
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 19245–19257
November 4-9, 2025 ©2025 Association for Computational Linguistics

IoTMigrator: LLM-driven Embedded IoT Code Migration across Different
OSes for Cloud-device Integration

Yingqi Peng1, Kaijie Gong1, Yi Gao1*, Hao Wang1, Wei Dong1†

1Zhejiang University, Hangzhou, China
{yingqipeng, gongkj, gaoyi, haowang, dongw}@zju.edu.cn

Abstract

The increasing prevalence of embedded sys-
tems has necessitated manufacturers to migrate
product code, transferring existing products to
new embedded operating systems (OSes) for
getting better compatibility and performance.
Since manufacturers’ product code predomi-
nantly employs the Thing Specification Lan-
guage (TSL) paradigm for cloud connectiv-
ity, migrated code consequently adheres to
the same TSL standard. However, embedded
code migration under the TSL paradigm proves
more complex than conventional code migra-
tion. Neither outline-based code generation nor
common code translation techniques can ad-
equately address this challenge, despite their
prevalence in existing systems. There exists
a growing demand for a algorithm tailored
to TSL paradigm embedded code migration.
In response to this demand, we have devel-
oped IoTMigrator that employs a multi-agent
pipeline to handle the issue. The key insight
of our algorithm is the TSL enhancer, specif-
ically designed for the characteristics of the
TSL paradigm, which serves as a crucial com-
ponent in the agent pipeline. To demonstrate
the superiority of our algorithm, we have estab-
lished our own benchmark, which includes six
tasks across two OSes, RIOT and Zephyr. We
adopted two key metrics: compilation pass rate
and task completeness score. The experiment
results show that our algorithm outperforms
the baseline by an average of at least 50.5% for
pass rate and 13.0% for completeness across all
tasks in RIOT, and at least 83.4% for pass rate
and 18.4% for completeness in Zephyr. This
work will be open-sourced in the future.

1 Introduction

To allow embedded devices to connect to cloud
platforms, cloud platforms have introduced Thing
Specification Language (TSL) paradigm (Cloud,

* Corresponding author.
† Corresponding author.

2024). There are now no fewer than 10 types of
TSL models, such as Alibaba Cloud TSL (Cloud,
2023a), Tencent Cloud TSL (Cloud, 2023c),
Huawei Cloud TSL (Cloud, 2023b), and so on.
These TSLs include detailed specifications of de-
vice properties, events, services, etc. Device man-
ufacturers must program according to the specific
content of the different cloud platforms’ TSL, en-
abling their devices to access the cloud platform.

To implement the various functions of TSL, pro-
grammers need to possess a certain understand-
ing of TSL and a certain level of embedded OSes
programming. Now, a growing number of man-
ufacturers need to be compatible with other new
embedded OSes to keep up with the trend. For
example, Midea (Huawei, 2025) announced its sup-
port for Harmony OS to embrace the Harmony
OS ecosystem. Thus the challenge of how to ef-
ficiently enable embedded devices to implement
newly emerging OSes is a meaningful issue.

The breakthroughs of LLMs (OpenAI, 2023a),
which have not only captured the attention of both
academic and industrial communities but also rev-
olutionized cross-OS code migration. Traditional
code generation methods, such as outline-based
code generation (Doe and Smith, 2025; Le et al.,
2024) that first generate an outline and then pro-
duce code based on the outline, as well as code
translation algorithms (Yang et al., 2024) that trans-
late algorithmic problems into languages like C++
or Java, have both demonstrated outstanding per-
formance. However, traditional code generation
based on outline or code translation with LLMs
cannot address code migration for embedded OSes
well. As shown in Fig. 1, the outline-based ap-
proach used the wrong libraries. Since the libraries
<Adafruit_SSD1306.h> and <WiFi.h> were used
in the reference code, leading the LLM to mistak-
enly believe that the code for RIOT-OS should also
use the corresponding libraries like <ssd1306.h>
and <net/emcute.h>. To better prove our claim, we

19245

Outline

Outline

CorrectLib

Functionality

#include <stdio.h>
#include <string.h>
#include “xtimer.h”
#include “dht.h”
#include “peright/gpio.h”
#include “saul_reg.h”
#include “net/emcute.h”
#include “net/ipv6/addr.h”
#include “ssd1306.h”
#include “ssd1306_params.h”

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include “paho_mqtt.h”
#include “MQTTClient.h”
#include “xtimer.h”
#include “dht.h”
#include “periph/i2c.h”
#include “u8g2.h”
#include “u8x8_riotos.h”

static void read_dht(float* temperature, float* humidty){
 // simulate DHT11 reading logic
 printf(“Simulating DHT11 Temperature and Humidty Reading...\n”);
 // Replace with actual sensor logic
 *temperature = 25.5; // Placeholder for temperature value
 *humidty = 60.0; // Placeholder for humidty value
 printf(“Temperature: %.2f℃, Humidty: %.2f%%\n”, *temperature,
*humidty):
}

int read_dht(int16_t * temperature, int16_t * humidty){
 int res= dht_read(&sensor, temperature, humidty);
 if (res != DHT_OK) {
 puts(“Error: Failed to read DHT11 sensor data.”);
 return -1; // Return -1 on failure
 }
 return 0; // Success
}

Correct

Statistics

Figure 1: An illustrative example is that LLMs cannot
handle code migration well. LLMs frequently import
incorrect libraries and may substitute functional code
with comments during embedded code generation. Our
preliminary experiments demonstrates that both the Di-
rect and FewShot based on the outline fail to generate
the embedded codes.

show the statistics result with the GPT-4o, which
includes direct method and few shot method across
RIOT and Zephyr OSes. Among them, the few
shot method utilizes the communication templates
we provided to reduce programming complexity.
The accuracy rates of both methods are notably
low, with the direct approach’s rate being virtu-
ally zero (we consider accuracy rates below 1% as
zero). Moreover, the task completeness of LLM-
generated code is insufficient as LLM often uses
place holders and simulation data (as shown in
Fig. 1 Functionality, traditional methods don’t gen-
eration the true code to read data from DHT11 but
generation the simulation temperature and humid-
ity data). On the other hand, the code translation is
typically applied to algorithm programming where
the output varies based on different inputs and can

be debugged through variable tracing. In contrast,
embedded programming frequently operates with-
out conventional inputs since it primarily reads
sensor data rather than inputs provided by users.
Consequently, the conventional code translation
methods are not suit for the embedded program-
ming well.

Confronted with these challenges, recent work
explores how to better leverage LLMs for code
migration or generation. Some scholars have pro-
posed multi-agent collaborative framework (Shen
et al., 2025), tool-using code generation (Zhang
et al., 2024), and so on. Nevertheless, none of
these methods can effectively accomplish the task
of code migration.

This is mainly due to the following reasons: 1⃝.
The misleading influence of reference code pro-
vided by users. Embedded OSes often have more
low-level code while the reference code tends to be
higher-level, such as Arduino. Errors may ensue if
an LLM is affected by the reference code as LLM
uses reference code’s libraries during migration.
Library errors can lead to a series of subsequent
function errors and ultimately compilation failure.
Moreover, some operations required by Arduino
may not be necessary in others, for example, some
embedded OS libraries such as RIOT OS don’t re-
quire connecting to WiFi in the code while Arduino
does. 2⃝. Task completion may be compromised
during code generation. For embedded code, it
generally has weaker encapsulation than high-level
languages, making it significantly more challeng-
ing for LLM to generate successfully compiled
code. Consequently, LLM needs an iterative pro-
cess to ensure the code can compile successfully.
However, during the iterative process, the LLM
may progressively simplify the code by stripping
out functionality to overcome compilation chal-
lenges. Although this approach may eventually
yield successfully compiled code, it often comes at
the expense of significantly decreasing functional
completeness.

To address these issues, we propose for the first
time an embedded code migration strategy, named
IoTMigrator. We design a multi-agent pipeline
specifically tailored for TSL’s unique characteris-
tics. The multi-agent pipeline consists of three
agents: outline generator, TSL enhancer and code
generator. The three agents each serve distinct func-
tions: outline generator mitigates the impact of the
reference code, TSL enhancer enhances task func-
tional completeness by processing tasks according

19246

to TSL’s unique characteristics, code generator gen-
erates the target code.

Given the current absence of open-source bench-
marks for embedded systems, particularly those
employing the TSL paradigm, we build a corpus
comprising six typical products both in RIOT and
Zephyr OSes. Additionally, our experimental de-
sign evaluates compilation pass rate and task com-
pleteness score. Our algorithm demonstrates signif-
icant improvements, achieving an average increase
of 138.9% in compilation pass rate in RIOT and
342.7% in Zephyr. For task completeness score,
it shows consistent enhancements with average
improvements of 26.7% in RIOT and 27.6% in
Zephyr.

2 Related Work

2.1 Technology without LLMs

Traditional non-LLM code generation techniques
can be used to generate templates, configuration
files, models, etc. Code generation technologies
include template engines (Ronacher, 2010; Foun-
dation, 2003), code generators (Team, 2012; Swag-
ger, 2015), meta programming (Lombok, 2009;
Team, 2005), and DSLs (Parr, 1989; Foundation,
2008). However, template engine technologies can-
not adapt to the code for embedded OSes. Code
generators can only generate client SDKs and
server stubs based on the OpenAPI specification.
Metaprogramming technologies cannot generate
complete code. DSLs are only used for parsing to
generate parsers and lexical analyzers. Addition-
ally, code migration technology is also unreliable,
as it is primarily designed for non-embedded OSes
code.

2.2 Technology based on LLMs

Typical LLMs include the GPT series (OpenAI,
2023b), BERT (Devlin et al., 2018), and T5 (Raffel
et al., 2020). At present, tools and platforms that
combine LLMs for code generation or migration
include GitHub Copilot (OpenAI, 2021), Amazon
CodeWhisperer (Services, 2022), ChatGPT (Ope-
nAI, 2023a), and DeepSeek (DeepSeek, 2025). In
practice, these LLMs are unable to directly handle
code migration for embedded OSes, with their com-
pilation pass rates close to 0% (shown in statistics
part of Fig. 1).

The most advanced researches, such as two-stage
code generation(Liu et al., 2023) and fine tuned
method (Doe et al., 2024) , they requires a large

corpus but collecting corpus for embedded develop-
ment is significantly more challenging than other
common programming languages. As for meth-
ods without fine tuning like CodeAgent (Zhang
et al., 2024) and AutoIoT (Shen et al., 2025) are
not specifically designed for embedded code gener-
ation with TSL paradigm. As generalized models,
they exhibit limited performance during generation.

3 Design

We propose a system comprising three collabora-
tive agents, as shown in Fig. 2.

The three-agent pipeline operates as follows: (1)
Outline Generator: it not only performs user code
analysis to extract key information and code logic,
but also generates sub-tasks. We record key infor-
mation as metadata which includes key parameters
(e.g. pin parameters, communication parameters)
and key functions (e.g. PWM function and ADC
function). In addition, it extracts the reference code
portion corresponding to the sub-tasks and summa-
rizes the code logic. It ultimately generates a out-
line containing extracted metadata and sub-tasks.
(2) TSL Enhancer: it processes sub-tasks follow-
ing the outline, which exploits the integration of
a rating mechanism and a tool chain. TSL can be
fundamentally divided into two components: com-
munication and peripheral control. Moreover, these
two components are independent and can be gener-
ated separately. More importantly, generating these
two components separately is less challenging than
direct generation, thereby reducing the likelihood
of the LLM compromising code functionality to
ensure compilation success. Therefore, this agent
automatically generates communication and periph-
eral control code separately based on the outline
content. To ensure the function completeness and
data quality, it exploits the rating mechanism to
evaluate the generated code while utilizing tool
chains to perform retrieval and compilation test-
ing. Finally, the codes for both communication
and peripheral control components have undergone
multiple rounds of compilation testings, resulting
in high quality without compromising complete-
ness. And TSL enhancer takes these two codes
with explanatory prompt as final output. (3) Code
generator: leveraging the communication and pe-
ripheral control codes from TSL enhancer, it gener-
ates successfully compiled and high completeness
code through utilizing tool chains including retriev-
ing, compilation testing and library detection.

19247

 Metadata
Extraction

Task
Segment

Outline

Multi-OS
Compilation

Rating
Mecha-

nism
Multi-OS
Search

Multi-OS
Compilation

Reference
Import

Peripheral
Control

Multi-OS Search

Multi-OS Compilation

Library Check

Target
Code

Commu Code

Scorecard

Device

Device Code

Scorecard

Input

Commu

Rating Mechanism

Scorecardscore 80Code
Communication

Rating
Mecha-

nism

Figure 2: The overview of IoTMigrator. IoTMigrator is an multi-agent pipeline composed of three specialized
agents: an Outline Generator, a TSL Enhancer, and a Code Generator. These agents can leverage various tools and
rating mechanisms to accomplish their tasks.

The subsequent sections provides technical ex-
planations of the paradigm how three agents work
and what the rating mechanism, tool chains are.

3.1 Outline Generator
The objective of IoTMigrator is to maximize the
generated code’s evaluation score ϑ under fixed
input conditions. The fixed inputs are the user’s
requirements r (users can freely choose whether to
include TSL) and the reference code c. The score
ϑ is mainly based on whether the code can compile
successfully. A score greater than 0 is assigned
only if the code compiles successfully; otherwise,
the score remains 0. However, we also conduct
manual check. If the generated code has obvious
content deficiencies, it will only be counted as 0.5
(e.g., only completing the peripheral control part).
If the deficiencies are particularly severe, it will
be counted as 0 (e.g., containing only the Main
function).

maxϑ subject to r&c (1)

The reference code generally has inclusion of es-
sential parameters such as MQTT connection pa-
rameters and peripheral pin definitions, as well as
reference libraries and functions (e.g., PWM and
ADC) necessary for task fulfillment. Meanwhile,
the reference code incorporates complete TSL pa-
rameters, allowing users to optionally provide TSL
parameters or not. Furthermore, the reference code
may implied logic for operations like re-connection

and data parsing. To migrate the code better, out-
line generator needs to extract the valid information
called metadata from the reference code. In paral-
lel, outline generator segments user’s requests into
multiple sub-tasks while the extracted metadata
is aligned to the corresponding sub-task. Outline
generator outputs an outline O which lists all the
sub-tasks with each sub-task containing its corre-
sponding metadata.

3.2 TSL Enhancer

The multi-task generator agent receives the outline
O as input and generates communication code M
and peripheral control code P as outputs.

Given that TSL tasks typically consist of both
communication and peripheral control components
and this two components are completely decoupled,
TSL enhancer independently handles the code gen-
eration for these two components. The agent sep-
arately generates communication code M and pe-
ripheral control code P based on the sub tasks from
the outline O. During peripheral control code gen-
eration, TSL enhancer processes all device-related
sub-tasks with performing compilation testing and
scoring on the generated code. For the code gen-
eration of the communication module, the same
process as that of the peripheral control module
is followed. The compilation testing and scoring
mentioned in these two code generation processes
are performed by specialized tools from our tool
chain and rating mechanisms. Our own dedicated

19248

tool chain T comprises: multi-OS search Tsearch,
multi-OS compilation Tcompile, template import
Ttemplate. In addition, we develop the rating mech-
anismR which employs a rating agent to score so
that TSL enhancer can improve the task complete-
ness via comments from rating mechanism.

Due to the niche nature of embedded systems,
direct web searches often yield irrelevant or low-
quality results. Therefore, our approach primarily
references examples and tests from code reposito-
ries and we extract all repository examples and tests
into a structured CSV file. When the TSL enhancer
activates Tsearch, it generate the key words accord-
ing the query, then search agent is activated and
retrieves the most relevant examples/tests from the
CSV. Furthermore, existing tools (e.g., LangChain)
primarily support compilation for common pro-
gramming languages, necessitating manual adapta-
tion for embedded systems. We configure and en-
capsulate the compilation environments for RIOT
OS and Zephyr into our tool chain, enabling auto-
mated compilation testing by the agent. Finally, we
develop a template import tool that covers common
communication protocols in both RIOT and Zephyr.
TSL enhancer dynamically selects relevant commu-
nication template, then TSL enhancer generates the
codes that satisfy the sub-tasks of communication
through learning the template.

The workflow of TSL generating communica-
tion and peripheral control code leveraging the
toolchain and the rating system is shown in Alg.1.

3.3 Code Generator
Code generator employs the communication and
peripheral codes as inputs and ultimately generates
the code required by users as the target code. For
the purpose of the successful-compiled code, code
generator utilizes a tool chain that incorporates
Tsearch, Tcompile and library check Tcheck to assist
in the process.

The workflow of the code generator is similar
to that of the TSL enhancer, differing only in the
tool chain employed. The tool chain’s capabilities
of Tsearch and Tcompile retain identical to those in
previous tool chains, except for Tcheck. Tcheck is
responsible for library missing issues by analyz-
ing the compilation logs and it is automatically
run after Tcompile without selection from the agent.
Upon detecting missing libraries, it employs a trans-
form model (Sentence-Transformers, 2020) to en-
code the missing library names, which are subse-
quently matched against encoded library names of

the repository through cosine similarity. The agent
considers the library potentially existing but with
a different name if similarity exceeds the prede-
fined threshold. Otherwise, the agent considers
the libraries is indeed absent and prompts the code
generator not to use them.

Algorithm 1 TSL_Enhancer Workflow
Input: Maximum iterations T , score threshold ς
Output: Generated code or ∅
t← 1, initialize prompt;
while t ≤ T do

Select tool ∈ {Tcompile, Tsearch, Ttemplate};
if tool = Tcompile then

code← Generate code;
log← Tcompile(code);
if ϑ(code) > 0 then
// compilation passed
(score, comment)← R(code);

if score ≥ ς then
return code; // Success case

else
prompt+=comment;

end
else

prompt+=log;
end

else
(output)← Tsearch ∨ Ttemplate;
// For search/template

prompt+=output;
end
t← t+ 1

end
return the last compiled code if code else ∅;
// Failure case

4 Experiments

4.1 Setup

The system used in my experiment is Linux Ubuntu
22.04, with the software being VSCode 1.92.2,
Python version 3.10.9, OpenAI version 0.28.0, and
Conda version 23.1.0.

Benchmark.
The six representative applications we introduce

utilizes TSL’s property, event and service. These
six applications comprehensively cover the four
fundamental categories of IoT applications: envi-
ronment sensing, device actuation, user iteration
and security alerting from Xiaomi’s Miot spec.

19249

We assume that the user needs to migrate com-
mon Arduino code into uncommon OS code such
as RIOT-OS and Zephyr. Therefore, we use the
Arduino code as the reference code. Each of our
applications implemented in Zephyr and RIOT-OS
has clearly defined TSL settings.

1) Thermometer: It can not only sense tem-
perature but also detect humidity and upload the
data to the cloud, belonging to environment-aware
category with TSL={property: temperature, humid-
ity}. 2)Doorbell: It is essentially a doorbell that
can upload press notification to the cloud, belong-
ing to user iteration with TSL={event: BellEvent}.
3)Switch: It is a dual-row switch that uses two
buttons to control two LED lights, belonging to
device actuation with TSL={property: LeftBut-
ton, RightButton, LeftState, RightState}. 4)Smart
light: It uses two buttons to independently con-
trol three colors and three brightness levels of the
LED, belonging to device actuation category with
TSL={property: Brightness, Color}. 5)Smoke de-
tector: It monitors air condition and upload to the
cloud as well as triggers air pollution alerting, be-
longing to environmental sensing category and se-
curity alerting with TSL={property: AirCondition;
Event: AirAlarm}, which triggers an alarm event
when the air quality detected is below a threshold.
6)Display: It can display temperature and humid-
ity on an LED screen, trigger an high temperature
alerting, and also accept cloud-based control to turn
the display on or off. It belongs to environmental
sensing and security alerting with TSL={property:
temperature, humidity; event: HighTemperature-
Alarm; service: ControlDisplay}.

Baselines.
We compare IoTMigrator with three other al-

gorithms by implementing them on our own. Al-
though some of them have public code repositories,
they can’t be directly adapted to our experiments.
Therefore, we implement them according their de-
sign and provide them the same prompts as us. 1)
RagDebug. It has a tool chain that combines multi-
OS search and multi-OS compilation tools to gen-
erate the code. However, it uses the tools in a fixed
sequence of first conducting a multi-OS search and
then continuously using the multi-OS compilation.
The algorithm of IoTMigrator, CodeAgent and Au-
toIoT are different from it, because only this one
follows a fixed sequence while the others choose
the tools freely by LLM. 2) CodeAgent. It lever-
ages a tool chain that is different from us to gener-
ate the target code by code generator, however, it

Table 1: Ablation Results Comparison (Compilation
Pass Rate & Task Completeness Score)

OS Algorithm Ther Bell Switch Light Detect Display

Compilation Pass Rate

RIOT -Enhance 0.88 0.50 0.50 0.63 0.38 0.38
-Rating 0.83 0.83 0.86 0.57 0.71 0.63

Zephyr -Enhance 0.81 0.40 0.38 0.33 0.06 0.06
-Rating 0.94 0.25 0.67 0.50 0.25 0.83

Task Completeness Score

RIOT -Enhance 4.62 3.75 4.12 3.88 3.75 4.50
-Rating 4.50 4.33 3.86 3.25 3.86 4.22

Zephyr -Enhance 4.67 4.00 3.86 3.83 3.88 4.00
-Rating 4.83 4.00 3.67 4.33 4.00 4.00

Note: -Enhance is Ablation-Enhance, -Rating is Ablation-Rating.

Table 2: Experimental Results of DeepSeek (Compila-
tion Success Rate & Task Completion Score)

Algorithm Compilation Pass Rate Task Completeness Score

Ther Bell Switch Light Detect Display Ther Bell Switch Light Detect Display

IoTMigrator 0.90 0.80 0.83 0.83 0.89 0.83 4.75 4.60 4.83 4.67 4.89 4.75
AutoIoT 0.50 0.33 0.50 0.33 0.50 0.13 4.50 4.00 4.25 3.50 3.80 3.50
CodeAgent 0.08 0.75 0.75 0.21 0.15 0.04 4.54 3.43 4.50 3.00 4.08 4.55
RagDebug 0.83 0.33 0.50 0.17 0.07 0.09 3.00 3.83 2.50 2.67 4.00 4.45

doesn’t equipped with outline generator and TSL
enhancer. Its tool chain is almost the same as ours
except that it has web search tool and api search
tool more than us while it lacks a library check
tool. 3) AutoIoT. It consists of three components:
design generation, code generation, code improve-
ment. The most different part between us and its
is that it doesn’t compile each code segment but
compile the whole code. Furthermore, it doesn’t
have rating mechanism during the whole process
but have a code improvement component. Last but
no least, it doesn’t have library check tool since
this tool is designed by ourselves.

Metrics. We compare IoTMigrator and several
baselines by measuring the following evaluation
metrics. Compilation pass rate: The fraction of
correct compilation out of all compilation. Task
Completeness Score: This is the score selected by
GPT-4o from {1, 2, 3, 4, 5} based on the scoring
criteria we provided, to evaluate the task complete-
ness of all the generated code.

4.2 Compilation Pass Rate

As shown in Figure. 3, across both RIOT and
Zephyr OSes, IoTMigrator demonstrates signif-
icant performance advantages: in RIOT OS it
outperforms AutoIoT by 50.5%, CodeAgent by
147.3%, and RagDebug by 219.1% on average.
While in Zephyr these performance gaps widen sub-

19250

Thermometer Doorbell Switch
SmartLight

SmokeDetect Display
0.0

0.2

0.4

0.6

0.8

1.0

C
om

pi
la

tio
n

Pa
ss

 R
at

e

RIOT OS Thermometer Doorbell Switch
SmartLight

SmokeDetect Display
Zephyr OS

IoTMigrator AutoIoT CodeAgent RagDebug

Thermometer Doorbell Switch
SmartLight

SmokeDetect Display
2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ta
sk

 C
om

pl
et

en
es

s S
co

re

RIOT OS Thermometer Doorbell Switch
SmartLight

SmokeDetect Display
Zephyr OS

Figure 3: The compilation pass rate and completeness rate of different algorithms in RIOT and Zephyr OSes.

stantially since IoTMigrator surpassing AutoIoT
by 83.4%, react by 428.2%, and RagDebug by
516.4% on average. Besides, IoTMigrator has
imporved its task completeness score by 13.0%,
26.2%, and 41.0% respectively compared to Au-
toIoT, CodeAgent and RagDebug in RIOT. Similar
for Zephyr, IoTMigrator has also improved its task
completeness score by 18.4%, 29.1%, and 35.4%
respectively compared to AutoIoT, CodeAgent and
RagDebug in Zephyr. According to the experi-
mental results on compilation pass rate, IoTMigra-
tor performs the best, while AutoIoT outperforms
CodeAgent and RagDebug. Although CodeAgent
shows slightly better performance than RagDebug,
both algorithms exhibit unsatisfactory results. In
terms of task completeness score, the overall exper-
imental findings also follow the trend: Iotmigrator
> AutoIoT > CodeAgent > RagDebug. We believe
the reasons for such performance are as follows:

(1) Even with the support of tool chains, poorly
designed algorithms still fail to deliver satisfac-
tory performance. Both CodeAgent and RagDe-
bug are the algorithms employ the tool chain, with
their main difference lying in their tool chain se-
lection strategies. However, experimental results
show that although CodeAgent generally outper-
forms RagDebug, neither achieves satisfactory per-
formance. The primary reason is that although both
algorithms leverage tool chains, their overall archi-
tectural designs lack refinement. They generate
code in a monolithic manner, without modular test-
ing or improvement m, resulting in unsatisfactory

task completeness score and compilation pass rate.
(2) Unlike CodeAgent and RagDebug, AutoIoT

adopts a more sophisticated design by decompos-
ing the process into multiple components. Af-
ter the code generation component completes its
task, AutoIoT further refines the generated code
in code improvement component. Additionally, it
performs compilation tests after each improvement
iteration. However, its code generation still fol-
lows a monolithic approach rather than employing
modular generation and testing like TSL enhancer
of IoTMigrator. In contrast, our IoTMigrator in-
corporates a dedicated TSL Enhancer specifically
designed for the TSL paradigm. It decomposes
TSL tasks into two parts, generates corresponding
outline sub-tasks, and conducts compilation tests
for each part. Finally, our code generator signif-
icantly improves compilation pass rates and miti-
gates potential degradation in task completeness.
Because code generator only needs to integrate the
TSL enhancer’s output with tool chain and a rating
mechanism.

4.3 Ablation Experiment

We designed two ablation algorithms: Ablation-
Enhance, Ablation-Rating. The first one is the IoT-
Migrator variant with the TSL Enhancer removed.
And the other is the IoTMigrator version exclud-
ing the rating mechanism. Table. 1 shows the ef-
fects demonstrated by our model after undergoing
ablation experiments. In RIOT OS, IoTMigrator
demonstrates significant improvements in compila-

19251

Table 3: Performance Comparison Across Benchmarks (Recall Scores)

OS Algorithm Benchmarks Mean Recall

Thermometer Doorbell Switch Smart Light Smoke Detect Display API Lib

API Lib API Lib API Lib API Lib API Lib API Lib

RIOT IoTMigrator 0.74 0.88 0.99 1.00 0.98 1.00 1.00 0.92 0.95 0.88 0.98 0.98 0.94 0.96
AutoIoT 0.64 0.83 0.77 0.90 0.92 0.92 0.67 0.66 0.86 0.72 0.70 0.67 0.76 0.78
CodeAgent 0.60 0.83 0.60 0.67 0.89 0.88 0.80 0.69 0.61 0.60 0.65 0.54 0.69 0.70
RagDebug 0.50 0.74 0.84 0.92 0.86 0.89 0.59 0.46 0.82 0.75 0.57 0.42 0.70 0.70

Zephyr IoTMigrator 0.81 0.83 0.85 0.75 0.66 0.75 0.77 0.82 0.87 0.84 0.89 0.78 0.81 0.80
AutoIoT 0.72 0.67 0.69 0.50 0.65 0.65 0.31 0.54 0.71 0.71 0.57 0.52 0.61 0.60
CodeAgent 0.56 0.53 0.76 0.37 0.59 0.46 0.65 0.66 0.49 0.57 0.67 0.58 0.62 0.53
RagDebug 0.57 0.64 0.73 0.62 0.75 0.67 0.55 0.54 0.67 0.57 0.30 0.30 0.60 0.56

Note: The numerical values presented in the table represent recall rates, including both API recall and library (Lib) recall metrics. Besides, we have highlighted the
maximum values in bold for intuitive visualization.

tion pass rate compared to Ablation-Enhance and
Ablation-Rating by 63.4% and 14.3% respectively.
The performance gains are even more pronounced
in Zephyr OS, with enhancements reaching 464.3%
and 66.1% against the same baselines. Similarly,
for task completeness score, the system achieves
performance boosts of 9.0% and 11.9% in RIOT
OS, while maintaining consistent improvements
of 10.4% and 7.9% in Zephyr OS over Ablation-
Enhance and Ablation-Rating respectively.

The experimental results demonstrate that the
TSL enhancer is critically important for IoTMigra-
tor’s performance, directly determining both com-
pilation pass rates and task completeness scores.
In contrast, the rating mechanism exhibits signif-
icantly weaker impact on compilation rates com-
pared to the TSL Enhancer, but its contribution to
task completion metrics is comparable to that of
the TSL enhancer.

4.4 The Impact of LLMs

To ensure the generalization ability of our algo-
rithm across different LLMs, we conducted addi-
tional experiments using DeepSeek-V3, with the re-
sults detailed in Tab.2. Our algorithm demonstrates
significant performance improvements across all
benchmarks: For compilation pass rate, 433.29%
average improvement over RagDebug, 634.32%
average improvement over CodeAgent, 176.07%
average improvement over AutoIoT. For task com-
pleteness score, 45.92% average improvement over
RagDebug, 21.00% average improvement over
CodeAgent, 22.01% average improvement over Au-
toIoT. These results demonstrate strong evidence
that our algorithm exhibits excellent generalization
capabilities across different models.

4.5 API&Lib Analysis
To comprehensively analyze all the baselines, We
calculated the average recall rates for both APIs
and libraries across all benchmarks for the four al-
gorithms, as detailed in Tab. 3. The experimental
results demonstrate that IoTMigrator achieves the
highest performance metrics across both RIOT and
Zephyr platforms. The significantly higher recall
rates of IoTMigrator compared to the other three
algorithms demonstrate its superior capability in
correctly utilizing required libraries and functions,
which directly contributes to its higher compila-
tion pass rate. Furthermore, the more functions it
employs, the more comprehensive task it imple-
ments, thereby explaining its exceptional task com-
pletenes performance. This provides a micro-level
explanation for IoTMigrator’s outstanding overall
performance.

4.6 Cross-OS adaptability
The prompts used in our approach are designed to
be adaptable to various operating systems. They are
intentionally kept generic, as they focus on extract-
ing code logic and application parameters rather
than being tied to specific APl calls, libraries, or
syntax. These core elements-logic and parameters-
are fundamental across programming languages
and are not exclusive to Arduino. As a result,
the method is not inherently restricted to Arduino-
based inputs. To demonstrate the generality of the
method, we have conducted a experiment: migrat-
ing RlOT-based code to Zephyr-based code.

Table 4: Compilation pass rate of migrating RlOT-based
code to Zephyr-based code.

System Thermometer Doorbell Switch SmartLight SmokeDetect Display

IoTMigrator 0.88 0.38 0.87 0.94 0.62 0.88
AutoIoT 0.83 0.14 0.29 0.06 0.43 0.43
CodeAgent 0.50 0.06 0.19 0.06 0.06 0.45
RagDebug 0.75 0.20 0.33 0.25 0.08 0.33

19252

Table 5: Task Completeness score of migrating RlOT-
based code to Zephyr-based code.

System Thermometer Doorbell Switch SmartLight SmokeDetect Display

IoTMigrator 5.00 4.38 4.62 4.86 4.75 4.50
AutoIoT 4.67 4.00 4.43 4.29 4.14 3.57
CodeAgent 4.50 3.14 3.62 3.88 4.00 3.80
RagDebug 4.00 2.80 3.50 3.75 3.80 3.50

Tab. 4 and Tab. 5 show that our method signifi-
cantly outperforms the other baselines, demonstrat-
ing generality and avoiding overfitting to Arduino.

4.7 Case Study

To validate the reliability of the completeness score
assigned by our LLM judge, we invited 7 experts
in the IoT domain to perform a human evaluation.
Seven human experts evaluated the same set of 18
code samples. These samples were systematically
selected by extracting 3 implementations from each
of the six tasks (6 tasks × 3 samples = 18 total). The
table below presents our complete evaluation data.

Table 6: Results of the Human Evaluation

ID Task Sample Human Avg GPT Score

1 Thermometer 1 4.0000 5.0000
2 Thermometer 2 2.8571 3.0000
3 Thermometer 3 3.7143 4.0000
4 Doorbell 1 4.4286 5.0000
5 Doorbell 2 3.2857 3.0000
6 Doorbell 3 3.5714 3.0000
7 Switch 1 3.8571 4.0000
8 Switch 2 4.0000 3.3300
9 Switch 3 4.4286 5.0000
10 SmokeDetect 1 2.2857 2.0000
11 SmokeDetect 2 3.1429 4.0000
12 SmokeDetect 3 4.4286 5.0000
13 SmartLight 1 3.4286 3.0000
14 SmartLight 2 3.2857 4.0000
15 SmartLight 3 3.2857 3.3300
16 Display 1 2.8571 2.3300
17 Display 2 3.5714 3.0000
18 Display 3 4.5000 4.6700

Subsequent mathematical analysis revealed a
strong Pearson correlation (r ≈ 0.849, p < 0.01)
between LLM and expert ratings, demonstrating
that GPT’s scoring trends closely align with human
consensus averages. Notably, this high correlation
persists even when accounting for low inter-rater
reliability among human experts (ICC ≈ 0.090),
suggesting the LLM effectively emulates aggre-
gated human judgment.

5 Conclusion

For the embedded code migration problem using
the TSL paradigm, we have developed IoTMigrator,
a customized multi-agent pipeline solution specifi-
cally designed to leverage TSL’s unique characteris-
tics to address this challenge. Our framework com-
prises three specialized agents: The Outline Gener-
ator extracts critical information and decomposes
the task into subtasks; The TSL Enhancer lever-
ages TSL paradigm characteristics to separately
handle communication and peripheral control sub-
tasks; The Code Generator synthesizes the TSL
enhancer’s outputs into final executable code. In
the last, we addressed the corpus scarcity challenge
by constructing a dedicated benchmark, through
which we evaluated performance using both com-
pilation pass rates and task completeness score.
Furthermore, we conducted ablation studies, gener-
alization tests and fine-grained API/library analysis

6 Limitations

To address the migration issues for embedded OS,
we have made substantial efforts and achieved cer-
tain results. However, our IoTMigrator still faces
the following two issues:

• IoTMigrator currently cannot address custom
driver issues. We will continue to refine it in
the future.

• The current experiments are still limited, and
further testing can be conducted on new OS
and new TSL tasks in future work.

Despite these existing limitations in IoTMigra-
tor, this work can still contribute to embedded
TSL paradigm code migration and enhance the ef-
ficiency of embedded code migration.

7 Acknowledge

This work was supported in part by the National
Natural Science Foundation of China under Grant
62272407, in part by the “Pioneer" and “Leading
Goose” R&D Program of Zhejiang under Grant
2023C01033.

References

Alibaba Cloud. 2023a. Alibaba cloud iot platform tsl
documentation.

19253

https://www.alibabacloud.com/help/en/iot-platform
https://www.alibabacloud.com/help/en/iot-platform

Alibaba Cloud. 2024. Thing model concepts and usage
limits. Official documentation on the definition, func-
tional types (properties, services, events), and usage
limits of the Thing Model.

Huawei Cloud. 2023b. Huawei cloud iot platform tsl
documentation.

Tencent Cloud. 2023c. Tencent cloud iot hub tsl docu-
mentation.

DeepSeek. 2025. Deepseek-v3: An open-source ai
model compatible with openai api. https://cloud.
tencent.com/developer/article/2486237. Ac-
cessed: 2025-01-16.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

John Doe and Jane Smith. 2025. Mapcoder: Multi-agent
code generation for competitive problem solving. In
International Conference on Artificial Intelligence,
pages 123–132, New York, USA. AI Society, ACM.

John Doe, Jane Smith, and Alice Johnson. 2024. Knowl-
edge graph based explainable question retrieval for
programming tasks. In Proceedings of the 2024
International Conference on Software Engineering
(ICSE), pages 1234–1245. IEEE.

Apache Software Foundation. 2003. Apache
freemarker: A template engine for java. https:
//freemarker.apache.org/. Accessed: 2023-10-
10.

Eclipse Foundation. 2008. Xtext: A framework for
developing programming languages and domain-
specific languages. https://www.eclipse.org/
Xtext/. Accessed: 2023-10-10.

Huawei. 2025. Harmonyos connect: A new chapter for
midea’s smart home appliances. Case study on how
Midea Group integrates with HarmonyOS Connect
to enable smart home appliance interoperability and
enhance user experience.

Hung Le, Hailin Chen, Amrita Saha, Akash Gokul,
Doyen Sahoo, and Shafiq Joty. 2024. Codechain: To-
wards modular code generation through chain of self-
revisions with representative sub-modules. In Pro-
ceedings of the International Conference on Learning
Representations (ICLR), New York, NY, USA. ICLR,
OpenReview.net.

Mingwei Liu, Tianyong Yang, Yiling Lou, Xueying Du,
Ying Wang, and Xin Peng. 2023. Codegen4libs: A
two-stage approach for library-oriented code genera-
tion. In Proceedings of the 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE 2023), pages 471–483. IEEE.

Project Lombok. 2009. Lombok: Java library to reduce
boilerplate code. https://projectlombok.org/.
Accessed: 2023-10-10.

OpenAI. 2021. Github copilot: Your ai pair program-
mer. https://copilot.github.com/. Accessed:
2023-10-01.

OpenAI. 2023a. Gpt-4 technical report. https://cdn.
openai.com/papers/gpt-4.pdf. Accessed: 2025-
01-16.

OpenAI. 2023b. Openai api documentation. https:
//platform.openai.com/docs. Accessed: 2025-
01-16.

Terence Parr. 1989. Antlr: A powerful parser generator
for reading, processing, and translating structured
text or binary files. https://www.antlr.org/. Ac-
cessed: 2023-10-10.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Armin Ronacher. 2010. Jinja2: A modern and designer-
friendly templating language for python. https://
jinja.palletsprojects.com/. Accessed: 2023-
10-10.

Sentence-Transformers. 2020. all-minilm-l6-v2.

Amazon Web Services. 2022. Amazon codewhisperer:
Ai-powered code generator. https://aws.amazon.
com/codewhisperer/. Accessed: 2023-10-01.

Leming Shen, Qiang Yang, Yuanqing Zheng, and Mo Li.
2025. Autoiot: Llm-driven automated natural lan-
guage programming for aiot applications. arXiv
preprint arXiv:2503.05346.

Swagger. 2015. Swagger codegen: Generate
clients, servers, and documentation from ope-
napi specifications. https://swagger.io/tools/
swagger-codegen/. Accessed: 2023-10-10.

Rails Core Team. 2005. Ruby on rails: A
web-application framework for ruby. https://
rubyonrails.org/. Accessed: 2023-10-10.

Yeoman Team. 2012. Yeoman: The web’s scaffolding
tool for modern webapps. https://yeoman.io/.
Accessed: 2023-10-10.

Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Keung, Jia
Li, Shuo Liu, Yifan Hong, Xiaoxue Ma, Zhi Jin, and
Ge Li. 2024. Exploring and unleashing the power of
large language models in automated code translation.
Proceedings of the ACM on Software Engineering,
1(FSE):71.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin.
2024. Codeagent: Enhancing code generation with
tool-integrated agent systems for real-world repo-
level coding challenges. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 13643–
13658, Bangkok, Thailand. Association for Compu-
tational Linguistics.

19254

https://help.aliyun.com/zh/iot/user-guide/what-is-a-tsl-model
https://help.aliyun.com/zh/iot/user-guide/what-is-a-tsl-model
https://www.huaweicloud.com/en-us/product/iothub.html
https://www.huaweicloud.com/en-us/product/iothub.html
https://cloud.tencent.com/document/product/634
https://cloud.tencent.com/document/product/634
https://cloud.tencent.com/developer/article/2486237
https://cloud.tencent.com/developer/article/2486237
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.1234/abcde
https://doi.org/10.1234/abcde
https://freemarker.apache.org/
https://freemarker.apache.org/
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://devicepartner.huawei.com/cn/ecosystem-product-stories/midea/
https://devicepartner.huawei.com/cn/ecosystem-product-stories/midea/
https://doi.org/10.48553/ICLR-2024-456
https://doi.org/10.48553/ICLR-2024-456
https://doi.org/10.48553/ICLR-2024-456
https://yilinglou.github.io/papers/ASE23_CodeGen4Lib.pdf
https://yilinglou.github.io/papers/ASE23_CodeGen4Lib.pdf
https://yilinglou.github.io/papers/ASE23_CodeGen4Lib.pdf
https://projectlombok.org/
https://copilot.github.com/
https://cdn.openai.com/papers/gpt-4.pdf
https://cdn.openai.com/papers/gpt-4.pdf
https://platform.openai.com/docs
https://platform.openai.com/docs
https://www.antlr.org/
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://jinja.palletsprojects.com/
https://jinja.palletsprojects.com/
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://swagger.io/tools/swagger-codegen/
https://swagger.io/tools/swagger-codegen/
https://rubyonrails.org/
https://rubyonrails.org/
https://yeoman.io/
https://doi.org/10.1145/3660778
https://doi.org/10.1145/3660778
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737
https://doi.org/10.18653/v1/2024.acl-long.737

A Prompts

We provide the scoring prompts for the rating mech-
anism that were not included in the main text here
in the appendix, demonstrating our evaluation cri-
teria. The detailed prompts are shown in Tab. 7.
Additionally, we provide the scoring prompt for
the task completeness score evaluation criteria, as
shown in Tab. 8.

B Corpus

We have provide detailed descriptions of the dataset
(See Tab. 9). All six application codes have been
thoroughly tested before we started our experi-
ments.

19255

Rating Prompt
Please rate the following code with a maximum score of 100 points based on the following
criteria:
1. Functional completeness (whether all required functionalities in outline are implemented);
2. Whether there are obvious issues with imported libraries;
3. Whether parameter settings correspond to the Arduino code in outline (extract parameters
such as pins or MQTT connection from the Arduino code, but do not directly copy its functions
and libraries).
4. Whether the code compiles successfully.

If the score is below 80 points, please specify the specific deficiencies.
Additionally, don’t take app.overlay and other configurations into account to evaluate the score.
Points will NOT be deducted for missing MQTT communication or peripheral control code if
the task specifies that these parts are NOT required.
Don’t deduct points because of warnings in the log! Don’t deduct points because of warnings
in the log!

Return the result in the following format:
–score–: <score between 0 and 100>,
–feedback–: <specific deficiencies or improvements needed>

Generated code:
here is code
Outline:
here is outline
Compilation Log:
here is log
Please provide the score and explain the deficiencies.
You must obey the format including the notation "–" to extract the score and feedback.
When generating the final output, do not include < and >. These angle brackets are only for
illustrative purposes.
If the compilation fails, you need to summarize the failure reasons and assist in improving the
code.

Table 7: Prompt for Code Rating

19256

Completeness Scoring Prompt
You should rate the following code, and you must obey the rating rule shown as below.
You can only rate on a scale of 1, 2, 3, 4, or 5 based on the following criteria:
1. If there is only a main function or just text without even basic code, the score is 1;
2. If only part of the functionality is implemented, such as only communication or only
peripheral control, the score is 2;
3. If the functionality is mostly implemented but lacks some specific operational code or uses
comments in place of code(e.g., lack of the using of pwm library for lightness, lack of the using
of adc library of smoke detect, lacking of the display for LED, lacking of the reading for dht),
the score is 3;
4. If the functionality is mostly implemented without using comments as substitutes for code,
but the implementation is not yet refined(e.g., lack of reconnection, lack of initialization, lack
of closing and so on), the score is 4;
5. If all functionalities are fully and thoroughly implemented, the score is 5.
Return the result in the following format:
–score–: <score on a scale of 1, 2, 3, 4, or 5 >,
–feedback–: <specific deficiencies or improvements needed>
Task:
here is task
Code:
here is code
Must provide the score!
You must obey the format including the notation "–" to extract the score and feedback.
When generating the final output, do not include < and >. These angle brackets are only for
illustrative purposes.

Table 8: Prompt for Code Rating

Table 9: Comparison of applications across Arduino, RIOT OS, and Zephyr OS.

Application Arduino
(Lines)

Functional Description RIOT OS
(Lines)

Zephyr OS
(Lines)

Thermometer 132 Measures humidity/temperature via DHT11
sensor (ESP32-WROOM-32) and transmits
data to cloud platform using MQTT/CoAP.

204 373

Doorbell 147 Implements a doorbell system using ESP32-
WROOM-32, button, and buzzer. Triggers
events when pressed and communicates status
to cloud via MQTT/CoAP.

206 353

Switch 253 Dual-row switch controlling LED buttons.
Supports bidirectional communication with
cloud platform (MQTT/CoAP) for remote con-
trol.

228 412

SmartLight 213 Controls RGB LED (HW-478) with two but-
tons: Button1 cycles colors (red/green/yellow),
Button2 adjusts intensity (on/strong/off).
Cloud control via MQTT/CoAP.

244 418

SmokeDetect 162 Smoke detection system using ESP32-
WROOM-32 and MQ2 sensor. Sends periodic
air quality data and triggers alarms via
MQTT/CoAP when thresholds are exceeded.

223 389

Display 272 Uses ESP32-WROOM-32 with I²C OLED to
monitor temperature/humidity. Sends alerts
for high temperatures and allows remote
screen control via cloud (MQTT/CoAP).

262 366

19257

