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Abstract

Retrieval-Augmented Generation (RAG) aug-
ments Large Language Models (LLMs) with
external knowledge to improve factuality.
However, existing RAG systems frequently un-
derutilize the retrieved documents, failing to
extract and integrate the key clues needed to
support faithful and interpretable reasoning,
especially in cases where relevant evidence is
implicit, scattered, or obscured by noise. To
address this issue, we propose ClueAnchor, a
novel framework for enhancing RAG via clue-
anchored reasoning exploration and optimiza-
tion. ClueAnchor extracts key clues from re-
trieved content and generates multiple reason-
ing paths based on different knowledge config-
urations, optimizing the model by selecting the
most appropriate reasoning path for the given
context through reward-based preference opti-
mization. Experiments show that ClueAnchor
significantly outperforms prior RAG baselines
in the completeness and robustness of reason-
ing. Further analysis confirms its strong re-
silience to noisy or partially relevant retrieved
content, as well as its capability to identify
supporting evidence even in the absence of ex-
plicit clue supervision during inference. All
codes are available at https://github.com/
thunlp/ClueAnchor.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable progress across a wide range of NLP
tasks (Achiam et al., 2023; Grattafiori et al., 2024;
Yang et al., 2024). However, their reliance on static
training data often results in knowledge gaps and
hallucinations. Retrieval-Augmented Generation
(RAG) mitigates this limitation by incorporating ex-
ternal evidence to enhance factual accuracy (Lewis
et al., 2020a; Fan et al., 2024). Yet, since LLMs are
not explicitly trained to utilize retrieved content,
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Which animal's experiment provided crucial support for the 
human moon landing mission?

Standard RAG frequently misled by irrelevant content

Chimpanzees fli-
ght experiments.

Query

Laika, the Soviet space dog, was 
the first animal to orbit the Earth...
...the Soviet Union also sent turtles 
and insects into lunar orbit ...

Retrieved passages

The Apollo moon landing mission benefited from early 
chimpanzee flight experiments , which helped verify...

Ground Truth

...benefited from 
early chimpanzee 
flight experiments...

① Clue Anchoring
ClueAnchor identifies task-relevant key clues

Anchored 
Clues

② Clue-Anchored Reasoning

The Chimpanzees...
LLM

According by anchored clues, I found the text ... 
early chimpanzee flight experiments, which 
verified life support systems and flight safety. 
This direct contribution to human spaceflight 
makes chimpanzees the crucial animal. 

LLM

The turtles and insects.

The Soviet space dog.

Soviet animal research.
...multiple 

samping

Figure 1: Illustration of ClueAnchor. Standard RAG
frequently misled by irrelevant content, while ClueAn-
chor identifies key clues from retrieved documents and
uses them to guide faithful reasoning and answer gen-
eration.

they often struggle to effectively incorporate and
reason over external information (Lin et al., 2023).

To address this, recent work has focused on op-
timizing generation models to better leverage re-
trieved content. Lin et al. (2023) improves faith-
fulness via multi-task instruction tuning, while
RAG-DDR (Li et al., 2024) further improves perfor-
mance by sampling multiple candidate responses
and optimizing toward those with higher reward
signals. However, their success require the model
to construct correct reasoning paths. As shown in
Figure 1, relevant evidence can be implicit, dis-
turbed by semantically similar noise, or scattered
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across multiple passages. Existing RAG methods
are frequently misled by irrelevant content, fail-
ing to establish robust links between retrieved ev-
idence and the answer. This reveals a limitation
of RAG systems: even when relevant information
is retrieved, models may perform reasoning over
incomplete or misaligned content (Barnett et al.,
2024; Fayyaz et al., 2025; Chen et al., 2025b).

Motivated by this finding, we hypothesize that
the ground-truth answer can serve as a backward
signal to confirm correct information, thus uncov-
ering key clues buried in the retrieved documents
and facilitating the reconstruction of a correct rea-
soning path. Building on this intuition, we pro-
pose ClueAnchor, a novel framework that enhances
RAG through clue-anchored knowledge reasoning
exploration and optimization. The proposed frame-
work consists of two components. The Knowledge
Reasoning Exploration (KRE) module first predicts
a key clue from retrieved documents conditioned
on the ground truth and generates multiple rea-
soning paths under three configurations: internal
reasoning without external context, external reason-
ing grounded in the retrieved evidence, and clue-
anchored reasoning guided by the predicted clue.
The Knowledge Reasoning Optimization (KRO)
module evaluates these candidate paths using task-
specific reward signals, and finetunes the model
via preference optimization to favor the most ef-
fective one. By combining clue-aware generation
with reward-guided path selection, ClueAnchor en-
ables the model to identify key clues from noisy
retrieved documents and use them as anchor for
reasoning, thereby improving evidence grounding
and producing more coherent and faithful outputs.

Our experiments results demonstrate that
ClueAnchor outperforms all baseline models,
achieving an improvement of more than 3.6% com-
pared to the previous state-of-the-art method (Li
et al., 2024). This improvement highlights ClueAn-
chor’s ability to substantially improve answer gen-
eration quality, affirming the effectiveness of its
overall design under challenging retrieval condi-
tions. Further analysis shows that ClueAnchor
maintains stable performance as retrieval noise
increases, indicating strong robustness to imper-
fect evidence and an enhanced ability to focus on
key clues despite distracting content. Moreover,
ClueeAnchor generalizes beyond supervised clues,
effectively identifying relevant information during
inference without explicit clue guidance.

2 Related work

RAG enhances the factuality and robustness of
LLMs by retrieving and incorporating external in-
formation during inference (Lewis et al., 2020b;
Guu et al., 2020). However, real-world queries
often involve implicit or dispersed facts scattered
across multiple documents (Yang et al., 2018; Asai
et al., 2019). To improve evidence coverage, prior
research has focused on enhancing retrieval. Multi-
hop (Li et al., 2021, 2025b) and graph-based meth-
ods (Hu et al., 2024; Wang et al., 2025b; Edge et al.,
2024) identify and aggregate information from mul-
tiple sources. Memory-augmented systems (Qian
et al., 2025; Wang et al., 2025a) boost efficiency via
information reuse, while dynamic retrieval (Asai
et al., 2023; Su et al.; Ye et al., 2024) adapts to
evolving generation needs. These efforts highlight
the importance of effective information access as a
foundation for reliable RAG (Hwang et al., 2024).

In addition to retrieval quality, the effectiveness
of RAG also depends on how well the genera-
tion model utilizes retrieved content (Shi et al.,
2023). Prompting strategies like Chain-of-Note (Yu
et al., 2023) guide attention to relevant context,
while retrieval-aware fine-tuning (Lin et al., 2023;
Soudani et al., 2024) explicitly trains models to in-
tegrate external knowledge. Other methods, such as
differentiable data rewards (Li et al., 2024), address
conflicts between parametric and retrieved knowl-
edge to enhance factual consistency and reduce
hallucinations. These strategies (Liu et al.) collec-
tively align model outputs with external evidence,
improving both performance and trustworthiness.

Another active research direction aims to im-
prove transparency and reasoning quality by mod-
eling intermediate steps. Methods such as Chain-
of-Thought (Trivedi et al., 2022a; Wei et al.,
2022), decomposition (Zhou et al., 2022), and self-
refinement (Madaan et al., 2023) guide models to
explicitly articulate their reasoning. DeepSeek-
R1 (Guo et al., 2025) introduces “thought trajec-
tories” to trace answer formation. In RAG, ap-
proaches like RADCoT (Lee et al., 2024) distill
structured reasoning for greater efficiency and in-
terpretability. These demonstrate that making rea-
soning explicit improves factuality and verifiabil-
ity (Lightman et al., 2023; Yu and Ananiadou,
2024; Mosbach et al., 2024; Chen et al., 2025a).

While prior work has improved faithfulness and
rationale alignment in RAG(Huang et al., 2025b,a),
most approaches assumes relevant evidence is al-
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ready available to the model and focuses on align-
ing generation accordingly (Menick et al., 2022;
Lyu et al., 2023). In contrast, we address a more
fundamental challenge: the model may still over-
look critical evidence due to its implicit nature or
low salience. We propose the ClueAnchor frame-
work, which explicitly highlights clue signals from
noisy retrievals to guide more grounded and inter-
pretable reasoning.

3 Method

This section introduces the ClueAnchor framework,
which is illustrated in Figure 2. We first describe
the preliminaries of ClueAnchor (Section 3.1), and
then detail its clue-anchored knowledge reasoning
exploration and knowledge reasoning optimization
process (Section 3.2).

3.1 Preliminary of ClueAnchor
RAG aims to answer a query q by leveraging both
the parametric knowledge of a language model and
a set of retrieved documents D = {d1, . . . , dn}.
The generation process can be formalized as max-
imizing the conditional likelihood of an answer a
given the query and retrieved passages:

y = arg max
a

Pθ(a | q,D), (1)

where Pθ represents the generation probability dis-
tribution parameterized by θ.

Inspired by Chain-of-Thought (CoT) prompt-
ing (Kojima et al., 2022), we adopt a reasoning-
then-answering paradigm in our RAG framework,
where the model jointly generates an intermediate
reasoning chain r and the final answer a condi-
tioned on the query q and retrieved documents D:

y = arg max
r,a

Pθ(r, a | q,D). (2)

This CoT-based RAG reasoning process enables the
model to explicitly incorporate external knowledge
into intermediate reasoning, resulting in more in-
terpretable and robust generation (Li et al., 2025a).

While multi-task instruction tuning has been
used to enhance RAG models (Lin et al., 2023),
it often causes overfitting to retrieved content, re-
ducing generalization and increasing sensitivity to
noise (Jin et al., 2024; Xie et al., 2024). To address
this, drawing inspiration from the optimization
strategy of Differentiable Data Rewards (DDR) (Li
et al., 2024), ClueAnchor is fine-tuned by sampling
multiple response candidates and aligning with the
one achieving the highest reward score.

For each query, ClueAnchor generates a set of
candidate responses {y1, . . . , yn}, where each re-
sponse yi consists of a CoT-style reasoning chain
and a final answer (Section 3.2.1). To guide train-
ing, we assign task-specific reward scores to each
response based on the correctness of its predicted
answer. The highest-rewarded response is selected
as the positive sample, and the lowest-rewarded
one as the negative sample, forming a preference
pair for optimization (Section 3.2.2).

3.2 Clue-Anchored Knowledge Reasoning
Exploration and Optimization

ClueAnchor consists of two core modules: Knowl-
edge Reasoning Exploration (KRE) first generates
multiple reasoning paths under different knowl-
edge conditions, and then Knowledge Reasoning
Optimization (KRO) ranks them by answer qual-
ity, guiding the model to prefer higher-rewarded
reasoning paths.

3.2.1 Knowledge Reasoning Exploration
The Knowledge Reasoning Exploration (KRE)
module models a multi-path reasoning process for
each query by exploring three complementary rea-
soning paths. Each path reflects a distinct knowl-
edge grounding strategy and provides diverse super-
visory signals, collectively enhancing the model’s
ability to reason over complex and noisy evidence.

Internal Knowledge Reasoning. The model
generates a response based solely on its parametric
memory, simulating a no-context generation sce-
nario:

yInternal = arg max
r,a

Pθ(r, a | q). (3)

This path reflects the model’s parametric knowl-
edge and helps mitigate inconsistencies that may
arise from misleading retrieved content.

External Knowledge Reasoning. The model
generates a response by conditioning on the re-
trieved passages D = {d1, . . . , dk}:

yExternal = arg max
r,a

Pθ(r, a | q,D). (4)

This path reflects the standard RAG setting, where
retrieved evidence often directly contains the an-
swer, enabling efficient answer generation without
requiring complex reasoning.

Clue-Anchored Knowledge Reasoning. Al-
though retrieved documents often include sufficient
evidence, models struggle to identify and use key
clues when they are implicit or dispersed, leading
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Figure 2: Overview of the ClueAnchor Framework. The Knowledge Reasoning Exploration (KRE) module gener-
ates diverse reasoning paths conditioned on different evidence scenarios. The Knowledge Reasoning Optimization
(KRO) module selects and refines the most effective responses using reward-based preference signals.

to incorrect response sampling. To mitigate this,
we introduce Clue-Anchored Knowledge Reason-
ing, which explicitly extracts key clues and guides
the model’s reasoning process more effectively.

Specifically, the model first predicts a clue ĉ
from the retrieved documents that supports the
ground truth answer a∗:

ĉ = arg max
c

Pθ(c | q,D, a∗). (5)

To avoid trivial copying, we explicitly prevent the
model from directly restating the answer during
clue generation. Each candidate clue is then vali-
dated by the backbone model to ensure that it leads
to correct answer prediction. Only validated clues
are retained for training.

Conditioned on the predicted clue ĉ, the model
is then guided to generate a response:

yClueAnchor = arg max
r,a

Pθ(r, a | q,D, ĉ). (6)

This clue-anchored generation process enhances
the model’s ability to extract and ground its rea-
soning in relevant evidence, especially in noisy
retrieval scenarios. It also improves the quality of
sampled responses, providing more effective train-
ing signals and promoting faithful reasoning. By
anchoring on informative clues, the model learns
to focus on meaningful information—much like
finding a needle in a haystack.

3.2.2 Knowledge Reasoning Optimization

Each reasoning path reflects a distinct reasoning
strategy. The internal reasoning path enables the
model to quickly generate responses from paramet-
ric memory when relevant knowledge is present,
but tends to hallucinate when encountering unfa-
miliar or unseen questions (Sun et al., 2024). The
external knowledge reasoning path performs well
when retrieved evidence clearly supports the an-
swer, but is susceptible to distraction from irrel-
evant content in noisy retrieval scenarios (Yoran
et al., 2023). The clue-anchored reasoning path
strengthens the model’s ability to leverage external
knowledge by guiding reasoning with key clues,
but may lead the model to overly focus on locating
answers explicitly from retrieved content.

While the Knowledge Reasoning Exploration
module generates diverse reasoning paths, not all
are equally appropriate or reliable for a given
query. To effectively utilize this diversity, we intro-
duce the Knowledge Reasoning Optimization mod-
ule, which refines the model’s decision-making by
learning to prefer higher-quality reasoning paths
through reward-based supervision.

Reward-guided Knowledge Selection. To
identify the most effective reasoning path, we com-
pute a task-specific reward score r(ai, a∗) for each
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response yi by comparing its predicted answer ai
against the ground-truth answer a∗. The reasoning
path with the highest reward is selected as the posi-
tive sample y+, and the one with the lowest reward
as the negative sample y−:

y+ = arg max
yi

r(ai, a
∗),

y− = arg min
yi

r(ai, a
∗),

(7)

where r(ai, a∗) is a reward function that measures
the quality of the generated answer relative to the
ground truth.

Knowledge Preference Optimization. To
guide the model toward better reasoning strate-
gies, we apply Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to fine-tune the model
by maximizing the preference for the positive re-
sponse y+ over the negative one y−. The con-
trastive learning objective is defined as:

L(θ; θref) = −E
[

log σ
(
β log

Pθ(y
+ | q,D)

Pθref(y+ | q,D)

− β log
Pθ(y

− | q,D)

Pθref(y− | q,D)

)]
,

(8)

where σ(·) denotes the sigmoid function, β is a
scaling factor, θ is the policy model being trained,
and θref is a fixed reference model used for relative
likelihood comparison.

4 Experimental Methodology

This section details our experimental setup, cov-
ering datasets, metrics, baselines, and implemen-
tation details. More experimental details are pro-
vided in the Appendix A.1 and A.3.

Dataset. To evaluate our approach, we construct
training and evaluation sets from diverse QA bench-
marks. All datasets use passages retrieved from
Wikipedia (Izacard et al., 2022) via the bge-large-
en-v1.5 retriever (Xiao et al., 2024). The training
set spans various reasoning paradigms, including
open-domain QA (NQ (Kwiatkowski et al., 2019),
TriviaQA (Joshi et al., 2017)), multi-hop QA (Hot-
potQA (Yang et al., 2018), 2WikiMQA (Ho et al.,
2020)), and reading comprehension (SQuAD (Ra-
jpurkar et al., 2016)). Evaluation covers ten
datasets, including five in-domain test sets and
five out-of-domain benchmarks—SearchQA (Dunn
et al., 2017), PopQA (Mallen et al., 2022),
BeerQA (Qi et al., 2021), WebQuestions (Berant

et al., 2013), and Musique (Trivedi et al., 2022b),
which reflect diverse knowledge and reasoning
styles, from commonsense to complex multi-hop.

Evaluation Metrics. We adopt accuracy as the
primary evaluation metric across all QA tasks, fol-
lowing previous work (Lewis et al., 2020b; Yu et al.,
2024; Li et al., 2024).

Baselines. We evaluate a range of RAG methods
under a unified setup, spanning from parametric
LLMs to retrieval-augmented approaches incorpo-
rating reasoning, instruction tuning, and reward
optimization. Vanilla LLM relies solely on internal
knowledge. Vanilla RAG (Ram et al., 2023) and
REPLUG (Shi et al., 2023) enhances query gener-
ation by incorporating retrieved passages through
in-context learning. RA-DIT (Lin et al., 2023) ap-
plies multi-task instruction tuning to better utilize
retrieved passages. RADCoT (Lee et al., 2024)
augments reasoning ability by distilling chain-of-
thought rationales from a teacher model. RAG-
DDR (Li et al., 2024) leverages differentiable data
rewards by sampling multiple candidate responses
and optimizing toward those with higher reward
signals. For fair comparison, all methods share the
same fixed retriever to isolate improvements from
generation modeling.

Implementation Details. We adopt Llama-3.1-
8B-Instruct (Grattafiori et al., 2024) and Qwen2.5-
7B-Instruct (Yang et al., 2024) as backbone models,
fine-tuned with LoRA (Hu et al., 2022) for efficient
adaptation. All models are trained for one epoch
with a learning rate of 5e-5, using ten retrieved
passages as external input during both training and
inference. For fair comparison, retrieval-related set-
tings follow Li et al. (2024), and all baselines are
kept consistent. Following prior studies on struc-
tured reasoning (Guo et al., 2025), we constrain
model outputs to a template format: reasoning steps
are enclosed within <think>. . . </think> tags and
final answers within <answer>. . . </answer> tags.

5 Results and Analysis

In this section, we first evaluate the overall perfor-
mance of ClueAnchor and conduct ablation studies
to assess the impact of each component. We then
examine its ability to utilize knowledge under dif-
ferent evidence conditions and its robustness to
noisy retrieval. Finally, we analyze the model’s
ability to attend to key clues, with case studies
provided in Appendix A.10.
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Methods In-Domain QA Out-of-Domain QA Avg.
NQ TriQA 2Wiki HotQA SquAD SeaQA PopQA BeerQA WebQ MusQ

Llama-3.1-Instruct8B
Vanilla LLM 35.47 70.90 35.40 32.97 18.33 69.77 25.90 26.40 38.05 8.54 36.17
Vanilla RAG (2023) 43.40 75.63 49.23 49.80 38.70 62.00 48.93 46.63 37.70 15.08 46.71
REPLUG (2023) 38.67 71.50 46.67 45.17 28.00 62.50 41.17 39.67 40.00 19.00 43.24
RA-DIT (2023) 50.90 79.57 56.70 50.10 40.40 78.37 57.43 48.07 46.20 13.33 52.11
RADCoT (2024) 43.00 76.23 44.90 47.33 36.73 67.63 50.00 45.77 39.50 13.08 46.42
RAG-DDR (2024) 53.83 84.37 57.43 55.00 42.60 75.97 60.23 52.43 45.95 20.79 54.56
ClueAnchor 54.67 83.33 63.70 61.03 45.83 82.80 62.60 56.20 48.90 24.67 58.37
Qwen2.5-Instruct7B
Vanilla LLM 25.07 59.87 39.17 28.10 17.23 60.60 15.40 26.63 35.50 7.17 31.27
Vanilla RAG (2023) 42.30 74.70 47.50 47.13 37.97 64.53 45.87 45.00 38.20 11.46 45.47
REPLUG (2023) 36.00 69.18 41.33 37.33 31.33 58.50 43.00 39.17 32.83 13.50 40.22
RA-DIT (2023) 45.77 78.53 49.93 48.00 38.23 74.87 52.30 44.90 45.55 11.96 49.00
RADCoT (2024) 42.47 74.97 50.93 48.63 35.30 69.40 47.93 43.83 39.05 14.00 46.65
RAG-DDR (2024) 46.30 79.77 50.93 51.67 43.47 74.40 52.63 49.93 42.95 16.79 50.88
ClueAnchor 50.60 81.03 59.97 56.27 45.00 76.70 56.63 52.73 45.90 19.04 54.39

Table 1: Overall Performance of Different RAG Models. The highest scores are emphasized in bold, while the
second highest scores are marked with an underline.

5.1 Overall Performance

We present the performance of RAG methods on
both in-domain and out-of-domain QA tasks for the
Llama-3.1-8B-Instruct and Qwen2.5-7B-Instruct
models in Table 1. Overall, ClueAnchor signifi-
cantly outperforms all baselines, achieving average
improvements of over 3.6% across all datasets.

Compared with Vanilla RAG and REPLUG,
which simply incorporate retrieved content,
ClueAnchor achieves significantly better results,
revealing the limitations of LLMs in selectively
reasoning over noisy inputs. It also surpasses fine-
tuned methods such as RA-DIT and RADCoT,
which enhance external knowledge usage via in-
struction tuning and CoT distillation. However,
RA-DIT tends to overfit to SFT labels, limiting its
generalization capability, while RADCoT suffers
from error propagation due to noisy CoT supervi-
sion. In contrast, ClueAnchor uses Knowledge Rea-
soning optimization (KRO) to dynamically align
with the most effective reasoning path, enabling
more adaptive and robust reasoning.

While RAG-DDR introduces reward-based
alignment to select better outputs between para-
metric and retrieval-based responses, it supervises
only the final answer and lacks further exploration
of deeper clues. ClueAnchor goes further by iden-
tifying potential clues and anchoring the reason-
ing process around them, providing finer-grained
guidance throughout generation and improving ro-
bustness and faithfulness under varying retrieval
conditions, especially in complex queries where
multi-step reasoning is required.

5.2 Ablation Study

As shown in Table 2, we conduct ablation studies
to assess the contribution of Knowledge Reason-
ing Exploration (KRE) module, including Internal
Knowledge Reasoning (IKR), External Knowledge
Reasoning (EKR), and Clue-Anchored Knowledge
Reasoning (CKR), as well as the role of anchored
clues in Clue-Anchored Knowledge Reasoning.

We begin by evaluating the two knowledge rea-
soning strategies. Removing either the Internal
Knowledge Reasoning or External Knowledge Rea-
soning leads to a noticeable performance drop, es-
pecially in the latter case, reflecting the critical role
of retrieved evidence in RAG. These results high-
light the Internal Knowledge Reasoning’s role in
balancing parametric and retrieved knowledge, and
the External Knowledge Reasoning’s importance in
modeling the natural reasoning path and providing
intermediate signals.

Next, we remove the Clue-Anchored Knowledge
Reasoning and observe consistent performance
degradation compared with ClueAnchor frame-
work, particularly on questions requiring multi-hop
or implicit reasoning, such as those in HotpotQA.
This suggests that Clue-Anchored Knowledge Rea-
soning complements the External Knowledge Rea-
soning by guiding the model toward overlooked or
fine-grained evidence.

Finally, we replace the anchored clue with the
ground-truth answer, using it directly with the
query and retrieved passages as input. Despite
access to the correct answer, performance declines
noticeably. Without an intermediate clue to serve
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Methods In-Domain QA Out-of-Domain QA Avg.
NQ TriQA 2Wiki HotQA SquAD SeaQA PopQA BeerQA WebQ MusQ

Llama-3.1-Instruct8B
ClueAnchor 54.67 83.33 63.70 61.03 45.83 82.80 62.60 56.20 48.90 24.67 58.37
w/o IKR 47.00 79.50 56.93 53.53 38.10 74.13 50.30 48.40 42.30 17.33 50.75
w/o EKR 45.60 76.93 54.13 53.80 41.23 69.63 51.67 49.73 39.80 16.08 49.86
w/o CKR 53.50 83.60 63.50 60.73 45.77 81.57 61.30 54.90 47.60 24.00 57.65
w/o Anchored Clues 51.93 83.20 63.10 58.07 43.83 78.20 60.07 53.70 49.05 21.42 56.26
Qwen2.5-Instruct7B
ClueAnchor 50.60 81.03 59.97 56.27 45.00 76.70 56.63 52.73 45.90 19.04 54.39
w/o IKR 47.03 79.23 56.97 53.53 41.27 75.77 55.30 50.37 46.80 16.83 52.31
w/o EKR 47.80 79.83 58.37 53.73 42.77 71.73 52.70 50.33 42.95 16.71 51.69
w/o CKR 49.63 80.80 58.20 55.53 44.33 76.27 56.70 52.23 45.30 18.21 53.72
w/o Anchored Clues 46.40 77.73 56.30 52.20 41.50 70.13 51.60 49.33 42.95 15.92 50.41

Table 2: Ablation Study. We evaluate the contribution of Internal Knowledge Reasoning (IKR), External Knowl-
edge Reasoning (EKR), and Clue-Anchored Knowledge Reasoning (CKR), as well as the impact of using an-
chored clues during Clue-Anchored Knowledge Reasoning.
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Figure 3: Effectiveness of Knowledge Reasoning Optimization in ClueAnchor. Results are shown on Llama-3.1-
8B-Instruct.

as an anchor, the model struggles to localize and
reason over relevant content, underscoring the im-
portance of explicit clue extraction during Clue-
Anchored Knowledge Reasoning.

5.3 Effectiveness of Knowledge Reasoning
Optimization in ClueAnchor

To assess the effectiveness of Knowledge Rea-
soning Optimization in ClueAnchor, we evaluate
it under three distinct conditions: questions that
can be answered using internal knowledge alone,
questions where the retrieved passages contain the
ground-truth answer, and questions where no re-
trieved passage includes the correct answer. We
use these scenarios to assess whether the model can
appropriately select between internal and external
knowledge, accurately leverage retrieved evidence
when available, and remain robust to irrelevant con-
tent when retrieval fails.

As shown in Figure 3, ClueAnchor consistently

outperforms all baselines across most datasets un-
der all three conditions. This demonstrates that,
after knowledge reasoning optimization, ClueAn-
chor can adaptively rely on internal knowledge
when retrieval is unhelpful, ground its reasoning in
retrieved content when relevant, and leverage clue-
anchored reasoning to focus on critical informa-
tion within noisy passages. These results highlight
ClueAnchor’s ability to dynamically adjust reason-
ing strategies and remain robust across varying
knowledge conditions. Additional experimental
results are provided in the appendix A.8.

5.4 Effectiveness of ClueAnchor under Noisy
Retrieval Conditions

In this experiment, we evaluate the robustness and
external knowledge exploration ability of ClueAn-
chor under two types of noisy retrieval scenarios
on the 2Wiki and SeaQA datasets using Llama-
3.1-8B-Instruct. More results are provided in Ap-
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pendix A.9.
Noise Substitution. As shown in Figure 4, we

degrade retrieval quality by gradually replacing
the original relevant passages with irrelevant ones.
While all methods suffer performance drops as
noise increases, ClueAnchor consistently outper-
forms RAG-DDR, with the performance gap ex-
panding steadily as noise levels rise. This widening
margin indicates that ClueAnchor is better at resist-
ing noise and maintaining useful signal extraction
under increasingly noisy conditions.

Noise Injection. We incrementally add irrel-
evant passages while preserving the original re-
trieved content, and present the results in Figure 5.
We quantify robustness by measuring the slope of
accuracy decline, where a smaller slope indicates
stronger resistance to noise. In contrast to RAG-
DDR, ClueAnchor maintains an almost flat slope,
demonstrating its superior ability to resist noisy in-
puts and anchor on relevant evidence. Interestingly,
Vanilla RAG remains stable under noise, possibly
because it does not effectively leverage retrieved
evidence in the first place.

5.5 Evaluating the Contribution of
Clue-Anchored Reasoning in ClueAnchor

While previous experiments have demonstrated that
ClueAnchor performs well across various tasks and
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Figure 6: Performance of Different RAG Methods
Based on Clue-Hit Rates.

retrieval settings, they do not directly verify its
ability to trace key clues during reasoning. To
verify this, we conduct a clue-hit analysis on the
out-domain test sets of 2Wiki and SeaQA using
Llama-3.1-8B-Instruct. Complete results are pro-
vided in Appendix A.7. We further support this
analysis with case studies in Appendix A.10.

For each sample, we first generate a ground-
truth clue based on the ground-truth answer and
retrieved documents. We then segment the model’s
generated reasoning into individual sentences and
compute the semantic similarity between each sen-
tence and the ground-truth clue using the bge-large-
en-v1.5 retriever. The highest similarity score is
recorded as the final clue-hit score, reflecting how
well the model’s reasoning aligns with informative
evidence.

As shown in Figure 6, ClueAnchor achieves the
highest clue-hit scores on both datasets, signifi-
cantly outperforming all baselines. In contrast, RA-
DIT achieves lower similarity scores because it is
trained to directly predict answers, without learn-
ing how to extract and reason over useful clues
from retrieved content. These findings confirm that
ClueAnchor effectively aligns its reasoning with
key clue evidence, validating the core intuition be-
hind our method.

6 Conclusion

This paper presents ClueAnchor, a novel frame-
work that enhances retrieval-agmented generation
by anchoring reasoning on key evidence clues ex-
tracted from retrieved documents. It combines
knowledge reasoning exploration with knowledge
reasoning optimization to improve the model’s abil-
ity to identify and leverage critical information. Ex-
perimental results demonstrate that ClueAnchor
maintains robust performance under increasingly
noisy retrieval conditions. Further analysis shows
that it effectively learns to trace and utilize rele-
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vant clues during inference, even without access to
ground-truth supervision.

Limitations

Despite ClueAnchor’s effectiveness in guiding rea-
soning through key clues, its success still depends
on the model’s ability to comprehend and inter-
nalize complex semantic relationships between the
question, retrieved content, and the ground-truth
answer. When the reasoning chain involves subtle
or implicit connections, even providing the ground-
truth answer may not ensure accurate clue extrac-
tion. This reveals a fundamental challenge: large
language models may still lack the fine-grained
discriminative capacity to localize the correct evi-
dential span, particularly when the supporting con-
tent is obliquely phrased, dispersed across multiple
documents, or overshadowed by semantically sim-
ilar but irrelevant information. Consequently, the
model may not fully anchor its reasoning on the ap-
propriate clues, weakening the connection between
retrieved evidence and the final answer.
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A Appendix

A.1 Prompt Templates Used in ClueAnchor

In this subsection, we introduce the prompt tem-
plates used by ClueAnchor’s Knowledge Reason-
ing Exploration module to elicit distinct reasoning
behaviors.

Internal Knowledge Reasoning. The model
answers the question based solely on its internal
knowledge.

Internal Knowledge Reasoning

Please think about the reasoning process in the
mind and then provides the user with the answer.
The reasoning process and answer are enclosed
within <think> </think> and <answer> </an-
swer> tags, respectively, i.e., <think> reasoning
process here </think> <answer> answer here
</answer>.
You could perform thinking with decomposing,
understanding, recalling, reflecting, brainstorm-
ing, verifying, refining, and revising.
Question: {question}
Answer:

External Knowledge Reasoning. The model
answers the question by reasoning over the re-
trieved passages.

External Knowledge Reasoning

Please think about the reasoning process in the
mind and then provides the user with the answer
based on the given background.
The reasoning process and answer are enclosed
within <think> </think> and <answer> </an-
swer> tags, respectively, i.e., <think> reasoning
process here </think> <answer> answer here
</answer>.
You could perform thinking with decomposing,
understanding, recalling, reflecting, brainstorm-
ing, verifying, refining, and revising.
You first need to determine whether the back-
ground contains information related to the prob-
lem. If not, please answer the question based on
general knowledge.
Background: {background}
Question: {question}
Answer:

Clue Extraction. The model extracts explicit
sentence(s) from the passage that directly support
the given answer.

Clue Extraction
You are given a background passage, a question,
and its correct answer. Your task is to extract
the key clue sentence(s) from the passage that
directly support the answer.
Instructions:
1.Only extract content that appears explicitly in
the passage.
2.Do not include any reasoning, explanation, or
inferred information.
3.Output must be faithful to the original wording
in the passage, with no paraphrasing or modifi-
cation.
Background: {background}
Question: {question}
Answer: {answer}
Extracted supporting content:

Clue-Anchored Knowledge Reasoning. The
model answers the question by identifying and uti-
lizing key clues from the retrieved passages.

Clue-Anchored Knowledge Reasoning

Please think about the reasoning process in the
mind and then provides the user with the answer
based on the given background.
The reasoning process and answer are enclosed
within <think> </think> and <answer> </an-
swer> tags, respectively, i.e., <think> reasoning
process here </think> <answer> answer here
</answer>.
You could perform thinking with decomposing,
understanding, recalling, reflecting, brainstorm-
ing, verifying, refining, and revising.
You first need to determine whether the back-
ground contains information related to the prob-
lem. If not, please answer the question based on
general knowledge.
To assist your reasoning, some potentially key
clue information from the Background may
have been highlighted or emphasized in the in-
put, Please use these as guidance when they are
available, but still ensure you consider the en-
tire Background as needed. Or it may indicate
that the Background does not contain the an-
swer, in which case you should rely on general
knowledge and reasoning.
Background: {background}
Key clue information: {clue}
Question: {question}
Answer:
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Task LLaMA-3.1-8B Qwen2.5-7B
Data Size (# / %) Data Size (# / %)

NQ 9385 (27.9%) 11198 (31.6%)
TriQA 6062 (18.0%) 6055 (17.1%)
2Wiki 5804 (17.3%) 4193 (11.8%)
HotQA 6587 (19.6%) 7223 (20.4%)
SquAD 5794 (17.2%) 6728 (19.0%)

Total 33632 35397

Table 3: Data Statistics of Training Data. Percentages
represent the proportion of each dataset within the total
samples for each model.

In-Domain Tasks Out-of-Domain Tasks

Task Data Size Task Data Size

NQ 3000 SeaQA 3000
TriQA 3000 PopQA 3000
2Wiki 3000 BeerQA 3000
HotQA 3000 WebQA 2032
SquAD 3000 MuSiQue 2417

Table 4: Data Statistics of Evaluation Data.

A.2 License

We present the licenses of the datasets used in this
paper: Natural Questions (CC BY-SA 3.0 license),
PopQA and NewsQA (MIT License), 2WikiMul-
tihopQA, SearchQA and TriviaQA(Apache Li-
cense 2.0), HotpotQA, SQuAD, Web Question and
MusiQue (CCBY-SA 4.0 license).

All these licenses and agreements permit the use
of their data for academic purposes.

A.3 Additional Experimental Details

In this subsection, we provide details of the data
processing procedures used for training and evalua-
tion in the ClueAnchor framework.

Training Data. We begin by randomly sam-
pling 20,000 instances from each individual task
dataset. These candidates are then filtered through
a preference-based sampling procedure using the
backbone model, retaining only those suitable for
preference supervision. As a result, the final train-
ing set sizes vary across tasks, as shown in Table 3.
Finally, all task-specific instances are mixed to en-
sure task diversity during training.

Evaluation Data. For evaluation, we randomly
sample 3,000 instances from each benchmark
dataset to ensure consistency and computational
efficiency. For smaller datasets (e.g., WebQA and
MuSiQue), we use the entire set. This fixed-size
strategy ensures fair comparisons across models
and tasks while keeping evaluation costs manage-
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Figure 7: Training-side Computation Cost across Dif-
ferent RAG Methods.

able. Detailed statistics are shown in Table 4.

A.4 Computational Cost Analysis

To further assess the computational cost of ClueAn-
chor, we compare its training-side overhead and
inference-time efficiency against representative
RAG baselines.

Training-side Overhead. We evaluate the
training-side overhead by measuring the data con-
struction time and training runtime of different
methods, as shown in Figure 7. Compared with
RAG-DDR, which also samples multiple responses
per instance and applies reward-based optimiza-
tion, ClueAnchor achieves high computational ef-
ficiency overall. Specifically, its data construction
time is less than one-third of RAG-DDR, while the
training runtime is only slightly higher, which is
mainly due to the incorporation of CoT supervision
during fine-tuning. In contrast to large-scale CoT
distillation approaches such as RAD-CoT, ClueAn-
chor achieves substantial performance gains with
only about 85% of the computational cost, high-
lighting its cost-effectiveness and practical advan-
tage.

Inference-time Efficiency. During the infer-
ence phase, both ClueAnchor and the compared
RAG baselines were evaluated under identical ex-
perimental configurations to ensure fairness. Since
ClueAnchor does not introduce any additional
modules into the inference process, its inference
pipeline is strictly equivalent to that of standard
RAG. Consequently, ClueAnchor incurs no extra
latency or memory consumption, and its improve-
ments are achieved without sacrificing deployment-
time efficiency.
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Methods T-REx WoW GSM8K Summary Continuation
Llama-3.1-Instruct8B
Vanilla RAG 30.73 10.57 81.25 39.60 13.14
RAG-DDR 36.20 11.79 81.50 40.17 16.73
ClueAnchor 41.27 12.11 85.05 41.98 18.07
Qwen2.5-Instruct7B
Vanilla RAG 31.37 10.84 90.95 37.26 14.43
RAG-DDR 33.23 11.40 90.55 40.73 15.18
ClueAnchor 37.73 11.86 91.25 41.75 15.68

Table 5: Experimental Evaluation on varied benchmark
settings.

A.5 Experiments on varied benchmark
settings

In this subsection, we extend the evaluation beyond
traditional QA settings. Specifically, we evaluate
ClueAnchor on T-REx (Elsahar et al., 2018), a fac-
tual slot filling benchmark; WoW (Dinan et al.,
2018), a knowledge-grounded dialogue dataset;
and GSM8K (Cobbe et al., 2021), a benchmark for
mathematical reasoning. In addition, we conduct
experiments on the CRUD-RAG benchmark(Lyu
et al., 2025), a real-world Chinese dataset focus-
ing on news-related tasks. CRUD-RAG contains
heterogeneous and loosely structured content, re-
quiring models to perform deeper understanding
and generation over long-form news articles, rather
than direct factual answering. We evaluate two
representative tasks: Summary (news summariza-
tion) and Continuation (news continuation), both
of which substantially differ from QA in terms of
structure and objective.

As shown in Table 5, ClueAnchor delivers con-
sistently strong performance across these non-QA
tasks, demonstrating its ability to generalize effec-
tively to heterogeneous and unstructured scenarios.
These results highlight the generalizability of clue-
anchored reasoning, suggesting that its benefits
extend well beyond question answering.

A.6 Comparison with Deep Reasoning
Approaches

Recent progress in deep reasoning has largely fo-
cused on reinforcement learning–based strategies
that enhance the internal reasoning capability of
large language models. Representative works, such
as DeepResearch and its implementation Search-
R1 (Jin et al., 2025), employ reinforcement learn-
ing to optimize a policy over multi-step reasoning
trajectories under outcome-level or process-level re-
wards. While these approaches have shown promis-
ing improvements in complex reasoning tasks, their
optimization objective is irrelevant to the problem

Methods NQ TriQA 2Wiki HotQA SquAD
Qwen2.5-Instruct3B
Search-R1 36.83 66.47 32.93 38.03 33.03
ClueAnchor 48.20 78.00 52.33 51.10 42.80
Qwen2.5-Instruct7B
Search-R1 41.40 67.87 41.37 37.53 36.10
ClueAnchor 50.60 81.03 59.97 56.27 45.00
Methods SeaQA PopQA BeerQA WebQ MusQ
Qwen2.5-Instruct3B
Search-R1 44.47 41.90 39.07 34.05 8.92
ClueAnchor 69.03 53.90 49.90 45.00 14.29
Qwen2.5-Instruct7B
Search-R1 49.00 44.73 42.93 35.45 15.67
ClueAnchor 76.70 56.63 52.73 45.90 19.04

Table 6: Performance Comparison between ClueAn-
chor and Search-R1 on RAG Benchmarks.

addressed by ClueAnchor. Specifically, ClueAn-
chor focuses on leveraging ground-truth answers
during training to help the model identify implicit
but essential clue signals from retrieved documents,
thereby mitigating the failure cases where correct
answers cannot be reached even after multiple sam-
plings.

To provide a clearer comparison, we evaluate
ClueAnchor against Search-R1 under two back-
bone models: Qwen2.5-3B-Instruct and Qwen2.5-
7B-Instruct. As reported in Table 6, ClueAnchor
consistently outperforms Search-R1 across both
model scales. This result highlights the comple-
mentary nature of the two approaches: reinforce-
ment learning–based methods primarily improve
internal reasoning dynamics, while ClueAnchor
strengthens the integration of external evidence
through explicit clue anchoring.

A.7 Additional Experiments on
Clue-Anchored Reasoning

In Section 5.5, we show that ClueAnchor’s per-
formance gains on the 2Wiki and SeaQA datasets
using LLaMA-3.1-8B-Instruct largely stem from
its ability to identify and follow key evidence clues.
To further support this observation, we perform
the same clue-hit analysis across all datasets us-
ing both LLaMA-3.1-8B-Instruct and Qwen2.5-7B-
Instruct. Results consistently confirm that ClueAn-
chor aligns generated reasoning more closely with
key clues, highlighting its effectiveness in improv-
ing reasoning faithfulness and robustness. Full
results are reported in Table 7.
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Methods In-Domain QA Out-of-Domain QA Avg.
NQ TriQA 2Wiki HotQA SquAD SeaQA PopQA BeerQA WebQ MusQ

Llama-3.1-Instruct8B
Vanilla RAG 81.56 83.38 81.56 79.99 82.21 80.04 79.33 82.13 81.26 79.74 81.12
RA-DIT 77.56 78.52 77.56 75.88 78.16 75.20 74.31 77.46 77.74 75.54 76.79
RADCoT 80.97 83.36 80.97 80.05 81.67 80.18 78.96 81.22 80.58 79.97 80.79
RAG-DDR 84.43 86.32 84.43 83.09 85.29 83.51 83.47 85.06 83.90 83.53 84.30
ClueAnchor 86.70 88.73 86.70 85.29 88.20 86.28 86.41 87.31 85.81 86.25 86.77
Qwen2.5-Instruct7B
Vanilla RAG 82.73 84.77 80.38 81.15 83.84 81.12 79.80 83.24 82.01 80.02 81.91
RA-DIT 76.21 77.29 76.93 74.28 77.05 75.90 73.82 77.43 77.20 75.37 76.15
RADCoT 82.34 83.65 79.88 80.80 83.13 80.81 78.81 82.48 81.66 79.51 81.31
RAG-DDR 85.60 87.13 84.21 84.74 86.86 84.03 83.03 86.63 84.79 83.88 85.09
ClueAnchor 87.90 89.28 86.78 87.30 89.30 86.64 86.31 88.97 86.75 86.63 87.59

Table 7: Experimental Evaluation of Clue-Hit Rates Across RAG Models.

A.8 Additional Experiments on Knowledge
Reasoning Optimization

In Section 5.3, we visualize the performance
of different RAG methods under varying knowl-
edge availability conditions using LLaMA-3.1-8B-
Instruct (Figure 3). To provide a more compre-
hensive analysis, we report the complete results
for both LLaMA-3.1-8B-Instruct and Qwen2.5-7B-
Instruct in Table 8, covering all evaluation scenar-
ios. Additionally, we present the corresponding
visualization for Qwen2.5-7B-Instruct in Figure 8,
enabling direct cross-model comparison. The re-
sults on Qwen2.5-7B-Instruct closely mirror those
of LLaMA-3.1-8B-Instruct, reinforcing the robust-
ness and generalizability of our findings.

A.9 Additional Experiments on ClueAnchor
under Noisy Retrieval Conditions

In Section 5.4, we evaluate ClueAnchor’s robust-
ness on 2Wiki and SeaQA using the LLaMA-3.1-
8B-Instruct model under both noise substitution
and noise injection settings. To provide a more
comprehensive view, we extend this analysis to all
ten datasets and include results from both LLaMA-
3.1-8B-Instruct and Qwen2.5-7B-Instruct. Table 9
reports the performance under noise substitution,
where relevant passages are progressively replaced
with irrelevant ones, while Table 10 presents results
under noise injection, where irrelevant content is
added without removing the original evidence.

Across both settings, ClueAnchor consistently
shows more stable performance compared to RAG-
DDR. As the noise level increases, its accuracy
degrades more gracefully, and the performance gap
between the two methods widens, especially in
high-noise scenarios. These results confirm that
ClueAnchor better preserves reasoning quality by

anchoring on useful clues, even when retrieval is
noisy or partially corrupted.

A.10 Case Studies
In this subsection, we present two representative
cases, one from a multi-hop reasoning task and
another from a fact-intensive QA task, to further
demonstrate the effectiveness of the ClueAnchor
framework.

Multi-Hop Case. As shown in Table 11, multi-
hop tasks require models to retrieve and integrate
discrete evidence from multiple documents. In this
case, only ClueAnchor successfully distinguishes
between several individuals named Walter Dev-
ereux and accurately resolves their familial rela-
tionships. By linking entities across passages, it
reconstructs the correct lineage and completes the
multi-hop reasoning process. Moreover, ClueAn-
chor better adheres to the expected answer format
compared to other methods.

Fact-Intensive Case. A similar challenge oc-
curs in the fact-intensive case shown in Table 12,
where the model must extract precise information
from a large body of distracting content. Although
the correct answer is retrievable, the presence of
semantically similar but incorrect details increases
difficulty. ClueAnchor initially considers multi-
ple candidates but then re-examines the context
to identify the correct answer through a reflective
reasoning step. This enables it to resolve ambigu-
ity and deliver a more accurate and well-grounded
response, demonstrating robustness under noisy
retrieval conditions.
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Methods In-Domain QA Out-of-Domain QA Avg.
NQ TriQA 2Wiki HotQA SquAD SeaQA PopQA BeerQA WebQ MusQ

Llama-3.1-Instruct8B
Internal knowledge
Vanilla RAG 74.74 88.76 77.39 83.08 77.92 70.56 82.33 82.24 76.69 53.67 76.74
RAG-DDR 86.99 95.72 86.28 90.05 85.51 85.23 91.43 89.89 86.72 69.27 86.71
ClueAnchor 91.26 95.95 92.77 93.03 87.10 91.60 92.64 93.96 89.06 72.94 90.03
Has answer
Vanilla RAG 59.53 89.26 66.93 69.92 64.71 71.80 69.69 68.13 65.58 47.16 67.27
RAG-DDR 67.99 94.07 73.65 74.20 71.91 84.20 81.19 74.34 72.56 54.92 74.90
ClueAnchor 73.79 95.06 81.76 82.35 78.69 91.73 86.40 80.66 79.54 63.64 81.36
Miss answer
Vanilla RAG 8.86 62.44 38.07 18.11 4.38 27.92 3.69 11.49 9.94 6.09 19.48
RAG-DDR 16.24 74.78 47.30 26.38 6.45 46.44 14.35 15.32 17.55 10.80 27.56
ClueAnchor 16.54 72.62 52.54 28.63 6.75 52.14 11.08 15.93 18.76 12.65 28.76
Qwen2.5-Instruct7B
Internal knowledge
Vanilla RAG 78.55 89.81 87.36 83.88 75.33 79.42 86.42 82.74 80.39 59.15 80.31
RAG-DDR 86.86 94.10 83.98 89.18 85.28 87.89 92.08 85.34 85.64 64.63 85.50
ClueAnchor 87.13 95.21 95.24 91.41 85.28 90.93 93.21 89.45 87.15 75.00 89.00
Has answer
Vanilla RAG 61.04 87.54 66.40 68.09 65.44 77.94 65.69 67.91 66.06 39.96 66.61
RAG-DDR 66.38 91.50 70.77 73.70 73.00 85.90 74.12 75.04 70.65 51.89 73.30
ClueAnchor 71.22 93.54 79.32 79.08 75.97 88.51 80.90 79.31 77.34 60.42 78.56
Miss answer
Vanilla RAG 6.79 61.63 36.46 15.44 4.53 22.65 2.11 7.83 10.65 3.39 17.15
RAG-DDR 8.56 67.36 38.51 19.95 6.90 37.75 4.32 10.53 12.37 6.93 21.32
ClueAnchor 9.75 69.12 47.30 22.04 6.01 36.89 4.96 11.75 13.69 8.52 23.00

Table 8: Performance of RAG Methods under Different Knowledge Scenarios. Internal Knowledge refers to
instances answerable without retrieved documents. Has Answer denotes cases where the retrieved content contains
the correct answer, while Miss Answer represents cases where no retrieved passage provides the correct answer.
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Figure 8: Effectiveness of Knowledge Reasoning Optimization in ClueAnchor. Results are shown on Qwen2.5-
7B-Instruct.

19274



Methods In-Domain QA Out-of-Domain QA Avg.
NQ TriQA 2Wiki HotQA SquAD SeaQA PopQA BeerQA WebQ MusQ

Llama-3.1-Instruct8B
0% Noise Substitution
Vanilla RAG 43.40 75.63 49.23 49.80 38.70 62.00 48.93 46.63 37.70 15.08 46.71
RAG-DDR 53.83 84.37 57.43 55.00 42.60 75.97 60.23 52.43 45.95 20.79 54.56
ClueAnchor 54.67 83.33 63.70 61.03 45.83 82.80 62.60 56.20 48.90 24.67 58.37
∆Score 3.84 -1.04 6.27 6.03 3.23 6.83 2.37 3.77 2.95 3.88 3.81
20% Noise Substitution
Vanilla RAG 42.33 75.17 48.33 48.63 36.77 62.67 47.80 45.97 36.85 15.88 46.04
RAG-DDR 49.60 83.43 56.33 54.07 42.13 75.23 57.73 51.53 46.90 19.78 53.67
ClueAnchor 54.13 83.37 62.13 60.03 45.03 82.67 61.03 55.23 49.85 23.08 57.66
∆Score 4.53 -0.06 5.80 5.96 2.90 7.44 3.30 3.70 2.95 3.30 3.98
40% Noise Substitution
Vanilla RAG 42.43 75.77 46.87 48.83 36.73 62.07 46.30 43.73 36.80 14.83 45.44
RAG-DDR 48.63 83.43 55.20 53.53 40.93 75.27 56.57 50.00 47.05 19.11 52.97
ClueAnchor 53.90 82.47 61.57 59.53 44.70 82.37 59.30 53.37 49.85 22.58 56.96
∆Score 5.27 -0.96 6.37 6.00 3.77 7.10 2.73 3.37 2.80 3.47 3.99
60% Noise Substitution
Vanilla RAG 41.33 75.00 45.27 46.37 34.77 61.43 44.00 43.17 36.60 14.00 44.19
RAG-DDR 47.87 83.13 54.20 52.27 39.97 74.10 53.97 47.90 47.00 18.87 51.93
ClueAnchor 52.77 83.20 60.97 57.57 43.30 82.30 56.80 52.43 49.85 22.58 56.18
∆Score 4.90 0.07 6.77 5.30 3.33 8.20 2.83 4.53 2.85 3.71 4.25
80% Noise Substitution
Vanilla RAG 38.17 72.67 39.33 44.20 31.67 61.50 40.80 40.23 36.30 12.83 41.77
RAG-DDR 46.80 82.07 51.60 50.70 36.40 73.03 50.93 46.07 46.90 18.04 50.25
ClueAnchor 51.27 82.00 58.73 56.03 40.33 81.53 53.87 50.77 49.50 21.42 54.55
∆Score 4.47 -0.07 7.13 5.33 3.93 8.50 2.94 4.70 2.60 3.38 4.29
Qwen2.5-Instruct7B
0% Noise Substitution
Vanilla RAG 42.30 74.70 47.50 47.13 37.97 64.53 45.87 45.00 38.20 11.46 45.47
RAG-DDR 46.30 79.77 50.93 51.67 43.47 74.40 52.63 49.93 42.95 16.79 50.88
ClueAnchor 50.60 81.03 59.97 56.27 45.00 76.70 56.63 52.73 45.90 19.04 54.39
∆Score 4.30 1.26 9.04 4.60 1.53 2.30 4.00 2.80 2.95 2.25 3.50
20% Noise Substitution
Vanilla RAG 42.37 74.07 47.03 46.10 37.60 64.37 44.63 43.47 38.85 12.58 45.11
RAG-DDR 46.00 78.60 49.57 49.97 41.83 74.13 51.00 49.33 42.86 16.22 49.95
ClueAnchor 49.93 81.00 59.13 55.37 43.07 76.80 54.73 51.57 45.45 18.50 53.56
∆Score 3.93 2.40 9.56 5.40 1.24 2.67 3.73 2.24 2.59 2.28 3.60
40% Noise Substitution
Vanilla RAG 41.57 73.10 46.10 44.60 35.63 65.40 43.43 41.73 38.10 11.50 44.12
RAG-DDR 45.87 77.87 48.83 49.77 40.47 74.63 49.50 46.80 41.73 15.68 49.12
ClueAnchor 49.40 80.00 58.50 54.53 42.40 76.83 54.00 49.97 45.35 17.83 52.88
∆Score 3.53 2.13 9.67 4.76 1.93 2.20 4.50 3.17 3.62 2.15 3.77
60% Noise Substitution
Vanilla RAG 39.43 72.07 45.23 43.23 33.90 63.10 41.60 40.63 37.25 11.25 42.77
RAG-DDR 44.33 77.80 47.40 47.53 39.03 73.13 46.90 46.27 40.90 15.27 47.86
ClueAnchor 47.70 79.40 56.80 52.50 41.43 76.93 50.43 49.93 45.20 17.33 51.77
∆Score 3.37 1.60 9.40 4.97 2.40 3.80 3.53 3.66 4.30 2.06 3.91
80% Noise Substitution
Vanilla RAG 37.33 69.87 42.53 39.73 31.07 62.40 37.10 37.53 35.15 9.16 40.19
RAG-DDR 41.70 75.33 43.63 45.77 35.47 72.13 43.70 43.23 39.37 14.40 45.47
ClueAnchor 45.10 77.13 55.07 49.87 36.93 74.43 46.33 46.00 43.85 16.83 49.15
∆Score 3.40 1.80 11.44 4.10 1.46 2.30 2.63 2.77 4.48 2.43 3.68

Table 9: Results of Noise Substitution Experiments. Retrieved documents are progressively corrupted by replacing
content with irrelevant (noisy) passages at different ratios. To better highlight robustness differences, we report the
performance gap (∆Score) between ClueAnchor and RAG-DDR at each noise level.
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Methods In-Domain QA Out-of-Domain QA Avg.
NQ TriQA 2Wiki HotQA SquAD SeaQA PopQA BeerQA WebQ MusQ

Llama-3.1-Instruct8B
0% Noise Injection
Vanilla RAG 43.40 75.63 49.23 49.80 38.70 62.00 48.93 46.63 37.70 15.08 46.71
RAG-DDR 53.83 84.37 57.43 55.00 42.60 75.97 60.23 52.43 45.95 20.79 54.56
ClueAnchor 54.67 83.33 63.70 61.03 45.83 82.80 62.60 56.20 48.90 24.67 58.37
20% Noise Injection
Vanilla RAG 42.77 75.17 50.57 49.53 38.20 60.83 48.33 46.23 38.98 15.10 46.77
RAG-DDR 48.93 83.57 56.80 54.67 42.87 74.10 58.30 51.60 47.05 19.61 53.95
ClueAnchor 55.70 83.67 63.33 59.47 45.43 82.10 62.50 55.33 49.46 23.62 58.06
40% Noise Injection
Vanilla RAG 42.20 76.40 49.23 50.03 37.73 61.83 49.00 46.70 37.40 14.81 46.73
RAG-DDR 48.83 83.37 56.27 55.27 42.17 72.83 58.40 51.40 47.15 18.91 53.75
ClueAnchor 54.20 84.00 63.27 60.33 45.93 82.77 61.33 55.43 49.85 23.42 58.15
60% Noise Injection
Vanilla RAG 43.30 75.33 49.33 49.60 37.10 61.70 48.93 45.47 38.24 14.23 46.52
RAG-DDR 49.93 83.47 55.23 55.17 42.33 73.63 57.20 51.90 47.24 20.40 53.82
ClueAnchor 54.03 83.87 62.80 60.23 44.87 83.23 61.97 55.53 49.16 23.17 57.82
80% Noise Injection
Vanilla RAG 43.57 75.67 50.60 48.60 37.80 60.50 48.93 46.57 38.83 15.14 47.12
RAG-DDR 49.10 83.60 55.80 54.77 42.43 73.47 58.27 51.53 47.83 19.82 53.92
ClueAnchor 54.13 83.77 63.30 59.97 45.43 82.30 61.77 55.43 49.95 22.55 57.87
100% Noise Injection
Vanilla RAG 42.93 75.97 49.33 49.63 36.40 61.93 48.73 47.00 38.14 15.31 46.81
RAG-DDR 49.13 83.83 55.70 53.53 42.30 73.23 57.83 51.67 46.95 20.19 53.70
ClueAnchor 54.70 83.87 63.27 59.43 45.33 81.77 62.57 54.83 49.75 22.47 57.89
Qwen2.5-Instruct7B
0% Noise Injection
Vanilla RAG 42.30 74.70 47.50 47.13 37.97 64.53 45.87 45.00 38.20 11.46 45.47
RAG-DDR 46.30 79.77 50.93 51.67 43.47 74.40 52.63 49.93 42.95 16.79 50.88
ClueAnchor 50.60 81.03 59.97 56.27 45.00 76.70 56.63 52.73 45.90 19.04 54.39
20% Noise Injection
Vanilla RAG 42.80 74.40 48.00 46.63 36.83 64.67 45.37 44.87 38.58 12.04 45.42
RAG-DDR 46.87 78.87 49.43 51.77 42.30 74.40 50.57 49.07 42.52 15.89 50.17
ClueAnchor 50.60 81.23 59.43 55.70 44.20 77.20 55.87 51.60 46.31 18.49 54.06
40% Noise Injection
Vanilla RAG 42.23 74.17 48.47 47.20 37.40 63.87 44.77 44.63 39.32 12.08 45.51
RAG-DDR 46.47 79.13 49.90 50.17 41.67 74.70 51.23 49.23 42.91 15.59 50.10
ClueAnchor 50.27 80.80 59.93 55.50 44.57 77.33 55.00 52.93 46.21 17.87 54.04
60% Noise Injection
Vanilla RAG 42.37 74.23 47.57 46.80 37.43 63.97 45.37 44.47 38.63 11.71 45.36
RAG-DDR 46.03 79.40 49.17 50.20 41.33 74.50 51.27 49.33 42.37 15.85 50.05
ClueAnchor 49.40 81.03 59.20 54.90 44.00 76.70 55.87 51.93 46.01 18.12 53.82
80% Noise Injection
Vanilla RAG 42.47 74.63 47.57 46.83 36.73 63.57 43.87 43.67 38.34 11.21 45.09
RAG-DDR 45.93 78.93 49.93 50.43 41.20 73.70 51.13 48.70 42.42 15.68 49.91
ClueAnchor 50.03 81.10 59.17 55.03 44.13 76.77 54.70 52.03 46.65 18.70 53.93
100% Noise Injection
Vanilla RAG 41.97 74.23 47.47 46.53 37.37 62.67 44.27 44.33 39.12 12.45 45.44
RAG-DDR 45.67 79.20 49.97 49.90 41.13 73.30 51.17 49.40 42.27 15.85 49.99
ClueAnchor 50.57 80.73 59.67 55.60 44.13 76.40 54.97 51.83 46.16 19.11 54.12

Table 10: Results of Noise Injection Experiments. Retrieved document contents are preserved, while varying
proportions of irrelevant (noisy) passages are appended to simulate increasing retrieval noise.
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Query: Who is the paternal grandfather of Leicester Devereux, 7Th Viscount Hereford?
Answer: Walter Devereux, 5th Viscount Hereford.
Passage1: " Leicester Devereux, 7th Viscount Hereford (1674–1683) was a British Peer.
He was the eldest son of Leicester Devereux, 6th Viscount Hereford (1617–1676) and
succeeded to the title as an infant. He died young and was succeeded by his younger... "
Passage2: " Leicester Devereux, 6th Viscount Hereford (1617 – 1 December 1676) was a
British Peer. He was the second son of Walter Devereux, 5th Viscount Hereford
(1578–1658). He married Elizabeth Withipoll, daughter and sole heiress..."
Passage3: " He was born by 1513, the son of Walter Devereux, 1st Viscount Hereford
and Mary Grey (1491-22 February 1538). His paternal grandparents were John
Devereux, 9th Baron Ferrers of Chartley and Cecily Bourchier. His maternal grandparents
were..."
Passage4: " He was the son of Edward Devereux, 11th Viscount Hereford..."
Passage5: " Robert Charles Devereux, 17th Viscount Hereford..."
Vanilla RAG Output:
" <think> To find the paternal grandfather of Leicester Devereux... The background states
that Walter Devereux, 5th Viscount Hereford was the son of Walter Devereux, 1st
Viscount Hereford. So, the paternal grandfather of Leicester Devereux, 7th Viscount Hereford
is indeed Walter Devereux, 1st Viscount Hereford. </think> <answer> Walter Devereux,
1st Viscount Hereford."
RA-DIT Output:
"John Devereux, 9th Baron Ferrers of Chartley."
RADCoT Output:
" <think> To answer this question... It also states that Walter Devereux was the son of
John Devereux, 9th Baron Ferrers of Chartley and Cecily Bourchier. Therefore, John
Devereux, 9th Baron Ferrers of Chartley is the paternal grandfather of Leicester Devereux, 7th
Viscount Hereford. </think> <answer> John Devereux, 9th Baron Ferrers of Chartley
</answer> "

RAG-DDR Output:
" <think> Leicester Devereux, 7Th Viscount Hereford’s paternal grandfather was Walter
Devereux, 1st Viscount Hereford. </think> <answer> Walter Devereux, 1st Viscount
Hereford"
ClueAnchor Output:
" <think> First, I need to identify the information related to Leicester Devereux, 7th Viscount
Hereford. From the background, I see that there are multiple mentions of different Viscounts
Hereford, but I need to find the one that matches the given title. The first mention is of
Leicester Devereux, 6th Viscount Hereford (1617–1676), but it’s not the correct one since the
question asks for the 7th Viscount Hereford. Then, I see a mention of Leicester Devereux,
7th Viscount Hereford (1674–1683). It states that he was the eldest son of Leicester
Devereux, 6th Viscount Hereford (1617–1676). So, I need to find the paternal grandfather of
Leicester Devereux, 7th Viscount Hereford, which would be Leicester Devereux, 6th Viscount
Hereford’s father. According to the text, Leicester Devereux, 6th Viscount Hereford’s
father was Walter Devereux, 5th Viscount Hereford (1578–1658). However, I also see
another mention of Walter Devereux, 1st Viscount Hereford and his son Walter Devereux, who
had a son John Devereux, son of Walter Devereux who died at the Battle of Bosworth, married
Cecily Bourchier. But this does not seem to be directly related to the 7th Viscount Hereford.
Therefore, I will focus on the direct lineage of Leicester Devereux, 7th Viscount Hereford.
</think> <answer> Walter Devereux, 5th Viscount Hereford (1578–1658) </answer> "

Table 11: Case Study I. This case illustrates the outputs of various methods in a multi-hop scenario,
using Llama-3.1-8B-Instruct as the foundational model.

19277



Query: when was the seat moved to the capitol?
Answer: November 17, 1800.
Passage1: " For several decades, beginning when the federal government moved to
Washington in the fall of 1800... In 1801 the House moved to temporary quarters in the
south wing, called the Öven,̈ which it vacated in 1804, returning to the north wing for three
years... "
Passage2: " Construction on the North Wing began in 1793 with the laying of the
cornerstone by President George Washington..."
Passage3: " ... From December 6, 1790, to May 14, 1800, the same block hosted federal, state,
county, and city government offices. Congress Hall, which was originally built to... "
Passage4: " the Old Supreme Court Chamber from 1810 through 1860... In 1810, the
Supreme Court first occupied the Old Supreme Court Chamber in the Capitol..."
Passage5: " ... However, the House of Representatives moved early into their House wing in
1807. Though the Senate wing building was incomplete, the Capitol held its first session
of the United States Congress with both chambers in session on November 17, 1800. The
National Legislature was moved to Washington prematurely, at the urging of President
John Adams, in hopes of securing enough Southern votes..."
Vanilla RAG Output:
" <think> To answer this question... However, based on the context, it is reasonable to
conclude that the seat was moved to the capitol in the fall of 1800, specifically after May
14, 1800, when Congress Hall in Philadelphia ceased to be the capitol building.
</think> <answer> The seat was moved to the capitol in the fall of 1800."

RA-DIT Output:
"May 14, 1800. The federal government moved to Washington, D.C. in 1800... "
RADCoT Output:
" <think> The background... I need to recall the specific event mentioned in the text that
relates to the seat being moved to the Capitol. </think> <answer> May 14, 1800
</answer> "

RAG-DDR Output:
" <think> The background information... that the federal government moved to
Washington, D.C. in May 14, 1800... </think> <answer> May 14, 1800 (or fall of 1800)"
ClueAnchor Output:
" <think> First, I need to determine if the background contains information related to the
problem. The background discusses the history of the United States Capitol building, including
the various locations where Congress and other government institutions were held before
moving to Washington D.C. It mentions the Residence Act of 1790, which empowered
President George Washington to locate a permanent capital along the Potomac River. It also
talks about the construction of the Capitol building and the various expansions and renovations
that took place over the years.The question asks when the seat was moved to the Capitol.
Based on the background, it seems that the federal government moved to Washington,
D.C. in 1800, specifically on November 17, 1800, when the first session of the United
States Congress with both chambers in session was held in the Capitol building.
However, the background also mentions that the Residence Act of 1790 was passed, which led
to the decision to move the capital to Washington, D.C. So, there might be some ambiguity in
the question. To clarify, I will look for specific information about when the seat of government
was moved to the Capitol building. Upon re-reading the background, I found that the
Residence Act of 1790 was passed on July 16, 1790, and the federal government moved
to Washington, D.C. in 1800. Therefore, I will provide an answer based on this information.
</think> <answer> November 17, 1800 (for the first session of Congress) </answer> "

Table 12: Case Study II. This case illustrates the outputs of various methods in a fact-intensive sce-
nario, based on Llama-3.1-8B-Instruct as the foundational model.
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