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Abstract

The scarcity of non-English language data in
specialized domains significantly limits the
development of effective Natural Language
Processing (NLP) tools. We present Trans-
BERT, a novel framework for pre-training lan-
guage models using exclusively synthetically
translated text, and introduce TransCorpus, a
scalable translation toolkit. Focusing on the
life sciences domain in French, our approach
demonstrates that state-of-the-art performance
on various downstream tasks can be achieved
solely by leveraging synthetically translated
data. We release the TransCorpus toolkit, the
TransCorpus-bio-fr corpus (36.4GB of French
life sciences text), TransBERT-bio-fr, its as-
sociated pre-trained language model and re-
producible code for both pre-training and fine-
tuning. Our results highlight the viability of
synthetic translation in a high-resource transla-
tion direction for building high-quality NLP re-
sources in low-resource language/domain pairs.

1 Introduction

Pre-trained Language Models (PLMs) have revo-
lutionized the field of Natural Language Process-
ing (NLP) by leveraging large-scale datasets and
powerful neural network architectures to learn rich
linguistic representations. These models, such as
BERT (Devlin et al., 2019), GPT (Radford et al.,
2018), and T5 (Raffel et al., 2019), are pre-trained
on vast amounts of text data in an unsupervised
manner, enabling them to capture intricate patterns
and nuances of human language. PLMs can be fine-
tuned for specific tasks, such as text classification,
Named Entity Recognition (NER), and Question
Answering (QA), by training them on smaller la-
beled datasets. This transfer learning approach has
significantly improved the performance of NLP
models across various languages and domains.

Unfortunately, the success of PLMs has not been
equally distributed across all languages. While

high-resource languages like English, Chinese, and
French have seen significant advancements in NLP
applications, many low-resource languages still
lack the necessary data and resources to develop
effective models. This disparity is particularly evi-
dent in specialized domains such as life sciences,
where the availability of high-quality datasets is
crucial for training accurate models. For exam-
ple, Hindi, which is spoken by over 600M people,
has no available PLM for the life sciences domain.
Although BioBERT (Lee et al., 2019), the first pre-
trained language model for the life sciences, was
released in 2019, significant efforts to gather suf-
ficient Domain-Specific (DS) data for training life
sciences models in other high-resource languages
have begun to emerge in recent years. Since 2023,
life sciences models have emerged for German
(Bressem et al., 2024), Italian (Buonocore et al.,
2023), and French (Labrak et al., 2023; Touchent
et al., 2023). Life sciences is only an example of
a domain where the lack of data is a significant
barrier to the development of NLP tools. Other
domains, such as legal, finance, and patent, also
face similar challenges.

In this paper, we introduce TransCorpus, an
open-source toolkit leveraging the fairseq transla-
tion framework (Ott et al., 2019) to generate exten-
sive synthetic DS corpora in up to 100 languages,
featuring a production-level API/CLI setup with
multi-GPU and multi-processing capabilities, and
reliable checkpoint recovery for scalable corpus
management. In the context of a high-resource
translation direction, we demonstrate that a Lan-
guage Model (LM) trained on TransCorpus output
can achieve state-of-the-art performance on vari-
ous downstream tasks by leveraging DrBenchmark,
a French life sciences benchmark (Labrak et al.,
2024b).

Our contributions are threefold with (1) the re-
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lease of an open-source toolkit1 for scalable mul-
tilingual corpus translation, (2) a French life sci-
ences corpus2 synthetically translated of 36.4GB
along with a tokenizer, and a PLM3 released on
Hugging Face, and (3) reproducible code for the
pre-training and fine-tuning of the French life sci-
ences PLM made publicly available on GitHub4.
For future research, we are in the process of
adding new languages and publishing them in
the Hugging Face datasets repository. To see the
current state of the added languages, check out
the following link: https://huggingface.co/
jknafou/datasets?search=transcorpus.

2 Related Work

The paradigm of training LMs on massive datasets
is relatively recent, gaining prominence after the
introduction of BERT (Devlin et al., 2018), and as
a result, there is still limited research leveraging
translation for training such models, especially in
low-resource settings.

In Isbister et al. (2021), sentiment analysis in
four low-resource Scandinavian languages is ex-
plored using three strategies: fine-tuning a native
monolingual PLM, translating the data into English
and fine-tuning an English PLM, and fine-tuning
a multilingual PLM on the native data. Results
generally favor the multilingual approach, though
fine-tuning an English model on translated data of-
ten outperforms using a monolingual low-resource
PLM.

For Luxembourgish, Lothritz et al. (2022) tackle
data scarcity by partially translating unambiguous
words from a related high-resource language, eval-
uating several models including a Luxembourgish-
only BERT, a Luxembourgish-German BERT, and
LuxemBERT, which is trained on mixed corpora.
LuxemBERT shows improved performance over
mBERT, though not to a statistically significant
extent.

In the Basque context, following the introduction
of ElhBERTeu (Urbizu et al., 2022), Urbizu et al.
(2023) use synthetic translated data from Spanish
to enlarge the Basque corpus, finding that while a
PLM trained solely on synthetic data is competitive,
it does not outperform one trained only on native

1https://github.com/jknafou/TransCorpus
2https://huggingface.co/datasets/jknafou/

TransCorpus-bio-fr
3https://huggingface.co/jknafou/

TransBERT-bio-fr
4https://github.com/jknafou/TransBERT

data; however, supplementing native data with syn-
thetic translations does enhance performance.

Phan et al. (2023) improve the English-to-
Vietnamese Machine Translation (MT) model Mtet
by injecting synthetic biomedical parallel text via
self-training (He et al., 2019), resulting in a sys-
tem that outperforms strong baselines and enables
the creation of ViPubmed and ViMedNLI datasets.
Continued pre-training and fine-tuning on these
resources lead to ViPubMedT5, which achieves
state-of-the-art results in several biomedical NLP
tasks, further demonstrating the potential of syn-
thetic translation data for advancing low-resource
language modeling.

Finally, Ishigaki et al. (2023) pre-train a
Japanese BERT model on 2.5M abstracts from Web
of Science which were translated into Japanese via
Amazon Translate, alongside 1.2M native Japanese
abstracts from Wikipedia. Although no compar-
isons are made with existing PLMs, experiments
involving entity and relation extraction tasks indi-
cate that models that use translated data exhibit
superior performance over those trained on native
data.

3 TransCorpus: A Scalable Translation
Framework

In this section, we present TransCorpus, a frame-
work designed to facilitate the translation of large-
scale corpora into multiple languages. First, the
selection of the MT toolkit along with its model
will be presented, then the model size and context
length will be discussed, and finally, the proposed
translation workflow will be illustrated.

3.1 Machine Translation Framework &
Model Selection

To achieve our goal of translating large volumes of
text between any two languages, we selected M2M-
100 (Fan et al., 2020) in conjunction with fairseq
as a versatile tool for implementation. Fairseq of-
fers broad support for multilingual tasks and facili-
tates rapid deployment with multi-GPU processing
capabilities. Facebook AI’s M2M-100 enables di-
rect translation between languages without using
English as an intermediary, making it perfect for
converting text from any one of 100 languages to
another. Moreover, fairseq’s modular framework
allows for easy model swapping and the integration
of new or specialized translation models. This flex-
ibility customizes the translation process to meet
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specific needs, such as domain adaptation or the
incorporation of additional languages.

The M2M-100 model is available in three sizes:
418M, 1.2B, and 12B parameters. The small-
est model is faster and uses less memory, while
the largest requires multiple Graphics Processing
Units (GPUs) for deployment. Because translation
quality improvements come at a quadratic increase
in computational cost, we did not consider the 12B
model for our experiments. However, since the
418M and 1.2B models differ substantially in trans-
lation quality but not as much in computational
cost, the next section will compare these two mod-
els, focusing primarily on computation time.

3.2 Model Size & Context Length
The context length relationship with model com-
plexity is quadratic due to the way attention mech-
anisms operate in transformers. As context length
increases, the number of interactions that the model
must account for grows quadratically because ev-
ery token attends to every other token in the se-
quence. This means that computational resources,
such as time and memory, increase significantly
with longer sequences. Overlooking this relation-
ship can lead to inefficient computation times and
resource usage, particularly with large datasets or
models, resulting in slower processing speeds and
potentially prohibitive resource demands. More-
over, MT models such as M2M-100 typically
trained on sentence pairs might exhibit unexpected
behavior if used otherwise. Conversely, having
no context would reduce translation to a word-by-
word level, resulting in nonsensical outcomes. The
following analysis explores document-based and
sentence-based translation methods while consid-
ering both models sizes on a sample of 1000 life
sciences abstracts.

Figure 1a clearly demonstrates that when trans-
lations are performed by sentence, the distribution
tends to favor parallelization because larger dif-
ferences in sequence length require more padding,
leading to wasted computation. Figure 1b shows
that sentence-based translation consistently results
in faster processing for any given model size, with
the speed advantage becoming more pronounced as
the model size increases. It is important to note that
the sentence-based approach will tend to scale lin-
early with the amount of data to be translated, while
the document-based approach will highly depend
on the document length distribution of a given do-
main. Finally, the sentence-based approach seems

Figure 1: Translation Method Analysis on a 1000-
Abstracts Sample - (a) Box plot comparing the number
of tokens per sentence and abstract, with a red line at
512 tokens representing the maximum token limit that
M2M-100 can handle. (b) The average time to translate
each abstract using the 418M and 1.2B model versions,
comparing sentence-based and document-based transla-
tion. (c) Distribution of word count per abstract for both
model sizes, displayed with the original English abstract
at the bottom when translating by abstract (middle) and
by sentence (top). All distributions are normalized to
the same scale, so their areas add up to 1.

to mimic the original distribution of words per
translated document, while the disparity observed
in Figure 1c for the document-based approach was
qualitatively reviewed and appears to be partially
attributed to a’repetition’ problem. Appendix A.3
shows an observed example. As already mentioned,
M2M-100 was trained on sentences pairs, which
might explain this behavior.

While maintaining translation consistency, the
sentence-based strategy is adaptable and scalable
to various types of documents. Regarding the size
of the model, the difference in the translation time
in sentence length is negligible compared to the
gains reported in quality. This observation led to
the decision to adopt the 1.2B model along with a
sentence-based translation approach.

3.3 Framework Translation Workflow

Figure 2 depicts TransCorpus toolkit applied to an
English life sciences corpus consisting of 22M ab-
stracts. First, the corpus is divided and distributed
among different machines to parallelize the transla-
tion process. Each abstract is then divided into sen-
tences with fairseq handling tokenization as shown
in Appendix A.4. By grouping sentences of the
same length, bucketing is employed to minimize
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padding, thereby avoiding the computational in-
efficiency that results from juxtaposing long and
short sentences. Although it may seem counterintu-
itive, there is a considerable increase in speed when
translating sentences of the same length simulta-
neously. Once the sentences are translated, they
are matched with their respective abstracts and sen-
tence numbers, and the entire corpus is reconciled
by concatenating each output of each subprocess.
Appendix A.5 shows an abstract translation exam-
ple. To avoid too short context issues, sentences
that contain fewer than 10 characters are concate-
nated to the following or preceding sentence.

Figure 2: TransCorpus Translation Workflow - Illus-
tration of the deployment of TransCorpus on a machine
with 32 GPUs.

The TransCorpus toolkit includes a Command
Line Interface (CLI) that features four primary
commands: (1) transcorpus download-corpus
[domain] allows users to fetch a corpus from
specified domains, (2) transcorpus preprocess
[domain] [target-language] [num-splits] al-
lows users to optionally preprocess the cor-
pus before translating, and (3) transcorpus
translate [domain] [target-language] [num-
splits] handles both preprocessing (if not previ-
ously completed) and translating the corpus. Users
can perform preprocessing and translation concur-
rently across numerous GPUs and processes. A
checkpoint recovery feature enables users to re-
sume preprocessing or translation from where it
last stopped, which is especially beneficial for aca-
demics facing GPUs usage time limits. Lastly, (4)

transcorpus preview [domain] [language1]
[language2] provides a side-by-side document
preview of the corpus in two languages. Currently,
only the life sciences corpus is ready for download,
but by updating the domains.json file on GitHub
with a new corpus URL, additional corpus domains
can be quickly integrated into the toolkit. For fur-
ther details, please check the GitHub repository at
https://github.com/jknafou/TransCorpus.

4 TransCorpus-bio-fr: A French Life
Sciences Corpus

As already highlighted, the limited availability
of DS PLMs for certain language/domain pairs
presents a notable challenge to the progression of
NLP tools. Evaluating our framework in a real-
world context is complex for several reasons: (1) it
is uncommon to find sufficient DS for low-resource
language/domain pairs that also have datasets for
model evaluation, and (2) even when such bench-
marks exist, an appropriate PLM for comparison
might not be available. Fortunately, in the domain
of French life sciences, two important papers have
recently been published. The first is DrBench-
mark (Labrak et al., 2024b) a life sciences bench-
mark that includes multiple datasets supporting the
evaluation of in-domain models. The second is Dr-
BERT (Labrak et al., 2023), a French life sciences
PLM. Comparing our model against DrBERT on
life sciences tasks allows us to assess the practi-
cal effectiveness of our framework. Indeed, as
DrBERT is pre-trained from scratch, it does not
rely on an advanced general domain PLM such as
CamemBERT (Martin et al., 2020), which is also
the case for most languages.

4.1 MEDLINE/PubMed Abstracts Collection

For the building of this life sciences corpus, the
2021 MEDLINE/PubMed Baseline Repository
(MBR), encompassing 31M citations, and updates
up until April 2021 was downloaded. Then, each
citation in the dataset that includes a PMID, a title,
and an abstract is kept, subsequently, its raw text
is modified by substituting any sequence of one or
more whitespace characters with a single space. An
example of a title and abstract after modification,
as it would appear prior to translation can be found
in Appendix A.1.

A considerable amount of citations lacks one of
the three essential attributes, i.e. title, abstract, or
PMID. Consequently, after filtering the complete
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dataset, our corpus comprises about 22M abstracts.
Despite a few missing unknown values, a compre-
hensive comparison of our corpus statistics against
several models can be found in Appendix A.2. De-
spite both BioBERT and PubMedBERT (Gu et al.,
2020) have a version that also includes PubMed
Central (PMC) full-text articles, only those that
use PubMed are displayed for a better comparison.
This juxtaposition is crucial for understanding the
scale of data that similar models have been trained
on, which directly impacts their performance and
applicability in various NLP tasks.

4.2 Translated Corpus Statistics

The complete translation process was executed us-
ing 32 NVIDIA Tesla V100 GPUs with 32Go of
memory each, taking roughly 15 days, which trans-
lates to approximately 11,520 GPU hours5. After
translation, the resultant raw text file is 36.4GB,
containing 221M sentences and 5.25B words. Ta-
ble 1 compares TransCorpus with the only two
French life sciences corpora leveraged for pre-
training. The comparison reveals that DrBERT
the State-of-the-Art (SOTA) life sciences LM in
French, despite it utilizes the largest corpus until
now, is about five times smaller than TransCorpus.

TransCorpus DrBERT
Corpus

CmBERT
Bio Corpus

Size 36.4GB 7.5GB 2.7GB
Sentences 221M 54M -
Words 5.25B 1.1B 413M

Table 1: Translated Corpus Statistics Compared to
French Life Science Corpora - CmBERT: Camem-
BERT, ’-’: Unknown value.

Even if the corpus size is important, its qual-
ity must also be closely monitored. While MBR
is already considered a benchmark of quality in
English as it is used for pre-training models such
as BioBERT and PubMedBERT, it is crucial to
assess the quality of our translations to make
sure that everything has been conducted prop-
erly. As depicted in Figure 1c, a comparable
density check of the entire translated corpus re-
veals a density profile similar to the original cor-
pus. After manually reviewing a randomly cho-
sen set of abstracts, no irregular translation events,

5These figures are based on an earlier version of TransCor-
pus; with the latest release of the toolkit, translating the corpus
into Spanish requires 7 days using 6 NVIDIA A100 with 80GB
of memory each.

such as repetitions, were detected. A few trans-
lated abstracts alongside their counterparts orig-
inally written in French can be found in Ap-
pendix A.6. The translated corpus is available
on Hugging Face at https://huggingface.co/
datasets/jknafou/TransCorpus-bio-fr.

5 TransBERT Pre-Training

The reasons for pre-training a LM from scratch are
twofold. Firstly, it enables us to project the usage
of our framework on languages that might lack a
general domain PLM. Secondly, it allows the use
of our custom tokenizer, which typically provides
enhanced performance for DS LMs.

5.1 TransTokenizer Training
Subword segmentation algorithms aim to split
words optimally using probability. Considering
the potential addition of more languages in future
works, choosing a tokenizer capable of handling
specific linguistic features could prove beneficial.
In that context, SentencePiece treats whitespaces
as regular characters rather than relying on them,
which means that it is suited for all kinds of lan-
guages. The original SentencePiece implementa-
tion6 (Kudo and Richardson, 2018) is used to train
an Unigram tokenizer with a vocabulary size of
32k and a character coverage set to 0.9995 (default
values).

5.2 Pre-training Hyperparameters
A BERT architecture i.e. a Transformer encoder
with 12 hidden layers, each with 12 attention heads
of dimension 768, is pre-trained on TransCorpus
following RoBERTa (Liu et al., 2019) with an
extensive batch size of 8k, an Adam Optimizer
(Kingma and Ba, 2017), along with 24k warm-up
steps and a learning rate of 6e-4. The model was
updated for 500k steps on a Masked Language
Model (MLM) objective function.

6 TransBERT-bio-fr: Application to Life
Sciences in French

This section details the pre-training of TransBERT-
bio-fr and compares it with other French PLMs.

6.1 TransTokenizer-bio-fr Training
The tokenizer training on TransCorpus-bio-fr took
approximately 12 hours on a single machine. As
SentencePiece tokenizers require a considerable

6https://github.com/google/sentencepiece
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amount of RAM, a cut-off at 10M translated ab-
stracts were randomly selected in order to train
a DS tokenizer based on our synthetic translated
corpus. An example showcasing the difference be-
tween the tokenization of TransTokenizer (ours)
and CamemBERT’s tokenizer can be found in Ap-
pendix A.7.

6.2 CmTransBERT: Tokenizer Ablation

To evaluate the impact of the tokenizer, TransBERT-
bio-fr is pre-trained using TransTokenizer-bio-fr
while CmTransBERT is pre-trained using Camem-
BERT’s tokenizer. Both models are trained on the
TransCorpus-bio-fr, with the same hyperparame-
ters. Prior to fine-tuning our models, the Pseudo-
Perplexity (PPPL) (Salazar et al., 2020) per token
and word for each model was computed on a 50 au-
thentic French abstracts. This step confirms the suc-
cess of the pre-training and provides the go-ahead
for the experimental phase. For further details, the
results are presented in Appendix A.8.

6.3 Pre-training Statistics

Both TransBERT-bio-fr and CmTransBERT were
pre-trained for approximately three months using
a machine with 3 NVIDIA A100 GPUs, each with
80GB of memory. To ensure a fair pre-training
comparison, TransBERT adopted RoBERTa’s train-
ing methodology, processing 4B sequences over
500k steps with a batch size of 8k. In contrast,
DrBERT which represents the best effort for a LM
for the life sciences domain in French was pre-
trained on 310M sequences over 78k steps with a
batch size of 4k. Therefore, while TransCorpus-
bio-fr’s corpus is about five times larger than
DrBERT’s, TransBERT-bio-fr’s overall training
data updates are thirteen times larger compared
to DrBERT. CamemBERT bio undergoes fewer
training updates than DrBERT however, it keeps
pre-training CamemBERT, a PLM already pre-
trained for 100k steps using batch size of 8k.
TransBERT-bio-fr and its tokenizer are available
on Hugging Face at https://huggingface.co/
jknafou/TransBERT-bio-fr.

7 Experimental Setup

To compare TransBERT-bio-fr with other PLMs,
we leveraged DrBenchmark which is composed of
multiple datasets and tasks. This section describes
the experimental setup under which each model
was evaluated.

7.1 Baseline Models

To evaluate our method against strong baselines, we
selected the state-of-the-art French PLM, Camem-
BERT as well as DrBERT the only life sciences
PLM pre-trained from scratch in French. As previ-
ously noted, CamemBERT bio was excluded from
comparison because it is derived from Camem-
BERT rather than being trained from scratch,
whereas our framework is specifically designed
for scenarios where DS data are available in one
language, but resources in the target language are
lacking.

7.2 DrBenchmark: An Adaptation

Common LM benchmarks in life sciences are pre-
dominantly biomedical or clinical, such as Biomed-
ical Language Understanding & Reasoning Bench-
mark (BLURB) (Gu et al., 2021) and Biomedi-
cal Language Understanding Evaluation (BLUE)
(Peng et al., 2019) in English. In French, only
one option was recently published: DrBenchmark.
Available in our GitHub, an adaptation of the bench-
mark containing a few additions such as Hyperpa-
rameter Optimization (HPO) implementation in-
stead of fixed hyperparameters setting, a few data
cleaning steps to avoid duplicates, datasets merg-
ing to avoid unnecessary small datasets and the
implementation of a k-fold cross-validation strat-
egy with multiple iterations to allow for a more ro-
bust evaluation. Appendix A.9 shows the adapted
benchmark datasets statistics, which includes 15
tasks, five of which are classification, six NER, two
Part-Of-Speech (POS), and two Semantic Textual
Similarity (STS).

7.3 Statistical Testing

Once a metric is computed for each label/class/en-
tity/tag/regression, a statistical test is performed
to assess if there is a significant difference be-
tween models (1) at the dataset level comparing
labels performance across labels and folds and (2)
at the task level comparing performances across
labels, folds and datasets. For comparisons involv-
ing more than two models, the Friedman test is
employed, followed by the Nemenyi test. When
comparing two models, the Wilcoxon test is used.
Appendix A.10 shows the statistical testing process
following (Demšar, 2006) recommended practice
for comparing metrics rankings to assess model
difference for one or multiple datasets.
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8 Results & Discussion

Datasets CmBERT DrBERT TransBERT

C
L

S

DEFT-2020/T2 98.91 (1) 97.55 (1) 98.82 (4)
DiaMed 64.70 (22) 68.89 (27) 75.32*(55)
FrMedMCQA 56.95 (14) 56.01 (9) 57.25 (10)
MorFITT 73.16 (14) 72.74 (8) 75.36*(38)
PxCorpus/T2 96.31 (11) 95.34 (8) 95.34 (7)

N
E

R

E3C/Clinical 74.88 (0) 75.44 (1) 76.83 (4)
E3C/Temporal 85.44 (12) 83.92 (2) 85.73 (12)
MantraGSC 60.56 (12) 57.80 (8) 62.83 (16)
PxCorpus/T1 92.86 (40) 92.56 (66) 95.17*(96)
QUAERO/EMEA 84.70 (12) 84.74 (13) 85.67*(26)
QUAERO/MdL 62.22 (17) 60.71 (5) 64.06 (29)

PO
S CAS 97.66 (74) 97.56 (50) 97.74 (75)

ESSAI 98.66*(107) 98.53 (53) 98.64 (71)

ST
S CLISTER 82.80 (2) 75.44 (0) 82.62 (3)

DEFT-2020/T1 83.95 (3) 71.69 (0) 83.46 (2)
* Significant at 0.05 level (Friedman & Nemenyi test).

Table 2: Performance Evaluation on the French Life
Science Datasets - Table compares the main metrics
for each dataset for Classification, Named Entity Recog-
nition, Part-of-Speech Tagging, and Semantic Textual
Similarity tasks. F1-score is used for each task as the
main metric aside STS which uses R2. In (parenthe-
ses) is the count of class/label/entity/tag across all the
folds where a model achieved the highest metric. In
bold is the highest metric/count while underlined text
represents the second. CmBERT: CamemBERT.

Table 2 presents models performances across all
folds for each dataset with the weighted F1-score
for each task except STS, which utilizes the R2 met-
ric. Among the 15 datasets evaluated, TransBERT-
bio-fr (TransBERT) outperforms the other models
in 10 cases, with statistical significance noted on
four occasions. CamemBERT ranks first in five
cases, with one statistically significant result. Dr-
BERT fails to achieve the top metric in any dataset
and ranks lowest in 11 datasets. In parentheses
are the highest labels metric count across all the
folds. For instance, in DiaMed, TransBERT se-
cures the highest F1-score for 55 labels over five
folds, whereas CamemBERT and DrBERT attain
the highest F1-score for 22 and 27 labels, respec-
tively.

In classification tasks, even though Camem-
BERT achieves the top performance on two
datasets, the differences in metrics and ranking
between the models on these datasets are not sig-
nificant. Conversely, on the DiaMed and MorFITT
datasets where TransBERT outperforms, the dis-
tinction in metrics and ranking is notable and sta-
tistically significant.

In NER, TransBERT leads across all datasets
in both metrics and rankings, achieving statistical
significance in two instances. In POS tasks, the
models demonstrate high and closely matched per-
formances, with the lowest-scoring model achiev-
ing a weighted F1-score of 97.56. Despite this
narrow margin, CamemBERT secures top results
for one dataset, showing statistical significance and
attaining the highest F1-score across 107 tags in
all five folds. In STS, CamemBERT and Trans-
BERT perform similarly, with minor differences,
obtaining three and two top results, respectively.
However, DrBERT performs poorly in this task,
particularly with a margin exceeding 10 points in
DEFT-2020/T1.

8.1 Aggregated Results by Task

Table 3 presents the weighted precision, recall, and
F1-score across each task, except for STS, which
utilizes the R2 metric. TransBERT achieves the
best performance for both classification and NER,
with statistically significant results at the 0.01 level
for every metric. CamemBERT secures second
place in weighted recall for the NER task, also with
statistical significance. The difference between
CamemBERT and TransBERT in the POS task is
minimal; though TransBERT leads in terms of the
three metrics, the margin between them is slight. In
the STS task, both CamemBERT and TransBERT
do not show statistical significance, while DrBERT
comes last with statistical significance.

With the second more precise classifier, DrBERT
ends up having the poorest results in 9 of the 10
metrics. It is worth noting that despite DrBERT is
pre-trained on a native French corpus, its sources
are quite varied, which could lead to confusion
during the pre-training stage for a LM. Specifically,
it draws from 24 diverse sources such as disease
and condition descriptions, clinical cases, meeting
reports, health courses, or even optical character
recognition data. Beyond this diversity factor, if
a provided sequence is too short for the model to
deduce a context helping it identify the kind of
document it is receiving, this may cause confusion,
potentially resulting in ineffective learning. As
already mentioned, even if TransBERT corpus is
made of synthetic data, it has already been proved
that using MBR worked in English for pre-training
of BioBERT and PubMedBERT.
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CamemBERT DrBERT TransBERT

Pw R
(2)
w Fw Pw R

(2)
w Fw Pw R

(2)
w Fw

Classification 74.65 75.54 74.17 74.81 73.42 73.73 75.82** 76.69** 75.71**

Named Entity Recognition 81.23 82.13** 81.55 80.74 81.27** 80.88 83.03** 83.46** 83.15**

Part-Of-Speech 98.31 98.29 98.29 98.20** 98.18 98.18** 98.33 98.30 98.31
Semantic Textual Similarity - 83.38 - - 73.56** - - 83.04 -

** Significant at 0.01 level (Friedman & Nemenyi test)

Table 3: Performance Evaluation on the French Life Science by Task - Weighted Precision, Recall, and F1-scores
for each task taking into account each class/label/entity/tag and weighted across all folds and datasets. For Semantic
Textual Similarity, the weighted R2 is reported. In bold is highest metric/count while underlined text represents the
second.

8.2 Tokenizer Ablation Study

Although prior work by Labrak et al. (2024a) ex-
plored similar analyses, we identify methodologi-
cal inconsistencies in their pre-training of 16 PLMs.
Specifically, the use of a fixed time-based stop-
ping criterion resulted in unequal training durations
across models, potentially biasing outcomes. Fur-
thermore, the justification for employing reduced
batch sizes remains unclear, although computa-
tional constraints may have been a contributing
factor. To address these limitations, we performed
systematic replication under controlled experimen-
tal conditions. To our knowledge, this study is the
first rigorous examination of how tokenizer impacts
DS PLMs, offering insights for optimizing archi-
tecture decisions in resource-constrained scenarios.

Table 4 presents the comprehensive set of
weighted main metrics for both models. The re-
sults indicate that TransBERT generally outper-
forms CmTransBERT in almost all tasks, with sta-
tistical significance achieved solely in NER. This
implies that NER is more influenced by tokeniza-
tion compared to other tasks, which seems trivial
as NER is basically token-based.

9 Conclusion & Contributions

This work establishes a rigorous framework for
assessing LMs on DS for non-English dataset. It
builds upon prior research and extends it to a more
comprehensive benchmark that includes a more
robust way of evaluating the models by applying
HPO, multiple training repetition, 5-folds cross-
validation, and statistical testing on 15 datasets
along with their aggregation by task. It illus-
trates that employing translated synthetic data for
training DS LMs is a viable approach to address
the lack of native language data. Our proposed
model, TransBERT-bio-fr, outperforms existing

SOTA models in various life sciences tasks, in-
cluding classification, NER, POS, and STS.

In addition to offering a viable methodology
to address data scarcity, we release to the public
TransCorpus, an adaptative toolkit designed to facil-
itate the translation of large-scale corpora into mul-
tiple languages. The resources generated from this
work, including TransCorpus-bio-fr, TransBERT-
bio-fr and the code for the pre-training and fine-
tuning of the models are also made available on
GitHub.

10 Future Work

One encouraging direction for future research is to
expand our approach to encompass a wider array
of languages, especially those that are underrep-
resented in the life sciences field. Applying our
methodology across various linguistic settings will
help us better understand its generalizability and
any possible constraints. Additionally, creating
multilingual models capable of managing several
languages within the life sciences sector poses a
fascinating challenge. These models might exploit
cross-lingual knowledge transfer, allowing for a
more efficient use of scarce data resources and pro-
moting a more inclusive global scientific commu-
nity. Exploring other domains via our toolkit could
also yield valuable insights into the adaptability of
our approach.

Another path for future research is an extensive
comparison between our method and the latest gen-
erative Large Language Models (LLMs) on identi-
cal datasets. Such a comparison would yield valu-
able understanding of the trade-offs between spe-
cialized, domain-focused models and more general,
resource-heavy models LLMs. Assessing perfor-
mance, efficiency, and cost-effectiveness across
different life sciences tasks would help researchers
and practitioners in making informed decisions.
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TransBERT CmTransBERT

Pw R
(2)
w Fw Pw R

(2)
w Fw

Classification 75.82 76.69 75.71 75.10 76.05 74.70
Named Entity Recognition 83.03** 83.46** 83.15** 81.02** 82.13** 81.44**

Part-Of-Speech 98.33 98.30 98.31 98.31 98.29 98.29
Semantic Textual Similarity - 83.04 - - 84.36 -

** Significant at 0.01 level (Wilcoxon test)

Table 4: Ablation study comparing TransBERT and CmTransBERT - Weighted Precision, Recall, and F1-scores
for each task taking into account each class/label/entity/tag and weighted across all folds and datasets. For STS, the
weighted R2 is reported. In bold is the highest metric/count while underlined text represents the second.

Furthermore, this analysis could highlight the pos-
sibility of integrating the strengths of both ap-
proaches.

A promising direction for upcoming research
involves exploring the use of generative LLMs to
create synthetic data for training DS models, as an
alternative to our translation-based method. This
approach could yield more varied and nuanced
datasets, encapsulating intricate DS knowledge and
linguistic patterns. Assessing the quality, reliabil-
ity, and possible biases of LMs-generated synthetic
data in comparison to translated data could offer
valuable insights into data augmentation strategies
for low-resource domains and languages.

Limitations

10.1 Baseline Model
While TransBERT-bio-fr got better results than
CamemBERT, it would be interesting to see if Dr-
BERT, the DS baseline PLM would have had better
results if it had undergone a proper pre-training
process (e.g., 500k steps, 8k batch size, etc.). Also,
in order to extend our approach to languages where
high quality PLMs are available, it would have
been interesting to compare a pre-training continu-
ation of CamemBERT on TransCorpus-bio-fr with
CamemBERT bio.

10.2 In-Domain/Language Generalization
Even though our benchmark includes a broad range
of datasets and tasks, it is impossible to cover ev-
ery potential application or future development in
the field. The performance of our model, while
impressive within the scope of our study, may not
necessarily be consistent across all possible tasks
or datasets in the life sciences domain. Addition-
ally, the idea of a universally ’best’ model is inher-
ently flawed in the realm of NLP. Different models
might excel in particular contexts or specific types
of tasks, and their performance can be affected by

factors such as domain specificity, data distribu-
tion, and the nuances of individual use cases. What
works optimally in one scenario may not be the
best choice in another, emphasizing the need for
context-specific model evaluation and selection. It
is also important to recognize that the fast-paced ad-
vancements in NLP research could lead to new ar-
chitectures, pre-training techniques, or fine-tuning
strategies that may surpass our current model in
certain aspects. The dynamic nature of the field re-
quires ongoing evaluation and comparison against
new innovations.

10.3 Other Domains Generalization

Although our model, which was trained on trans-
lated synthetic data within the life sciences corpus,
shows encouraging generalization towards other do-
mains, it is important to recognize the constraints
when extrapolating these results to other areas. The
success of our method in addressing the lack of
native language data in life sciences should not be
automatically expected to apply to other special-
ized sectors such as finance, law, or engineering.
Each field presents its own unique linguistic hur-
dles, specialized terminologies, and DS concep-
tual frameworks that general-purpose MT systems
might not handle effectively. The quality and rele-
vance of translated synthetic data can differ greatly
between domains, possibly affecting the model’s
performance. Moreover, the subtleties of DS lan-
guage use, such as idiomatic phrases, technical
lingo, and context-dependent meanings, may not
be accurately preserved in translated data, which
could lead to misunderstandings or errors in other
fields. Additionally, the success of our approach
may depend on the degree to which translatable
concepts are within a given domain, which can
vary greatly. For example, concepts that are highly
specific to a culture or legally bound in sectors
like law or social sciences might pose particular
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difficulties for this approach. Hence, even if our
results suggest a promising avenue for mitigating
language resource shortages in specialized fields,
further research is essential to confirm the broad ap-
plicability of this method across various domains,
each with its own distinct linguistic and conceptual
challenges.

10.4 Other Languages Generalization

While our study highlights the effectiveness of em-
ploying synthetic translated data for training LMs
in the field of life sciences in French, caution is
warranted when applying these findings to other
languages, especially those with limited resources.
We believe that the success of our method is highly
dependent on the quality and availability of MT
systems for the target language, which can dif-
fer greatly among various language pairs. Even
if M2M-100 has a great potential to secure rela-
tively great results in low-resource languages com-
pared to other models, some language pairs often
lack strong machine translation models, which can
undermine the quality of the translated synthetic
data. For instance, Guerreiro et al. (2023) show
that MT models can encounter difficulties with hal-
lucinations, especially in low-resource language
directions and when translating out of English lan-
guages, which may result in misleading outcomes.
Additionally, the linguistic gap between the source
language and the target language can greatly af-
fect the effectiveness of the approach. Languages
with different syntactic frameworks, morphological
structures, or writing systems might pose additional
difficulties in maintaining semantic subtleties and
DS language during translation. Furthermore, the
cultural and scientific context embedded in the orig-
inal material might not always have direct counter-
parts in the target language or culture, which could
result in meaning loss or the introduction of biases.
Although our findings indicate a potential solution
for addressing the deficit of scientific corpora in
some languages, the method’s suitability across
different linguistic contexts requires thorough eval-
uation and additional investigation.

Acknowledgments

The work presented in this paper was performed un-
der the umbrella of the Swiss AI Center of the HES-
SO, thanks to the partial support of the META-
PLANTCODE project (SNF Biodiversa+ #216811,
2024-2027) and the ELIXIR Data Platform. The

experiments were computed on Baobab, Geneva’s
High Performance Computing infrastructure for
academic research.

References
Keno K. Bressem, Jens-Michalis Papaioannou, Paul

Grundmann, Florian Borchert, Lisa C. Adams, Leon-
hard Liu, Felix Busch, Lina Xu, Jan P. Loyen, Ste-
fan M. Niehues, Moritz Augustin, Lennart Grosser,
Marcus R. Makowski, Hugo J.W.L. Aerts, and
Alexander Löser. 2024. medbert.de: A comprehen-
sive german bert model for the medical domain. Ex-
pert Systems with Applications, 237:121598.

Tommaso Mario Buonocore, Claudio Crema, Al-
berto Redolfi, Riccardo Bellazzi, and Enea Parim-
belli. 2023. Localizing in-domain adaptation
of transformer-based biomedical language models.
Journal of Biomedical Informatics, 144:104431.

Janez Demšar. 2006. Statistical comparisons of classi-
fiers over multiple data sets. J. Mach. Learn. Res.,
7:1–30.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi
Ma, Ahmed El-Kishky, Siddharth Goyal, Man-
deep Baines, Onur Celebi, Guillaume Wenzek,
Vishrav Chaudhary, Naman Goyal, Tom Birch, Vi-
taliy Liptchinsky, Sergey Edunov, Edouard Grave,
Michael Auli, and Armand Joulin. 2020. Be-
yond english-centric multilingual machine transla-
tion. CoRR, abs/2010.11125.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2020. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. arXiv preprint arXiv:2007.15779.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare, 3(1):1–23.

Nuno M. Guerreiro, Duarte M. Alves, Jonas Waldendorf,
Barry Haddow, Alexandra Birch, Pierre Colombo,

19347

https://www.hes-so.ch/swiss-ai-center
https://elixir-europe.org/platforms/data
https://doi.org/10.1016/j.eswa.2023.121598
https://doi.org/10.1016/j.eswa.2023.121598
https://doi.org/10.1016/j.jbi.2023.104431
https://doi.org/10.1016/j.jbi.2023.104431
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://arxiv.org/abs/2010.11125
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754
https://doi.org/10.1145/3458754


and André F. T. Martins. 2023. Hallucinations in
large multilingual translation models. Transactions
of the Association for Computational Linguistics,
11:1500–1517.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’Aurelio
Ranzato. 2019. Revisiting self-training for neural
sequence generation. CoRR, abs/1909.13788.

Tim Isbister, Fredrik Carlsson, and Magnus Sahlgren.
2021. Should we stop training more monolingual
models, and simply use machine translation instead?
Preprint, arXiv:2104.10441.

Tatsuya Ishigaki, Yui Uehara, Goran Topić, and Hiroya
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A Appendix

A.1 Example of an English Abstract

PMID: 44

Title: The origin of the alkaline inactivation of pepsinogen.

Abstract: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin
on exposure to low pH. Intermediate exposure to neutral pH, however, returns the protein to a form
which can be activated. Evidence is presented for a reversible, small conformational change in the
molecule, distinct from the unfolding of the protein. At the same time, the molecule is converted
to a form of limited solubility, which is precipitated at low pH, where activation is normally seen.
The results are interpreted in terms of the peculiar structure of the pepsinogen molecule. Titration
of the basic NH2-terminal region produced an open form, which can return to the native form
at neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in the
pepsin portion.

Figure 3: Example of a Citation From the MBR Database

A.2 Corpus Statistics

Corpus Before
Translation BERT BioBERT PubMedBERT

Abstracts 22M N/A - 14M
Size 30.2GB 16GB - 21GB
Sentences 202M - - -
Words 4.4B 3.3B 4.5B 3.1B
Tokens 6.7B - - -

-: Unknown value
N/A: Not Applicable

Table 5: Statistics of English Life Science Corpora Used to Pre-Train Different Models - Tokens number is
computed using a Bidirectional Encoder Representations from Transformers (BERT) cased tokenizer.

A.3 Example of a Translation with Repetition

Model Size: 418M

Translation Approach: By abstract

Abstract: Des modifications structurelles et fonctionnelles dans les ovaries de l’ovaire de contrôle
des ovaries des ovaries de contrôle des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des ovaries des
ovaries des ovaries des ovaries.

Figure 4: Example of a Translation: 418M, By Abstract (With Repetition)
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A.4 Example of a Tokenized Abstract

PMID: 44

Sentence 1: The origin of the alkaline inactivation of pepsinogen.
[’_The’, ’_origin’, ’_of’, ’_the’, ’_alkal’, ’ine’, ’_in’, ’activ’, ’ation’, ’_of’, ’_pep’, ’sin’, ’ogen’, ’.’]

Sentence 2: Above pH 8.5, pepsinogen is converted into a form which cannot be activated to pepsin on exposure to low
pH.
[’_Ab’, ’ove’, ’_pH’, ’_8.’, ’5,’, ’_pep’, ’sin’, ’ogen’, ’_is’, ’_convert’, ’ed’, ’_into’, ’_a’, ’_form’, ’_which’, ’_cannot’,
’_be’, ’_activ’, ’ated’, ’_to’, ’_pep’, ’sin’, ’_on’, ’_expos’, ’ure’, ’_to’, ’_low’, ’_pH’, ’.’]

Sentence 3: Intermediate exposure to neutral pH, however, returns the protein to a form which can be activated.
[’_Inter’, ’medi’, ’ate’, ’_expos’, ’ure’, ’_to’, ’_neutral’, ’_pH’, ’,’, ’_however’, ’,’, ’_retur’, ’ns’, ’_the’, ’_protein’,
’_to’, ’_a’, ’_form’, ’_which’, ’_can’, ’_be’, ’_activ’, ’ated’, ’.’]

Sentence 4: Evidence is presented for a reversible, small conformational change in the molecule, distinct from the
unfolding of the protein.
[’_Ev’, ’idence’, ’_is’, ’_present’, ’ed’, ’_for’, ’_a’, ’_re’, ’vers’, ’ible’, ’,’, ’_small’, ’_conform’, ’ational’, ’_change’,
’_in’, ’_the’, ’_mol’, ’ec’, ’ule’, ’,’, ’_distin’, ’ct’, ’_from’, ’_the’, ’_un’, ’fold’, ’ing’, ’_of’, ’_the’, ’_protein’, ’.’]

Sentence 5: At the same time, the molecule is converted to a form of limited solubility, which is precipitated at low pH,
where activation is normally seen.
[’_At’, ’_the’, ’_same’, ’_time’, ’,’, ’_the’, ’_mol’, ’ec’, ’ule’, ’_is’, ’_convert’, ’ed’, ’_to’, ’_a’, ’_form’, ’_of’,
’_limited’, ’_sol’, ’ub’, ’ility’, ’,’, ’_which’, ’_is’, ’_precip’, ’itat’, ’ed’, ’_at’, ’_low’, ’_pH’, ’,’, ’_where’, ’_activ’,
’ation’, ’_is’, ’_norm’, ’ally’, ’_seen’, ’.’]

Sentence 6: The results are interpreted in terms of the peculiar structure of the pepsinogen molecule.
[’_The’, ’_results’, ’_are’, ’_interpret’, ’ed’, ’_in’, ’_terms’, ’_of’, ’_the’, ’_pec’, ’uliar’, ’_structure’, ’_of’, ’_the’,
’_pep’, ’sin’, ’ogen’, ’_mol’, ’ec’, ’ule’, ’.’]

Sentence 7: Titration of the basic NH2-terminal region produced an open form, which can return to the native form at
neutral pH, but which is maintained at low pH by neutralization of carboxylate groups in the pepsin portion.
[’_T’, ’itr’, ’ation’, ’_of’, ’_the’, ’_basic’, ’_NH’, ’2-’, ’termin’, ’al’, ’_region’, ’_produc’, ’ed’, ’_an’, ’_open’, ’_form’,
’,’, ’_which’, ’_can’, ’_return’, ’_to’, ’_the’, ’_n’, ’ative’, ’_form’, ’_at’, ’_neutral’, ’_pH’, ’,’, ’_but’, ’_which’, ’_is’,
’_mainta’, ’ined’, ’_at’, ’_low’, ’_pH’, ’_by’, ’_neutr’, ’aliz’, ’ation’, ’_of’, ’_car’, ’box’, ’yl’, ’ate’, ’_groups’, ’_in’,
’_the’, ’_pep’, ’sin’, ’_por’, ’tion’, ’.’]

Figure 5: Example of Sentence & Word Tokenization

A.5 Example of a Translated Citation

PMID: 44

Title: L’origine de l’inactivation alcaline du pepsinogène.

Abstract: Au-dessus du pH de 8,5, le pepsinogène est converti en une forme qui ne peut pas
être activée en pepsine en cas d’exposition à un pH bas. L’exposition intermédiaire au pH neutre,
cependant, renvoie la protéine à une forme qui peut être activée. Des preuves sont présentées pour
un changement réversible, de petite conformation dans la molécule, distinct du déploiement de la
protéine. Dans le même temps, la molécule est convertie en une forme de solubilité limitée, qui
est précipitée à faible pH, où l’activation est normalement observée. Les résultats sont interprétés
en termes de la structure particulière de la molécule de pepsinogène. La titration de la région
terminale de base NH2 produit une forme ouverte, qui peut revenir à la forme native à pH neutre,
mais qui est maintenue à un pH bas par la neutralisation des groupes carboxylés dans la portion de
pepsine.

Figure 6: Example of Title and Abstract Citation From the MBR Database Translated in French (McPhie,
1975)
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A.6 Translation Examples Compared to True French Abstracts

Original (PMID:33739270)
Le foie assure une grande partie du métabolisme des xénobiotiques. Ses particularités en font pourtant une cible
privilégiée pour des composés toxiques. Les hépatotoxicités des xénobiotiques, ces molécules étrangères à notre
organisme, constituent un vrai défi pour les cliniciens, l’industrie pharmaceutique, et les agences de santé. à la différence
des hépatotoxicités intrinsèques, prévisibles et reproductibles, les hépatotoxicités idiosyncrasiques surviennent de
manière non prévisible. La physiopathologie des hépatotoxicités idiosyncrasiques à médiation immune reste la moins
bien connue. Le développement d’outils qui permettent désormais d’améliorer la prédiction et la compréhension de
ces atteintes hépatiques paraît être une approche prometteuse pour identifier des facteurs de risque, et de nouveaux
mécanismes de toxicité.

Translated (PMID:33739270)
Le foie assure une grande partie du métabolisme des xénobiotiques grâce à son équipement enzymatique considérable,
à sa localisation anatomique et à sa vascularisation abondante. Cependant, ces différentes caractéristiques en font
également une cible privilégiée pour les composés toxiques, en particulier dans le cas d’un métabolisme toxique.
L’hépatotoxicité induite par les xénobiotiques est une cause majeure de lésions hépatiques et un véritable défi pour
les cliniciens, l’industrie pharmaceutique et les agences de santé. Les hépatotoxicités intrinsèques, c’est-à-dire les
hépatotoxicités prévisibles et reproductibles qui se produisent à des doses limites, sont distinguées des hépatotoxicités
idiosyncratiques, qui se produisent de manière imprévisible chez les personnes présentant des sensibilités individuelles.
Parmi eux, la pathophysiologie de l’hépatotoxicité immunomédiée idiosyncratique n’est toujours pas claire. Cependant,
le développement d’outils visant à améliorer la prévision et la compréhension de ces troubles peut ouvrir des voies pour
l’identification de facteurs de risque et de nouveaux mécanismes de toxicité.

Original (PMID:32334967)
La tuberculose est due au complexe M. tuberculosis, dont la croissance lente entraîne un long délai de rendu des tests
phénotypiques utilisés pour le diagnostic bactériologique. La biologie moléculaire a réduit considérablement ce délai,
notamment grâce au déploiement de la méthode Xpert® MTB/RIF (Cepheid) qui permet de détecter le complexe M.
tuberculosis et la résistance à la rifampicine en 2 heures. D’autres tests détectant en plus la résistance à l’isoniazide et
aux antituberculeux de seconde ligne ont été développés. Cependant, les performances de ces tests sont nettement moins
bonnes si l’examen microscopique est négatif. Il est donc crucial de restreindre leur indication aux fortes suspicions
cliniques. Les tests de détection de la résistance n’explorent que certaines positions caractérisées ; or, toutes les
mutations responsables de l’acquisition de résistance ne sont pas connues. De plus, les performances sont variables pour
les différents antituberculeux. L’avènement du séquençage génomique est une perspective prometteuse. La faisabilité
en routine doit encore être évaluée et l’analyse des données reste à standardiser. L’essor des techniques de biologie
moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance. Cependant, elles restent des tests de
dépistage dont les résultats doivent être confrontés aux méthodes phénotypiques de référence.

Translated (PMID:32334967)
La tuberculose est causée par le complexe M. tuberculosis. Sa croissance lente retarde le diagnostic bactériologique
basé sur des tests phénotypiques. La biologie moléculaire a considérablement réduit ce retard, notamment grâce au
déploiement du test Xpert® MTB/RIF (Cepheid), qui détecte le complexe de M. tuberculose et la résistance à la
rifampicine en 2 heures. D’autres tests détectant la résistance à l’isoniazide et aux médicaments antituberculeux de
deuxième ligne ont été développés. Cependant, les performances des tests moléculaires sont considérablement réduites
si le dépistage de la microscopie de bacille acide rapide est négatif. Il est donc crucial de limiter leur indication à de
fortes suspicions cliniques. Les tests de détection de la résistance n’explorent que certaines positions caractérisées;
cependant, toutes les mutations de résistance aux médicaments ne sont pas connues. En outre, les performances varient
pour différents médicaments antituberculeux. L’avènement de la séquençage génomique est prometteur. Son intégration
dans le flux de travail de routine doit encore être évaluée et l’analyse des données doit encore être normalisée. La
montée des techniques de biologie moléculaire a révolutionné le diagnostic de la tuberculose et de la résistance aux
médicaments. Cependant, ils restent des tests de dépistage; les résultats doivent encore être confirmés par des méthodes
de référence phénotypiques.

Original (PMID: 33742585)
Dans un souci d’amélioration de la qualité de vie des personnes atteintes de maladie chronique, les pratiques de soins se
sont enrichies de l’éducation thérapeutique du patient (ETP). Celle-ci vise l’acquisition de savoirs et de compétences
plurielles par les malades pour favoriser une gestion optimale de la pathologie au quotidien et des changements qui en
découlent, en limitant les répercussions négatives sur leur autonomie et leur bien-être. Le sujet est placé au cœur de
son dispositif, en position de décision et de responsabilité, et collabore activement avec les différents acteurs de soins.
L’ETP implique donc la prise en compte de la dimension psychique du patient, en s’appuyant sur la psychologie et des
concepts fondamentaux pour sa mise en œuvre.
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Translated (PMID: 33742585)
Dans un effort pour améliorer la qualité de vie des personnes atteintes de maladies chroniques, les pratiques de soins
ont été enrichis par l’éducation thérapeutique des patients (TPE). Cela vise à l’acquisition de connaissances et de
compétences plurielles par les patients, ce qui favorise une gestion optimale de la maladie sur une base quotidienne et
des changements qui en découlent, en limitant leurs répercussions négatives sur leur autonomie et leur bien-être. Le
sujet est placé au cœur du système, dans une position de décision et de responsabilité, et collabore activement avec les
différents acteurs de la santé. Le TPE implique donc la prise en compte de la dimension psychologique du patient, en
utilisant la psychologie et les concepts fondamentaux pour sa mise en œuvre.

A.7 Tokenizers Comparison Example

Entity: [’infarctus’, ’du’, ’myocarde,’] (3 words)
TransTokenizer: [’ infarctus’, ’ du’, ’ myocarde’, ’,’] (4 tokens)
CamemBERT: [’ inf’, ’arc’, ’tu’, ’s’, ’ du’, ’ my’, ’oc’, ’arde’, ’,’] (∆+5)

Figure 7: CamemBERT Vs TransTokenizer Sample - An example of tokenization shows that the tokenizer of
TransBERT (i.e., TransTokenizer) requires less tokens than the tokenizer of CamemBERT to encode the same
sequence.

A.8 Pseudo-Perplexity Comparison Across Models

TransBERT CmTransBERT CamemBERT DrBERT

PPPLtoken 6.00 4.14 174.42 8.30
PPPLword 11.71 8.59 2474.88 17.55

nsentence 376

nword 9204

ntoken 12 640 13 934 13 934 12 459

Table 7: Pseudo-Perplexity Comparison Across Models - Pseudo-Perplexity across models, with the highest
uncertainty highlighted in bold.

A.10 Statistical Testing

Figure 8: Statistical Testing - In order to compare more than two models, the Friedman test is used to determine if
there is a significant difference between models, if so, the Nemenyi post-hoc test is used to determine which models
are significantly different. For two models, the Wilcoxon test is used.
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A.9 Downstream Tasks Summary

Name Task Instance Label Source

CAS POS 86 805 30T CC

CLISTER STS 1000 0 to 5 CC

DEFT-2020
STS 1009 0 to 5 CC, encyclopedia &

drugCLS 1100 3C

DiaMed CLS 726 15C CC

E3C/Clinical
NER

3270 1E
CC

E3C/Temporal 5756 5E

ESSAI POS 150 269 29T
Clinical Trial Protocols

FrenchMedMCQA CLS 3102 5C Pharmacy Exam

MantraGSC NER 879 7E
Biomedical, Drug & Patent

MorFITT CLS 5115 12L Biomedical

PxCorpus
NER 11 465 30E

Drug
CLS 1727 4C

QUAERO/EMEA
NER

6001
10E Drug & Biomedical

QUAERO/Medline 6765

Table 8: DrBenchmark Adaptation: Data & Tasks Summary - By alphabetical order - Overall, every model
tested will be evaluated using cross-validation on 15 distinct datasets covering a broad range of tasks. In the Label
column, C indicates a class within a multi-class framework, while L denotes the count of potential labels in a
multi-label classification, T tag and E entity. The instance count reflects the number of positive C, L, T or E. In the
source column CC stands for Clinical Cases.
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