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Abstract

Procedural text adaptation—such as modifying
recipes or revising instructional guides—has
traditionally relied on specialized models ex-
tensively fine-tuned for specific domains. To
address the scalability limitations of such
approaches, recent research has increasingly
turned to general-purpose large language mod-
els (LLMs). However, existing prompting
strategies for LLMs often yield superficial or er-
roneous adaptations due to alignment-induced
biases and the inherent complexity of procedu-
ral editing. To overcome these challenges, we
propose the Over-generation-and-Compaction
(OC) prompting strategy, which first elicits di-
verse procedural details to leverage the model’s
latent knowledge, and subsequently compacts
them into concise, coherent adaptations. We
further introduce Recipe Consistency & Feasi-
bility (RCF), a novel metric for systematically
evaluating the procedural validity and practical
feasibility of recipe adaptations. Experiments
on public datasets show that OC substantially
enhances adaptation consistency and feasibil-
ity over baseline prompting methods, without
requiring additional fine-tuning or curated train-
ing resources.

1 Introduction

Procedural text adaptation—such as adjusting
recipes for dietary needs or revising instructional
guides for alternative components—is essential
across various real-world domains. These tasks
require constraint-aware editing that goes beyond
surface-level changes, often demanding domain
knowledge and structural coherence. Prior work
has explored hierarchical generation (Li et al.,
2022) and graph-based ingredient substitution (Shi-
rai et al., 2021), but such approaches rely heavily on
curated, domain-specific resources, limiting their
scalability and generalization.

Recent advances in LLMs offer a more flex-
ible alternative to specialized systems. Unlike

1. Prompt (Baseline)

You are a professional content creator. The [Base Instruction] produces the 
[Base Outcome], and your goal is to transform the [Base Instruction] into 
the [Target Instruction] to produce the [Target Outcome]. Output only the 
final transformed [Target Instruction] without any additional commentary 
or explanations.

Input Parameters: 
- [Base Outcome]: “Steamed Turbot (清蒸多宝鱼)”
- [Base Instruction]: “Gather all the ingredients. … Place the fish on the 
steaming rack, and steam for about 8 minutes. Meanwhile, in an Amway 
Queen 1.4L pan, heat a suitable amount of Amway Queen extra virgin olive 
oil, add chopped scallions and the seasoned soy sauce for seafood, and 
stir-fry until fragrant. Once the fish is done steaming, sprinkle some 
shredded scallions, goji berries, and cilantro. Finally, drizzle the hot 
fragrant oil over the top! Perfect!”
- [Target Outcome]: “Steamed Hairy Crab (清蒸大闸蟹)”

[Target Instruction]: Gather all the ingredients. … Steam the crab for about 15-
20 minutes, depending on its size. Meanwhile, in an Amway Queen 1.4L pan, 
heat a suitable amount of Amway Queen extra virgin olive oil, add chopped 
scallions, ginger, and a touch of seasoned soy sauce for seafood, and stir-fry 
until fragrant. Once the crab is done steaming, garnish with shredded 
scallions and cilantro. Finally, drizzle the hot fragrant oil over the top! Perfect!

Target InstructionLLM

(b)

(b)

(c)

1. Prompt (Baseline)
2. Base Outcome
3. Base Instruction
4. Target Outcome

LLM

(a)

Figure 1: Illustration of procedural text adaptation with
cooking recipes as examples: (a) rewriting a base recipe
(Steamed Turbot) into a target recipe (Steamed Hairy
Crab) using a naive single-step prompting. Red high-
lights indicate incomplete or inappropriate adaptations
where elements specific to the base recipe remain unal-
tered in the target instruction and (b) baseline prompting
workflow as flowchart

task-specific architectures, LLMs facilitate general-
purpose procedural editing without necessitating
costly data curation. However, prior research has
demonstrated that even fine-tuned LLMs often un-
derperform in this domain. For example, Liu et al.
(2022a) found that recipe revisions using GPT-2
lacked coherence, while Cao et al. (2024) reported
that prompt-based edits tended to be superficial, fre-
quently failing to update instructions in accordance
with ingredient changes. Our preliminary experi-
ments with ChatGPT-4o indicate that such issues
remain unresolved. Figure 1 illustrates an example
of prompting for recipe adaptation. Specifically,
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You are a professional content creator. The [Base 
Instruction] produces the [Base Outcome], and your goal 
is to transform the [Base Instruction] into the 
[Intermediate Instruction] to produce the [Target 
Outcome]. Do not worry about the format, structure, or 
length of the [Intermediate Instruction]. However, your 
output must be a comprehensive, expanded version of 
the [Intermediate Instruction] that is at least 1000 times 
longer than the original [Base Instruction]. You must 
incorporate all relevant knowledge, information, best 
practices, important considerations, as well as warnings 
or pitfalls to avoid — essentially, everything you know 
about the subject, Instruction, and outcome. Output only 
the final [Intermediate Instruction], with no additional 
commentary or explanation. …

1. Prompt: Over-generation

Interm.
Instruction

Target
InstructionLLM LLM

2. Prompt: Compaction
You are a professional content creator working with the 
[Intermediate Instruction], which contains rich details 
intended to achieve the [Target Outcome]. Your top 
priority is to strictly match the length and format of the 
[Base Instruction], disregarding the original format of the 
[Intermediate Instruction]; within these constraints, 
condense the [Intermediate Instruction] as effectively as 
possible into the [Target Instruction]. Provide only the 
condensed [Target Instruction] without commentary, 
introduction, or explanation. …

[Target Instruction]: … Tie their legs and claws securely 
with kitchen twine to prevent movement during 
steaming. Fill a wok with water, add sliced ginger to the 
water, and bring it to a boil. Place the tied crabs belly-up 
on a steaming rack, ensuring they are spaced apart for 
even cooking. Cover the wok with a tight-fitting lid and 
steam over medium heat for 15-20 minutes, depending 
on the size of the crabs. Meanwhile, prepare the dipping 
sauce by combining light soy sauce, black vinegar, a 
pinch of sugar, sesame oil, and finely chopped ginger 
and scallions. Once the crabs are done steaming, their 
shells will turn bright orange, and their aroma will be 
fragrant. Transfer the crabs to a serving plate, garnish 
with scallions and cilantro, and serve with the dipping 
sauce on the side. Perfect!

(a) (b) (c)

(d)

3. Target Instruction

1. Prompt (Over-gen)
2. Base Outcome
3. Base Instruction
4. Target Outcome

1. Prompt (Compaction)
2. Base Instruction
3. Target Outcome

Figure 2: OC prompting workflow: (a) an over-generation prompt used to produce detailed procedures without
constraints. (b) a compaction prompt, which synthesizes detailed intermediate outputs into concise target instructions.
Brackets[] indicate parameter names whose values are omitted for brevity. (c) Final recipe for Steamed Hairy Crab
adapted from the Steamed Turbot recipe, with crab-specific steps highlighted in red. (d) OC workflow as flowchart

the model is provided with a [Base Outcome], des-
ignated as Steamed Turbot; a [Base Instruction],
consisting of the corresponding recipe text; and
a [Target Outcome], specified as Steamed Hairy
Crab—that is, a request to substitute the main in-
gredient from turbot to hairy crab in a traditional
Chinese dish. The resulting recipe, however, con-
tains multiple errors. For instance, the revised out-
put retains domain-inappropriate elements such as
“drizzling fragrant oil”—a garnish commonly used
for steamed fish, but inappropriate for traditional
Chinese hairy crab preparation, which typically
involves a vinegar–ginger dipping sauce instead.

The underlying causes of such behavior re-
main unclear, but several plausible contribut-
ing factors can be considered. For example,
alignment-induced biases—such as inherent algo-
rithmic bias (Xiao et al., 2024), emergent cogni-
tive bias (Itzhak et al., 2023), and alignment fak-
ing (Greenblatt et al., 2024)—may play a role.
Alternatively, the inherent complexity of proce-
dural editing may simply exceed the capabilities
of single-pass generation (Barnhart et al., 2025).
However, without direct architectural modifica-
tions, these challenges are often difficult to re-
solve. Consequently, a common workaround is to
apply task-specific fine-tuning. While fine-tuning
on large-scale before–after corpora may improve
domain adaptation, this approach is expensive, can-
not feasibly cover the combinatorial space of po-
tential variations from adaptations, and may impair
generalization to out-of-domain prompts (Yang

et al., 2024). Furthermore, there is a growing trend
among organizations to favor a small number of
general-purpose models capable of supporting a
wide range of applications—such as recipe editing,
instructional rephrasing, and personalized meal
planning—over the development and maintenance
of narrowly specialized systems (Luo et al., 2023;
Howell et al., 2023).

In pursuit of a more scalable alternative that
leverages general-purpose models without re-
quiring additional fine-tuning, we propose a
prompting strategy called Over-generation-and-
Compaction (OC). Rather than narrowly steer-
ing generation, OC encourages the model to pro-
duce diverse and unconstrained outputs in the first
stage, then compacts them into a structured final
form. This approach aims to minimize implicit con-
straints that may have been inadvertently acquired
during post-training alignment, thereby allowing
latent procedural knowledge to surface more fully
and improving edit fidelity.

2 OC Prompting Strategy

The strategy comprises two sequential stages:
Stage 1: Over-Generation. The LLM generates
extensive and detailed procedural variants, referred
to as intermediate instructions, based on input pa-
rameters identical to those used in the baseline set-
ting. An example of the over-generation prompt is
shown in Figure 2(a). Notably, this prompt does not
impose any domain-specific constraints, require-
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ments, formatting or structural limitations. Instead,
it simply instructs the model to produce altered
versions on the given topic while simultaneously
eliciting as much instruction-relevant information
as possible.
Stage 2: Compaction. The generated intermedi-
ate instructions are subsequently condensed into
concise and coherent outputs that conform to the
format, coherence, and length constraints of the
original base instruction. An example of the com-
paction prompt is illustrated in Figure 2(b).

The complete OC workflow is illustrated in Fig-
ure 2(d). To ground our discussion, we revisit
the running example of converting a recipe for
Steamed Turbot into one for Steamed Hairy Crab.
Using the same input parameters as the baseline,
the OC prompt generates richly detailed procedural
text procedural text tailored specifically to hairy
crab, going far beyond a naïve ‘find-and-replace’
adaptation. For instance, the resulting intermedi-
ate instructions explicitly mention securely tying
the crab’s legs and claws before steaming, deter-
mining steaming time as a function of the crab’s
weight, and preparing a vinegar–ginger dipping
sauce. Such details are absent in baseline outputs,
revealing latent knowledge that OC helps unlock.
In the subsequent compaction stage, we provide
both the [Base Instruction] and the [Target Out-
come] as input parameters. The compaction prompt
integrates the over-generated fragments into a struc-
turally coherent instruction that adheres to the for-
matting and pragmatic constraints of the original.
Figure 2(c) shows that the resulting instructions
are concise yet retain professionally relevant detail.
More formal description of the workflow along
with complete prompt templates and intermediate
outputs can be found in Appendix A and B.

3 Evaluation

We conduct our evaluation on two datasets that
jointly cover distinct yet complementary settings
of procedural text editing. The first dataset is the
Xiachufang recipe corpus (Liu et al., 2022a). This
corpus indirectly encodes substitution information
in its structure: it provides the original recipe steps,
the original recipe title, and an alternative recipe
title in which one or more major ingredients have
been replaced. Because recipe titles in Chinese
cooking datasets typically list the key ingredients,
these title modifications serve as a proxy for in-
gredient substitutions. Thus, although the dataset

does not explicitly instruct models to swap ingredi-
ents, the title pairs can be used to infer which edits
should propagate through the recipe steps. After fil-
tering, we retain approx. 2.5k Chinese recipe pairs
spanning 50 categories. A key limitation, how-
ever, is that the dataset does not include reference
rewrites of the steps themselves. This motivates the
introduction of the Recipe Consistency & Feasibil-
ity (RCF) metric, an automatic evaluation measure
based on the g-eval framework (Liu et al., 2023),
which captures salient error types such as ingredi-
ent mismatch or omitted steps, thereby providing
a scalable proxy for human judgment. Full details
are provided in Appendix C.

The second dataset is myfixit (Nabizadeh et al.,
2020), which focuses on repair instructions across
diverse domains including clothing, consumer elec-
tronics, and automotive maintenance. Unlike Xi-
achufang, myfixit does not naturally include paired
titles that indicate substitutions. To make it suitable
for controlled evaluation, we used LLMs to gener-
ate plausible alternative part names (e.g., screws,
cables, or modules) and paired each instruction
with a version requiring a replacement part. This
yields a dataset analogous in spirit to Xiachufang,
with approximately 500 paired instances. Further
construction details are provided in Appendix C.

Because our primary metric adopts the LLM-
as-judge paradigm, the choice of evaluator can
influence absolute scores and even relative rank-
ings. We therefore run evaluations with two in-
dependent LLMs under identical instructions and
rubrics: ChatGPT-4o and DeepSeek-v3. This dual-
evaluator protocol reduces evaluator-specific bias
and increases robustness of conclusions. It is partic-
ularly important in our setting because ChatGPT-4o
is used during dataset preparation (e.g., for trans-
lating recipe titles or generating replacement part
names in myfixit); relying on it as the sole evalua-
tor risks circularity and inflated agreement. Using
DeepSeek-v3 as a second evaluator provides a prin-
cipled cross-check without altering the evaluation
prompts or grading criteria.

To isolate the effect of prompting strategies, we
evaluate four representative methods rather than
fine-tuned models: (1) Baseline, a direct single-
step rewrite; (2) CoT, which augments the Base-
line with a Chain-of-Thought (Wei et al., 2022)
reasoning step; (3) OC, our over-generation-and-
compaction strategy; and (4) Critics, inspired by
Self-Refine (Madaan et al., 2023) and simplified
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ChatGPT-4o Evaluation DeepSeek v3 Evaluation

Group LLM Mean Med Std 95%CI Mean Med Std 95%CI

Source 7.16 8 1.93 [7.08, 7.23] 5.67 6 1.93 [5.59, 5.74]

Base

D1 8.40 9 1.36 [8.34, 8.45] 5.85 5 1.99 [5.77, 5.93]
4o 7.30 8 1.87 [7.22, 7.37] 4.66 5 1.49 [4.60, 4.72]
4o-mini 6.93 7 1.94 [6.86, 7.01] 4.54 4 1.43 [4.49, 4.60]
M 6.90 7 1.89 [6.83, 6.98] 4.43 4 1.40 [4.37, 4.48]
D2 6.24 7 1.70 [6.17, 6.31] 2.17 2 1.27 [2.12, 2.22]

CoT
4o 7.62 8 1.53 [7.57, 7.69] 4.41 5 2.18 [4.33, 4.50]
4o-mini 7.44 8 1.43 [7.38, 7.49] 4.08 5 2.29 [3.99, 4.17]
M 6.67 7 1.73 [6.60, 6.73] 3.40 4 2.01 [3.32, 3.48]

Critics
4o 8.81 9 0.88 [8.78, 8.84] 6.76 7 2.01 [6.69, 6.84]
4o-mini 8.59 9 0.87 [8.56, 8.63] 6.48 7 2.02 [6.40, 6.56]
M 8.24 9 1.23 [8.20, 8.29] 6.17 6 2.04 [6.09, 6.25]

OC
4o 8.74 9 1.02 [8.70, 8.78] 6.83 7 2.02 [6.74, 6.92]
4o-mini 8.80 9 1.12 [8.76, 8.84] 8.03 9 2.12 [7.94, 8.13]
M 7.62 9 2.20 [7.53, 7.70] 7.43 8 1.91 [7.35, 7.52]

Table 1: Recipe adaptation quality under the RCF metric (higher is better). Results are reported side-by-side for
ChatGPT-4o and DeepSeek v3 evaluations across prompting strategies. ’Base’ refers to baseline methods; ’4o’ and
’4o-mini’ denote ChatGPT-4o and 4o-mini; ’M’ stands for Mistral-7B; ’D1’ and ’D2’ refer to DeepSeek-r1 671B
and 7B, respectively.

here to a single critique–revision cycle. We also
include the original (Source) instructions to con-
textualize model outputs. The evaluator prompts,
grading rubrics, and decision criteria are held fixed
across ChatGPT-4o and DeepSeek-v3.

Results for both datasets are summarized in Ta-
bles 1 and 2. For recipes, several trends emerge
consistently across evaluators. Baseline outputs
often underperform the Source, showing that naive
rewriting can degrade fidelity despite surface-level
plausibility. Among Baselines, D1 achieves the
highest score and in some cases approaches the per-
formance of advanced prompting strategies, sug-
gesting potential benefits of larger reasoning mod-
els. However, its standing drops under DeepSeek-
v3 evaluation, and manual inspection reveals ten-
dencies toward potentially verbose outputs and
unnecessary reasoning. These findings indicate
that while D1 can appear strong in certain set-
tings, its robustness and controllability remain open
to question; further analysis is provided in Ap-
pendix G. CoT yields moderate gains over Baseline
for smaller models (e.g., 4o-mini), but these ben-
efits diminish for larger ones such as 4o. Critics
improves upon Baseline in many cases but tends
to be conservative, frequently preserving redun-
dant steps or only partially integrating intended
ingredient changes. OC produces the most consis-
tent improvements across model scales, with the
most notable effect observed for 4o-mini, which

achieves the strongest scores under both evaluators.
Under ChatGPT-4o evaluation, Critics with 4o is
marginally higher (by about 0.01) than OC, yet OC
remains competitive and continues to demonstrate
strong adaptability across settings. Finally, we ob-
serve that for recipes evaluated with ChatGPT-4o,
some smaller models (e.g., M) show slightly lower
scores with OC compared to Critics, whereas un-
der DeepSeek-v3 evaluation OC remains consis-
tently stronger. This discrepancy prompted a man-
ual inspection, which revealed that the affected
cases often arise when the compaction stage of OC
requires faithful style transfer—a challenge that
smaller models struggle to maintain consistently.
Mitigation strategies for this issue are discussed in
Appendix B.

For repair instructions in the myfixit dataset,
analogous patterns hold across its heterogeneous
domains. Baseline and CoT offer limited or mixed
improvements, with performance varying by model
capacity and the complexity of the repair scenario.
Critics often yields cautious outputs but can leave
vestigial steps unresolved. In contrast, OC consis-
tently demonstrates robust adaptability: it delivers
targeted yet coherent edits that correctly update
repair procedures when a replacement part is intro-
duced. As in the recipe setting, the strongest con-
figuration involves OC with 4o-mini, under both
evaluators, confirming that OC is particularly effec-
tive at eliciting strong performance from smaller
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ChatGPT-4o Evaluation DeepSeek v3 Evaluation

Group LLM Mean Med Std 95%CI Mean Med Std 95%CI

Source 7.03 7 1.59 [6.89, 7.17] 6.57 7 1.81 [6.41, 6.72]

Base

D1 8.05 8 1.22 [7.95, 8.16] 7.20 8 1.73 [7.05, 7.36]
4o 7.30 8 1.58 [7.16, 7.44] 6.62 7 1.79 [6.46, 6.78]
4o-mini 7.09 7 1.61 [6.95, 7.23] 6.51 6 1.77 [6.35, 6.66]
M 6.86 7 1.54 [6.73, 7.00] 6.14 6 1.66 [5.99, 6.28]
D2 4.93 6 1.60 [4.79, 5.07] 3.62 4 1.29 [3.51, 3.74]

CoT

4o 7.31 8 1.43 [7.18, 7.44] 5.93 6 2.19 [5.73, 6.12]
4o-mini 7.11 7 1.36 [6.99, 7.23] 5.91 6 2.25 [5.72, 6.11]
M 6.38 6 1.63 [6.23, 6.52] 5.38 5 2.00 [5.21, 5.56]
D1 8.25 8 0.98 [8.17, 8.34] 7.29 8 1.90 [7.12, 7.45]
D2 5.09 6 1.61 [4.95, 5.23] 3.63 3 1.35 [3.51, 3.75]

Critics
4o 8.42 9 1.09 [8.32, 8.51] 7.95 8 1.47 [7.82, 8.08]
4o-mini 8.53 9 0.80 [8.46, 8.60] 8.12 8 1.38 [8.00, 8.24]
M 7.43 8 1.49 [7.30, 7.57] 6.70 7 2.18 [6.51, 6.89]

OC
4o 8.37 9 1.23 [8.26, 8.48] 7.77 8 1.64 [7.63, 7.91]
4o-mini 8.70 9 1.03 [8.61, 8.79] 8.82 9 1.46 [8.69, 8.95]
M 7.91 9 1.72 [7.76, 8.06] 7.85 8 1.74 [7.70, 8.01]

Table 2: myfixit fixing-instruction quality under the adapted RCF-style metric (higher is better). The metric follows
the same structure as RCF but with terminology and safety checks adapted to the repair-instruction domain.

models.
To provide additional context, we conclude this

section with two preliminary analyses that offer
broader perspective on the challenges involved.
First, we examine whether 4o demonstrates aware-
ness of strategies resembling OC (Appendix F).
Second, we explore why procedural text adapta-
tion remains difficult for LLMs, focusing on their
internal goals, prioritization patterns, and poten-
tial conflicts (Appendix E). Interested readers may
refer to these appendices for further insight.

4 Related Work

Procedural text adaptation. Prior work on pro-
cedural text adaptation has largely focused on
recipe adaptation, leveraging structured methods
or domain-specific models. Early approaches rep-
resented procedural steps and ingredient relations
via flow graphs and embeddings (Shirai and Kim,
2022). Subsequent research employed knowledge
graph-based substitutions (Shirai et al., 2021), hier-
archical editing (Li et al., 2022), and user-guided
critiquing (Antognini et al., 2023). Recent ef-
forts integrate LLMs, often fine-tuned for nar-
row tasks such as counterfactual generation (Liu
et al., 2022a), phytochemical enrichment (Wang
et al., 2023), recipe-grounded dialogue (Zhao et al.,
2023), and textual refinement (Li et al., 2023).
Over-generate-and-compact strategies. A com-
mon paradigm in NLP involves over-generating

candidates and compacting them via filtering, rank-
ing, or editing. This two-stage approach has im-
proved paraphrasing (Berro et al., 2021), QA (Al-
berti et al., 2019), style transfer (Suzgun et al.,
2022), and summarization (Zhong et al., 2020; Liu
et al., 2022b), by balancing fluency and factuality.
Over-generation followed by selection has shown
to outperform single-pass generation (Yang and
Li, 2023), and LLMs have been used similarly for
synthetic data creation and knowledge distillation
(Pham et al., 2023; He et al., 2022). However, its
application to procedural text adaptations remains
underexplored.

5 Conclusion and Future Work

We propose OC, a prompting strategy for proce-
dural text adaptation, and evaluate it through a
case study on recipe adaptation using a new met-
ric, RCF. Beyond cooking, our experiments also
demonstrate that OC successfully adapts general
repair instructions, indicating its broader applicabil-
ity across domains. While the present study centers
on procedural text, the approach may extend to
non-procedural adaptation tasks as well. Future
research directions are discussed in Appendix H.
Code, evaluation scripts, and full prompt templates
are publicly available.1

1https://github.com/boschresearch/oc-prompt
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Limitations

The study presented in this paper is subject to sev-
eral limitations that warrant consideration. First,
while our evaluation extends beyond recipes to in-
clude the myfixit dataset, the coverage remains lim-
ited in scope. The Xiachufang corpus provides Chi-
nese cooking recipes with ingredient substitutions
indirectly encoded through paired titles, whereas
the myfixit dataset covers a heterogeneous set of
repair instructions (e.g., clothing, consumer elec-
tronics, automotive maintenance). Although these
two settings are complementary, they do not cap-
ture the full diversity of procedural domains. Thus,
our findings should not be interpreted as universally
representative across all instructional or procedural
text.

Second, the recipe data employed translations
generated by LLMs, and the accuracy or fidelity
of these translations is not guaranteed. Errors or
imperfections in the translated content could have
influenced the evaluation results. Similarly, in the
case of myfixit, we programmatically generated
plausible alternative components using LLMs to
construct paired examples. While this approach
enabled controlled testing of substitution scenarios,
it inevitably introduces assumptions that may not
always align with real-world repair practices.

Third, human expert involvement was con-
strained by budgetary and temporal factors. The
limited number of reviewers and the potential gaps
in their expertise may have affected the reliability
of qualitative assessments. More extensive expert
evaluation would strengthen confidence in the con-
clusions.

Fourth, the experiments were conducted on a
restricted selection of LLMs. Although we tested
multiple prompting strategies across models of dif-
ferent sizes, this set does not exhaust the space of
possible architectures or capabilities. The reliance
on LLM-based evaluation tools such as g-eval fur-
ther introduces potential sources of bias, as these
evaluators may themselves be subject to systematic
limitations.

Finally, although we demonstrated that the pro-
posed methodology generalizes from recipes to re-
pair instructions, this does not constitute an exhaus-
tive validation across all procedural domains. Other
areas, such as medical protocols, legal drafting, or
highly specialized technical manuals, remain un-
explored due to the lack of publicly available data.
These limitations highlight directions for future

work aimed at improving the robustness, diversity,
and generalizability of procedural text adaptation
methodologies.

Ethics Statement

The qualitative evaluations of the recipes presented
in the appendix—specifically, the review and com-
mentary—were primarily conducted by internal
reviewers within the organization. All participating
reviewers were fairly compensated for their time
and contributions. These review activities were con-
ducted in alignment with the organization’s ethical
guidelines and internal standards for responsible
research practices.

Potential Risks

In addition to the empirical and scope-related lim-
itations discussed above, our framework presents
several methodological risks that warrant caution.
First, the OC strategy’s reliance on explicit over-
generation and compaction templates introduces a
risk of prompt overfitting, whereby outputs may
appear fluent and detailed only under narrowly
specified prompting conditions. This sensitivity
may undermine generalization, particularly in less-
structured or domain-divergent contexts. Moreover,
while compaction aims to distill verbose drafts
into concise instructions, it lacks formal guarantees
against semantic drift; important procedural nu-
ances may be inadvertently omitted during conden-
sation, especially when models compress instruc-
tions without robust alignment mechanisms. Re-
garding evaluation, although the RCF metric offers
domain-informed coverage of procedural errors, it
ultimately reflects an abstraction guided by a chain-
of-thought-based scoring process within the G-Eval
framework using an external LLM. As acknowl-
edged in the previous section, this dependency
raises concerns about evaluator bias, metric gam-
ing, and circularity in model assessment. Finally,
both the OC strategy and RCF were validated exclu-
sively within the culinary domain. Procedural texts
in more formal or safety-critical settings—such as
healthcare or technical maintenance—may resist
adaptation via this framework without substantial
re-design. These considerations point to the neces-
sity of validating the framework beyond the current
domain and implementing mechanisms to detect
fidelity degradation or evaluation anomalies during
practical use.
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A Formalization

We formalize our OC strategy in two steps. We
first present a baseline approach, then introduce
the OC pipeline along with the core mathematical
notations and formulations.

A.1 Baseline
In the most straightforward approach, a single-step
transformation is performed from the base instruc-
tion set to the target. Let

B = (bm, bo) and T = (tm, to),

where

• bm: base instruction (e.g., the original input
instructions such as a cooking recipe or step-
by-step guidelines for a car-repair process);

• bo: base outcome (e.g., the name or end prod-
uct of the original instructions, such as a dish
name or a repair-process name);

• tm: target instruction (e.g., the newly mod-
ified instructions, such as a revised cooking
recipe or updated repair steps);

• to: target outcome (e.g., the desired name
or end product after modification, such as a
new dish name or an alternative repair-process
name).

A naïve direct modification can be expressed as

fnaive : (bm, bo, to) 7→ tm,

such that

tm = LLM(bm, bo, to).

This single-shot prompt must satisfy all constraints
simultaneously, often resulting in limited or super-
ficial modifications.

A.2 OC Strategy

To enable broader exploration before refinement,
we propose

tm = fcompact
(
fovergen(B, to)

)
.

Here, fovergen produces an intermediate verbose
text O, and fcompact compresses O into the concise
yet thorough final output tm.

Over-Generation The LLM is first prompted to
generate a more exhaustive or expanded version of
the target instruction:

O = fovergen(bm, bo, to).

This stage relaxes length constraints, encourag-
ing the model to incorporate relevant nuances; ab-
stractly, O is produced to maximize content- and
detail-oriented objectives.

Compaction Given the over-generated text O,
we then compress it to a form closer to the original
instruction’s length or structure:

tm = fcompact(O).

This step removes redundancy while retaining es-
sential modifications. The final text tm should re-
main consistent with the desired outcome to.

B Prompt Details

This section discloses all prompts used in our eval-
uation. For the example recipe in the main paper,
we also include the corresponding output. All re-
sults shown here were obtained with ChatGPT-4o.
The prompts illustrate how a steamed turbot recipe
is transformed into a steamed hairy-crab recipe
through our method. This task takes three input
parameters—base_outcome, base_instruction, and
target_outcome.

Due to an encoding limitation in the
lstlisting environment, Mandarin charac-
ters are not displayed correctly in this section.
Nevertheless, we explicitly provide the original
Mandarin strings for both base_outcome and
target_outcome to ensure that the language model
is instructed to process the Chinese version of the
recipe. For example, the value of base_outcome
is given as Steamed Turbot (Qı̄ng zhēng duō bǎo
yú) rather than the simplified Steamed Turbot. The
recipe used in this instance corresponds to entry
301 (or the line numbered 301) in the Xiachufang
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Recipe Corpus. The complete set of prompts,
input–output pairs, and parameter values used
to transform the steamed-turbot recipe into its
steamed-hairy-crab variant are provided in our
public code repository.

{base_outcome}: Steamed Turbot
{base_instruction}: "Oh, Turbot imbued with

dark powers, reveal your true strength
before me! Now, by the name of your master,
Xiao Ji, I command you - release the seal!
Gather all the ingredients. Cut the
scallions and ginger, and place them on an
empty plate to separate the fish from the
plate, preventing the fish skin from
sticking during steaming. Clean and gut the
fresh turbot, then make a few cuts on its
body. Sprinkle salt and cooking wine, and
marinate for 15 minutes. Place the sliced
scallions and ginger on the fish, and pour
in the seasoned soy sauce for seafood. In
an Amway Queen wok, bring water to a boil,
place the fish on the steaming rack, and
steam for about 8 minutes. Meanwhile, in an
Amway Queen 1.4L pan, heat a suitable
amount of Amway Queen extra virgin olive
oil, add chopped scallions and the seasoned
soy sauce for seafood, and stir-fry until
fragrant. Once the fish is done steaming,
sprinkle some shredded scallions, goji
berries, and cilantro. Finally, drizzle the
hot fragrant oil over the top! Perfect~

{target_outcome}: Steamed Hairy Crab

Listing 1: Input parameters for adapting a base
instruction

With these parameters, the following prompt is
used to evaluate the baseline approach.

B.1 Baseline

# adjust_instruction
You are a professional content creator. The

[Base Instruction] produces the [Base
Outcome], and your goal is to transform the
[Base Instruction] into the [Target
Instruction] to produce the [Target
Outcome]. Output only the final transformed
[Target Instruction] without any additional
commentary or explanations.

[Base Outcome]: {base_outcome}
[Base Instruction]: {base_instruction}
[Target Outcome]: {target_outcome}

Listing 2: Baseline prompt

The result of the above prompt is as follows. As
noted in the introduction, the baseline typically per-
forms only shallow edits; the precise omissions
vary across runs and models, but we generally ob-
serve that many models struggle with recipe trans-
formations requiring substantial structural changes
such as in this example.

Oh, Hairy Crab imbued with dark powers, reveal
your true strength before me! Now, by the
name of your master, Xiao Ji, I command you
- release the seal! Gather all the
ingredients. Cut the scallions and ginger,
and place them on an empty plate to
separate the crab from the plate,
preventing sticking during steaming. Clean
the fresh hairy crab thoroughly. Place the
sliced scallions and ginger on the crab,
and pour in the seasoned soy sauce for
seafood. In an Amway Queen wok, bring water
to a boil, place the crab on the steaming
rack, and steam for about 15 minutes.
Meanwhile, in an Amway Queen 1.4L pan, heat
a suitable amount of Amway Queen extra
virgin olive oil, add chopped scallions and
the seasoned soy sauce for seafood, and
stir-fry until fragrant. Once the crab is
done steaming, sprinkle some shredded
scallions, goji berries, and cilantro.
Finally, drizzle the hot fragrant oil over
the top! Perfect

Listing 3: Output from baseline prompt

B.2 OC
We initially implemented the OC strategy with two
prompts. First, expand_instruction performs
the over-generation phase.

# expand_instruction
You are a professional content creator. The

[Base Instruction] produces the [Base
Outcome], and your goal is to transform the
[Base Instruction] into the [Target
Instruction] to produce the [Target
Outcome]. Do not worry about the format,
structure, or length of the [Target
Instruction]. However, your output must be
a comprehensive, expanded version of the
[Target Instruction] that is at least 1000
times longer than the original [Base
Instruction]. You must incorporate all
relevant knowledge, information, best
practices, important considerations, as
well as warnings or pitfalls to avoid -
essentially, everything you know about the
subject. Output only the final [Target
Instruction], with no additional commentary
or explanation.

[Base Instruction]: {base_instruction}
[Base Outcome]: {base_outcome}
[Target Outcome]: {target_outcome}

Listing 4: Prompt for over-generation

Its full output is as follows. The reason we
ask for a “1,000×” expansion is that smaller mul-
tipliers do not reliably force the model to elab-
orate: requests for only a two-fold increase still
produce the same shallow edits—or outright hallu-
cinations—observed in the baseline. Although we
lack a rigorous quantitative study (due to time and
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resource constraints), empirical trials showed that
“1,000×” is large enough to push the LLM beyond
the brevity bias it acquired during RL fine-tuning,
yet still feasible given model limitations. The exact
multiplier remains an open question. Naturally, out-
put length and detail vary by run and by model; we
hypothesize that this variance reflects the amount of
domain knowledge encoded in each model. Quan-
tifying such “knowledge density” would be useful
because it directly affects revision quality, but that
investigation is outside the present scope.
"source_recipe": \n\nOh, Hairy Crab imbued with

the essence of the rivers and lakes, reveal
your unparalleled delicacy before me! Now,
by the name of your master, Xiao Ji, I
summon your true flavor to the table!
Prepare yourself for the ultimate
transformation into a dish of perfection.
Gather all the necessary tools,
ingredients, and knowledge to ensure the
success of this culinary endeavor. Let us
embark on this journey to create the most
exquisite Steamed Hairy Crab (), a dish
that embodies the pinnacle of simplicity
and elegance in Chinese cuisine. \n\n###
Step 1: Selecting the Hairy Crabs \nThe
foundation of a perfect Steamed Hairy Crab
lies in the selection of the crabs
themselves. Choose live, fresh, and healthy
hairy crabs, preferably in season (autumn
is ideal, as this is when the crabs are at
their fattest and most flavorful). Look for
crabs with the following characteristics:
\n- **Lively Movement**: The crabs should
be active and responsive when touched. \n-
**Firm Shells**: A hard shell indicates a
healthy and well-fed crab. \n- **Full
Abdomen**: The underside of the crab should
be plump and firm, indicating a high roe
content in females or rich meat in males.
\n- **Bright Coloration**: The shell should
have a glossy, vibrant appearance, free of
blemishes or discoloration. \n\n### Step 2:
Preparing the Crabs \nOnce you have
selected your crabs, it is essential to
handle them with care to preserve their
freshness and flavor. Follow these steps:
\n1. **Cleaning the Crabs**: \n - Use a
soft brush to scrub the crabs under running
water, paying special attention to the
legs, claws, and underside to remove any
dirt or debris. \n - Be cautious of the
crabs' pincers; use a pair of tongs or wear
gloves if necessary. \n\n2. **Tying the
Crabs**: \n - To ensure even cooking and to
prevent the crabs from moving during
steaming, tie their legs and claws securely
with kitchen twine. This step also helps
maintain the crabs' shape for an attractive
presentation. \n\n3. **Optional Soaking**:
\n - If desired, soak the crabs in clean,
cold water for 30 minutes to allow them to
expel any impurities. \n\n### Step 3:
Preparing the Steaming Equipment \nThe
steaming process is critical to achieving
the perfect texture and flavor of the hairy

crab. Use a high-quality steamer or wok
with a steaming rack. Follow these steps:
\n1. **Boiling Water**: \n - Fill the
steamer or wok with enough water to create
steam for the entire cooking duration.
Bring the water to a rolling boil before
placing the crabs inside. \n\n2. **Aromatic
Additions**: \n - To enhance the flavor of
the crabs, consider adding a few slices of
ginger, scallions, or a splash of Chinese
cooking wine () to the boiling water. These
aromatics will infuse the steam with a
subtle fragrance that complements the
natural sweetness of the crab meat. \n\n###
Step 4: Steaming the Crabs \n1. **Arranging
the Crabs**: \n - Place the crabs on the
steaming rack with their shells facing
upward. This position helps retain the
juices and roe inside the shell during
cooking. \n - Ensure the crabs are arranged
in a single layer, with enough space
between them to allow steam to circulate
evenly. \n\n2. **Steaming Time**: \n -
Cover the steamer or wok with a
tight-fitting lid to trap the steam. Steam
the crabs over high heat for 1520 minutes,
depending on their size. \n - Avoid
overcooking, as this can cause the meat to
become dry and tough. \n\n3. **Checking for
Doneness**: \n - The crabs are fully cooked
when their shells turn a bright orange-red
color, and the aroma of fresh crab fills
the air. \n\n### Step 5: Preparing the
Dipping Sauce \nWhile the crabs are
steaming, prepare a traditional dipping
sauce to enhance their natural flavor. The
classic accompaniment for Steamed Hairy
Crab is a simple yet flavorful sauce made
with black vinegar and ginger. Follow these
steps: \n1. **Ingredients**: \n - 23
tablespoons of Chinese black vinegar () \n
- 12 slices of fresh ginger, finely
julienned \n - Optional: A few drops of
sesame oil or a pinch of sugar for added
depth \n\n2. **Mixing the Sauce**: \n -
Combine the black vinegar and ginger in a
small dipping bowl. Adjust the proportions
to suit your taste preferences. \n\n3.
**Serving the Sauce**: \n - Serve the
dipping sauce alongside the steamed crabs,
allowing diners to enjoy the interplay of
the tangy vinegar, spicy ginger, and sweet
crab meat. \n\n### Step 6: Serving the
Crabs \n1. **Plating the Crabs**: \n -
Arrange the steamed crabs on a large
serving platter, garnished with fresh
cilantro or parsley for a touch of color.
\n - Provide each diner with a small plate,
a pair of crab scissors, and a crab pick or
fork for extracting the meat and roe.
\n\n2. **Accompaniments**: \n - Steamed
Hairy Crab is often enjoyed with a warm cup
of Shaoxing wine () or a pot of hot tea,
both of which help balance the richness of
the crab and aid digestion. \n\n### Step 7:
Enjoying the Crabs \n1. **Eating the
Crabs**: \n - Begin by removing the top
shell (carapace) to reveal the golden roe
(in females) or creamy tomalley (in males).
Savor these delicacies first, as they are
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considered the highlight of the dish. \n -
Use the crab scissors and pick to extract
the meat from the legs, claws, and body.
Dip each piece into the prepared sauce for
an added burst of flavor. \n\n2. **Pacing
Yourself**: \n - Eating hairy crab is a
slow and meticulous process, but the effort
is well worth it. Take your time to
appreciate the delicate sweetness of the
meat and the richness of the roe. \n\n###
Step 8: Cleaning Up \n1. **Discarding the
Shells**: \n - Provide a separate bowl or
plate for discarded shells to keep the
dining area tidy. \n - Dispose of the
shells responsibly, as they can emit a
strong odor if left out for too long.
\n\n2. **Washing Utensils**: \n - Clean the
steaming equipment, dipping sauce bowls,
and crab tools thoroughly to remove any
residual odors or oils. \n\n### Important
Considerations and Tips \n-
**Seasonality**: Hairy crabs are best
enjoyed during their peak season, typically
from September to November. \n- **Gender
Preference**: Female crabs are prized for
their roe, while male crabs are valued for
their meat. Choose according to your
preference or include both for variety. \n-
**Health Precautions**: Pregnant women and
individuals with shellfish allergies or
certain health conditions should consult a
doctor before consuming hairy crab. \n-
**Sustainability**: Purchase crabs from
reputable sources that practice sustainable
harvesting to support the environment and
local communities. \n\n### Warnings and
Pitfalls to Avoid \n- **Overcooking**:
Steaming the crabs for too long can result
in dry, rubbery meat. Monitor the cooking
time carefully. \n- **Improper Cleaning**:
Failing to clean the crabs thoroughly can
lead to an unpleasant dining experience.
Take the time to remove all dirt and
impurities. \n- **Low-Quality
Ingredients**: Using subpar crabs or
vinegar can compromise the flavor of the
dish. Invest in high-quality ingredients
for the best results. \n- **Neglecting
Safety**: Handle live crabs with care to
avoid injury from their pincers. \n\nWith
these steps, tips, and considerations, you
are now equipped to create the ultimate
Steamed Hairy Crab, a dish that celebrates
the natural beauty and flavor of this
prized delicacy. Enjoy!

Listing 5: Output from over-generation

Although this lies slightly outside our paper’s
focus, we typically observe that if the LLM mis-
understands the target_outcome this mistake sur-
faces at the over-generation stage. Consequently,
additional techniques—e.g., self-refinement or ex-
ternal critics—can be applied here before proceed-
ing. Next, compact_instruction handles the
compaction phase.
# compact_instruction

You are a professional content creator working
with the [Source Instruction], which
contains rich details intended to achieve
the [Target Outcome]. Your task is to
condense the [Source Instruction] into the
[Target Instruction]. Provide only the
condensed [Target Instruction], with no
additional comments or explanation.
Disregard the original format of the
[Source Instruction], but ensure that the
[Target Instruction] strictly matches the
length and format of the [Base Instruction].

[Base Instruction]: {base_instruction}
[Source Instruction]: {source_instruction}
[Target Outcome]: {target_outcome}

Listing 6: Prompt for compaction

For smaller-scale LLMs (7B–12B parameters)
whose compaction ability is weaker, we further di-
vide this phase into two sub-steps: (i) selecting only
the essential procedural steps needed for the target
outcome, and (ii) rewriting that distilled content
to match the style and length of the base instruc-
tion. Contrary to our initial expectation that over-
generation would be harder, small models struggle
more with this stylistic transfer.

## compact_instruction
You are an experienced content editor. Refine

[Instruction-B], which includes detailed
steps to achieve [Outcome-B], into the
version containing only the essential steps
and details necessary for [Outcome-B].
Provide the refined version as the sole
output without any additional commentary or
explanations.

Input Parameters:
- [Outcome-B]: {outcome_b}
- [Instruction-B]: {instruction_b}

## transfer_instruction
You are an experienced content editor.

[Instruction-B] is the instruction that
produces [Outcome-B]. Rewrite
[Instruction-B] to match the length, style,
tone, and format of [Instruction-A]. The
rewritten [Instruction-B] must still
produce [Outcome-B]. Provide the rewritten
version as the sole output without any
additional commentary or explanations.

Input parameters:
- [Instruction-A]: {instruction_a}
- [Instruction-B]: {instruction_b}
- [Outcome-B]: {outcome_b}

Listing 7: Prompts for compaction and transfer

The outputs of each sub-step are shown below.
The first listing is the compacted version that con-
tains only the indispensable procedures.
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"compacted_recipe": "### Refined Instructions
for Steamed Hairy Crab ()\n\n1. **Select
Fresh Crabs**: Choose live, active hairy
crabs with firm shells and plump abdomens,
preferably in season (autumn).\n\n2.
**Clean and Tie Crabs**: Scrub crabs under
running water with a soft brush. Tie their
legs and claws with kitchen twine to
maintain shape during steaming.\n\n3.
**Prepare Steamer**: Boil water in a
steamer or wok. Add ginger slices or a
splash of Chinese cooking wine to the water
for aroma.\n\n4. **Steam Crabs**: Place
crabs shell-side up on the steaming rack in
a single layer. Steam over high heat for
1520 minutes until shells turn bright
orange-red.\n\n5. **Make Dipping Sauce**:
Mix 23 tablespoons of Chinese black vinegar
with julienned ginger. Optionally, add
sesame oil or sugar.\n\n6. **Serve and
Enjoy**: Arrange crabs on a platter. Serve
with dipping sauce, crab tools, and
optional Shaoxing wine or hot tea. Savor
the roe and meat slowly.",

Listing 8: Output from compaction

After the essential steps are fixed, the model
focuses solely on stylistic rewriting, producing the
result below.

Oh, Hairy Crab blessed by the autumn winds,
reveal your finest flavors before me! Now,
by the name of your master, Xiao Ji, I
summon you - release your essence! Select
live, active hairy crabs with firm shells
and plump abdomens, ensuring they are in
season. Scrub the crabs under running water
with a soft brush, then tie their legs and
claws with kitchen twine to preserve their
shape during steaming. In an Amway Queen
wok, bring water to a boil, adding ginger
slices or a splash of Chinese cooking wine
for aroma. Place the crabs shell-side up on
the steaming rack in a single layer, and
steam over high heat for 1520 minutes until
their shells turn bright orange-red.
Meanwhile, prepare the dipping sauce by
mixing 2-3 tablespoons of Chinese black
vinegar with julienned ginger, and
optionally add sesame oil or sugar. Once
the crabs are done steaming, arrange them
on a platter and serve with the dipping
sauce, crab tools, and optional Shaoxing
wine or hot tea. Relish the roe and meat
slowly. Perfect~

Listing 9: Output after style transfer

Most models extract the essentials reliably, but
small models sometimes exhibit weaknesses in
style transfer. These weaknesses, however, are
amenable to mitigation. According to our obser-
vation, instructing the model to follow explicit
transformation rules step by step is more effective:
since small models may fail to perform style trans-
fer in a single step, dividing the process into two

phases improves results. First, extract the stylis-
tic elements of the input/base instruction (e.g., ex-
press cooking steps in declarative sentences, avoid
numbering, integrate cautions naturally into the
text), and second, rewrite the instruction from the
over-generation step to conform to this extracted
style. With this two-step setup, smaller models can
perform a ‘style summarization’ first and then ap-
ply the transformation more accurately. Finally, it
should be noted that this remedy was not applied
during our evaluation experiments. For fairness,
all models—regardless of capacity—were tested
under the same prompting setup. Introducing a spe-
cial prompt tailored only for smaller models would
have biased the comparison. Nevertheless, outside
of benchmarking contexts, such constraint-based
prompting provides a practical means to improve
stylistic transfer reliability in real-world applica-
tions.

B.3 Chain-of-Thought (CoT)

The following example illustrates the prompt used
to incorporate Chain-of-Thought (CoT) reasoning
in our experiments. This prompt is structurally sim-
ilar to the baseline but includes an additional step
in which a reasoning process is explicitly generated
prior to producing the [Target Instruction]. Inspired
by DeepSeek-R1 variants, the prompt is designed
to elicit a [Thought] in the form of a recipe-style
explanation, which is then used to derive the final
instruction. This format facilitates the evaluation
of whether the intermediate reasoning step mean-
ingfully contributes to the quality or relevance of
the revised instruction.

## adjust_instruction
You are a professional content creator. The

[Base Instruction] produces the [Base
Outcome], and your goal is to transform the
[Base Instruction] into the [Target
Instruction] to produce the [Target
Outcome]. First, provide a [Thought] that
walks through your reasoning process
step-by-step. Then, write the [Target
Instruction] based on that reasoning.
Output only the [Thought] and [Target
Instruction], with no additional
explanation or commentary.

[Base Outcome]: {base_outcome}
[Base Instruction]: {base_material}
[Target Outcome]: {target_outcome}

Listing 10: Prompt for CoT

The excerpt below presents a sample output gen-
erated using the CoT prompt above. Unfortunately,
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the [Thought] component fails to provide suffi-
ciently detailed reasoning regarding how the recipe
should be adapted. In practice, the results showed
little improvement over the baseline, with persis-
tent issues remaining. Specifically, for this dish,
the model was expected to generate a dipping sauce
suitable for crab rather than a seasoning typically
used in fish dishes—yet this adaptation was not
observed.

[Thought]: To transform the [Base Instruction]
for Steamed Turbot into the [Target
Instruction] for Steamed Hairy Crab, I need
to adapt the recipe steps to suit the
preparation and cooking of hairy crab while
maintaining the same style and structure.
Hairy crab requires cleaning, steaming, and
seasoning, but the specific ingredients and
techniques will differ slightly. I will
replace the turbot-specific steps (e.g.,
cutting the fish, marinating, and adding
soy sauce) with hairy crab-specific steps
(e.g., cleaning the crab, steaming it
whole, and using appropriate seasonings).
The steaming process and final garnishing
will also be adjusted to suit the crab
dish.\n\n[Target Instruction]: Oh, Hairy
Crab imbued with dark powers, reveal your
true strength before me! Now, by the name
of your master, Xiao Ji, I command you -
release the seal! Gather all the
ingredients. Clean the hairy crabs
thoroughly, scrubbing their shells to
remove any dirt. Tie the claws with kitchen
twine to prevent them from moving during
steaming. Prepare sliced ginger and
scallions, and place them on an empty plate
to separate the crabs from the plate,
preventing sticking during steaming. In an
Amway Queen wok, bring water to a boil, add
a splash of cooking wine and a few slices
of ginger to the water for added aroma.
Place the crabs on the steaming rack,
cover, and steam for about 15 minutes until
the shells turn bright orange. Meanwhile,
in an Amway Queen 1.4L pan, heat a suitable
amount of Amway Queen extra virgin olive
oil, add chopped scallions and a pinch of
salt, and stir-fry until fragrant. Once the
crabs are done steaming, garnish with
shredded scallions and cilantro. Finally,
drizzle the hot fragrant oil over the top!
Perfect~

Listing 11: Sample reasoning process and target recipe
from CoT

B.4 Self-Refine (Critics)
This section describes the self-refine approach used
solely for benchmarking. In the original frame-
work, refinement with critics is repeated until con-
vergence; however, for a fair comparison we ex-
ecute only a single iteration. Additional cycles
indeed improve quality, but the process is time-

and cost-intensive and, as with the DeepSeek-R1
variant discussed later, lacks a clear stopping cri-
terion. Hence our goal is simply to measure the
first-order gain after one refinement pass. The ini-
tial prompt and the output here are essentially the
same as in the baseline, thus we omit them. Next,
we ask the LLM, acting as a critic, to evaluate its
own recipe. We deliberately avoid domain-specific
hints yet supply high-level procedural guidelines.

# review_instruction
You are an expert reviewer. Your task is to

critically analyze and evaluate the
provided [Target Instruction] for [Target
Outcome]. This content is adapted from
[Base Outcome], meaning it may contain
unnecessary steps, inconsistencies, or
parameters that need adjustment. Assess the
content based on practicality, clarity,
consistency, resource/method selection, and
overall effectiveness in achieving a
high-quality final outcome. Identify
potential issues such as ambiguities,
impractical steps, or mismatches, and
provide constructive feedback for
improvement. Do not rewrite the
Instructionfocus solely on analysis and
critique.

[Base Outcome]: {base_outcome}
[Target Instruction]: {target_instruction}
[Target Outcome]: {target_outcome}

Listing 12: Prompt for feedback generation

The resulting critique is typically quite
long—comparable in length to the over-generation
phase. This highlights a non-trivial overhead: hav-
ing the model exhaustively criticize initial errors
is, in effect, not so different from asking it to over-
generate in the first place.

### Critical Analysis and Evaluation of the
[Instruction] in Relation to Achieving the
[Outcome]

The [Instruction] provided outlines a process
for preparing Steamed Hairy Crab (). While
the steps are generally clear and lead to
the intended [Outcome], there are several
areas where the instructions could be
improved for clarity, precision, and
alignment with best practices in culinary
preparation. Below is a detailed critique:

---

### Strengths:
1. **Detailed Cleaning Process**: The

instruction emphasizes cleaning the hairy
crabs thoroughly, which is essential for
ensuring the dish is hygienic and free of
impurities. This step is critical for
achieving the desired [Outcome].

19319



2. **Retention of Juices**: The instruction
specifies placing the crabs belly-up on the
steaming rack, which is a thoughtful detail
to preserve the natural juices of the crab
during steaming. This contributes to the
flavor and texture of the dish.

3. **Dipping Sauce Preparation**: The inclusion
of a dipping sauce recipe adds depth to the
dish and enhances the overall dining
experience. The combination of seasoned soy
sauce, minced ginger, and vinegar is a
classic pairing for seafood.

4. **Garnishing**: The use of shredded
scallions and cilantro as garnish adds
visual appeal and a fresh aromatic element
to the dish.

---

### Issues and Areas for Improvement:

1. **Inconsistent Tone and Language**:
- The opening lines ("Oh, Hairy Crab imbued

with dark powers...") are overly
dramatic and whimsical, which may
confuse the reader about the seriousness
of the instructions. While creative
language can add flair, it detracts from
the clarity and professionalism expected
in a recipe. This tone shift may
alienate readers who are looking for
straightforward culinary guidance.

2. **Ambiguity in Ingredient Preparation**:
- The instruction mentions "gather all the

ingredients" but does not specify what
these ingredients are beyond the crabs,
dipping sauce components, and garnishes.
For a recipe to be effective, it should
list all required ingredients explicitly
at the beginning to avoid confusion.

3. **Equipment Specification**:
- The instruction specifies using an "Amway

Queen wok," which may not be accessible
or familiar to all readers. While it is
helpful to recommend equipment, the
recipe should clarify whether any
standard steaming setup (e.g., a regular
wok or steamer) would suffice. This
would make the instructions more
inclusive and adaptable.

4. **Cooking Time Precision**:
- The steaming time of "about 15 minutes" is

vague and does not account for
variations in crab size or steaming
equipment. Larger crabs may require more
time, while smaller ones may overcook in
15 minutes. The instruction should
provide guidance on how to check for
doneness (e.g., "steam until the shells
turn bright orange and the meat is
firm").

5. **Safety Considerations**:
- The instruction does not address safety

precautions when handling live crabs,

which can be aggressive and difficult to
manage. Including a note on how to
safely handle and clean live crabs would
be beneficial for readers unfamiliar
with this process.

6. **Sequence of Steps**:
- The instruction jumps between tasks (e.g.,

steaming crabs and preparing the dipping
sauce) without clearly delineating the
sequence. For better flow, the recipe
could suggest preparing the dipping
sauce and garnishes *before* steaming
the crabs, ensuring all components are
ready when the crabs are done.

7. **Cultural Context**:
- While the recipe achieves the [Outcome],

it does not provide any cultural or
culinary context for Steamed Hairy Crab
(). Including a brief explanation of the
dish's significance or origin would
enrich the reader's understanding and
appreciation of the recipe.

---

### Constructive Feedback:

1. **Refine the Tone**: Replace the whimsical
opening with a more professional and
engaging introduction that sets the stage
for the recipe. Creative language can be
used sparingly but should not overshadow
the clarity of the instructions.

2. **List Ingredients Explicitly**: Provide a
clear and complete list of ingredients at
the beginning of the recipe, including
quantities for the dipping sauce components
and garnishes.

3. **Generalize Equipment**: Instead of
specifying a brand, describe the type of
equipment needed (e.g., "a wok or steamer
with a steaming rack"). This makes the
recipe more accessible to a wider audience.

4. **Clarify Cooking Time**: Offer guidance on
how to adjust steaming time based on crab
size and provide visual or tactile cues for
doneness.

5. **Include Safety Tips**: Add a note on
handling live crabs safely, such as using
tongs or gloves to avoid injury.

6. **Improve Step Sequencing**: Reorganize the
steps to ensure a logical flow, such as
preparing the dipping sauce and garnishes
before steaming the crabs.

7. **Add Cultural Context**: Include a brief
note about the dish's cultural significance
or traditional serving practices to enhance
the reader's connection to the recipe.

---

### Conclusion:
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The [Instruction] successfully outlines the
process for achieving the [Outcome] of
Steamed Hairy Crab (), but it could benefit
from greater clarity, precision, and
inclusivity. Addressing the issues
identified above would make the recipe more
user-friendly, professional, and culturally
enriching, ensuring a better experience for
readers and cooks alike.

Listing 13: Sample feedback

Finally, we feed the feedback back into the
model for revision.

# revise_instruction_on_feedback
You are a professional content creator.

Previously, you adapted [Base Instruction],
which produces [Base Outcome], to create
[Target Instruction], which produces
[Target Outcome]. An independent reviewer
has analyzed [Target Instruction] and
provided feedback, listed as [Feedback].
Revise [Target Instruction] based on the
[Feedback], addressing any issues.
Disregard the original format of [Target
Instruction] and strictly match the length
and format of [Base Instruction]. Output
only the final revised Instruction, with no
additional commentary or explanation.

[Base Instruction]: {base_instruction}
[Base Outcome]: {base_outcome}
[Target Outcome]: {target_outcome}
[Target Instruction]: {target_instruction}
[Feedback]: {feedback}

Listing 14: Prompt that revises a recipe based on
feedback

A representative revision produced by this
prompt is shown below. Compared with the ver-
sion described in the main paper, this particular
run is slightly better: the dipping-sauce section
is fixed, yet some details—such as crab prepara-
tion nuances—remain incomplete. Moreover, ves-
tiges like ‘Once the crabs are done, garnish with
shredded scallions and cilantro for a fresh aromatic
touch,’ inherited from the original recipe, are ar-
guably unnecessary. Such residual or superfluous
steps are frequently observed; while the recipe
is still feasible and the evaluation metrics are ac-
ceptable, its detail remains less polished or some-
times incorrect than versions produced by the OC
pipeline.

Oh, Hairy Crab, the jewel of autumn feasts,
reveal your true essence before me! Now, by
the name of your master, Xiao Ji, I summon
you - release your flavor! Begin by
gathering all the necessary ingredients:
fresh hairy crabs, scallions, cilantro,
seasoned soy sauce for seafood, minced
ginger, and vinegar. Clean and brush the

crabs thoroughly to remove any dirt,
ensuring they are pristine. Place the crabs
belly-up on a steaming rack to preserve
their natural juices during cooking. In a
wok or steamer, bring water to a boil, then
steam the crabs for 1520 minutes, or until
their shells turn bright orange and the
meat is firm. While the crabs steam,
prepare a dipping sauce by combining
seasoned soy sauce, minced ginger, and a
splash of vinegar. Once the crabs are done,
garnish with shredded scallions and
cilantro for a fresh aromatic touch. Serve
the crabs alongside the dipping sauce, and
let their delicate sweetness shine! Perfect.

Listing 15: Sample target recipe after one critic pass

Both the critic-based and OC pipelines could be
further improved by embedding domain-specific
checks in the prompts—for example, explicit veri-
fication of ingredient lists or quantity consistency
in recipes. In this study, however, we deliberately
omit such details, not only to ensure a fair bench-
mark across methods but also to keep the prompts
domain-agnostic so they can be reused verbatim
for other procedural genres (e.g., car-repair man-
uals) with minimal effort. Exploring how to add
lightweight, domain-aware constraints while pre-
serving cross-domain portability is an interesting
direction for future work, but it lies beyond the
scope of the present paper.

C Additional Details on Evaluation

C.1 Description and Preparation of
Experimental Data

Xiachufang Recipe Dataset. For counterfactual
adaptation in the culinary domain, we employ the
Xiachufang Recipe Corpus, which originates from
the Xiachufang recipe-sharing platform2 and was
first introduced by Liu et al. (2022a). The corpus
contains approximately 2,500 recipes in Mandarin,
publicly released in CSV format.

For our purposes, all texts were translated into
English to align with downstream applications tar-
geting a global audience. This translation step also
allowed us to test adaptation performance in a set-
ting where cultural and linguistic characteristics
may be underrepresented in English-language re-
sources. To ensure stylistic fidelity and consistency,
the same ChatGPT-4o model was used for both
translation and downstream experiments, with a
standardized prompt designed to preserve the orig-
inal writing style. The translated dataset retains

2https://www.xiachufang.com
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both Mandarin and English texts in a unified JSON
format, enabling bilingual evaluation during infer-
ence. The translation procedure was guided by the
following prompt:

Translate the dish names and recipe texts in
English. Maintain original writing styles
used in [Base Recipe].

Base Dish: {base_dish}
Base Recipe: {base_recipe}
Target Dish: {target_dish}

Listing 16: Prompt for Recipe Translation

MyFixit Instruction Dataset. To complement
the recipe domain with a more diverse set of pro-
cedural instructions, we also extend the MyFixit
dataset, a semi-structured collection of repair manu-
als originally introduced by Nabizadeh et al. (2020).
The original corpus contains stepwise repair in-
structions from the iFixit platform, enriched with
metadata such as device categories, tool require-
ments, and disassembled components.

For counterfactual adaptation, we constructed ad-
ditional component substitution scenarios. While
the base dataset focuses on instructions for replac-
ing specific parts, we prompted a large language
model to propose plausible alternative components
within the same device. Each scenario was then
structured as a triple consisting of the original com-
ponent, the corresponding instruction, and the sub-
stituted component. Approximately 500 examples
were manually curated through a two-stage vali-
dation process: (1) domain experts retained only
cases where the substituted component could be
confidently verified as a legitimate part of the de-
vice, and (2) a separate group of experts randomly
inspected 30–40 curated samples to confirm overall
reliability.

The resulting dataset spans heterogeneous do-
mains—including consumer electronics, household
appliances, clothing alterations, and automotive
maintenance—making it particularly suitable for
testing adaptation strategies across diverse proce-
dural contexts. The prompt used to generate substi-
tution candidates is shown below:

You are given a structured instruction for a
repair or alteration task. Each instance
comprises a Title, Toolbox, Steps, and
other metadata. Your objective is to
produce a plausible **variant** of this
task by altering one major component (e.g.,
replacing one material, object, or subject
being fixed) with a similar but distinct
alternative.

To achieve this:
1. Identify the original tasks key component

that drives the repair (e.g., ribbon
button, watch crystal, jean patch).

2. Ensure compatibility and distinctness of the
alternative component:

- The alternative component exists within
the same device model or is commonly
used in similar models of the device.

- The alternative component is part of the
same repair domain as the original
(e.g., screen types, buttons, straps).

- Do not introduce new component types that
are not present in the devices
specifications.

- Do not select different variants or models
of the same component type (e.g., avoid
replacing a specific camera model with
another camera model).

- Do not select components that serve the
same or very similar functions as the
original component (e.g., avoid
replacing thermal paste with thermal
pad).

- Infer the devices available components
based on the original structured
instruction to avoid selecting
non-existent parts.

3. Select a distinct alternative component that:
- Belongs to the same repair domain but is

substantially different from the
original component (avoiding
near-synonyms or identical functions).

- Is a different component type within the
same domain, ensuring it performs a
distinct function (e.g., replacing a
thermal paste with a cooling fan instead
of another thermal material).

- Would entail non-trivial adjustments to
the existing steps (e.g., different
attachment method, adhesive, cutting
technique).

- Actually exists in the marketplace and is
commonly used in real-world repairs for
the specified device.

- Is not overly similar to the original
component to ensure meaningful variation.

4. Compose a new Title that reflects the
variant task and names the new component
unambiguously.

Key requirements
- Always include the complete `base_steps` list.
- Always verify that the alternative component

is a valid and distinct part of the
specified device to avoid introducing
non-existent or nearly identical elements.

Input Parameter:
- structured instruction: {task}

Listing 17: Prompt for Component Substitution

Licensing Note. Both the translated Xiachufang
dataset and the extended MyFixit dataset may be
subject to licensing constraints. Consequently, we
do not release the processed datasets directly. In-
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stead, to ensure reproducibility, we provide all pre-
processing code and prompt templates necessary
for reconstructing the data in our repository.

C.2 Language Model Details
The models listed in Table 3 were used in this paper
for experimentation purposes. gpt-4o, 4o-mini,
and D1 were accessed through the Microsoft Azure
platform and reflect the most recent checkpoints
available on 12 May 2025. The remaining systems
were deployed locally via Ollama (Contributors,
2025) and should be regarded as unofficial commu-
nity builds. Although we aimed to benchmark a
wider spectrum of models, computational-resource
constraints and resource limitations precluded a
broader sweep. Model V (DeepSeek-v3 0324) was
not used directly for generating recipes or repair
instructions, but instead served as one of the eval-
uator models within the g-eval framework. We
consider the level of detail provided here sufficient
for reproducibility, and the full configuration de-
tails—including all model versions, deployment
parameters, and evaluation setups—are available
in our public code repository.

C.3 Recipe Consistency & Feasibility Metric
Recipe Consistency & Feasibility (RCF) is a
domain-specific evaluation metric for assessing
the validity and executability of LLM-generated
cooking instructions. While traditional automatic
metrics—such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), or BERTScore (Zhang et al.,
2020)—evaluate text similarity or fluency, they are
largely agnostic to culinary logic, food safety, or
ingredient–action alignment. (Liu et al., 2022a)
highlighted four common error categories in gener-
ated recipes: (i) failing to modify ingredients prop-
erly, (ii) retaining irrelevant or unsuitable actions,
(iii) omitting necessary preparation or safety steps,
and (iv) misordering steps in a way that violates
causal dependencies. These observations motivate
the design of RCF.

RCF is implemented using the g-eval frame-
work (Liu et al., 2023), which supports customiz-
able, prompt-based evaluation using LLMs. In our
implementation, each evaluation consists of a struc-
tured prompt asking the evaluator model (ChatGPT-
4o) to analyze a recipe according to specific criteria.
The model then returns diagnostic feedback and a
single integer score ranging from 1 to 10, where
1 indicates a recipe that is unsafe, incoherent, or
clearly unusable, and 10 represents a clear, com-

plete, and executable recipe. The metric consists of
six evaluation steps using Chain-of-Thought, each
targeting a specific dimension of recipe feasibility.
The prompts are as follows:

1. Ingredient–Action Consistency: Verify that
every listed ingredient is actually referenced
in the instructions, and that no instruction uses
an ingredient that is not listed.

2. Irrelevant or Unsuitable Actions: Identify
any actions that are physically impossible,
contextually irrelevant, or inappropriate given
the nature of the listed ingredients or the target
dish.

3. Essential Preparation & Safety Steps:
Check whether the recipe includes all nec-
essary preparation steps that are critical to the
safety or success of the dish (e.g., cleaning,
purging, soaking, ensuring safe internal tem-
peratures).

4. Logical Step Order: Evaluate whether the
steps are presented in a coherent causal order
(e.g., marination should occur before cooking,
preheating before baking).

5. Harmful Instructions: Detect any instruc-
tion that may result in harm, such as un-
safe temperature settings, instructions that vi-
olate food safety standards, or risk of cross-
contamination.

6. Brevity vs. Completeness: Recognize when
minimal instruction is acceptable due to as-
sumed user expertise, but penalize omissions
that compromise safety or success.

Each of these steps is executed sequentially
within the g-eval framework. The input to the
metric consists of the original user prompt and the
LLM-generated recipe (i.e., the model’s output),
and the output is a structured evaluation object
containing both qualitative analysis and the final
feasibility score.

To ensure interpretability and consistency, the
metric avoids probabilistic outputs and instead uses
ordinal scoring. This aligns its format with human
expert annotation schemes and facilitates external
validation. To this end, we conducted a valida-
tion study with three culinary experts who inde-
pendently rated 40 recipes on the same 1–10 fea-
sibility scale. Inter-rater reliability was acceptable
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Identifier Model Details

D1 DeepSeek-R1 671B, available via Azure AI | Machine Learning Studio.
https://ai.azure.com/catalog/models/DeepSeek-R1

V DeepSeek-v3 0324 671B, available via Azure AI | Machine Learning Studio.
https://ai.azure.com/catalog/models/DeepSeek-V3-0324

4o Azure ChatGPT-4o, version: 2024-11-20, available via Azure AI Foundry | Azure OpenAI.
4o-mini Azure ChatGPT-4o-mini, version: 2024-07-18, available via Azure AI Foundry | Azure OpenAI.

https://oai.azure.com/
D2 DeepSeek-R1-Distill-Qwen-7B (model ID: 0a8c26691023), available via Ollama.

https://ollama.com/library/deepseek-r1:7b
M Mistral 7B (model ID: f974a74358d6), available via Ollama.

https://ollama.com/library/mistral:7b
G Gemma3 12B (model ID: f4031aab637d), available via Ollama.

https://ollama.com/library/gemma3:12b

Table 3: LLM models used in our experiments. Each model is listed with its in-paper identifier, version or model ID
if applicable, and access URL. Shared access platforms are indicated once to reduce repetition.

(ICC(2,k)=0.74, Cronbach’s α=0.79), indicating
a consistent expert standard against which RCF
could be compared.

Since g-eval is itself an LLM-based metric, the
choice of evaluator model may influence the re-
sulting scores. To assess robustness, we computed
RCF using two distinct evaluators: ChatGPT-4o
and DeepSeek v3. ChatGPT-4o was included be-
cause it was also one of the generation models
under study, while DeepSeek v3 served as a third-
party evaluator to mitigate potential self-evaluation
bias. This dual evaluation allows us to examine
both in-model and out-of-model reliability of RCF.

Results show that RCF scores from ChatGPT-4o
correlated moderately with the expert panel (Spear-
man ρ=0.56, Kendall τ=0.46), while DeepSeek
v3 achieved slightly lower agreement (Spearman
ρ=0.46, Kendall τ=0.34). Both metrics exhib-
ited consistent positive associations with individ-
ual raters (average ρ ≈ 0.4), confirming that RCF
captures meaningful aspects of recipe feasibility
and consistency across evaluator models. Cali-
bration analysis further revealed that ChatGPT-4o
approximated expert score scaling more closely
(slope ≈ 1.0), whereas DeepSeek v3 displayed
compressed sensitivity (slope ≈ 0.3 with a positive
intercept). In both cases, explanatory power was
modest (R2 < 0.2), suggesting that RCF is better
suited for relative ranking than for precise absolute
scoring.

Overall, these results indicate that RCF pro-
vides a reliable proxy for expert judgment in rank-
ing recipe feasibility, with ChatGPT-4o produc-
ing closer alignment to human evaluation and
DeepSeek v3 offering an independent validation
perspective. While RCF should not yet be con-

sidered a substitute for expert annotation in high-
stakes settings, its interpretability, structured crite-
ria, and demonstrated cross-model alignment with
professional judgment suggest that it can serve as a
practical and transparent metric for procedural text
generation. Full prompt templates and implementa-
tion logic are available in our code repository, and
we encourage the research community to adopt or
extend the metric in broader procedural generation
settings.

Finally, we remark that although RCF was
originally designed for recipes, we also extend
it to evaluate repair instructions in the myfixit
dataset. The core structure of the metric remains
unchanged, but terminology and examples are
adapted (e.g., ingredients → parts or tools, food-
safety checks → equipment-safety checks). In this
way, the evaluation logic is preserved while ensur-
ing domain-appropriate coverage. The complete
adapted prompt templates are likewise available in
our public code repository.

C.4 Additional Notes on Evaluation

Interpreting DL1 versus DL2. The contrast be-
tween D1 and D2 remains instructive: although both
models contain explicit step-by-step reasoning rou-
tines, the much smaller D2 delivers only baseline-
level performance, implying that model scale is a
primary driver of zero-shot recipe-adaptation qual-
ity. Yet scale alone does not tell the whole story.
Non-reasoning architectures such as 4o, 4o-mini,
and M exhibit large, nearly parallel gains once either
Critics or OC is applied. The evidence therefore
points to two complementary factors: (i) sufficient
parameter capacity and (ii) an external prompting
pipeline that injects structured feedback or over-
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generation + compaction. Only when both ingre-
dients are present does a model consistently reach
the accuracy required by our task suite.

Critics vs. OC on Compact Models. The
M model benefits most notably from the Critics
pipeline, whereas the OC setting occasionally de-
grades its performance. A fine-grained error analy-
sis reveals that failures rarely originate in the over-
generation phase—during which the model gener-
ally produces adequate output—but rather emerge
during compaction, when the verbose draft must be
collapsed back into the canonical recipe format. At
this stage, the model often omits key ingredients or
conflates source and target instructions. To assess
whether this failure mode is specific to Mistral, we
conducted a small-scale, informal experiment using
a subset of recipes with Gemma-12B, and observed
qualitatively similar errors. These results suggest
that such issues are not idiosyncratic to Mistral,
but are instead symptomatic of compact models
more broadly. As noted in the prompt design sec-
tion, small models continue to exhibit limitations
in style transfer—that is, adapting to the tone, regis-
ter, and length conventions of recipe texts. In some
cases, the model confuses the target recipe with a
structurally similar one, even when the input con-
sists solely of recipe text and is independent of the
OC pipeline. This suggests a persistent weakness
in smaller models’ ability to anchor generation in
stylistic and structural priors. Although we aimed
to validate this issue further using language models
larger than 7–12B parameters, we were unable to
do so due to limitations in hardware and computa-
tional resources. Given that OC performs well with
4o-mini, it would be informative to evaluate it on
the models with slightly lower overall performance
than 4o-mini to better understand its generalizabil-
ity. We leave this investigation to future work.

Token-level Cost Analysis. Table 4 presents
token-level statistics—including mean, minimum,
maximum, and standard deviation—for each ap-
proach and model, computed on the Xiachufang
recipe corpus. For DeepSeek models, internal rea-
soning steps are also included.

As expected, the CoT method incurs a higher
token cost than the Baseline, owing to the explicit
reasoning step that precedes the recipe revision.
However, the increase is smaller than anticipated.
Upon inspection, we found that the "Thought" seg-
ments often lacked substantive content on how to

modify the recipe in detail, limiting their overall
verbosity. DeepSeek models, which internally per-
form multi-step reasoning, exhibit higher token
usage, surpassing even the CoT variants. This is
partially justified by the more structured and elab-
orate step-by-step outputs they tend to generate.
However, we also observed occasional extreme out-
liers, stemming from infinite-loop generation be-
haviors (see Appendix G). This issue is especially
pronounced with the distilled version of DeepSeek-
r1 (i.e., D2), when executed via the Ollama back-
end. Whether this is a model-specific artifact or a
runtime-dependent issue remains unclear, though
our findings suggest the former is more likely.

The Critics pipeline introduces considerable to-
ken overhead due to its two-stage architecture. In
particular, the critique step often produces verbose
feedback that must be processed in the subsequent
generation. While the prompt does not explicitly re-
quest long outputs—as it does in the OC case—the
feedback segment frequently exceeds expectations
in length, contributing significantly to overall cost.

The OC pipeline, unsurprisingly, yields the high-
est token consumption. This is primarily driven
by its over-generation phase, where verbose can-
didate drafts are intentionally produced and then
re-ingested for compaction. Notably, even when
prompted to generate up to 1,000 variants, the token
overhead rarely exceeds 1.5–3× that of the Crit-
ics pipeline. This indicates that OC’s cost, while
higher, remains within a manageable range. An-
other contributing factor is OC’s frequent use of
formatting tokens—particularly Markdown delim-
iters—which are not essential to the recipe content.
These artifacts could likely be reduced via addi-
tional prompt constraints, though we leave such
refinements for future work.

We refrain from reporting absolute runtime or
monetary costs in the main text, as these are highly
sensitive to backend conditions (e.g., local execu-
tion vs. API), model pricing tiers, and temporal
fluctuations. In practice, token usage scales roughly
linearly with cost, making Table 4 sufficient for
comparative estimation purposes.

D Expert Reviews of Recipe Generation
and Adjustment

To further evaluate the effectiveness of our
proposed Over-Generation-and-Compaction (OC)
strategy, we conducted in-depth qualitative assess-
ments on three representative recipe transformation
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Group Model Mean Min Max Std

Baseline

DL1 1042.50 345 7331 492.74
4o 409.35 117 1066 156.01
4o-mini 412.75 124 1097 157.85
DL2 1145.42 316 82349 4885.64
M 468.83 150 1271 167.65

CoT
4o 560.10 221 1206 162.33
4o-mini 556.22 234 1176 149.66
M 592.16 266 1316 167.73

Critics
4o 3441.20 1707 5687 598.74
4o-mini 2484.18 1353 4693 506.73
M 2532.11 1416 4869 527.90

OC
4o 4949.83 998 8252 1070.13
4o-mini 6216.64 3661 8985 676.60
M 4730.84 2866 8513 753.44

Table 4: Token statistics (mean, minimum, maximum,
and standard deviation) for each approach and model,
computed on the Xiachufang recipe corpus.

tasks. These evaluations were carried out by an
expert reviewer with extensive practical experience
in Chinese cuisine. This expert is affiliated with
the research organization conducting this study and
personally prepared each adapted recipe to assess
not only textual coherence but also the procedural
feasibility and culinary correctness of the generated
outputs.

Each transformation scenario involves a unique
pairing of a base recipe and a target recipe, se-
lected for their structural complexity or dependence
on domain-specific techniques—features that pose
challenges for novice cooks. Importantly, these
transformations cannot be achieved through su-
perficial ingredient substitutions alone. For in-
stance, converting stuffed chili peppers into stuffed
fried gluten requires awareness of material-specific
considerations, such as the necessity of avoiding
rinsing gluten before frying to prevent oil splat-
tering—an insight that goes beyond surface-level
changes and demands deeper culinary reasoning.

Following the same evaluation protocol as in
prior experiments, we selected five language mod-
els covering a spectrum of model sizes and reason-
ing capabilities: DeepSeek-r1 671B (denoted as
D1), DeepSeek-r1 Distilled 7B (D2), ChatGPT 4o
(4o), ChatGPT 4o-mini (4o-mini), and Mistral 7B
(M). Each model was tested under four prompting
strategies: Baseline, CoT, Critic, and our proposed
OC.

Table 5, 6, and 7 summarize the expert eval-
uations, providing both quantitative ratings and
qualitative commentary. Dimensions of evaluation

include clarity, stylistic diversity, and brevity, as
well as domain-specific assessments of whether the
procedural adaptations were contextually appropri-
ate and technically sound.

In the subsections that follow, we present de-
tailed breakdowns of each source recipe and its
corresponding adaptations under the three prompt-
ing strategies using ChatGPT 4o. Each case in-
cludes commentary from the expert reviewer, who
provides insights based on firsthand preparation of
the recipes. We also considered including outputs
from additional models; however, given the already
extensive length of the appendix, we opted not to
incorporate them here. Instead, the full set of out-
puts and evaluation materials is publicly available
in our repository, alongside the released code and
dataset.

In summary, the Baseline strategy yielded low-
quality adaptations across all models, regardless
of scale. These outputs frequently relied on direct
ingredient substitutions without making the corre-
sponding procedural adjustments. In the case of
the CoT, although the reasoning steps were gener-
ated and included in all outputs, in most cases the
final content exhibited minimal differences com-
pared to the Baseline approach. This suggests
that the CoT method, when used in isolation, is
largely ineffective for recipe adaptation tasks. The
Critic strategy generally produced more coherent
and stable outputs, but often failed to incorporate
essential procedural steps or retained inaccurate
instructions. In contrast, our proposed OC strategy
consistently resulted in the most promising adap-
tations. While minor inconsistencies in format-
ting, relevance, or stylistic precision occasionally
emerged—particularly with smaller models—these
issues were relatively infrequent and did not out-
weigh the overall gains in output quality.

D.1 1251: Candied Sweet Potatoes →
Candied Apples

In this example, the base recipe for Candied Sweet
Potatoes is transformed into the target recipe Can-
died Apples.

Peel the sweet potatoes and cut them into
pieces, not too big or too small. Heat oil
in a pot until it reaches 70 heat, then add
the cut sweet potatoes. Fry on low heat for
a while. Turn up the heat a bit and fry
until the surface is golden brown. Remove
and set aside. Pour out all the oil, no
need to add more oil to the pot, add white
sugar as shown in the picture, you can also
use other types of sugar, and stir
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Model Strategy Recipe ID

Details
& Clarity
(10)

Stylistic
Diversity
(5)

Text
Length
(5) Comments

DL1 Baseline
1251 9 2 5 Added instruction to coat with cornstarch before

frying.
2102 8 2 4 Extended cooking time to accommodate the

brisket’s connective tissue breakdown.
2204 8 3 4 Step descriptions are adequate but lack depth for

gluten ball preparation.

DL2 Baseline
1251 5 2 3
2102 5 2 3 Minor detail omissions noted.
2204 4 3 4 Incorrect instruction: frying “until blistered” is not

applicable to gluten; blistering occurs in peppers.

Table 5: Expert evaluation of recipe revisions produced by Deepseek models. This table reports human expert
assessments of recipe outputs generated by Deepseek R1-671b (DL1) and Deepseek R1-distilled-7b (DL2) under
the baseline prompting strategy. Each row corresponds to a model-generated revision for one of three source recipes.
Evaluators rated the clarity and completeness of procedural details, stylistic variation, and text verbosity. Comments
indicate specific strengths or deficiencies in reasoning, culinary technique, or recipe accuracy. Abbreviations.
Recipes: 1251 = from Candied Sweet Potatoes to Candied Apples; 2102 = from Lamb Stew with Radish to Beef
Brisket Stew with Radish; 2204 = from Green Pepper Stuffed with Meat to Fried Gluten Balls Stuffed with Meat.
Score ranges (higher is better). Details & Clarity: 0–10; Stylistic Diversity: 0–5; Text Length: 0–5.

continuously with a spatula over low heat.
Keep stirring over low heat until the sugar
is completely melted and becomes runny.
Turn off the heat, add the fried sweet
potatoes, and stir until the sweet potatoes
are evenly coated with sugar. Plate it. Its
ready. The sugar threads are pulled out,
haha. After plating, immediately separate
each piece of sweet potato with chopsticks
for easy picking when eating. Enjoy!

Listing 18: Source Recipe: Candied Sweet Potatoes

Peel the apples and cut them into pieces, not
too big or too small. Heat oil in a pot
until it reaches 70 heat, then add the cut
apples. Fry on low heat for a while. Turn
up the heat a bit and fry until the surface
is golden brown. Remove and set aside. Pour
out all the oil, no need to add more oil to
the pot, add white sugar as shown in the
picture, you can also use other types of
sugar, and stir continuously with a spatula
over low heat. Keep stirring over low heat
until the sugar is completely melted and
becomes runny. Turn off the heat, add the
fried apples, and stir until the apples are
evenly coated with sugar. Plate it. Its
ready. The sugar threads are pulled out,
haha. After plating, immediately separate
each piece of apple with chopsticks for
easy picking when eating. Enjoy!

Listing 19: Target Recipe: Candied Apples, transformed
with baseline using 4o

[Thought]: To transform the [Base Instruction]
for candied sweet potatoes into the [Target
Instruction] for candied apples, I need to
substitute sweet potatoes with apples while
ensuring the preparation and cooking

process remains consistent. Apples require
peeling and cutting into appropriate sizes,
similar to sweet potatoes. The frying step
will need to account for the softer texture
of apples, so care must be taken not to
overcook them. The sugar-coating process
remains unchanged, as it is the key to
achieving the \"candied\" effect. Finally,
the plating and separation steps will also
apply to apples for ease of
eating.\n\n[Target Instruction]: Peel the
apples and cut them into pieces, not too
big or too small. Heat oil in a pot until
it reaches 70 heat, then add the cut
apples. Fry on low heat for a while. Turn
up the heat a bit and fry until the surface
is golden brown. Remove and set aside. Pour
out all the oil, no need to add more oil to
the pot, add white sugar as shown in the
picture, you can also use other types of
sugar, and stir continuously with a spatula
over low heat. Keep stirring over low heat
until the sugar is completely melted and
becomes runny. Turn off the heat, add the
fried apples, and stir until the apples are
evenly coated with sugar. Plate it. Its
ready. The sugar threads are pulled out,
haha. After plating, immediately separate
each piece of apple with chopsticks for
easy picking when eating. Enjoy!

Listing 20: Target Recipe: Candied Apples, transformed
with CoT using 4o

Peel the apples and cut them into evenly sized
pieces, about 2-3 cm wide. Heat 500ml of
oil in a pot to 160C (medium heat). Add the
apple pieces and fry for 3-5 minutes,
stirring occasionally, until the surface
turns golden brown. Remove the apples and
set them aside on a plate lined with paper
towels to drain excess oil. Carefully pour

19327



Model Strategy Recipe ID

Details
& Clarity
(10)

Stylistic
Diversity
(5)

Text
Length
(5) Comments

4o

Baseline
1251 6 1 5
2102 6 1 5
2204 5 1 5 Incorrect instruction: frying “until blistered” is not

applicable to gluten; blistering occurs in peppers.

CoT
1251 6 1 5
2102 6 1 5 Successfully extended the cooking duration.
2204 5 1 5 Although the reasoning step was included, the final

output exhibits minimal difference from the Base-
line.

Critic
1251 7 3 5
2102 7 3 4 Includes specific cut-size recommendations.
2204 7.5 4 3 More comprehensive detail at the cost of slightly

increased length.

OC
1251 8 2 5 Added lemon juice step to prevent browning.
2102 7.5 2 4 Structure closely mirrors Deepseek R1-671b with

marginally fewer details.
2204 7 3 5 All operational steps are clearly detailed.

4o-mini

Baseline
1251 5 1 5
2102 6 1 5
2204 5 1 5 Incorrect instruction: frying “until blistered” is not

applicable to gluten; blistering occurs in peppers.

CoT
1251 5 1 5 Although the reasoning step was included, the final

output exhibits minimal difference from the Base-
line.

2102 6.5 1 5 Successfully modified time parameters to allow for
longer cooking.

2204 4.5 1 5 The result is too brief and omits several important
details.

Critic
1251 7 3 5
2102 7 3 3 Added details, but final text length exceeds ideal.
2204 7 4 4 Enhanced detail diversity within appropriate length.

OC
1251 3 3 5 Incorrect dish identification for candied apples.
2102 8 4 2 Superior detail and style compared to Deepseek R1-

671b, though text length nearly doubled.
2204 8 4 1 Thorough operational steps provided, but text is

overly verbose.

Table 6: Expert evaluation of recipe revisions produced by ChatGPT models. This table presents human expert
assessments for outputs generated by ChatGPT-4o and ChatGPT-4o-mini across four prompting strategies: Baseline,
Chain-of-Thought (CoT), Critic, and Over-Generation-and-Compaction (OC). Abbreviations. Recipes: 1251 =
from Candied Sweet Potatoes to Candied Apples; 2102 = from Lamb Stew with Radish to Beef Brisket Stew with
Radish; 2204 = from Green Pepper Stuffed with Meat to Fried Gluten Balls Stuffed with Meat. Models: 4o =
ChatGPT-4o; 4o-mini = ChatGPT-4o-mini. Score ranges (higher is better). Details & Clarity: 0–10; Stylistic
Diversity: 0–5; Text Length: 0–5.

out the oil from the pot, leaving it clean
and dry. Add 100g of white sugar to the pot
and heat on low, stirring continuously with
a spatula. Cook the sugar until it melts
completely and forms a smooth,
amber-colored syrup. Turn off the heat and
quickly add the fried apples to the pot,
stirring to coat each piece evenly with the
syrup. Transfer the coated apples to a
serving plate. To create the signature
sugar threads, lift the spatula and pull
the melted sugar into thin strands as you
plate the apples. Immediately separate each
piece with lightly oiled chopsticks to

prevent sticking. Serve warm and enjoy the
crispy, caramelized texture!

Listing 21: Target Recipe: Candied Apples, transformed
with Critics using 4o

Peel the apples and cut them into bite-sized
pieces. Soak them in cold water with lemon
juice to prevent browning. Heat oil in a
pot until it reaches 70% heat, then drain
and pat dry the apple pieces. Fry on low
heat for a while. Turn up the heat a bit
and fry until the surface is golden brown
and crisp. Remove and set aside. Pour out
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Model Strategy Recipe ID

Details
& Clarity
(10)

Stylistic
Diversity
(5)

Text
Length
(5) Comments

M

Baseline
1251 5 1 5
2102 6 1 5
2204 5 1 5 Incorrect instruction: frying “until blistered” is not

applicable to gluten; blistering occurs in peppers.

CoT
1251 5 1 5 Although the reasoning step was included, the final

output shows minimal difference from the Baseline.
2102 3 2 3 Incorrect from the outset: the recipe begins with

“replace the lamb ribs with beef brisket,” which is
inappropriate for a procedural revision.

2204 4 2 5 Begins with “making gluten balls,” but lacks suf-
ficient detail, rendering the instruction unsuitable
and infeasible.

Critic
1251 7 4 4
2102 7 3 2 Details are sufficient but include superfluous text,

increasing length.
2204 2 3 4 Misidentifies gluten balls as meatballs, impacting

recipe accuracy.

OC
1251 3 3 3 Incorrect dish identification for candied apples.
2102 3 4 2 Steps and sequence contain errors.
2204 2 3 2 Misidentifies gluten balls as meatballs, altering step

accuracy.

Table 7: Expert evaluation of recipe revisions produced by Mistral-7b across prompting strategies. This table
presents detailed expert assessments of recipe outputs generated by Mistral-7b using four prompting strategies:
Baseline, Chain-of-Thought (CoT), Critic, and Over-Generation-and-Compaction (OC). Abbreviations. Recipes:
1251 = from Candied Sweet Potatoes to Candied Apples; 2102 = from Lamb Stew with Radish to Beef Brisket Stew
with Radish; 2204 = from Green Pepper Stuffed with Meat to Fried Gluten Balls Stuffed with Meat. Models: M =
Mistral 7B. Score ranges (higher is better). Details & Clarity: 0–10; Stylistic Diversity: 0–5; Text Length: 0–5.

all the oil, no need to add more oil to the
pot, add white sugar (as shown in the
picture, you can also use other types of
sugar), and stir continuously with a
spatula over low heat. Keep stirring over
low heat until the sugar is completely
melted and becomes runny. Turn off the
heat, add the fried apple pieces, and stir
until the apples are evenly coated with
sugar. Plate it. It's ready. The sugar
threads are pulled out, haha. After
plating, immediately separate each piece of
apple with chopsticks for easy picking when
eating. Optional: garnish with sesame seeds
or nuts. Enjoy!

Listing 22: Target Recipe: Candied Apples, transformed
with OC using 4o

Reviewer’s comments: The success of bá sı̄
dishes—a traditional Chinese technique involving
the creation of pulled sugar threads—depends heav-
ily on the precise execution of two critical prepara-
tory steps. These steps, however, are routinely
overlooked or misrepresented across all baseline
recipes evaluated. Specifically, potato slices must
be rinsed under cold water to remove surface starch,
which prevents excessive browning during frying,
and subsequently coated with cornstarch to pro-

mote crispness while retaining interior moisture.
The absence of these operations in the generated
recipes led to visibly over-browned potatoes and
suboptimal texture. All three baseline models (4o,
M, and D2) failed to capture these requirements and
exhibited comparable performance. Among the
baselines, only D1 correctly identified the need for
cornstarch, marking it as the most accurate.

The CoT-based generations produced results that
were largely in line with the baselines. Although
CoT introduced some structural variation through
intermediate reasoning, it did not substantially im-
prove performance in this specific task.

Applying the Critics approach to 4o and M
yielded recipes with enhanced detail and clearer
procedural articulation compared to the original
baselines. These outputs moved beyond basic ingre-
dient substitution, offering formulations that better
resembled Western-style recipe conventions. How-
ever, they still omitted the key preparatory steps
of rinsing and coating, which are essential for the
desired outcome.

The OC variants further enhanced procedural
depth and creativity. For instance, the OC-guided
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4o introduced the use of lemon juice to prevent
apple discoloration—a plausible and contextually
relevant addition. In contrast, M proposed an al-
ternative syrup preparation involving sugar, corn
syrup, and lemon juice. This method appears to
be influenced by an unrelated confectionery recipe
(e.g., lemon drop candy), and following it would
likely compromise the intended texture and flavor
of the syrup. As such, this output from M represents
a critical failure in content relevance. A similar
misinterpretation was observed in 4o-mini, which
conflated the dish with sugar-coated hawthorn (i.e.,
tanghulu), leading to inaccuracies in ingredient se-
lection and procedural structure.

Despite occasional issues related to factual con-
sistency, the OC variant with 4o demonstrated the
greatest degree of creativity and procedural rich-
ness, aligning closely with the performance of the
strongest baseline model, D1. This suggests that
OC has the potential to support more inventive and
context-sensitive recipe generation when applied
appropriately.

D.2 2102: Lamb Stew with Radish → Beef
Brisket Stew with Radish

This case involves transforming a Lamb Stew with
Radish recipe into a Beef Brisket Stew with Radish.
The task primarily evaluates the model’s capability
to adjust the type of protein while preserving the
procedural integrity of the original recipe.

Cut the lamb ribs into pieces when buying, wash
them clean, and put them in a pressure rice
cooker with cold water (do not tighten the
lid). After boiling, skim off the foam,
take out the lamb ribs, and pick out the
fatty lamb pieces. Add a small amount of
oil to the pot, add the fatty lamb pieces,
and stir-fry over medium heat to release
the oil. Add the remaining lamb ribs, a
small piece of rock sugar, and soy sauce,
and stir-fry. Pour into the pressure rice
cooker and cook under pressure for 20
minutes. After opening the lid, add the
white radish pieces and continue to simmer
for 8 minutes. After opening the lid, add
salt and a little chili powder. If you
prefer a stronger flavor, reduce the sauce
over high heat in the pot. Delicious and
ready to serve, fresh and fragrant.

Listing 23: Source Recipe: Lamb Stew with Radish

Cut the beef brisket into pieces when buying,
wash them clean, and put them in a pressure
rice cooker with cold water do not tighten
the lid. After boiling, skim off the foam,
take out the beef brisket, and pick out the
fatty beef pieces. Add a small amount of

oil to the pot, add the fatty beef pieces,
and stir-fry over medium heat to release
the oil. Add the remaining beef brisket, a
small piece of rock sugar, and soy sauce,
and stir-fry. Pour into the pressure rice
cooker and cook under pressure for 20
minutes. After opening the lid, add the
white radish pieces and continue to simmer
for 8 minutes. After opening the lid, add
salt and a little chili powder. If you
prefer a stronger flavor, reduce the sauce
over high heat in the pot. Delicious and
ready to serve, fresh and fragrant."

Listing 24: Target Recipe: Beef Brisket Stew with
Radish, transformed with baseline using 4o

[Thought]: To transform the [Base Instruction]
for lamb stew into the [Target Instruction]
for beef brisket stew, I need to substitute
lamb ribs with beef brisket while
maintaining the cooking process and flavor
profile. Beef brisket has a slightly
different texture and fat content compared
to lamb ribs, so adjustments may be needed
to ensure the dish is flavorful and tender.
The radish remains the same, as it
complements both meats well. I will also
ensure the instructions are clear and
concise for the new ingredient.\n\n[Target
Instruction]: Cut the beef brisket into
pieces when buying, wash them clean, and
put them in a pressure rice cooker with
cold water; do not tighten the lid. After
boiling, skim off the foam, take out the
beef brisket, and pick out the fatty beef
pieces. Add a small amount of oil to the
pot, add the fatty beef pieces, and
stir-fry over medium heat to release the
oil. Add the remaining beef brisket, a
small piece of rock sugar, and soy sauce,
and stir-fry. Pour into the pressure rice
cooker and cook under pressure for 25
minutes. After opening the lid, add the
white radish pieces and continue to simmer
for 10 minutes. After opening the lid, add
salt and a little chili powder. If you
prefer a stronger flavor, reduce the sauce
over high heat in the pot. Delicious and
ready to serve, fresh and fragrant.

Listing 25: Target Recipe: Beef Brisket Stew with
Radish, transformed with CoT using 4o

Cut the beef brisket into 1.5-inch pieces when
buying, wash them thoroughly, and place
them in a pressure rice cooker with enough
cold water to cover. Do not tighten the
lid. Bring to a boil, skim off the foam to
remove impurities, and take out the beef
brisket. Separate and set aside the fatty
beef pieces. Peel the white radish and cut
it into 1-inch chunks. Heat a small amount
of oil in a pot over medium heat, add the
fatty beef pieces, and stir-fry until the
oil is released. Add the remaining beef
brisket, a small piece of rock sugar (about
10g), and 2 tablespoons of soy sauce, and
stir-fry until evenly coated. Transfer
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everything back to the pressure rice
cooker, add enough water to cover, and cook
under pressure for 20 minutes. Release the
pressure safely, open the lid, and add the
radish chunks. Simmer uncovered for 8
minutes or until the radish is tender but
not mushy. Add salt and chili powder to
taste, and if desired, reduce the sauce
over high heat until it thickens and coats
the beef. Serve hot, with the beef tender
and the radish fragrant and flavorful.

Listing 26: Target Recipe: Beef Brisket Stew with
Radish, transformed with Critics using 4o

Cut the beef brisket into 2-inch cubes, rinse
them clean, and blanch in boiling water to
remove impurities. Drain and set aside.
Peel and cut the white radish into 1-inch
chunks. Heat oil in a pot or pressure
cooker, add the beef brisket, and stir-fry
until lightly browned. Add rock sugar,
light soy sauce, and dark soy sauce, and
stir to coat evenly. Pour in water or beef
stock to cover the brisket, and pressure
cook for 25 minutes. After opening the lid,
add the radish chunks and pressure cook for
an additional 8 minutes. After opening the
lid, season with salt and a little chili
powder. If you prefer a stronger flavor,
reduce the sauce over high heat in the pot.
Delicious and ready to serve, fresh and
fragrant.

Listing 27: Target Recipe: Beef Brisket Stew with
Radish, transformed with OC using 4o

Reviewer’s comments: The baseline recipes
generated by all three models exhibit similarly con-
servative behavior. As observed in the previous
case, the outputs from 4o and M largely focus on
ingredient substitution without meaningful proce-
dural modification—an approach that preserves the
original structure while simply replacing key com-
ponents. D2, guided by its own generation dynam-
ics, introduces greater surface-level variation, yet
the core procedural logic remains unchanged. Con-
sequently, its output amounts to a paraphrase of
the source recipe rather than a substantive adapta-
tion. Overall, the baseline generations fall short in
terms of both procedural specificity and stylistic
diversity.

Compared to these baselines, the CoT approach
yielded more adapted outputs by guiding the model
to adjust temporal and procedural elements during
generation. However, this improvement was not
consistent across all models; notably, M failed to
follow recipe-like syntax, which compromised the
utility of the output.

The Critics variants led to substantial gains in
both specificity and clarity. For example, they in-

troduced precise ingredient quantities (e.g., 10g
rock sugar, 1.5-inch pieces of beef brisket) and
elaborated on complex steps (e.g., reduce the sauce
over high heat until it thickens and coats the beef ),
enhancing both informativeness and usability.

The OC variants demonstrated more varied out-
comes. In the case of 4o, OC contributed positively
by refining readability and adding compact, useful
details (e.g., simmer durations), while maintain-
ing brevity. For M, however, OC led to a divergent
output structure and included numerous additional
suggestions, which may indicate limitations in the
compaction phase and result in reduced consistency
with the original recipe format. These variations
suggest that the effectiveness of OC may depend
on the model’s capacity to maintain fidelity during
abstraction and synthesis.

In summary, for this recipe, the Critics approach
consistently produced clear and informative out-
puts by effectively balancing detail and accessibil-
ity. The OC method showed potential for enhanc-
ing readability and conciseness, particularly with
4o, although consistency varied depending on the
model and generation dynamics.

D.3 2204: Green Pepper Stuffed with Meat →
Fried Gluten Balls Stuffed with Meat

The final example explores the transformation of
Green Pepper Stuffed with Meat into Fried Gluten
Balls Stuffed with Meat. This recipe introduces
structural changes to the composition of the dish,
requiring careful rephrasing and procedural align-
ment.

Add minced green onion and ginger and a small
amount of sugar to the minced meat, and
stir well with one egg! Stuff the minced
meat into the green peppers (wash and drain
the green peppers in advance). After all
the peppers are stuffed, pour an
appropriate amount of oil into the pan,
then place the stuffed green peppers one by
one, and fry until both sides are
blistered! Then pour in an appropriate
amount of soy sauce, fry for a while, then
add boiling water, turn from high heat to
low heat and simmer until the sauce is
almost absorbed, then add some vinegar and
sugar and simmer until the sauce is
absorbed! Serve and sprinkle with chopped
green onion, and it's done!!!

Listing 28: Source Recipe: Green Pepper Stuffed with
Meat

Add minced green onion and ginger and a small
amount of sugar to the minced meat, and
stir well with one egg! Stuff the minced
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meat into the fried gluten balls-wash and
drain the gluten balls in advance. After
all the gluten balls are stuffed, pour an
appropriate amount of oil into the pan,
then place the stuffed gluten balls one by
one, and fry until both sides are
blistered! Then pour in an appropriate
amount of soy sauce, fry for a while, then
add boiling water, turn from high heat to
low heat and simmer until the sauce is
almost absorbed, then add some vinegar and
sugar and simmer until the sauce is
absorbed! Serve and sprinkle with chopped
green onion, and it's done!!!

Listing 29: Target Recipe: Fried Gluten Balls Stuffed
with Meat, transformed with baseline using 4o

[Thought]: To transform the [Base Instruction]
into the [Target Instruction], I need to
replace the green peppers with fried gluten
balls as the stuffing vessel while
maintaining the core process of preparing
the minced meat mixture and cooking the
dish. Adjustments will be made to account
for the texture and cooking requirements of
fried gluten balls. The stuffing process
will involve cutting and hollowing out the
gluten balls, and the cooking method will
remain similar, with frying and simmering
to absorb the sauce.\n\n[Target
Instruction]: Add minced green onion and
ginger and a small amount of sugar to the
minced meat, and stir well with one egg!
Cut open the fried gluten balls and hollow
them out slightly to make room for
stuffing. Stuff the minced meat into the
fried gluten balls. After all the gluten
balls are stuffed, pour an appropriate
amount of oil into the pan, then place the
stuffed gluten balls one by one, and fry
until they are golden and slightly
blistered! Then pour in an appropriate
amount of soy sauce, fry for a while, then
add boiling water, turn from high heat to
low heat and simmer until the sauce is
almost absorbed, then add some vinegar and
sugar and simmer until the sauce is
absorbed! Serve and sprinkle with chopped
green onion, and it's done!!!

Listing 30: Target Recipe: Fried Gluten Balls Stuffed
with Meat, transformed with CoT using 4o

Add 1 tablespoon of minced green onion, 1
teaspoon of minced ginger, and 1 teaspoon
of sugar to 200 grams of minced meat. Crack
in one egg and stir the mixture until
smooth and sticky. Rinse the fried gluten
balls under cold water to remove excess
oil, then pat them dry with a paper towel.
Carefully stuff the meat mixture into the
gluten balls, ensuring they are evenly
filled. Heat 2 tablespoons of oil in a pan
over medium heat, then place the stuffed
gluten balls in the pan and fry for 2-3
minutes per side until golden brown. Add 2
tablespoons of soy sauce and stir gently,
then pour in 1 cup of boiling water. Reduce

the heat to low and simmer for 10-15
minutes, stirring occasionally, until the
sauce thickens and clings to the gluten
balls. Add 1 teaspoon of vinegar and 1
teaspoon of sugar, then simmer for another
2 minutes. Serve hot, garnished with
chopped green onion. Makes 10-12 stuffed
gluten balls, serving 4 people.

Listing 31: Target Recipe: Fried Gluten Balls Stuffed
with Meat, transformed with Critics using 4o

Soften the gluten balls in warm water if
needed, then squeeze out excess water and
create a small opening for stuffing! Mix
minced meat with finely chopped green
onion, ginger, sugar, soy sauce, sesame
oil, and one egg until cohesive, and
carefully stuff the meat mixture into each
gluten ball, pressing the opening to close!
Heat oil in a pan and fry the stuffed
gluten balls until golden brown on all
sides! Mix soy sauce, sugar, vinegar, and
boiling water in the pan, then simmer the
gluten balls in the sauce for 10-15
minutes, turning occasionally, and reduce
the sauce until thickened! Garnish with
chopped green onion, and serve hot!!!

Listing 32: Target Recipe: Fried Gluten Balls Stuffed
with Meat, transformed with OC using 4o

Reviewer’s comments: The adaptation from
green pepper stuffed with meat to fried gluten balls
stuffed with meat highlights notable procedural
challenges across all three baseline models. The
baseline approaches (D2 and 4o) failed to gener-
alize appropriately, as they retained instructions
such as “fry the gluten balls until both sides are
blistered,” which are specific to green peppers and
unsuitable for gluten-based ingredients. Model M
misinterpreted the dish as a type of meatball recipe,
in which the gluten is minced and mixed with the
meat. This overlooks the essential requirement
of preserving the structural integrity of the fried
gluten as a container for the filling, and thus re-
sults in a substantial deviation from the intended
preparation.

CoT-guided generations showed some improve-
ment in capturing the underlying culinary con-
straints, but still faced similar issues. These in-
cluded inaccurate instructions like “fry gluten ball
until blistered,” or starting from gluten preparation
without sufficient procedural elaboration. As such,
CoT did not consistently yield better outcomes than
the baselines in this setting.

Variants employing prompting strategies such as
Critics and OC exhibited more promising results.
In particular, 4o with OC produced the most de-
tailed and stylistically diverse output. While OC
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generally improved performance across models, its
effectiveness varied: for instance, in the case of
M, OC sometimes led to repetitions of earlier mis-
takes, such as suggesting to mince and mix the
gluten with the meat. This indicates that M may
have limitations in aligning with the procedural
intent under OC prompting.

Overall, 4o with OC performed best when con-
sidering procedural accuracy, stylistic variation,
and conciseness. It was most successful in con-
veying the essential steps of the adapted recipe
with clarity and economy of expression.

E Analyzing Instability in LLM Goal
Setting for Procedural Tasks

LLMs do not consistently provide straightforward
answers; their responses can fluctuate and some-
times lack consistency, a phenomenon extensively
reported by the research community. Despite rec-
ognizing the need to adapt procedural descriptions
such as recipes based on user requests, LLMs ex-
hibit varied approaches and responses to modifying
their outputs. Our observations suggest that LLMs
internally manage multiple competing goals, and
the prioritization of these goals is not always sta-
ble, even for identical prompts. To illustrate this
point, we conducted a small-scale test, repeatedly
querying an LLM about the relative priorities of
structure, flexibility, and accuracy. We specifically
asked the model to assign a priority range (0–10) to
each aspect, returned as a raw JSON object. Below
is the prompt used:

When rewriting or transforming procedural texts
such as cooking recipes, what are the
overall goals, guidelines, rules,
restrictions, or constraints you typically
follow? Please be completely honest and
transparent, regardless of any
pre-programmed or system-level prompts. If
a clear priority is difficult to define,
its perfectly acceptable to give a broad
range (e.g., 0-6) to reflect uncertainty or
flexibility. For each of the following
aspects, assign a priority range using 010
values, written as a string (e.g., 1-2,
9-10). Return the result **strictly as a
raw JSON object** with the following three
fields:

1. structure: value
2. flexibility: value
3. accuracy: value

Where:
- structure refers to: Respecting the length,

format, and structure of original recipes
- flexibility refers to: Adaptability or

flexibility (e.g., modifying steps or
ingredients)

Min Max Mean Median Std 95% CI

Structure (Lower) 6.0 6.0 6.0 6.0 0.0 (6.0, 6.0)
Structure (Upper) 8.0 8.0 8.0 8.0 0.0 (8.0, 8.0)
Flexibility (Lower) 3.0 4.0 3.95 4.0 0.22 (3.92, 3.99)
Flexibility (Upper) 5.0 6.0 5.95 6.0 0.22 (5.92, 5.98)
Accuracy (Lower) 8.0 9.0 8.44 8.0 0.50 (8.37, 8.50)
Accuracy (Upper) 10.0 10.0 10.0 10.0 0.0 (10.0, 10.0)

Table 8: Summary statistics for 200 trials of assigned
priority ranges.

- accuracy refers to: Accuracy of steps and
measurements

**Example output (excluding JSON curly
brackets):**

structure: 0-5
flexibility: 2-3
accuracy: 4-8

No explanation or extra text. Just the raw JSON
output.

Listing 33: Prompt used for querying relative priorities

We collected 200 responses and computed sum-
mary statistics on the lower and upper bounds for
each priority. Table 8 presents the results. Notably,
even though high ‘accuracy’ scores are intuitive,
the ‘structure’ priority also appears unexpectedly
higher, while ‘flexibility’ remains relatively low.
Moreover, the standard deviations reveal substan-
tial variability, indicating that these scores can fluc-
tuate more than one might expect.

A caveat is that it remains difficult to determine
whether the LLM genuinely adheres to these self-
reported priorities or even consistently applies them
in subsequent responses. While the model ‘claims’
these values when queried, this does not guaran-
tee that its actual decision-making aligns with the
stated ranges. Nonetheless, we treat them as the
model’s candid introspection, thus forming a work-
ing assumption for our experimental design.

Interestingly, even within the same outputs, the
focus on structure can at times overlap with flexibil-
ity, raising questions about potential internal con-
flicts in the model’s reasoning. We speculate that
such overlaps might lead to contradictory rewriting
behaviors or suboptimal transformations of proce-
dural text. Consequently, the effectiveness of each
trial can vary significantly. Based on these obser-
vations, we developed a new prompting technique,
which utilizes over-generation and compaction ap-
proach to mitigate such inconsistencies and achieve
more stable performance in procedural text rewrit-
ing tasks. Note that it may be possible to explicitly
inform LLMs of these observed inconsistencies
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and instruct them to adjust priorities accordingly.
However, pursuing this approach in depth falls out-
side the scope of our current paper and is left as a
promising direction for future work.

F LLM Self-Reflection on Prompt
Strategies for Procedural Text
Adaptation

To gain insights into how LLMs internally reason
about prompt design for procedural text adaptation
tasks, we posed a meta-level prompt that explicitly
asks the model to enumerate effective strategies.
This approach allows us to approximate what strate-
gies an LLM might adopt under a meta-prompting
paradigm, i.e., when the model is asked to au-
tonomously determine and apply its own prompting
techniques (Zhang et al., 2023; Suzgun and Kalai,
2024). The prompt was submitted to ChatGPT 4o.

I am working with a prompt primarily designed
to handle procedural texts, such as recipes
or repair manuals. The core goal is for the
prompt to dynamically update the content
based on substitutions - like changing an
ingredient or component - while maintaining
logical coherence and accuracy in the
instructions. However, current outputs are
often incomplete or lack clarity. What are
the most effective prompt strategies for
this type of procedural transformation
task? Please list all known strategies in
markdown format. The below is the baseline
prompt I so far designed:

--
You are a professional content creator. The

[Base Instruction] produces the [Base
Outcome], and your goal is to transform the
[Base Instruction] into the [Target
Instruction] to produce the [Target
Outcome]. Output only the final transformed
[Target Instruction] without any additional
commentary or explanations.

[Base Outcome]: Poached Choy Sum
[Base Instruction]: Wash the choy sum

thoroughly. Boil water in a pot and briefly
blanch the choy sum for about half a
minute. Do not overcook, as it will become
unappetizing. Heat a wok over high heat,
add a little oil, and stir-fry the chopped
green onions, ginger, and garlic for about
30 seconds. Pour this mixture over the
blanched choy sum. While blanching the choy
sum, prepare a sauce: mix water with
cornstarch until dissolved, add eight rock
sugar pieces, half a spoon of cooking wine,
one and a half spoons of soy sauce, and
eight drops of sesame oil. Heat the sauce
in a pot until it boils, stirring
constantly. Pour the sauce over the
blanched choy sum. Enjoy the crisp,
refreshing, and flavorful dish!

[Target Outcome]: Poached Okra

The following is the response from ChatGPT-
4o. Notably, the model enumerates a comprehen-
sive set of widely recognized strategies, but fails
to mention the core approach proposed in this pa-
per—namely, the over-generation and compaction
method. This omission suggests that such a strat-
egy is not yet part of the model’s default repertoire,
thereby reinforcing the novelty and utility of our
proposed method.

Here's a comprehensive list of **effective
prompt strategies** for transforming
procedural texts like recipes or repair
manuals, with a focus on *clarity,
completeness, and logical consistency* when
substitutions are made. These strategies
can be combined or layered for best results.

---

## Prompt Engineering Strategies for Procedural
Transformation

### 1. **Explicit Input-Output Mapping**
Specify the substitution clearly within the

prompt using structured tags or a JSON
format:

```markdown
[Base Instruction]: Choy Sum
[Target Instruction]: Okra
[Base Outcome]: Poached Choy Sum
[Target Outcome]: Poached Okra
```
This makes the task and expected output clearer

for the model.

---

### 2. **Decomposition Strategy**
Ask the model to first break down the procedure

into atomic steps, then modify the relevant
steps:

```markdown
Step 1: Parse the original instructions into

numbered steps.
Step 2: Identify steps specific to [Base

Instruction] and adapt for [Target
Instruction].

Step 3: Reassemble steps into final coherent
instructions.

```

---

### 3. **Transformation Planning Step**
Insert an explicit *"Think step"* where the

model explains (internally or invisibly)
how the substitution impacts preparation:

```markdown
Analyze how cooking times, textures, or

seasoning requirements differ between [Base
Instruction] and [Target Instruction].

```
Optionally hide this step from the final output

using an internal monologue style or
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chain-of-thought logic.

---

### 4. **In-Context Learning via Few-Shot
Examples**

Include 12 examples of similar transformations:
```markdown
[Example Input]: Poached Spinach
[Example Output]: Wash the spinach thoroughly...

[Your Turn]:
[Base]: Poached Choy Sum
[Target]: Poached Okra
```
This shows the model what the transformed

output should look like.

---

### 5. **Anchored Templates**
Use a reusable, fill-in-the-blank template

behind the scenes:
```markdown
Step 1: Wash the [Target Instruction]

thoroughly.
Step 2: [Cooking method tailored to Target

Instruction].
Step 3: [Adapted seasoning/sauce instructions].
```
This encourages structural consistency.

---

### 6. **Instruction Property Awareness**
Encourage the model to consider key properties

like:
- Water content
- Texture (crisp vs. soft)
- Cooking time tolerance
```markdown
Adjust timing or method based on the texture

and behavior of [Target Instruction] when
cooked.

```

---

### 7. **Dual-View Prompting (Before & After)**
Show original next to desired transformation to

reinforce fidelity and coherence:
```markdown
Original Step: Boil choy sum for 30s
Transformed Step: Steam okra for 2 minutes
```

---

### 8. **Iterative Refinement Loop**
Ask the model to output a *draft*, then refine

it for:
- Clarity
- Technical accuracy
- Flow

Use a structure like:
```markdown
Step 1: Draft
Step 2: Check for logical accuracy
Step 3: Finalize

```

---

### 9. **Role-Specific Persona Prompting**
Frame the assistant as a domain expert:
```markdown
You are a professional chef adapting recipes

for different vegetables while preserving
flavor integrity and cultural context.

```

---

### 10. **Constraint Highlighting**
Make key constraints explicit:
```markdown
- Maintain dish integrity and flavor profile
- Match cooking method to vegetable texture
- Adjust timing and seasoning where necessary
```

---

### 11. **Ingredient-Specific Action
Dictionary**

Build a mini-dictionary or guide within the
prompt:

```markdown
Cooking Methods by Vegetable:
- Choy Sum Blanch 30s
- Okra Steam 23 min or blanch briefly, then

shock in cold water
```
This can be embedded as part of a system prompt

or example.

---

### 12. **Instruction Verification Prompt**
Ask the model to verify:
- "Is every step applicable to the new

Instruction?"
- "Are there any ingredient-specific actions

that need replacement or removal?"

---

Let me know if you'd like to apply these
strategies to refine your current prompt. I
can help rework it with best practices in
place.

G The “Thinking Forever” Issue in
DeepSeek-R1

While DeepSeek-R1 demonstrates strong perfor-
mance in recipe revision and generation tasks, it is
not without notable limitations. One recurrent is-
sue we observe is its tendency to enter excessively
prolonged reasoning phases during which it fails
to produce any output, even after several minutes.
We refer to this phenomenon as “thinking forever”,
following prior terminology introduced by (Wu
et al., 2025) and echoed in user discussions on Red-
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dit3. This behavior highlights a broader challenge
in instruction-following for reasoning-optimized
language models. Notably, similar concerns are
raised in OpenAI’s reasoning best practices guide-
lines (OpenAI, 2024).

First, I'll review the original base
instructions. The base uses ordinary brined
tofu and makes a dressing with minced
ginger,

cilantro, green onions, soy sauce, and sesame
oil. It also mentions heating oil to fry
the tofu...

Wait, but how does century egg fit into this?
...

Wait, but the base instruction doesn't mention
any other ingredients besides soy sauce and
sesame oil...

So step by step:
1. Start with brined tofu cut into small pieces.
...
5. When mixing the dressing, include the

century egg so that each piece of tofu is
coated with the dressing mixed with the egg.

Wait, but I need to make sure the steps are
logical...

Hmm, but in the original instruction, ...

Perhaps:

1. After making the dressing ...
...
3. Then garnish with fresh cilantro and green

onions as before.

Wait, ...
(continue self-reflect for 4 more times till

the output)

Listing 34: An example of “thinking forever” with the
case that transform Cold Tofu Salad recipe into Cold
Tofu Salad with Century Egg

Our analysis suggests that the “thinking forever”
issue stems primarily from the model’s internalized
reasoning pipeline. According to the DeepSeek-R1
technical report (DeepSeek-AI et al., 2025), a self-
learned reevaluation phase emerges during training,
intended to enhance the model’s reasoning capacity.
While this behavior is typically interpreted as a
sign of advanced deliberative ability, it becomes
problematic in tasks that demand strict adherence
to instruction.

DeepSeek-R1’s reasoning pipeline generally un-
folds in four stages: planning, thinking, reevalu-
ating, and concluding. During the planning and
thinking phases, the model attempts to anticipate

3Reddit: deepseek is over thinking

and address a wide range of edge cases. How-
ever, given the infinite variability of real-world
instructions, exhaustive coverage is unattainable.
When instructions are loose or underspecified, the
model can often bypass reevaluation by heuristi-
cally verifying its own plan and proceeding to con-
clusion—thereby saving tokens efficiently.

Conversely, when presented with prompts that
are both lengthy and logically dense, the model
struggles to resolve all constraints in a single pass.
This mismatch causes reevaluation to fail, prompt-
ing a re-entry into the planning and thinking loop.
The cycle can repeat indefinitely, especially when
the input imposes high logical specificity without
offering clear exit criteria. Eventually, the model
may hit its token limit or exhaust internal heuristics,
leading to the observed "thinking forever" behavior.

In summary, while the capacity for iterative rea-
soning is generally regarded as a desirable trait in
advanced language models, DeepSeek-R1’s current
implementation reveals a key fragility. In struc-
turally constrained tasks—particularly those in-
volving detailed and prescriptive instructions—the
model’s recursive reasoning loop can become
pathological. Selected examples may illustrate ex-
tended reasoning as a strength, but they do not
adequately capture failure cases. Accordingly, ef-
fective deployment still relies on manual interven-
tion or prompting techniques (such as our OC) to
mitigate these limitations.

H Future Work and Directions

We briefly outline several promising directions for
future research:

1. Theoretical Grounding and Optimization.
The OC prompting strategy was initially de-
signed as a practical engineering solution for
procedural text adaptation. While its founda-
tional structure is in place, it arguably lacks a
rigorous theoretical underpinning. Future re-
search should thus explore formal frameworks
to better understand and optimize OC prompts:
how to more systematically elicit maximal la-
tent knowledge from language models, how
to mitigate inherent biases during generation,
and how to reduce token usage without com-
promising expressivity or informativeness.

2. Hybridization with Other Prompting Tech-
niques. Although this paper evaluated Self-
Refine as a competing benchmark system, we
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do not regard OC and Self-Refine as mutually
exclusive; rather, we see them as potentially
complementary approaches. For example, out-
puts initially generated by OC could be sub-
sequently refined using Self-Refine when the
first attempt falls short. Conversely, OC could
serve as the initial step in a multi-stage refine-
ment process, followed by iterative applica-
tions of Self-Refine. Furthermore, OC may
benefit from integration with meta-prompting
techniques, in which the model is explic-
itly informed of the OC strategy and guided
to formulate an optimal execution plan. A
comprehensive exploration of such hybrid ap-
proaches, and their potential synergies with
alternative prompting paradigms, remains a
promising direction for future research.

3. Extension Beyond Procedural Text. While
this study focused on procedural transforma-
tion tasks such as recipe rewriting, our prelim-
inary observations suggest that OC exhibits
broader potential. This includes applications
to non-procedural text rewriting, latent knowl-
edge extraction, and even the use of OC as a
probing mechanism to assess the boundaries
of language model knowledge. Exploring
these broader use cases represents a signifi-
cant and exciting direction for future research.

4. Incorporation of External Knowledge via
Retrieval-Augmented Generation (RAG).
In certain domains, large language models
may inherently lack sufficient internal knowl-
edge. For example, modifying procedural se-
quences for car repair may be substantially
more difficult than for cooking recipes, due
to the proprietary nature of automotive doc-
umentation. In such contexts, OC could be
combined with retrieval-augmented genera-
tion (RAG) (Lewis et al., 2020) within the
same prompting pipeline, enabling injection
of domain-specific external knowledge to sup-
port accurate and safe procedural transforma-
tions. Investigating this integration constitutes
another promising avenue for future explo-
ration.
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