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Abstract

Recent advancements in self-improvement for
Large Language Models (LLMs) have effi-
ciently enhanced model capabilities without
significantly increasing costs, particularly in
terms of human effort. While this area is
still relatively young, its extension to the mul-
timodal domain holds immense potential for
leveraging diverse data sources and develop-
ing more general self-improving models. This
survey is the first to provide a comprehensive
overview of self-improvement in Multimodal
LLMs (MLLMs). We provide a structured
overview of the current literature and discuss
methods from three perspectives: 1) data col-
lection, 2) data organization, and 3) model op-
timization, to facilitate the further development
of self-improvement in MLLMs. We also in-
clude commonly used evaluations and down-
stream applications. Finally, we conclude by
outlining open challenges and future research
directions.

1 Introduction

Self-improvement aims to enable models to col-
lect and organize data required to build a better
generation of themselves, which offers a path to
overcome the costly scaling issues and potential
performance ceilings of static training paradigms.
In Multi-Modal Large Language Models (MLLMs),
self-improvement seeks to use MLLMs themselves
to obtain their own training data, resulting in im-
proved MLLMs. Recent research (Favero et al.,
2024; Deng et al., 2024b; Amirloo et al., 2024)
show that this approach can significantly reduce
hallucinations and improve performance on gen-
eral tasks with relatively low cost. Significant
progress has been made in this direction. Some
current studies (Zhou et al., 2024a) partially lever-
age self-improvement by combining it with exter-
nal tools or peer models, while others (Yu et al.,
2024b) explore approaches that rely solely on a
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Figure 1: An illustration of self-improvement in Multi-
modal Large Language Models. The process involves
selecting a seed MLLM to generate new data, organiz-
ing that data into a dataset, and finally obtaining an
improved model through training. This process can be
iterative to achieve recursive self-improvement.

single model to handle all processes, toward full
self-improvement. Although previous work (Tao
et al., 2024) has summarized the self-improvement
in text-only LL.Ms and other surveys study the gen-
eral scope of MLLMs (Yin et al., 2024; Zhang
et al., 2024a) or specific issues such as halluci-
nations (Bai et al., 2024), there is no comprehen-
sive survey that focuses on these self-improvement
methods for MLLMs. To fill this gap, we dedicate
this paper to providing a comprehensive review of
this area and identifying the challenges that need
to be addressed.

Compared to self-improvement in LLMs (Huang
et al., 2022; Tao et al., 2024), self-improvement in
MLLMs faces unique challenges, such as the in-
clusion of multiple modalities. This can introduce
modality alignment problems, which are known to
cause issues like hallucination in MLLMs (Li et al.,
2023b). Additionally, MLLMs often cannot gener-
ate all the training data it needed by themselves, as
most current models (Liu et al., 2024a; Bai et al.,
2023) are unable to generate images directly.

Despite these challenges, there is growing in-
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terest in leveraging self-improvement in MLLMs
to build models more effectively and efficiently.
Promising results have already been achieved in
this area. This paper aims to summarize previous
works, compare methods, and provide clearer guid-
ance for future research directions in this field.

In this survey, we follow the structure out-
lined below: First, we provide an overview of
the field. Next, we introduce the most commonly
used seed models that serve as starting points for
self-improvement. For the detailed methodology,
we divide the discussion into three parts as shown
in Fig. 2: data collection, data organization, and
model optimization. We list current approaches
and discuss their differences. We also collect eval-
uation methods commonly used to measure per-
formance gains from self-improvement, compiling
benchmark results for a comprehensive compari-
son. Additionally, we discuss downstream appli-
cations, to highlight the real-world impact of this
paradigm. Finally, we identify the challenges in
this field, which also represent potential future di-
rections, and conclude the survey.

With this work, we aim to establish a clearer
pathway for developing the next generation of
MLLMs with better self-improvement mechanisms,
moving beyond random exploration with biases.
We hope to attract more researchers to explore this
promising direction.

2 Overview

In this section, we first formally define self-
improvement in multimodal large language models
(MLLMs) in the context of this paper, and then
compare it to similar concepts that have been used
in MLLMs research. Afterwards, we summarize
representative works in this domain to provide a
general overview of the existing methods.

2.1 Definition

There are many similar terms to Self-Improvement,
such as Self-Evolution, Self-Training, Self-
Consistency, Self-Correction, Self-Reflection, and
Self-Refinement, which have also been mentioned
in previous MLLM research. There is a trend
where the boundaries between these concepts are
becoming blurred, and they may become more
interchangeable in the future, depending heavily
on the context. However, we clearly distinguish
two paradigms. In this paper, we define self-
improvement shown in Fig. 1 as updating the model
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Figure 2: An overview of three steps for self-
improvement in MLLMs. Each step can involve dif-
ferent methods based on requirements. For the full
taxonomy please check Fig. 3.

from mg to my, as opposed to self-refinement,
which involves updating responses in context from
ro to 1. Formally, we express these concepts as
follows:

Self-Improvement (Model Update through
Training): m; = I(mg, D), where I(-) denotes
the self-improvement operator that upgrades the en-
tire model by training on self-curated multimodal
dataset D.

Self-Refinement (Response Update in Con-
text): ;1 = R(ro,c), where R(-) represents the
self-refinement operator that refines the initial re-
sponse g based on the context ¢, which can be
seen as a type of test-time scaling (or test time
self-improvement). It is worth noting that some
refined responses may have the potential to be in-
corporated into training data and thus contribute to
further self-improvement.'

A typical self-improvement process in MLLMs
involves three modules: data collection, data orga-
nization, and model optimization as demonstrated
in Fig. 2, which follows the structure of a general
model-building process but focuses on automating
the model development process using models rather
than relying heavily on human intervention. While
these commonly used modules are widely involved
in the self-improvement of MLLMs, it is impor-
tant to note that their life cycle does not necessar-
ily conclude once an improved model is obtained.
The iterative loop can persist, using the newly im-
proved model as the seed for the next stage of self-
improvement as demonstrated in Fig. 1. This life
cycle can be highly dynamic, particularly in on-
line settings, where data collection is directly in-

"Here, we do not consider storing newly acquired skills
during inference in memory as an analogy for parameter tun-
ing.
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fluenced by the optimization design. This design
may incorporate or encourage the model to explore
more diverse or constrained data generation in sub-
sequent rounds.

We conceptualize self-improvement in MLLMs
as a spectrum of methods aiming to reduce human
workload and maximize automation in improving
model performance. Some methods target full au-
tonomy, while others are limited to guided or as-
sisted self-improvement, as long as they do not
fully rely on human effort. Most papers in our
survey do not leverage stronger external models.
However, external models can be treated as tools
that the seed model calls or uses. Under this for-
mulation, we believe such approaches fall within
the spectrum of self-improvement, albeit at the less
independent end due to their reliance on external
tools. To illustrate this, we add Tab. 1 comparing
different levels of self-improvement in MLLMs,
detailing what they automate and their limitations,
allowing all discussed methods to fit organically
within this spectrum.

2.2 Related and Representative Works

Improvement without human supervision in
MLLMs encompasses various strategies aimed at
enhancing model performance through internal
mechanisms. These approaches can be broadly cat-
egorized into Self-Refinement, Peer-Improvement,
Self-Improvement for image LL.Ms, and extensions
for Video LLMs and agents.

2.2.1 Self-Refinement and Peer-Improvement

Early methods like Woodpecker (Yin et al., 2023)
and VCD (Leng et al., 2024) focus on reducing
hallucinations within generated content through
training-free techniques. Due to the big gap be-
tween proprietary models and early open-weight
models, LLaVA (Liu et al., 2024a) and HA-
DPO (Zhao et al., 2023) leverage GPT-4 to help
build or refine multimodal capabilities, avoiding
human supervision from scratch.

2.2.2 Self-Improvement in Image Large
Language Models

Self-improvement strategies aim to enhance model
abilities fundamentally by modifying model
weights and reducing dependency on external mod-
els. Recent methods include on-the-fly enhance-
ment of instruction-tuning data VIGC (Wang et al.,
2024a), shifting from answering generation to self-
questioning SQ-LLaVA (Sun et al., 2025a), and

synergy-driven cycles that interleave describing
and locating objects SC-Tune (Yue et al., 2024b).
Others reduce hallucinations by converting training-
free interventions into trainable onesM3ID (Favero
et al., 2024), enabling interpretability in decision-
making without extra annotations like LLaVA-
ASD (Deng et al., 2024a), leveraging data augmen-
tation to construct preference pairs like SeVa (Zhu
et al., 2024), and applying step-wise self-rewarding
CSR (Zhou et al., 2024b). Some approaches rely
on internal checks, such as visual metrics for pref-
erence tuning SIMA (Wang et al., 2024b) or using
the model’s own encoder for fine-grained alignment
FiSAO (Cui et al., 2024).

2.2.3 Extensions to Video

i-SRT (Ahn et al., 2024a) applies self-improvement
in video large language models, addressing the is-
sue of self-generated preferences that are linguis-
tically plausible but not grounded in the visual
content of the associated video. Video-STaR (Zo-
har et al., 2024) adapts the STaR approach for the
video domain, enabling the use of any labeled video
dataset (such as Kinetics-700) for video instruction
tuning.

2.2.4 Multimodal Agents

When augmenting MLLMs as agents and allowing
them to act or even interact with each other, self-
improvement enhances model performance across
various tasks, including learning through self-play
in image identification (Konyushkova et al., 2025)
or improving decision-making in games such as
Blackjack and ALFWorld (Zhai et al., 2025).

3 Seed Models

A seed model does not need to be exceptionally
strong, but it must clear a small set of capability
floors that the self-improvement loop relies on. If
these floors are missing, the model tends to gen-
erate low-quality data and the loop either stalls or
collapses.

Capability floors. Some skills are costly to
"retrofit" purely from self-improvement and there-
fore should be present in the seed:

* Basic visual grounding
* Robust text-in-the-wild / layout handling
» Temporal aggregation for video

* Coherent reasoning traces (for reflection)

1989



Level Who does the heavy-lifting?

Typical technique / example

LO — No self-improvement Humans do all data collection and curation
L1 — Human-guided improvement
L2 — Peer improvement

L3 - Hybrid self-improvement

L4 - Conditional self-improvement

L5 - High self-improvement

Model generates responses, while humans choose preferred data

External models (e.g. GPT-4-V) supply data; minimal direct human toil

Model collects its own data, but queries external augmentations or verifiers
Target model runs its own data loop except images come from existing datasets
Model generates and curates both images and text without external data sources

InstructGPT-style SFT (Ouyang et al., 2022)

RLHF-V, human-guided reward modelling (Yu et al., 2024a)
Distillation (Liu et al., 2024a),

Hybrid approaches (Zhou et al., 2024a)

RLAIF-V (Yu et al., 2024b) with self-reward

UniRL (Mao et al., 2025)

Table 1: Levels of multimodal self-improvement

Common choices. Several commonly used
MLLMs have been adopted as seed models in self-
improvement research:

 LLaVA (Liu et al., 2024a): As one of the
earliest popular MLLMs, LLaVA has been
widely used in MLLM self-improvement re-
search due to its representativeness. The most
commonly used versions are LLaVA-1.5 (7B
and 13B). Some works, such as STIC and
BDHS, utilize LLaVA-1.6.

* Qwen-VL (Bai et al., 2023): Built on top of
Qwen-LM, this model uses a three-stage train-
ing pipeline: Pretraining, Multi-task Pretrain-
ing, and Supervised Fine-tuning, to optimize
its performance.

e InstructBLIP (Dai et al., 2023): Instruct-
BLIP introduces an instruction-aware Query
Transformer that extracts informative features
tailored to given instructions. It is trained
on 13 datasets converted into an instruction-
tuning format.

* MiniGPT4 (Zhu et al., 2023): An early
effort to reproduce an open-source GPT-4,
MiniGPT#4 aligns a frozen visual encoder with
a frozen advanced LLM (Vicuna) using a sin-
gle projection layer.

Video-LLaVA (Lin et al., 2023): It is com-
monly used as a seed model in video models.
As its name implies, Video-LLaVA is sim-
ilar to LLaVA but also fine-tuned on video
datasets. It is designed for both image and
video comprehension tasks.

Beyond these commonly used seed models,
some works train their own seed models from
scratch using a pretrained LLM to maintain more
control over the entire process and address specific
needs.

4 Data Collection

Effective data collection is crucial for enabling
MLLMs to acquire and refine specific abilities. In

conventional machine learning approaches, data
collection typically relies on extensive human la-
bor. This labor-intensive process, while effective,
can be both time-consuming and costly, and is of-
ten limited by the availability and scalability of
human resources.

In the context of self-improvement for MLLMs,
a shift towards autonomous data collection is both
desirable and increasingly feasible, thereby reduc-
ing the dependency on human intervention. This
approach not only enhances efficiency but also en-
ables continuous and scalable learning. We com-
pare advantages and disadvantages of these meth-
ods in Tab. 2.

4.1 Random Sampling

The most straightforward method for autonomous
data generation is random sampling (Zhao et al.,
2023), where the model generates data by sampling
from its existing knowledge base without specific
guidance. Although random sampling is simple to
implement and can produce a diverse set of data,
it has notable inefficiencies such as the generation
of redundant or irrelevant data, which can waste
computational resources and time.

4.2 Guided Data Generation

To address the inefficiencies of random sampling,
guided data generation techniques have been de-
veloped (Cheng et al., 2024). These methods em-
ploy predefined pipelines with carefully designed
prompts to steer the model towards generating de-
sired and high-quality responses. One prominent
technique is Chain-of-Thought (CoT), which en-
courages the model to generate intermediate rea-
soning steps before producing a final answer. In
order to further improve sample efficiency, some
approaches adopt search-based methods such as
beam search and Monte Carlo Tree Search (MCTS)
and its variants (Yao et al., 2024).

4.3 Negative Samples

Negative samples are essential for refining the
model’s ability to distinguish between correct and
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Table 2: Comparison of Data Collection Methods

Method Benefits

Drawbacks

Random Sampling (Zhao et al., 2023; Yu et al., 2024b)
Prompt-Guided Generation (Wang et al., 2024a; Fang et al.)
response
Chain of Thought (Zhai et al., 2025; Zohar et al., 2024)
Input Injection (Zhou et al., 2024a; Zhu et al., 2024)

Sourcing from Multiple MLLMs (Li et al., 2023a; Xiong et al., 2024)

Easy to use; works for any MLLM

Highly controllable; can generate almost any type of
Can generate long responses for reasoning tasks

Can generate negative examples

Ensures diversity in generated outputs

May not be efficient; difficult to obtain samples with
desired features
Requires significant human effort; difficult to scale

Sometimes produces redundant or irrelevant reason-
ing steps

Minor distortions may sometimes produce better ex-
amples than undistorted ones

Requires additional effort to manage different models

incorrect responses, thereby enhancing its overall
accuracy and reliability. Various strategies have
been explored to generate negative samples au-
tonomously. Poorly Designed Prompts (Deng
et al., 2024b): Crafting ambiguous or mislead-
ing prompts can lead the model to generate sub-
optimal or incorrect responses. Distorted Im-
ages (Zhou et al., 2024a): Introducing visual distor-
tions or noise into images challenges the model’s vi-
sual comprehension capabilities. Attention Mask-
ing (Amirloo et al., 2024): Manipulating the atten-
tion mechanism during the decoding process can
result in responses that focus on irrelevant parts
of the input. Additionally, the generation of neg-
ative samples can be finely controlled by altering
the decoding path (Deng et al., 2025b), which pro-
duces responses that are less grounded in the visual
context to the desired level, serving as effective
negative examples for training.

Some methods utilize peer models for data gen-
eration (distillation), but implementing the same
pipeline with the seed model itself may theoreti-
cally produce similar effects.

5 Data Organization

The data collected by MLLMs may not be directly
suitable for feeding back into the models without
further processing. To ensure the efficacy of self-
improvement, a thorough verification and process-
ing step is essential before leveraging the newly
obtained data. The quality of this organization
process is paramount, as it directly determines the
robustness and reliability of the self-improvement
mechanism in MLLMs. We compare these meth-
ods in Tab. 3.

5.1 Verification Methods

The verification process can be a critical step during
data organization and is usually implemented us-
ing either predefined rules or sophisticated models.
Each method has its own advantages and limita-
tions, which are discussed below.

5.1.1 Rule-Based Verification

Rule-based organization involves applying prede-
fined criteria to assess the quality and correctness
of the generated data. This approach is straight-
forward and computationally efficient but may
lack flexibility in handling diverse data scenar-
ios. Majority Voting (Ensembling or Consen-
sus): The simplest approach compares multiple
generated responses and selects the one with the
highest frequency. While easy to implement, it
may not always yield the best quality data, as the
most frequent response might still contain inac-
curacies or lack diversity. Ground Truth Align-
ment (He et al., 2024a): For datasets with estab-
lished ground truths, the verification can involve
cross-referencing the model’s output with the cor-
rect answers. For instance, in terms of the tasks re-
quiring bounding boxes, an Intersection over Union
(IoU) threshold can determine the acceptance of
generated content (Yue et al., 2024b). If the loU
score exceeds the predefined threshold, the con-
tent is deemed acceptable; otherwise, it can be dis-
carded or flagged for further review. Alternatively,
IoU can also be used as a reward function during
RL training (Liu et al., 2025a).

5.1.2 Model-Based Verification

Model-based organization leverages additional
models to assess the quality of generated data. This
method can provide more nuanced evaluations and
modifications but may introduce additional compu-
tational overhead. Peer Model Evaluation: Uti-
lizing separate peer models to judge the quality
of outputs can reduce bias and improve the reli-
ability of the verification process. These models
can provide independent evaluations, enhancing the
overall robustness of data verification. Self-Critic
Mechanism (Wang et al., 2024b): The MLLM
itself can generate the rewards that evaluate the
correctness and relevance of the data at various
levels-token (Cui et al., 2024), sentence (Zhou et al.,
2024b), or output. This allows for more detailed
assessments compared to rule-based methods.
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Table 3: Comparison of Data Organization Methods

Method Benefits

Drawbacks

Pre-assigned Labels (Zhou et al., 2024a)
Rule-Based Organization (Yue et al., 2024b)
Self-Evaluation (Ahn et al., 2024b)

Judgment by External Verifiers (Sun et al., 2024a)
Feedback from Environment (Zhai et al., 2025)

Highly explainable

No extra effort required after data collection

No additional reliance on external tools
‘Well-defined verifiers are highly robust
Robust and requires minimal additional effort

Cannot handle complex cases

Not robust enough for novel samples

Can suffer from model bias or hallucinations
Some verifiers may incur significantly higher costs
Many cases may be difficult to implement

5.1.3 Verification from the Environment

MLLMs used as agents that interact with their envi-
ronment can also leverage environmental feedback
for verification. The environment can be either the
real world (Guo et al., 2025a; Chen et al., 2025d)
or simulated environments, such as games (Zhai
et al., 2025; Konyushkova et al., 2025).

5.2 Dataset Arrangement

Arranging the newly-collected and verified
dataset can be an important step in the self-
improvement (Wang et al., 2024a). Based on the
goal of self-improvement, the new dataset can
be formulated from previously generated and pro-
cessed data: e.g., fixing answers, rewriting ratio-
nales, inserting missing evidence, or normalizing
formats. Depending on the goal, the arranged set
can be derived from prior model outputs by:

* editing/refinement of outputs or rationales
(e.g., generator- corrector workflows and re-
flective self-correction) (Wang et al., 2024a;
Zhang et al., 2024b; He et al., 2024a),

* topic-aware overwriting where errors are cor-
rected within semantic clusters (He et al.,
2024b),

e curriculum or subset scheduling when the em-
phasis is ordering/pruning rather than rewrit-
ing (Deng et al., 2025a).

When rated scores from judges are available, the
same pool can be reformatted into preference-
learning pairs/lists for DPO or into continuous re-
wards for RL (e.g., critic/reward-based organiza-
tion) (Xiong et al., 2024).

5.3 Feedback Loop

The data collection-organization pipeline in self-
improving MLLMs is not necessarily unidirec-
tional. Verified or re-scored outputs can be fed
back to the generation model to modify prompts,
constraints, or exemplars, creating a closed feed-
back loop that iteratively enhances data quality and
model performance.

Iterative Refinement (data-centric): In each
round, the current model generates training can-
didates, the organization step verifies, filters, or
transforms them into a curated set, and the model is
updated on this set before repeating. This improves
context quality and reduces noise over successive
iterations (Liu et al., 2024c; Deng et al., 2025c;
Luo et al., 2024a).

Recursive Improvement (model-centric): The
loop also supports upgrading the teacher/critic/peer
panel (or the policy itself), so that the next round
of data is produced and/or filtered by a strictly
stronger model, enabling co-evolution of data and
capability (Tan et al., 2024; Mao et al., 2025; Hong
et al., 2025; Chen et al., 2025¢).

6 Model Optimization

After obtaining the filtered dataset, the next step is
to update the parameters of the seed model. Sev-
eral training methods have been employed in self-
improvement for MLLMSs, including supervised
fine-tuning, reinforcement learning, and direct pref-
erence optimization. As discussed in the paper
DeepSeekMath (Shao et al., 2024), all these meth-
ods are actually connected. We compare advan-
tages and disadvantages of these methods in Tab. 4.

Table 4: Comparison of Model Optimization Methods

Method

Benefits

Drawbacks

SFT (Wang et al., 2024a; Luo

et al., 2024a; Xiong et al.,

2024)
PPO (Yue et al., 2024b; Zhai
etal., 2025)

GRPO (Chen et al., 2025b)

RFT (Liu et al., 2024c)

DPO (Li et al., 2023a; Ouali
et al., 2025; Luo et al., 2024b)

Highly efficient when
using existing high-
quality datasets

A classic online RL
method, easy to deploy
More efficient than
PPO since no value
model is needed

Can be used in an of-
fline manner

Can leverage both pos-
itive and negative sam-
ples

Requires human effort
or high-cost strong
models

The reward model may
be difficult to obtain
Involves a trade-off be-
tween efficiency and
the number of groups
All negative samples
are discarded

May experience distri-
bution shift issues after
extensive training

6.1 Supervised Fine-tuning

Instruction tuning, or supervised fine-tuning (SFT),
has become a widely adopted post-training method
to enable LLMs and MLLMs to follow instruc-
tions and solve a broader range of general tasks. In
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SFT, the model is trained to minimize the discrep-
ancy between its predictions and the ground truth
responses provided in the dataset.

Formally, given a dataset D = {(z;,y:)}Y .,
where x; represents the input and y; the correspond-
ing target output, the objective is to minimize the
cross-entropy loss:

N T;
L s
Lspr = -~ ; tzzlyi,t log p(yit|Ti, yi,<t;0) (1)

This loss function encourages the model to gen-
erate outputs that closely match the ground truth.

In the context of self-improvement for MLLMs,
it enables the new model to better align with the
desired improvement goals in generated output.

6.2 Reinforcement Learning

Reinforcement learning (RL) methods have been
used to improve MLLMs without human demon-
stration data, particularly for preference alignment
and reasoning tasks. It aims to generate outputs
that receive high rewards. The objective is then
expressed as:

ERL(H) = _E(a:,y)waer('ray) (2)

Methods such as Proximal Policy Optimiza-
tion (PPO) have been initially employed in RLHF
for MLLMs (Sun et al., 2023). More recently,
GRPO (Shao et al., 2024) has emerged as an effi-
cient alternative to PPO for training MLLMs (Chen
et al., 2025b), as it does not require a value model.

6.3 Direct Preference Optimization

Direct Preference Optimization (DPO) (Rafailov
et al., 2024) is a reinforcement-learning-free of-
fline alternative for preference learning, which has
become the de facto standard in preference opti-
mization for MLLMs. Unlike SFT, which can only
leverage positive data, it can also take advantage
of negative data. It formulates the optimization
problem as follows:

Given a pair of outputs (y*,y~) where y is
preferred over y—, the objective is to maximize the
likelihood of preferred outputs while minimizing
the likelihood of dispreferred outputs. The DPO
loss can be expressed as:

Lopo(®) =~ - logo(s(s) — s )] @

This objective encourages the model to assign
higher scores to preferred outputs compared to dis-
preferred ones.

6.4 Other Enhanced Variants

Some works adjust the classic method by adding
additional components (Xiao et al., 2024), such as
penalty terms for specific designs. For example,
incorporating regularization terms can help main-
tain model stability and prevent overfitting to the
preference data.

6.5 Alternative Ways of Using Negative
Samples

It is worth noting that preference learning is not the
only way to utilize negative data samples. Com-
bining negative samples with self-reflection and
correction using a CoT approach can further en-
hance model performance. This involves generat-
ing detailed reasoning steps that allow the model
to identify and correct its own errors, thereby im-
proving the quality of the outputs.

6.6 Curriculum

Multi-stage training with different optimization
methods has become common practice in MLLM
training. Some research shows that certain train-
ing stages may hurt the model (Zhou et al., 2025),
while other studies find that certain performance
gains can be more easily obtained by combining dif-
ferent stages of optimization (Huang et al., 2025b).

7 Dataset and Evaluation

There are some datasets released for improving
MLLMs but no benchmarks specifically designed
for self-improvement in MLLMs. Most of the time,
researchers use existing MLLM benchmarks and
report performance gains compared to the seed
model and other SOTA models. Some attempts,
such as LLM-Evolve (You et al., 2024) aim to build
a new type of benchmark; however, this particular
benchmark operates in a non-parametric setting.

7.1 Dataset

Some datasets aim to improve MLLMs, such as
VLFeedback (Li et al., 2024b). VLFeedback is
the first large-scale Al-annotated vision-language
feedback dataset. It contains over 82K multi-modal
instructions and comprehensive rationales gener-
ated by models. Additional datasets have been con-
tributed by the community, including those used
in RLAIF-V and Open-R1-Multimodal. These
Al-created datasets have demonstrated their use-
fulness in improving various MLLMs. However,
they remain limited to specific tasks and offer only
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incremental improvements. The challenge of build-
ing a more general dataset capable of supporting a
wider range of tasks remains an open question for
the research community.

Several new datasets have emerged for the pur-
pose of self-improvement for MLLMs. For in-
stance, the DeepPerception Dataset (Ma et al.,
2025) aims to enhance the cognitive visual per-
ception capabilities of MLLMs for the task of
knowledge-intensive visual grounding (KVG); it
comprises high-quality, knowledge-aligned train-
ing samples generated through an automated
data synthesis pipeline. The OmniAlign-V-DPO
Dataset (Zhao et al., 2025b) leverages the answers
from the OmniAlign-V SFT dataset as positive ex-
amples. To create the necessary preference pairs
for DPO, negative samples are generated using an-
other MLLM, LLaVANext-InternLM-7B, through
a process called rejection sampling. The Vision-
Prefer Dataset (Wu et al., 2024) is another high-
quality and fine-grained preference dataset created
for aligning text-to-image generative models. It ag-
gregates feedback from Al annotators, specifically
utilizing the capabilities of GPT-4V to evaluate
generated images based on defined criteria. The
LLaVA-Critic dataset (Xiong et al., 2024), compris-
ing 113,000 evaluation instruction samples across
46,000 images, was generated using a GPT-assisted
pipeline, with GPT-40 providing judgment scores
and reasons for evaluating MLLM responses. We
summarize these datasets in the following table to
better demonstrate their differences.

7.2 Benchmarks

Evaluating the self-improvement of MLLMs can
leverage current popular MLLM benchmarks.
These benchmarks can be broadly categorized as
follows:

7.2.1 General Knowledge

Benchmarks in this category assess the model’s
ability to understand and reason across multiple dis-
ciplines using multimodal inputs. Notable bench-
marks include MMMU (Yue et al., 2024c) and
MMStar (Chen et al., 2024a), which focus on
comprehensive multimodal understanding across
various academic and professional domains.

7.2.2 Reasoning

These benchmarks evaluate higher-order cognitive
abilities and commonsense reasoning within multi-
modal contexts. Examples such as Mathvista (Lu

et al., 2023) and VCR (Zellers et al., 2019) are
designed to test mathematical reasoning and com-
monsense understanding through visual inputs.

7.2.3 Hallucination

Detecting and mitigating hallucinations in gen-
erated content is crucial for reliable MLLMs.
Benchmarks like CHAIR (Rohrbach et al., 2018),
POPE (Li et al., 2023b), and AMBER (Wang et al.,
2023) provide metrics and evaluation frameworks
to assess the accuracy and relevance of model out-
puts against visual inputs.

7.2.4 Medical

Medical benchmarks focus on the model’s capa-
bility to understand and reason with medical im-
ages and related queries. Datasets such as VQA-
RAD (Lau et al., 2018), SLAKE (Liu et al., 2021),
and PathVQA (He et al., 2020) are designed to
evaluate the model’s proficiency in medical image
analysis and question-answering tasks.

7.2.5 Video QA

Assessing MLLMs’ understanding of dynamic vi-
sual content is addressed by video-based bench-
marks. Notable datasets include MSVD-QA (Xu
et al., 2017), MSRVTT-QA (Xu et al., 2017),
TGIF-QA (Jang et al., 2017), and ActivityNet-
QA (Yu et al., 2019), which provide question-
answer pairs based on video clips to test temporal
and contextual reasoning.

7.2.6 Judging Abilities

Evaluating the model’s capability to act as a judge
involves assessing various aspects such as align-
ment, safety, and bias. Benchmarks like MJ-
Bench (Chen et al., 2024b) are designed to mea-
sure these attributes, ensuring that the model’s eval-
uations are reliable and consistent. Meanwhile,
AutoBench-V (Bao et al., 2024) attempts to en-
able the MLLM itself to propose and construct new
benchmarks.

7.3 Meta-Analysis Across Benchmarks

Using the compiled results, we observed the fol-
lowing robust patterns:

Method-Task Match. Rule-/verification-based
RL (e.g., with step-wise or outcome checks) drives
the largest absolute gains on verifiable tasks (vi-
sual math, programmatic reasoning, constrained
captioning), while preference/Al-feedback data
most reliably lowers hallucination metrics (e.g.,
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Table 5: Comparison of Vision-Language Feedback Datasets

Dataset Name Feedback Type Key Benefits

Limitations

DeepPerception Implicit (Task-based RL)

VLFeedback Al-generated (GPT-4V)

MLLM.

OmniAlign-V-DPO Al-generated (LLaVANext)

VisionPrefer Al-generated (GPT-4V)

LLaVA-Critic Al-generated (GPT-40)

tasks covered.

Focuses on perception-cognition synergy; automated data synthesis.

Large scale; diverse instructions; safety-focused; generated by strong

DPO-specific format; uses rejection sampling for negative samples.

Fine-grained preferences across multiple aspects.

Reliable evaluation scores; generates reward signals for DPO; diverse

PPO usage is implied, not explicitly stated; size
of synthesized data not clear.

Potential biases from GPT-4V.

Quality depends on base SFT data and negative
sampling strategy.

Primarily for reward model training, DPO usage
for validation.

Quality of reward signals depends on LLaVA-
Critic’s performance.

POPE/AMBER) and improves general helpful-
ness/faithfulness.

Seed Strength Matters. Relative improvement
Ageed typically shrinks as seed models get stronger;
however, strong seeds show more stable gains
across benchmarks. For identical pipelines (e.g.,
STIC-style), better seeds consistently yield higher
end performance.

Cross-Benchmark Inconsistency. Methods that
boost compositional reasoning can regress on
perception-heavy tasks (fine-grained recognition,
OCR, attribute binding), and vice versa. Pairwise
rank correlations between benchmarks are often
modest; gains on one suite do not guarantee gains
on others.

Persistent Bottlenecks.
difficulties in:

We observe recurring

* Fine-grained spatial reasoning (counting un-
der occlusion, relative positions)

* Multi-image/multi-hop consistency
* Long-horizon video temporal grounding
* Diagram/chart/plan understanding

» Robustness under noisy OCR or layout-heavy
documents

* Hallucination recurs in open-world scenes un-
less visual evidence is tightly verified.

Judge/Reward Leakage. When the same or
closely related judges curate and evaluate (e.g.,
GPT-4V-like feedback used both for data construc-
tion and testing), scores inflate. Separation of cura-
tion and evaluation signals is critical for credible
claims.

Efficiency Analysis. We discuss the efficiency
of self-improvement methods in MLLMs from a
computational cost perspective, considering factors
like memory use during each stage and the data
generation scale. First, regarding data sampling:
random sampling often has the highest cost since it
normally has a high rejection rate. Prompt-guided
generation helps address this issue by giving more
guidance, thereby reducing the search space of pos-
sible responses. Using negative samples further
enables the usage of all generated data; even sam-
ples considered low-scoring can be used as neg-
ative samples, thus avoiding waste. For verifica-
tion methods, the rule-based method generally has
the lowest cost, since checking whether generated
content satisfies rules is typically straightforward.
Model-based verification can handle very complex
scenarios but has the highest cost. Verifying the
outcome in the real environment can have the high-
est cost due to simulation complexity but may yield
the highest feedback quality, especially for the most
difficult verifications.

8 Conclusion

In this paper, we presented a comprehensive and
structured survey of self-improvement in multi-
modal large language models (MLLMs). We de-
fined the concept of self-improvement as used in
this survey and clarified its differences from other
related concepts. We discussed and compared rep-
resentative works in this domain, highlighting their
similarities and differences from three perspectives:
1) data collection, 2) data organization, and 3)
model optimization. Further, we summarized com-
monly used evaluations and applications. Finally,
we identified current challenges and potential op-
portunities for future research. We hope this survey
serves as a valuable guide for researchers interested
in exploring and developing new self-improvement
methods for MLLMs.
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Limitations

Due to space limitations, this paper primarily fo-
cuses on a macro-level description and analysis
of self-improvement within the current scope of
MLLMs. Given the rapid evolution of the field,
some of the most recent developments and new di-
rections may not be included. Since we focus on
the MLLM domain, we did not review work that in-
volves only LLMs or agents; however, some meth-
ods may potentially be adapted to MLLMs as well.
Despite these limitations, we believe this work, as
the first survey in the area of self-improvement in
MLLMs, provides a valuable overview of current
research.

References

Daechul Ahn, Yura Choi, San Kim, Youngjae Yu,
Dongyeop Kang, and Jonghyun Choi. 2024a. i-srt:
Aligning large multimodal models for videos by it-

erative self-retrospective judgment. arXiv preprint
arXiv:2406.11280.

Daechul Ahn, Yura Choi, Youngjae Yu, Dongyeop
Kang, and Jonghyun Choi. 2024b. Tuning large
multimodal models for videos using reinforce-
ment learning from ai feedback. arXiv preprint
arXiv:2402.03746.

Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto,
Lies Hadjadj, Emilie Devijver, and Yury Maximov.
2024. Self-training: A survey. Neurocomputing,
page 128904.

Elmira Amirloo, Jean-Philippe Fauconnier, Christoph
Roesmann, Christian Kerl, Rinu Boney, Yusu Qian,
Zirui Wang, Afshin Dehghan, Yinfei Yang, Zhe
Gan, et al. 2024. Understanding alignment in multi-
modal llms: A comprehensive study. arXiv preprint
arXiv:2407.02477.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang,
Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou,
and Jingren Zhou. 2023. Qwen-vl: A frontier large
vision-language model with versatile abilities. arXiv
preprint arXiv:2308.12966.

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,
Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
2024. Hallucination of multimodal large language
models: A survey. arXiv preprint arXiv:2404.18930.

Han Bao, Yue Huang, Yanbo Wang, Jiayi Ye, Xiangqi
Wang, Xiuying Chen, Mohamed Elhoseiny, and Xian-
gliang Zhang. 2024. Autobench-v: Can large vision-
language models benchmark themselves? arXiv
preprint arXiv:2410.21259.

André Bauer, Simon Trapp, Michael Stenger, Robert
Leppich, Samuel Kounev, Mark Leznik, Kyle Chard,

and Ian Foster. 2024. Comprehensive exploration of
synthetic data generation: A survey. arXiv preprint
arXiv:2401.02524.

Kejia Chen, Jiawen Zhang, Jiacong Hu, Jiazhen Yang,
Jian Lou, Zunlei Feng, and Mingli Song. 2025a.
Shape: Self-improved visual preference alignment by
iteratively generating holistic winner. arXiv preprint
arXiv:2503.04858.

Liang Chen, Lei Li, Haozhe Zhao, Yifan Song, and
Vinci. 2025b. R1-v: Reinforcing super generaliza-
tion ability in vision-language models with less than
$3. https://github.com/Deep-Agent/R1-V. Ac-
cessed: 2025-02-02.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang
Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, et al. 2024a. Are we on the
right way for evaluating large vision-language mod-
els? arXiv preprint arXiv:2403.20330.

Xiuwei Chen, Wentao Hu, Hanhui Li, Jun Zhou,
Zisheng Chen, Meng Cao, Yihan Zeng, Kui Zhang,
Yu-Jie Yuan, Jianhua Han, et al. 2025¢c. C2-
evo: Co-evolving multimodal data and model
for self-improving reasoning. arXiv preprint
arXiv:2507.16518.

Yuhui Chen, Shuai Tian, Shugao Liu, Yingting Zhou,
Haoran Li, and Dongbin Zhao. 2025d. Conrft: A
reinforced fine-tuning method for vla models via con-
sistency policy. arXiv preprint arXiv:2502.05450.

Zhaorun Chen, Yichao Du, Zichen Wen, Yiyang Zhou,
Chenhang Cui, Zhenzhen Weng, Haoqin Tu, Chaoqi
Wang, Zhengwei Tong, Qinglan Huang, et al. 2024b.
Mj-bench: Is your multimodal reward model really
a good judge for text-to-image generation? arXiv
preprint arXiv:2407.04842.

Kanzhi Cheng, Yantao Li, Fangzhi Xu, Jianbing Zhang,
Hao Zhou, and Yang Liu. 2024. Vision-language
models can self-improve reasoning via reflection.
arXiv preprint arXiv:2411.00855.

Chenhang Cui, An Zhang, Yiyang Zhou, Zhaorun Chen,
Gelei Deng, Huaxiu Yao, and Tat-Seng Chua. 2024.
Fine-grained verifiers: Preference modeling as next-
token prediction in vision-language alignment. arXiv
preprint arXiv:2410.14148.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong,
Junqi Zhao, Weisheng Wang, Boyang Li, Pascale
Fung, and Steven Hoi. 2023. Instructblip: Towards
general-purpose vision-language models with instruc-
tion tuning. In Thirty-seventh Conference on Neural
Information Processing Systems.

Huilin Deng, Ding Zou, Rui Ma, Hongchen Luo, Yang
Cao, and Yu Kang. 2025a. Boosting the generaliza-
tion and reasoning of vision language models with
curriculum reinforcement learning. arXiv preprint
arXiv:2503.07065.

1996


https://github.com/Deep-Agent/R1-V

Shijian Deng, Erin E Kosloski, Siddhi Patel, Zeke A Bar-
nett, Yiyang Nan, Alexander Kaplan, Sisira Aaruka-
palli, William T Doan, Matthew Wang, Harsh Singh,
et al. 2024a. Hear me, see me, understand me: Audio-
visual autism behavior recognition. /IEEE Transac-
tions on Multimedia.

Shijian Deng, Wentian Zhao, Yu-Jhe Li, Kun Wan,
Daniel Miranda, Ajinkya Kale, and Yapeng Tian.
2025b. Efficient self-improvement in multimodal
large language models: A model-level judge-free
approach. In Second Conference on Language Mod-
eling.

Yihe Deng, Hritik Bansal, Fan Yin, Nanyun Peng, Wei
Wang, and Kai-Wei Chang. 2025¢c. Openvlthinker:
An early exploration to complex vision-language rea-
soning via iterative self-improvement. arXiv preprint
arXiv:2503.17352.

Yihe Deng, Pan Lu, Fan Yin, Ziniu Hu, Sheng Shen,
James Zou, Kai-Wei Chang, and Wei Wang. 2024b.
Enhancing large vision language models with self-

training on image comprehension. arXiv preprint
arXiv:2405.19716.

Jinyuan Fang, Yanwen Peng, Xi Zhang, Yingxu Wang,
Xinhao Yi, Guibin Zhang, Yi Xu, Bin Wu, Siwei
Liu, Zihao Li, et al. 2025. A comprehensive survey
of self-evolving ai agents: A new paradigm bridg-
ing foundation models and lifelong agentic systems.
arXiv preprint arXiv:2508.07407.

Yunhao Fang, Ligeng Zhu, Yao Lu, Yan Wang, Pavlo
Molchanov, Jan Kautz, Jang Hyun Cho, Marco
Pavone, Song Han, and Hongxu Yin. Vila™ 2: Vlm
augmented vlm with self-improvement.

Alessandro Favero, Luca Zancato, Matthew Trager, Sid-
dharth Choudhary, Pramuditha Perera, Alessandro
Achille, Ashwin Swaminathan, and Stefano Soatto.
2024. Multi-modal hallucination control by vi-
sual information grounding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 14303-14312.

Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo,
Yibing Wang, Tianshuo Peng, Benyou Wang, and Xi-
angyu Yue. 2025a. Video-rl: Reinforcing video rea-
soning in mllms. arXiv preprint arXiv:2503.21776.

Kaiyue Feng, Yilun Zhao, Yixin Liu, Tianyu Yang, Chen
Zhao, John Sous, and Arman Cohan. 2025b. Physics:
Benchmarking foundation models on university-
level physics problem solving. arXiv preprint
arXiv:2503.21821.

Steven Y Feng, Varun Gangal, Jason Wei, Sarath Chan-
dar, Soroush Vosoughi, Teruko Mitamura, and Ed-
uard Hovy. 2021. A survey of data augmentation ap-
proaches for nlp. arXiv preprint arXiv:2105.03075.

Huan-ang Gao, Jiayi Geng, Wenyue Hua, Mengkang
Hu, Xinzhe Juan, Hongzhang Liu, Shilong Liu, Jia-
hao Qiu, Xuan Qi, Yiran Wu, et al. 2025. A survey
of self-evolving agents: On path to artificial super
intelligence. arXiv preprint arXiv:2507.21046.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wan-
jun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han,
Hang Xu, Zhenguo Li, et al. 2023. G-llava: Solving
geometric problem with multi-modal large language
model. arXiv preprint arXiv:2312.11370.

Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun,
Hao Luo, and Dacheng Tao. 2024. A survey on self-
supervised learning: Algorithms, applications, and
future trends. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

Yanjiang Guo, Jianke Zhang, Xiaoyu Chen, Xiang
Ji, Yen-Jen Wang, Yucheng Hu, and Jianyu Chen.
2025a. Improving vision-language-action model
with online reinforcement learning. arXiv preprint
arXiv:2501.16664.

Zilu Guo, Hongbin Lin, Zhihao Yuan, Chaoda Zheng,
Pengshuo Qiu, Dongzhi Jiang, Renrui Zhang, Chun-
Mei Feng, and Zhen Li. 2025b. Pisa: A self-
augmented data engine and training strategy for 3d

understanding with large models. arXiv preprint
arXiv:2503.10529.

Jiayi He, Hehai Lin, Qingyun Wang, Yi Fung, and Heng
Ji. 2024a. Self-correction is more than refinement: A
learning framework for visual and language reason-
ing tasks. arXiv preprint arXiv:2410.04055.

Lehan He, Zeren Chen, Zhelun Shi, Tianyu Yu, Jing
Shao, and Lu Sheng. 2024b. A topic-level self-
correctional approach to mitigate hallucinations in
mllms. arXiv preprint arXiv:2411.17265.

Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and
Pengtao Xie. 2020. Pathvqga: 30000+ questions for
medical visual question answering. arXiv preprint
arXiv:2003.10286.

Jixiang Hong, Yiran Zhang, Guanzhong Wang, Yi Liu,
Ji-Rong Wen, and Rui Yan. 2025. Reinforcing multi-
modal understanding and generation with dual self-
rewards. arXiv preprint arXiv:2506.07963.

Jiaxin Huang, Runnan Chen, Ziwen Li, Zhengqing
Gao, Xiao He, Yandong Guo, Mingming Gong, and
Tongliang Liu. 2025a. Mllm-for3d: Adapting mul-
timodal large language model for 3d reasoning seg-
mentation. arXiv preprint arXiv:2503.18135.

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve. arXiv
preprint arXiv:2210.11610.

Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao,
Zheyu Ye, Fei Zhao, Zhe Xu, Yao Hu, and Shaohui
Lin. 2025b. Vision-rl: Incentivizing reasoning capa-
bility in multimodal large language models. arXiv
preprint arXiv:2503.06749.

Yunseok Jang, Yale Song, Youngjae Yu, Youngjin Kim,
and Gunhee Kim. 2017. Tgif-qa: Toward spatio-
temporal reasoning in visual question answering. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2758-2766.

1997


https://openreview.net/forum?id=NRrXHppaBg
https://openreview.net/forum?id=NRrXHppaBg
https://openreview.net/forum?id=NRrXHppaBg

Weiyang Jin, Baihan Yang, Huan-ang Gao, Jingwei
Zhao, Kangliang Chen, and Hao Zhao. Spa: Enhanc-
ing 3d multimodal 1lms with mask-based streamlin-
ing preference alignment.

Ksenia Konyushkova, Christos Kaplanis, Serkan Cabi,
and Misha Denil. 2025. Vision-language model di-
alog games for self-improvement. arXiv preprint
arXiv:2502.02740.

Jason J Lau, Soumya Gayen, Asma Ben Abacha, and
Dina Demner-Fushman. 2018. A dataset of clini-
cally generated visual questions and answers about
radiology images. Scientific data, 5(1):1-10.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin
Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
2024. Mitigating object hallucinations in large vision-
language models through visual contrastive decod-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13872-13882.

Boyu Li, Haobin Jiang, Ziluo Ding, Xinrun Xu, Haoran
Li, Dongbin Zhao, and Zongqing Lu. 2024a. Selu:
Self-learning embodied mllms in unknown environ-
ments. arXiv preprint arXiv:2410.03303.

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi
Wang, Liang Chen, Yazheng Yang, Benyou Wang,
and Lingpeng Kong. 2023a. Silkie: Preference dis-
tillation for large visual language models. arXiv
preprint arXiv:2312.10665.

Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi
Wang, Liang Chen, Yazheng Yang, Benyou Wang,
Lingpeng Kong, and Qi Liu. 2024b. Vlfeed-
back: A large-scale ai feedback dataset for large
vision-language models alignment. arXiv preprint
arXiv:2410.09421.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023b. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Zhenwen Liang, Kehan Guo, Gang Liu, Taicheng
Guo, Yujun Zhou, Tianyu Yang, Jiajun Jiao, Ren-
jie Pi, Jipeng Zhang, and Xiangliang Zhang. 2024.
SceMQA: A scientific college entrance level multi-
modal question answering benchmark. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 109—119, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning,
Peng Jin, and Li Yuan. 2023. Video-llava: Learn-
ing united visual representation by alignment before
projection. arXiv preprint arXiv:2311.10122.

Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and
Xiao-Ming Wu. 2021. Slake: A semantically-labeled
knowledge-enhanced dataset for medical visual ques-
tion answering. In 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI), pages
1650-1654. IEEE.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024a. Visual instruction tuning. Advances in
neural information processing systems, 36.

Sannyuya Liu, Jintian Feng, Zongkai Yang, Yawei Luo,
Qian Wan, Xiaoxuan Shen, and Jianwen Sun. 2024b.
Comet:“cone of experience” enhanced large multi-
modal model for mathematical problem generation.
Science China Information Sciences, 67(12):1-2.

Wei Liu, Junlong Li, Xiwen Zhang, Fan Zhou,
Yu Cheng, and Junxian He. 2024¢. Diving into self-
evolving training for multimodal reasoning. arXiv
preprint arXiv:2412.17451.

Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang
Cao, Haodong Duan, Dahua Lin, and Jiagi Wang.
2025a. Visual-rft: Visual reinforcement fine-tuning.
arXiv preprint arXiv:2503.01785.

Ziyu Liu, Yuhang Zang, Yushan Zou, Zijian Liang, Xi-
aoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin,
and Jiaqi Wang. 2025b. Visual agentic reinforcement
fine-tuning. arXiv preprint arXiv:2505.14246.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Pan Lu, Swaroop Mishra, Tanglin Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. Advances in Neural Information
Processing Systems, 35:2507-2521.

Run Luo, Haonan Zhang, Longze Chen, Ting-En Lin,
Xiong Liu, Yuchuan Wu, Min Yang, Minzheng Wang,
Pengpeng Zeng, Lianli Gao, et al. 2024a. Mmevol:
Empowering multimodal large language models with
evol-instruct. arXiv preprint arXiv:2409.05840.

Tiange Luo, Ang Cao, Gunhee Lee, Justin Johnson, and
Honglak Lee. 2024b. Probing visual language priors
in vims. arXiv preprint arXiv:2501.00569.

Xinyu Ma, Ziyang Ding, Zhicong Luo, Chi Chen,
Zonghao Guo, Derek F Wong, Xiaoyi Feng, and
Maosong Sun. 2025. Deepperception: Advanc-
ing rl-like cognitive visual perception in mllms
for knowledge-intensive visual grounding. arXiv
preprint arXiv:2503.12797.

Weijia Mao, Zhenheng Yang, and Mike Zheng Shou.
2025. Unirl: Self-improving unified multimodal
models via supervised and reinforcement learning.
arXiv preprint arXiv:2505.23380.

Yassine QOuali, Adrian Bulat, Brais Martinez, and
Georgios Tzimiropoulos. 2025. Clip-dpo: Vision-
language models as a source of preference for fixing
hallucinations in lvims. In European Conference on
Computer Vision, pages 395-413. Springer.

1998


https://doi.org/10.18653/v1/2024.acl-short.11
https://doi.org/10.18653/v1/2024.acl-short.11

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Yi Peng, Xiaokun Wang, Yichen Wei, Jiangbo Pei, Wei-
jie Qiu, Ai Jian, Yunzhuo Hao, Jiachun Pan, Tianyi-
dan Xie, Li Ge, et al. 2025. Skywork rlv: pioneering
multimodal reasoning with chain-of-thought. arXiv
preprint arXiv:2504.05599.

Chau Pham, Hoang Phan, David Doermann, and Yun-
jie Tian. 2024. Personalized large vision-language
models. arXiv preprint arXiv:2412.17610.

Renjie Pi, Jianshu Zhang, Tianyang Han, Jipeng Zhang,
Rui Pan, and Tong Zhang. 2024. Personalized visual
instruction tuning. arXiv preprint arXiv:2410.07113.

Leigang Qu, Haochuan Li, Wenjie Wang, Xiang Liu,
Juncheng Li, Ligiang Nie, and Tat-Seng Chua. 2024.
Silmm: Self-improving large multimodal models
for compositional text-to-image generation. arXiv
preprint arXiv:2412.05818.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns,
Trevor Darrell, and Kate Saenko. 2018. Object
hallucination in image captioning. arXiv preprint
arXiv:1809.02156.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Guohao Sun, Can Qin, Huazhu Fu, Linwei Wang,
and Zhigiang Tao. 2024a. Stllava-med: Self-
training large language and vision assistant for
medical question-answering. arXiv preprint
arXiv:2406.19973.

Guohao Sun, Can Qin, Jiamian Wang, Zeyuan Chen,
Ran Xu, and Zhigiang Tao. 2024b. Sq-llava: Self-
questioning for large vision-language assistant. In
European Conference on Computer Vision, pages
156-172. Springer.

Guohao Sun, Can Qin, Jiamian Wang, Zeyuan Chen,
Ran Xu, and Zhigiang Tao. 2025a. Sq-llava: Self-
questioning for large vision-language assistant. In
European Conference on Computer Vision, pages
156-172. Springer.

Haoyuan Sun, Jiagi Wu, Bo Xia, Yifu Luo, Yifei
Zhao, Kai Qin, Xufei Lv, Tiantian Zhang, Yongzhe
Chang, and Xueqian Wang. 2025b. Reinforce-
ment fine-tuning powers reasoning capability of

multimodal large language models. arXiv preprint
arXiv:2505.18536.

Zeyi Sun, Ziyu Liu, Yuhang Zang, Yuhang Cao, Xiaoyi
Dong, Tong Wu, Dahua Lin, and Jiaqi Wang. 2025c.
Seagent: Self-evolving computer use agent with au-
tonomous learning from experience. arXiv preprint
arXiv:2508.04700.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu,
Chunyuan Li, Yikang Shen, Chuang Gan, Liang-
Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. 2023.
Aligning large multimodal models with factually aug-
mented rlhf. arXiv preprint arXiv:2309.14525.

Wentao Tan, Qiong Cao, Yibing Zhan, Chao Xue, and
Changxing Ding. 2024. Beyond human data: Align-
ing multimodal large language models by iterative
self-evolution. arXiv preprint arXiv:2412.15650.

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. arXiv
preprint arXiv:2404.14387.

Bin Wang, Fan Wu, Xiao Han, Jiahui Peng, Huaping
Zhong, Pan Zhang, Xiaoyi Dong, Weijia Li, Wei
Li, Jiaqi Wang, et al. 2024a. Vigc: Visual instruc-
tion generation and correction. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 38, pages 5309-5317.

Junyang Wang, Yuhang Wang, Guohai Xu, Jing Zhang,
Yukai Gu, Haitao Jia, Ming Yan, Ji Zhang, and
Jitao Sang. 2023. An llm-free multi-dimensional
benchmark for mllms hallucination evaluation. arXiv
preprint arXiv:2311.07397.

Qiuchen Wang, Ruixue Ding, Yu Zeng, Zehui Chen,
Lin Chen, Shihang Wang, Pengjun Xie, Fei Huang,
and Feng Zhao. 2025a. Vrag-rl: Empower vision-
perception-based rag for visually rich information
understanding via iterative reasoning with reinforce-
ment learning. arXiv preprint arXiv:2505.22019.

Wanfu Wang, Qipeng Huang, Guangquan Xue, Xiaobo
Liang, and Juntao Li. 2025b. Learning active percep-
tion via self-evolving preference optimization for gui
grounding. arXiv preprint arXiv:2509.04243.

Xiyao Wang, Jiuhai Chen, Zhaoyang Wang, Yuhang
Zhou, Yiyang Zhou, Huaxiu Yao, Tianyi Zhou,
Tom Goldstein, Parminder Bhatia, Furong Huang,
et al. 2024b. Enhancing visual-language modality
alignment in large vision language models via self-
improvement. arXiv preprint arXiv:2405.15973.

Yichen Wei, Yi Peng, Xiaokun Wang, Weijie Qiu, Wei
Shen, Tianyidan Xie, Jiangbo Pei, Jianhao Zhang,
Yunzhuo Hao, Xuchen Song, et al. 2025. Skywork
rlv2: Multimodal hybrid reinforcement learning for
reasoning. arXiv preprint arXiv:2504.16656.

1999



Jinming Wu, Zihao Deng, Wei Li, Yiding Liu, Bo You,
Bo Li, Zejun Ma, and Ziwei Liu. 2025a. Mmsearch-
rl: Incentivizing Imms to search. arXiv preprint
arXiv:2506.20670.

Weijia Wu, Chen Gao, Joya Chen, Kevin Qinghong
Lin, Qingwei Meng, Yiming Zhang, Yuke Qiu, Hong
Zhou, and Mike Zheng Shou. 2025b. Reinforce-
ment learning in vision: A survey. arXiv preprint
arXiv:2508.08189.

Xun Wu, Shaohan Huang, and Furu Wei. 2024. Multi-
modal large language model is a human-aligned an-
notator for text-to-image generation. arXiv preprint
arXiv:2404.15100.

Wenyi Xiao, Ziwei Huang, Leilei Gan, Wanggui He,
Haoyuan Li, Zhelun Yu, Fangxun Shu, Hao Jiang,
and Linchao Zhu. 2024. Detecting and mitigat-
ing hallucination in large vision language mod-
els via fine-grained ai feedback. arXiv preprint
arXiv:2404.14233.

Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye,
Haoqi Fan, Quanquan Gu, Heng Huang, and Chun-
yuan Li. 2024. Llava-critic: Learning to evaluate mul-
timodal models. arXiv preprint arXiv:2410.02712.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang
Zhang, Xiangnan He, and Yueting Zhuang. 2017.
Video question answering via gradually refined atten-
tion over appearance and motion. In Proceedings of
the 25th ACM international conference on Multime-
dia, pages 1645-1653.

Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting
He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan,
Kai Dang, et al. 2025. Qwen2. 5-omni technical
report. arXiv preprint arXiv:2503.20215.

Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang,
Yan Deng, Xingtao Yang, Haoyu Lu, Dacheng Yin,
Fengyun Rao, Minfeng Zhu, et al. 2025. RI-
onevision: Advancing generalized multimodal rea-
soning through cross-modal formalization. arXiv
preprint arXiv:2503.10615.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang,
Yibo Wang, Shunyu Liu, Yingjie Wang, Yuxin Song,
Haocheng Feng, Li Shen, et al. 2024. Mulberry: Em-
powering mllm with ol-like reasoning and reflection
via collective monte carlo tree search. arXiv preprint
arXiv:2412.18319.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Ke Li, Xing
Sun, Tong Xu, and Enhong Chen. 2024. A survey on
multimodal large language models. National Science
Review, page nwae403.

Shukang Yin, Chaoyou Fu, Sirui Zhao, Tong Xu, Hao
Wang, Dianbo Sui, Yunhang Shen, Ke Li, Xing Sun,
and Enhong Chen. 2023. Woodpecker: Hallucina-
tion correction for multimodal large language models.
arXiv preprint arXiv:2310.16045.

Jiaxuan You, Mingjie Liu, Shrimai Prabhumoye,
Mostofa Patwary, Mohammad Shoeybi, and Bryan
Catanzaro. 2024. Llm-evolve: Evaluation for llm’s
evolving capability on benchmarks. In Proceedings
of the 2024 Conference on Empirical Methods in
Natural Language Processing, pages 16937-16942.

Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng
Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao
Zheng, Maosong Sun, et al. 2024a. Rlhf-v: Towards
trustworthy mllms via behavior alignment from fine-
grained correctional human feedback. In Proceed-
ings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 13807-13816.

Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang,
Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He,
Zhiyuan Liu, Tat-Seng Chua, et al. 2024b. Rlaif-
v: Aligning mllms through open-source ai feedback
for super gpt-4v trustworthiness. arXiv preprint
arXiv:2405.17220.

Zhou Yu, Dejing Xu, Jun Yu, Ting Yu, Zhou Zhao, Yuet-
ing Zhuang, and Dacheng Tao. 2019. Activitynet-qa:
A dataset for understanding complex web videos via
question answering. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 33, pages
9127-9134.

Junpeng Yue, Xinru Xu, Borje F Karlsson, and
Zongqing Lu. 2024a. Mllm as retriever: Interactively
learning multimodal retrieval for embodied agents.
arXiv preprint arXiv:2410.03450.

Tongtian Yue, Jie Cheng, Longteng Guo, Xingyuan
Dai, Zijia Zhao, Xingjian He, Gang Xiong, Yisheng
Lv, and Jing Liu. 2024b. Sc-tune: Unleashing self-
consistent referential comprehension in large vision
language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 13073—-13083.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2024c. Mmmu: A
massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9556-9567.

Rowan Zellers, Yonatan Bisk, Ali Farhadi, and Yejin
Choi. 2019. From recognition to cognition: Vi-
sual commonsense reasoning. In Proceedings of the
IEEE/CVF conference on computer vision and pat-
tern recognition, pages 6720-6731.

Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong,
Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun,
Yi Ma, et al. 2025. Fine-tuning large vision-language
models as decision-making agents via reinforcement
learning. Advances in Neural Information Processing
Systems, 37:110935-110971.

Yufei Zhan, Yousong Zhu, Shurong Zheng, Hongyin
Zhao, Fan Yang, Ming Tang, and Jingiao Wang. 2025.
Vision-rl: Evolving human-free alignment in large

2000



vision-language models via vision-guided reinforce-
ment learning. arXiv preprint arXiv:2503.18013.

Duzhen Zhang, Yahan Yu, Jiahua Dong, Chenxing Li,
Dan Su, Chenhui Chu, and Dong Yu. 2024a. Mm-
lIms: Recent advances in multimodal large language
models. arXiv preprint arXiv:2401.13601.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu,
Xikun Zhang, Shijian Lu, and Dacheng Tao. 2025.
RI1-vl: Learning to reason with multimodal large
language models via step-wise group relative policy
optimization. arXiv preprint arXiv:2503.12937.

Jinrui Zhang, Teng Wang, Haigang Zhang, Ping Lu, and
Feng Zheng. 2024b. Reflective instruction tuning:
Mitigating hallucinations in large vision-language
models. arXiv preprint arXiv:2407.11422.

Mengxi Zhang, Wenhao Wu, Yu Lu, Yuxin Song, Kang
Rong, Huanjin Yao, Jianbo Zhao, Fanglong Liu, Yi-
fan Sun, Haocheng Feng, et al. 2024c. Automated
multi-level preference for mllms. arXiv preprint
arXiv:2405.11165.

Renrui Zhang, Xinyu Wei, Dongzhi Jiang, Ziyu Guo,
Shicheng Li, Yichi Zhang, Chengzhuo Tong, Jiaming
Liu, Aojun Zhou, Bin Wei, et al. 2024d. Mavis:
Mathematical visual instruction tuning with an auto-
matic data engine. arXiv preprint arXiv:2407.08739.

Jiaxing Zhao, Xihan Wei, and Liefeng Bo. 2025a. R1-
omni: Explainable omni-multimodal emotion recog-
nition with reinforcement learning. arXiv preprint
arXiv:2503.05379.

Xiangyu Zhao, Shengyuan Ding, Zicheng Zhang, Haian
Huang, Maosong Cao, Weiyun Wang, Jiaqi Wang,
Xinyu Fang, Wenhai Wang, Guangtao Zhai, et al.
2025b. Omnialign-v: Towards enhanced alignment
of mllms with human preference. arXiv preprint
arXiv:2502.18411.

Zhiyuan Zhao, Bin Wang, Linke Ouyang, Xiaoyi Dong,
Jiaqi Wang, and Conghui He. 2023. Beyond hallu-
cinations: Enhancing lvlms through hallucination-
aware direct preference optimization. arXiv preprint
arXiv:2311.16839.

Hengguang Zhou, Xirui Li, Ruochen Wang, Minhao
Cheng, Tianyi Zhou, and Cho-Jui Hsieh. 2025. R1-
zero’s" aha moment" in visual reasoning on a 2b

non-sft model. arXiv preprint arXiv:2503.05132.

Yiyang Zhou, Chenhang Cui, Rafael Rafailov, Chelsea
Finn, and Huaxiu Yao. 2024a. Aligning modalities
in vision large language models via preference fine-
tuning. arXiv preprint arXiv:2402.11411.

Yiyang Zhou, Zhiyuan Fan, Dongjie Cheng, Sihan Yang,
Zhaorun Chen, Chenhang Cui, Xiyao Wang, Yun
Li, Linjun Zhang, and Huaxiu Yao. 2024b. Cali-
brated self-rewarding vision language models. arXiv
preprint arXiv:2405.14622.

Yiyang Zhou, Zhaoyang Wang, Tianle Wang, Shangyu
Xing, Peng Xia, Bo Li, Kaiyuan Zheng, Zijian Zhang,
Zhaorun Chen, Wenhao Zheng, et al. Anyprefer: An
automatic framework for preference data synthesis.
In Neurips Safe Generative AI Workshop 2024.

Deyao Zhu, Jun Chen, Xiaogian Shen, Xiang Li, and
Mohamed Elhoseiny. 2023. Minigpt-4: Enhancing
vision-language understanding with advanced large
language models. arXiv preprint arXiv:2304.10592.

Ke Zhu, Liang Zhao, Zheng Ge, and Xiangyu Zhang.
2024. Self-supervised visual preference alignment.
In Proceedings of the 32nd ACM International Con-
ference on Multimedia, pages 291-300.

Orr Zohar, Xiaohan Wang, Yonatan Bitton, Idan Szpek-
tor, and Serena Yeung-Levy. 2024. Video-star: Self-
training enables video instruction tuning with any
supervision. arXiv preprint arXiv:2407.06189.

2001



A Full Taxonomy

For space reasons, the main paper provides only
an overview of our taxonomy of self-improvement
in MLLMs. This appendix presents the complete
hierarchy covering Data Collection (§4), Data Or-
ganization (§5), and Model Optimization (§6), and
annotates each branch with representative works.
See Fig. 3 for the full diagram.

B Applications

Self-improvement can be particularly useful for
applications that lack sufficient related instruction
data. Models can autonomously generate the re-
quired data and conduct self-improvement to ac-
quire new skills for downstream tasks.

B.1 Math & Science

Tasks in fields like math and many other sciences
require advanced reasoning sometimes including
multimodal reasoning to address. However, the
underlying reasoning data is not abundant, since
humans seldom write down all the details of their
reasoning steps, let alone reasoning that occurs via
unconscious pathways. Self-improvement frame-
works combined with peer-improvement have en-
abled MLLM:s to autonomously generate and refine
multimodal reasoning content, significantly reduc-
ing reliance on human-annotated data. For exam-
ple, methods like MAVIS (Zhang et al., 2024d)
and COMET (Liu et al., 2024b) enhance mathe-
matical reasoning by generating problems and vi-
sual explanations through structured prompts and
alignment techniques. Similarly, frameworks like
G-LLaVA (Gao et al., 2023) integrate geometry-
specific tasks with generated datasets, achieving
state-of-the-art performance on benchmarks like
ScienceQA (Lu et al., 2022), SceMQA (Liang et al.,
2024) and PHYSICS (Feng et al., 2025b).

B.2 Control

Self-improvement in MLLMs can be applied to
real-world applications such as control. Recent
work (Zhou et al.) proposes an automatic frame-
work for preference data synthesis and employs
an MLLM with an image segmentation model as
a tool, judged by GPT-40, to improve object seg-
mentation and trajectory generation. The proposed
method achieved a 15.50% improvement in four
visuo-motor control tasks.

B.3 Healthcare

Exciting advancements, such as STLLaVA-
Med (Sun et al., 2024b), have introduced the Self-
Training Large Language and Vision Assistant for
medical applications. This innovative approach fo-
cuses on training a policy model (an MLLM) to
auto-generate medical visual instruction data, im-
proving data efficiency through Direct Preference
Optimization (DPO). Notably, a more robust and
larger model (e.g., GPT-40) serves as a biomedi-
cal expert, guiding the DPO fine-tuning process
on the auto-generated data to effectively align
the policy model with human preferences. This
method achieves impressive zero-shot performance
on three major medical VQA benchmarks: VQA-
RAD, SLAKE, and PathVQA, while using only 9%
of the available medical data. Additionally, LLaVA-
ASD (Deng et al., 2024a) has explored using self-
improvement approaches to enable MLLMs not
only to assist in screening but also to provide expla-
nations for their decision-making processes. This
advancement offers a more explainable Al-assisted
screening approach, enhancing transparency and
user trust.

B.4 Personalization

With self-improvement approaches, users can eas-
ily personalize MLLMs (Pi et al., 2024; Pham
et al., 2024) using automated pipelines to construct
datasets and train models for their own use, requir-
ing minimal additional effort.

B.5 3D and embodied intelligence

Recent advances in self-improvement for MLLMs
also benefit areas such as 3D and embodied intel-
ligence. A notable example is the MLLM-For3D
framework (Huang et al., 2025a), which introduces
a method for achieving 3D reasoning segmentation
without the need for explicitly labeled 3D train-
ing data. This framework leverages pre-trained 2D
MLLMs to generate multi-view pseudo segmenta-
tion masks along with corresponding text embed-
dings. These 2D masks are then projected into 3D
space and aligned with the text embeddings, effec-
tively transferring the 2D model’s understanding to
the 3D realm. Similarly, PiSA-Engine (Point-Self-
Augmented-Engine) (Guo et al., 2025b) has been
introduced as a novel approach for generating in-
struction point-language datasets enriched with 3D
spatial semantics. Streamlining Preference Align-
ment (Jin et al.), a post-training stage designed for
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Figure 3: The taxonomy of three steps for self-improvement in MLLMs. Each step can involve different methods

based on requirements.

MLLMs equipped with 3D encoders, enhances the
ability of MLLMs to understand and reason about

3D spatial relationships, which is fundamental for
their effective application in 3D environments.
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Self-improvement offers a powerful paradigm
for enabling MLLM agents to improve their perfor-
mance in embodied tasks through interaction with
their environment. An example is SELU (Self-
Learning in Unknown Environments) (Li et al.,
2024a), which allows MLLMs to improve their
capabilities in embodied tasks without relying on
explicit external human or environmental feedback.
SELU adopts an actor-critic framework consisting
of two MLLM components: the critic MLLM is
responsible for evaluating the outcomes of the ac-
tor’s actions and for improving its understanding of
the environment. Simultaneously, the actor MLLM
is improved based on the self-feedback provided
by the critic. MART (MLLM As ReTriever) (Yue
et al., 2024a) is another example that enhances the
performance of embodied agents by utilizing inter-
action data to fine-tune an MLLM retriever based
on preference learning.

C Challenges and Opportunities

Self-improvement in MLLMs presents unique chal-
lenges and opportunities compared to text-only
LLMs. We expand on these below:

C.1 Uniqueness of Multi-Modality

Many tasks and objectives in MLLMs fundamen-
tally differ from those in LLMs. While LLMs pri-
marily focus on maximizing the likelihood of text
sequences, MLLMs must handle objectives incor-
porating spatial and temporal understanding. For
instance, tasks involving images I or videos V re-
quire objectives beyond sequential prediction:

 Spatial Understanding (e.g., Object Detec-
tion): Requires predicting bounding boxes
B = {by} and classes C' = {c}}. The objec-
tive might take the form:

ﬁspatial = Z (ﬁcls<cku§ 0) + /\ﬁreg(bku; 0))
k

where L is a classification loss and Ly, is a

bounding box regression loss.

* Temporal Understanding (e.g., Video Ac-
tion Recognition): Requires understanding
sequences of frames V' = (f1, ..., fm) to pre-
dict an action a. The objective could be:

Etemporal = - IOgP(a|V; 0)
Cross-modal alignment and distillation without

high-quality data (Liu et al., 2024a) might intro-
duce multimodal hallucination. While text-only

LLMs can hallucinate facts, MLLMs can halluci-
nate content inconsistent with an input image or
other modality.

C.2 Better Seed Models and Emerging
Modalities

Current self-improvement in MLLMs primarily
operates on a limited set of modalities, typically
Moeurrent = {Text, Image, Video}. The action
space A for self-correction or data generation is
often confined to textual outputs. However, sig-
nificant potential lies in emerging modalities like
Audio (A), 3D data (D), and Embodied Actions
(Act), extending the modality set to Memerging =
Meurrent U{A, D, Act, ... }.

Expanding to these domains, particularly em-
bodied Al, drastically increases the complexity
and dimensionality of the action space. Self-
improvement must transition from generating pri-
marily discrete textual actions a € Ay to gener-
ating sequences of potentially continuous or high-
dimensional actions a; € Aembodied required for
interaction within an environment £. The optimiza-
tion objective shifts towards maximizing expected
return in sequential decision-making tasks:

maxE-r,
o

T
> 'R, at)]

t=0

where 7 = (s9, ag, $1, a1, ... ) is a trajectory gener-
ated by policy 7g in environment F, s; is the state
(often multimodal), a; € Aembodied, £ is the re-
ward function, and +y is the discount factor. Works
like (Zhai et al., 2025; Guo et al., 2025a; Chen et al.,
2025d) are beginning to explore self-improvement
in these expanded action and modality spaces.

C.3 Omnil/O

A limitation in MLLM self-improvement is the re-
stricted input/output pipeline. Current models M
often follow mappings like M : (Min, Tprompt) —
Tout, where Mi, might be I or V. Generating the
non-textual input data (e.g., images I) often re-
quires external datasets or separate generative mod-
els (Luo et al., 2024b). This also limits MLLMs
capabilities of self-verification and correction with-
out extra models while forced to do so may com-
pounding hallucinations.

True "Omni I/O" capability implies a model
Momni that can handle arbitrary combinations of
modalities as both input and output. Let M be
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the set of all relevant modalities. The mapping
becomes:

Momni {mz}fvzml - {m;}é\f:oul[

where each m; € M and m; € M. For self-
improvement, this means the model should ideally
be able to generate its own training data across
modalities, such as Mo @ T — I, Momn :
I - T, Mopi = (I,A) — (T,V), etc., poten-
tially in an interleaved manner. Recent advances
like native image generation in GPT-40/Gemini and
open-source efforts like Qwen2.5-Omni (Xu et al.,
2025) suggest potential towards this goal, where
self-improvement could enhance generation and
understanding across text, vision, and audio within
a single loop. Some work (Qu et al., 2024) has
begun to unify these areas.

C.4 Biases and Robust Verification

After obtaining initial generated data, further veri-
fication and organization of this raw data are nec-
essary, as we formulated these as the next steps
for conducting self-improvement after collecting
data. However, even with these controls, there is
still no guarantee that bias and incorrectness can
be eliminated. This is a significant challenge and
an unsolved problem in self-improvement, as the
bias may accumulate and potentially stop further
recursive improvement, which presents a good op-
portunity for future research. The feasibility of
self-improvement is intrinsically linked to the abil-
ity to reliably verify the quality or correctness of
the model’s outputs. This echoes the computational
complexity concept related to P vs NP: generating
optimal outputs might be hard, but verifying them
should ideally be tractable. We can formalize this
with a verification function V' (x, y), where x is the
input and y is the MLLM’s output (which could be
multimodal). V' (z,y) returns a score or a binary
judgment (correct/incorrect, high/low quality).

Self-improvement often relies on optimizing pa-
rameters 6 based on this verification:

max B ) p(aylo) [V (2, 9)]

or using V' implicitly as a reward signal R in re-
inforcement learning. The core principle is: Ef-
fective self-improvement is contingent upon the
existence of an efficient and reliable verifica-
tion mechanism V. If the complexity of verifi-
cation, Complexity(V'), is low (e.g., polynomial

time), then iterative improvement guided by V' be-
comes practical. As the real world is inherently
multimodal, MLLMs could potentially leverage en-
vironmental feedback or cross-modal consistency
checks as powerful verification signals (Ahn et al.,
2024b), potentially making V' more robust com-
pared to text-only domains.

C.5 Generalization

Current self-improvement pipelines often focus on
specific tasks 7 (e.g., reducing hallucinations, im-
proving reasoning on benchmarks) and may exhibit
diminishing returns after a finite number k of itera-
tions:
0;+1 = Improve(0;, D;,7), i=0,...,k—1

where D; is the data used/generated at iteration
i. Performance P might plateau, i.e., P(0, 7) ~
P (9k+1, T ) .

A major future direction is developing a general
MLLM self-improvement framework capable of
recursive enhancement across a universal set of
tasks Tuniv Without plateauing. The idealized goal
is a process:

M1 = SelfImprove(M;, Tuniv, WorldKnowledge)

such that the model’s capabilities C'(M;) monoton-
ically increase across Tyniv as & — 00:

V7 € Tuniv, lim P(M;, ) = OptimalPerformance(r)
1—> 00

This requires mechanisms that not only refine
parameters but potentially adapt the model’s ar-
chitecture, learning algorithms, and knowledge
representation recursively, moving beyond narrow,
task-specific improvement loops towards universal,
open-ended capability growth.

C.6 Scalability

Although we have collected many models and
frameworks in this survey, we found that many
of these methods are normally conducted on a very
small scale. Therefore, the performance gain is not
as significant as in many other model developments
that simply scale things up. It would be more prac-
tical and impactful for the real world deployment
if the approaches had satisfactory scalability which
would address the data shortage problem and there-
fore allow the model development to be further
scaled up.
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C.7 Autonomy

Although current self-improvement MLLM frame-
works can reduce the human workload from a data
generation and verification perspective, human in-
volvement is still required in many other areas,
such as making idea proposals, codebase devel-
opment, and conducting experiments. To over-
come this bottleneck and achieve fully autonomous
self-improvement requires agentic-level autonomy.
This level of autonomy has the potential to accel-
erate self-improvement progress by orders of mag-
nitude. Meanwhile, the R&D skills themselves
could be further boosted by the improved base
MLLMs, such as through better multimodal un-
derstanding of the environment. This mutually
beneficial self-improvement paradigm can increase
effectiveness by removing bottlenecks, eliminating
blind spots, and raising the upper bound. Appropri-
ate guardrails designs can become more meaning-
ful in those more autonomous self-improvement
approach to mitigate potential risk.

D Related Surveys

There are several surveys on  self-
improvement/evolution (Tao et al, 2024)
and multimodal large language models (Yin et al.,
2024). However, to the best of our knowledge,
no existing survey specifically addresses self-
improvement in multimodal large language models.
To fill this gap, we have collected related papers
and systematically constructed this survey.

More recent works adjacent to our scope in-
clude (i) surveys on reinforcement learning for
MLLMs (Sun et al., 2025b; Wu et al., 2025b),
which is a specific domain of self-improvement,
and (ii) surveys on self-evolving agents that focus
on agents rather than MLLMs (Gao et al., 2025;
Fang et al., 2025).

Other surveys focus on topics such as self-
supervised learning (Gui et al., 2024), self-
training (Amini et al., 2024), synthetic data (Bauer
et al., 2024), or data augmentation (Feng et al.,
2021), which are loosely connected at a high level.

Our survey is the first to focus specifically on
self-improvement in MLLMs, collecting a broad
range of methods for automating MLLM improve-
ment with less human effort. Concretely, we struc-
ture the field into a three-stage pipeline: data collec-
tion, data organization, and model optimization to
analyze different techniques used in each module.
We also formulate unified levels of autonomy for

self-improvement in MLLMs to guide future de-
velopment toward more effective self-improvement
methodologies.
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