikiText Lli}ma3—8B 145.772 102.865 100.822 40.614 27.756 24.235 25.644 28.322
Mistral-7B 22.698 22.460 36.398 10.910 8.782 7.884 7.853 7.726
Phi3.5-mini 177.627 32.863 19.115 11.245 9.323 9.286 9.599 9.596

Table 3: Perplexity of post-training low rank decomposition (ratio 0.8) methods.

4 Sequence Length of Calibration Data quantization, pruning, and low-rank approximation
We investigate the influence of the sequence length ~ methods, respectively, according to the sequence
of calibration data on the performance of the post-  length of calibration data. For post-training prun-
training compression algorithms. Tables 1,2, and  1ng, we evaluate the 4:8 structured pruning method,
3 present the perplexity results for post-training which is regarded as hardware-friendly.
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Shorter calibration data provides unexpected
benefits. When focusing on calibration se-
quences of 4 tokens and above, the experimen-
tal results reveal that very short sequences can
yield low perplexity values, which directly corre-
late to improved performance. For example, Table
1 demonstrates that the Phi3.5-mini calibrated on
the Pile dataset reaches an optimal perplexity of
6.420 at 4 tokens, with no significant improvements
observed when extending the sequence length fur-
ther. This suggests that the essential activation
statistics needed for effective post-training quan-
tization are largely captured within this minimal
token window. Such a finding is unexpected, as
one might initially assume that a longer sequence
would be necessary to fully capture the model’s
dynamic behavior. Furthermore, although prun-
ing and low-rank approximation typically require
a longer sequence length than quantization, our re-
sults indicate that they do not necessarily require
the commonly used length of 2048 tokens.

The optimal sequence length has little correla-
tion with the calibration dataset. Tables 1, 2,
and 3 indicate that the optimal sequence length
is largely independent of the calibration dataset
used, whether it is Pile or WikiText. Instead, it
primarily depends on the methods and models em-
ployed. Specifically, quantization generally ex-
hibits superior perplexity when applied to shorter
sequence lengths. In contrast, pruning tends to
demonstrate optimal performance at mid-range se-
quence lengths. Meanwhile, low-rank approxima-
tion often achieves the best results when dealing
with longer sequences. However, it is important
to note that these observed performance trends are
not necessarily dictated by the inherent character-
istics of the calibration dataset. Instead, they are
influenced by other factors, such as the model ar-
chitecture and the specific compression methods.
Thus, these findings suggest that selecting an ap-
propriate sequence length should be guided by the
specific compression technique and LLM rather
than the specific calibration dataset.

Robustness hierarchy: quantization, pruning,
and low-rank approximation. The experimen-
tal results clearly establish a hierarchy in terms of
robustness when different compression methods
are subjected to variations in calibration sequence
length. Specifically, the quantization method (Ta-
ble 1) consistently achieves low perplexity values
across a wide range of sequence lengths, from mini-

mal to typical lengths. This consistent performance
indicates that quantization techniques are highly
resilient to changes in sequence length and remain
efficient in capturing the necessary activation statis-
tics even when provided with limited input data. In
contrast, structured pruning methods (Table 2) ex-
hibit moderate sensitivity to variations in sequence
length. Their perplexity values tend to fluctuate
more noticeably compared to those of the quan-
tization method, suggesting a higher dependency
on precise activation information for maintaining
robust performance. Among the three categories
of compression methods, low-rank approximation
techniques (Table 3) demonstrate the highest level
of sensitivity to sequence length variations. Their
performance deteriorates more significantly when
shorter sequences are used, indicating a greater re-
liance on an extended context to achieve optimal
calibration. ASVD+ algorithm shows a marked im-
provement in performance as the sequence length
increases, highlighting its strong dependence on a
longer calibration sequence for achieving effective
compression and maintaining low perplexity.

When sequence length is reduced to 1, the per-
formance dramatically declines. Although the
discussion for the previous observations mainly fo-
cuses on sequences of 4 tokens or more, it is crucial
to note the dramatic performance degradation that
occurs when the calibration sequence is reduced
to a single token. The results from Table 1 clearly
indicate that using only 1 token for the Llama2-7B
model on the Pile dataset results in a perplexity of
7.897, which is substantially higher than the opti-
mal 5.508 observed at 4 tokens. This significant
increase in perplexity, reflective of poorer model
performance, is also evident in the structured prun-
ing and low-rank approximation results in Tables 2
and 3. The decline in performance can be attributed
to the insufficiency of a single token to capture the
activation patterns necessary for effective calibra-
tion. However, observing the significant recovery
in performance at token 4 implies that the first to-
ken exhibits entirely different statistics compared
to the subsequent tokens.

Collectively, these observations deepen our
understanding of the calibration process in
post-training compression. It is important to select
an optimal sequence length to ensure high perfor-
mance across various compression methods. The
results on zero-shot downstream tasks are described
in Appendix B.
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(d) Input activations of W 4o, (i.€., intermediate state).

Figure 2: Input activations of Llama3-8B, represented in increments of 8, between positions 0 and 63. Red color
indicates activations at position 0. We randomly extracted 64 samples from the Pile dataset and then average them
along batch axis. From left to right, figures correspond to the layer 0, 8, 17, and 31.

5 Analysis on Input Activation

We conduct a detailed investigation of the input ac-
tivations directly, with a particular emphasis on the
first token (i.e., position 0). As depicted in Figure 1,
a single layer typically contains four types of input
activations: normalized hidden state in the atten-
tion module (ATTN) for W, ;. /,,, attention state for
W,, normalized hidden state in the feed-forward
network module (FFN) W and intermedi-
ate state for W goun.-

gate/up»

Figure 2 illustrates the input activations of
Llama3-8B from position 0 to 63, with a period of
8, at four different layers: 0, 8, 17, and 31. Specifi-
cally, (a) depicts the normalized hidden state feed-
ing into the attention projections (W, Wy, and
W,), (b) depicts the attention state feeding into
the attention output projection (W,), (c) depicts
the normalized hidden state feeding into the feed-
forward gate and up projections (W g4 and W),
and (d) depicts the intermediate state feeding into
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the feed-forward down projection (W g4.,,,). Each
sub-figure visualizes activation values (not their
absolute values) across dimensions and token po-
sitions. We randomly select 64 samples from the
Pile dataset and average their activations.

Interestingly, position O consistently shows a dis-
tinct activation across most states and layers, even
though no dedicated bos token is used in our set-
ting. This implies that LLMs seem to have learned
to process the first token in a distinct manner, no
matter what it is. In fact, a similar phenomenon,
referred to as “massive activations,” has been ob-
served (Sun et al., 2024a; Oh et al., 2024). Af-
ter passing through the initial few layers, a phe-
nomenon occurs in which only specific dimensions
of the hidden state have extremely large magni-
tudes, and this is observed at the first position. This
can also be inferred from Figures 2(a) and (c). Al-
though we have provided the normalized hidden
state, the dimensions with large magnitudes are
being propagated through the residual connection.
Moreover, Sun et al. (2024a) demonstrated that
when massive activations are set to zero, LLMs
completely fail to function. Based on this finding,
we believe that the statistics of the first token should
be adequately considered during calibration.

In the leftmost of Figures 2(a) and (b), it can be
observed that the activations of position 0 behave
similarly to those of other positions. To quantify
this, we utilize the Jaccard similarity, which is a
metric for measuring the similarity between two
sets by dividing the size of their intersection by the
size of their union. We first calculate the average of
the activations for all positions except the first to-
ken. Next, we extract the indices of the top 30 max-
imum values and the top 30 minimum values from
both the position 0 activations and the averaged ac-
tivations. Figure 3 describes the Jaccard similarity
between the extracted indices, where max(0) and
min(0) refer to the indices of the top 30 maximum
values and the top 30 minimum values from po-
sition 0, respectively. Similarly, max(others) and
min(others) are defined in the same manner. A high
Jaccard similarity between max(0) and max(others)
(i.e., blue line) or between min(0) and min(others)
(i.e., sky-blue line) means that the first token and
the subsequent tokens share similar activation pat-
terns. On the other hand, a high Jaccard similarity
between max(0) and min(others) (i.e., red line) or
between min(0) and max(others) (i.e., orange line)
means that the first token and the subsequent tokens
exhibit opposite activation patterns.

—o— max(0)-max(others) ~ —o— min(0)-min(others) ~ —o— (0! s)  —o—

1.0 1.0

0.8

0.6
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024+
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(c) Norm. hidden (FFN).

(d) Intermediate.

Figure 3: Jaccard similarity between the first token and
the average of the subsequent tokens across layers. The
greater the red and orange lines, the more the first token
and the subsequent tokens are opposite. Conversely, the
greater the blue and sky-blue lines, the more the first
token and the subsequent tokens are similar.

The most notable observation is that, in both the
ATTN and FFN modules, a high Jaccard similar-
ity is observed between max(0) and min(others)
or between min(0) and max(others) after the layer
when massive activations occur in the normalized
hidden state. That is, the first token and subsequent
tokens are opposite. For Llama3-8B, a similar phe-
nomenon is observed in the intermediate state from
layer 13. However, this is not a phenomenon com-
monly found in other LLMs, as detailed in Ap-
pendix C.

6 State-Aware Length Calibration

Building on prior observations and evidence in-
dicating that the first token plays a pivotal role
in the performance of LLMs (Sun et al., 2024a;
Oh et al., 2024; Xiao et al., 2024; Hooper et al.,
2024), we propose a simple calibration technique
termed state-aware length calibration. Specifically,
when the sequence length of calibration data is L,
only the initial Lr tokens of the normalized hidden
state in both modules are employed for calibration,
where r denotes a predetermined ratio. In contrast,
for other states, the full sequence length L is re-
tained, as illustrated in Figure 1. By concentrating
calibration efforts on the initial critical tokens, our
method aims to capture the most salient features,
thereby improving the effectiveness of the calibra-
tion process.
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Sequence Length=512 Sequence Length=1024

Method Dataset Model
r=1/8 r=1/4 r=1/2 r=1 r=1/8 r=1/4 r=1/2 r=1
Llama2-7B 5.514 5.516 5.521 5.523 5.517 5.519 5.521 5.525
SmoothQuant Pile Llama3-8B 6.264 6.261 6.262  6.266 6.262 6.262 6.261  6.263
(WBAB) Mistral-7B 5.349 5.349 5.351 5.350 5.349 5.348 5349 5350
Phi3.5-mini 6.459 6.453 6.468 6475 6.465 6.464 6.475 6472

Llama2-7B 5.635 5.632 5.637 5.634 5.632 5.633 5.630  5.628

AWQ Pile Llama3-8B 6.846 6.847 6.845  6.847 6.835 6.832 6.839  6.836
(W4A16) Mistral-7B 5.452 5.459 5452 5458 5.451 5.453 5456  5.458
Phi3.5-mini 6.751 6.758 6.738  6.749 6.611 6.586 6.603  6.606

Table 4: Perplexity of post-training quantization methods using our calibration data, according to the r. r represents
the ratio of the sequence length used in the input activations of W/, and W g44c /0. The results for r=1
correspond to the results in Table 1.

Sequence Length=512 Sequence Length=1024

Method Dataset Model
r=1/8 r=1/4 r=1/2 r=1 r=1/8 r=1/4 r=1/2 r=1
Llama2-7B 8.034 8.030 8.028 8.045 8.032 8.025 8.039 8.041
Llama3-8B 13227  13.367  13.487 13.547 | 13.425 13.446 13562  13.711

SparseGPT Pile

8.574 8.496 8.492 8.481 8.490 8.505 8.494 8.556

Mistral-7B 7.595 7.623 7.641 7.655 7.621 7.632 7.637 7.640
Phi3.5-mini | 17.555 17.793 18.095 18.337 18.014 18.243 18.513 18.656
Llama2-7B

Wanda Pile Llama3-8B 14.297 14.397 14.596 14.618 14.505 14.527 14.506 14.586
Mistral-7B 8.281 8.307 8.359 8.381 8.309 8.361 8.388 8.399
Phi3.5-mini 12.124 12.160 12.233 12.320 | 12.117 12.281 12.401 12.412

Table 5: Perplexity of post-training structured pruning (4:8) methods using our calibration data, according to the 7.
The results for r=1 correspond to the results in Table 2.

Sequence Length=512 Sequence Length=1024

Method Dataset Model
r=1/8 r=1/4 r=1/2 r=1 r=1/8 r=1/4 r=1/2 r=1
Llama2-7B 8.729 8.691 8.648 8.638 8.628 8.570 8.531 8.715
ASVD Pile ngmaS—SB 76799  61.172  71.763  72.202 | 63.768  91.292  79.422  82.125
Mistral-7B 12.530 12.607 13.307 13.382 13.130 13.188 13.122 12.770
Phi3.5-mini | 18.117 19.662 19.030 19.499 18.706 19.768  20.403 18.212

\ |
\ \
Llama2-7B 8.694 8.278 7.900 7.674 8.478 7.976 7.873 7.785

ASVD+ Pile Llama3-8B 52930  43.066 37.280  27.435 | 41.889  36.771 30.548  31.299
Mistral-7B 12.977 11.813 11.180 10.922 12.321 10.892 10.725 10.395
Phi3.5-mini | 20.299 17.574  14.988  15.463 16.966 15806  15.152  15.332

Table 6: Perplexity of post-training low rank decomposition (ratio 0.8) methods using our calibration data, according
to the r. The results for r=1 correspond to the results in Table 3.

Tables 4, 5, and 6 present the perplexity results 7 Conclusion
obtained from applying state-aware length calibra-
tion to post-training quantization, pruning, and low-
rank approximation methods. Our experimental
findings indicate that leveraging partial sequence
lengths (i.e., » < 1) of normalized hidden states for
calibration generally results in lower perplexities
across various post-training compression methods
and model architectures. Although there exist cer-
tain cases where the observed performance gains
are relatively modest, we would like to emphasize
the significance of state-aware length calibration
as a promising and effective strategy. This is be-
cause our proposed approach incurs no additional
computational cost, making it a practical and effi-
cient approach for improving the performance of
compressed models.

In this study, we investigate the critical role of
calibration data sequence length in improving the
effectiveness of post-training compression methods
for LLMs. Our analysis reveals that the normalized
hidden states of the first token behave oppositely
to those of subsequent tokens. Motivated by this
observation, we introduce state-aware length cal-
ibration, a novel technique that uses a subset of
initial tokens for calibration. Experimental results
demonstrate that this approach generally enhances
perplexity across various post-training compression
methods and LLMs. Notably, as state-aware length
calibration incurs no additional computational cost,
we consider it a practical and simple strategy for
optimizing post-training compressed LL.Ms.
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Limitations

While our proposed state-aware length calibration
technique demonstrates consistent improvements
across various post-training compression methods,
it currently lacks a principled strategy for select-
ing the optimal sequence ratio r. Future work
should explore adaptive or learnable calibration
length schemes to generalize our algorithm across
broader settings.

Ethical Considerations

This work does not involve the collection of new
datasets, human participants, or the deployment of
models in sensitive applications. All experiments
are conducted using publicly available models (e.g.,
LLaMA, Mistral) and datasets (e.g., WikiText-2,
Pile), which are commonly used for academic re-
search.

Use of AI Assistants

We used ChatGPT exclusively to improve the clar-
ity and quality of the writing. We did not use Chat-
GPT for other purposes (e.g., experiment design,
or analysis).
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A Experiments Setup Details

We use eight A100 80GB GPU cards for out exper-
iments, although we do not use multi-GPUs. For
each algorithm, our state-aware calibration length
technique only involves indexing, thereby adding
only a negligible amount of time. It is worth noting
that the most time-consuming algorithm is ASVD,
with each evaluation taking around three hours.

B Zero-shot Downstream Tasks

Table 7 provides the performance of SmoothQuant
(Xiao et al., 2023) and Wanda (Sun et al., 2024b)
according to the sequence length of calibration
dataset. The results are averaged over 5 zero-shot
downstream tasks; arc easy, arc challenge, boolq,
piqa, winogrande.

Sequence Length
1 4 16

Method Model ‘
\ 64 256 512 1024 2048

Llama2-7B |63.7 69.1 69.3 69.4 69.3 69.2 69.2 69.1
Llama3-8B | 66.3 73.0 72.8 73.0 73.0 73.0 72.8 729

SmoothQuant yri\ 178 |73.0 74.1 740 73.6 73.7 73.6 738 738
Phi3.5-mini | 76.0 77.0 769 76.8 76.8 76.8 768 768

Llama2-7B [442 60.8 619 62.8 632 63.7 635 63.5

Wy Llama3-8B [39.6 60.0 608 610 60.7 60.8 608 609

Mistral-7B | 54.8 64.3 65.3 65.6 65.7 65.5 65.5 65.5
Phi3.5-mini |45.8 65.4 66.8 67.0 66.9 66.6 66.8 66.2

Table 7: Performance on 5 zero-shot tasks according to
the sequence length of calibration dataset.

Tables 8 and 9 provide the zero-shot downstream
task performance of SmoothQuant and Wanda,
when our state-aware length calibration algorithm
is applied, respectively.

|  Sequence Length=512 | Sequence Length=1024

Model

‘7‘:1/8 r=1/4 r=1/2 r=1 ‘7‘:1/8 r=1/4 r=1/2 r=1

Llama2-7B | 69.3 692 692 692] 69.2 693 692 692
Llama3-8B | 73.0 731 731 73.0| 729 73.0 73.0 728
Mistral-7B | 73.6 73.6 73.6 73.6| 737 73.8 73.6 738
Phi3.5-mini | 76.9 768 767 76.8| 769 767 767 76.8

Table 8: Performance on 5 zero-shot tasks of
SmoothQuant, which is the same model in Table 4.

|  Sequence Length=512 | Sequence Length=1024

Model

‘7‘:1/8 r=1/4 r=1/2 r=1 ‘7‘:1/8 r=1/4 r=1/2 r=1

Llama2-7B | 63.0 634 63.6
Llama3-8B | 60.9 60.6  60.7
Mistral-7B | 65.5 657 65.8
Phi3.5-mini | 66.6 67.1 66.6

63.7| 633 63.6 634 635
60.8| 61.2 61.1 612 60.8
65.5| 658 657 658 655
66.6| 666 671 666 66.8

Table 9: Performance on 5 zero-shot tasks of Wanda,
which is the same model in Table 5.

C Jaccard Similarity of Various LLMs

Figure 4 illustrates the layer-wise Jaccard simi-
larity of various LLMs (Llama2-7B, Llama2-8B,
Mistral-7B-v0.3, and Phi3.5-mini-instruct) across
four different states: (1) normalized hidden state
(ATTN), (2) attention state, (3) normalized hidden
state (FFN), and (4) intermediate state. Each row
corresponds to a different model, and each column
represents one of the four states. Across all models,
a clear pattern emerges: the Jaccard similarity of
the normalized hidden states in both the ATTN and
FFN modules remains relatively high and stable in
the lower layers but decreases as depth increases.
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(d) Phi3.5-mini-instruct.

Figure 4: Jaccard similarity of other LLMs. From left to
right, figures correspond to the normalized hidden state
(ATTN), attention state, normalized hidden state (FFN),
and intermediate state.

D Structured Pruning

In this section, we address structured pruning meth-
ods using Llama3-8B, especially focusing on layer
pruning. In the context of layer-wise pruning, ana-
lyzing the calibration length would be a valuable
extension.

LLM-Streamline (Chen et al., 2024) is the most
recent work among them, demonstrating strong per-
formance. This algorithm prunes consecutive lay-
ers based on the similarity between the two hidden
states and trains a lightweight network for perfor-
mance recovery. In order to isolate and accurately
evaluate the effect of calibration length on pruning,
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we deliberately omitted the subsequent training
steps used for performance recovery.

Table 10 provides perplexity when some layers
pruned using LLM-Streamline. When the perplex-
ity remains unchanged, it indicates that the same
layers are pruned. For instance, in the case of one-
layer pruning, layer26 is pruned except for the case
where sequence length is 1. For sequence length of
1, layer3 is pruned. And, for instance, in the case
of eight-layers pruning, layer21-layer28 are pruned
except for the case where sequence length is 1. For
sequence length of 1, layer3-layer10 are pruned.

According to our findings, in the context of
layer pruning, the key distinction appears to lie
in whether the calibration data has a length of 1

or not. However, no strict or consistent rule was
identified.

| Sequence Length

#

| 1 4 16 64 256 512 1024 2048

1| 7281 6739 6739 6739 6739 6739 6.739 6.739
2| 12,508 7.503 8.389 8389 7.503 7.503 8389 8.389
4| 37.292 15.082 15.082 15.082 15.082 15.082 15.082 15.082
8|110.330 125.956 125.956 125.956 125.956 125.956 125.956 125.956

Table 10: Perplexity according to the sequence length
of calibration dataset, when some layers are pruned by
LLM-Streamline. # represents the number of pruned
layers.

E Model Scale

Table 11 provides the results on WikiText of
Llama2-13B calibrated on Pile (similar to Tables 1,
2, and 3) when using SmoothQuant and Wanda, ac-
cording to the sequence length. This shows that the
key factor affecting the effectiveness of sequence
length is not the model size, but rather how strongly
the model’s performance depends on the first to-
ken. In other words, even for large-scale models
like 13B, if the model is highly sensitive to the first
token, using a truncated length is likely to remain
beneficial.

| Sequence Length

Method
1 4 16 64 256 512 1024 2048
SmoothQuant | 5.479 4.922 4.926 4.927 4.926 4.927 4.928 4.927
Wanda 44.767 7.084 6.863 6.832 6.876 6.885 6.922 6.960

Table 11: Perplexity of Llama2-13B according to the
sequence length of calibration dataset.

F State-Aware Length Calibration

We evaluated the effectiveness of our algorithm at
two sequence lengths (512 and 1024) in Tables 4, 5,
and 6. We have extended this analysis to different
calibration lengths (32 or 128).

Additional results also follow that using a shorter
portion of the normalized hidden states (r < 1)
yields better or comparable performance than using
the full length across all states (r = 1) in most cases.
Furthermore, the minimum perplexity values in
additional tables is lower than those in Tables 1, 2,
and 3.

‘ Sequence Length=32 ‘ Sequence Length=128

Model

‘r:1/8 r=1/4 r=1/2 r=1 ‘T:I/S r=1/4 r=1/2 r=1

Llama2-7B | 5.510 5.511 5.511 5513 | 5.509 5517 5.515 5.517
Llama3-8B | 6.254 6.255 6.260 6.261 | 6.260 6.258 6.261 6.265
Mistral-7B | 5.344 5343 5.346 5.348 | 5.345 5.347 5.346 5.350

Phi3.5-mini | 6.420 6.430 6.435 6.463 | 6.433 6.453 6.469 6.461

Table 12: Perplexity of SmoothQuant, which is the same
model in Table 4.

| Sequence Length=32 |  Sequence Length=128

Model

‘r=1/8 r=1/4 r=1/2 r=1 ‘r=1/8 r=1/4 r=1/2 r=1

Llama2-7B| 8.969 8.900 8.767 8.704| 8.679 8.597 8.533 8.479
Llama3-8B |14.455 14.276 14.257 14.343|14.157 14.103 14.221 14.518
Mistral-7B | 8.337 8.297 8.285 8.305| 8.277 8.308 8.329 8.341
Phi3.5-mini|12.242 12.139 12.085 12.141|12.041 12.055 12.072 12.202

Table 13: Perplexity of Wanda, which is the same model
in Table 5.
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