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Abstract

Modern Automatic Speech Recognition (ASR)
systems are increasingly deployed in high-
stakes settings, including clinical interviews,
public services, and educational tools, where
equitable performance across speaker groups
is essential. While pre-trained speech mod-
els like Whisper achieve strong overall ac-
curacy, they often exhibit inconsistent group-
level performance that varies across domains.
These disparities are not fixed properties of
the model, but emerge from the interaction
between model, data, and task—posing chal-
lenges for fairness interventions designed in-
domain. We frame fairness in ASR as a general-
isation problem. We fine-tune a Whisper model
on the Fair-Speech corpus using four strate-
gies: basic fine-tuning, demographic rebalanc-
ing, gender-swapped data augmentation, and
a novel contrastive learning objective that en-
courages gender-invariant representations. We
evaluate performance across multiple aspects of
fairness and utility, both in-domain and on three
out-of-domain test sets: LibriSpeech, EdAcc,
and CognoSpeak. Our findings show that the
method with the best in-domain fairness per-
formed worst out-of-domain, illustrating that
fairness gains do not always generalise. De-
mographic balancing generalises more consis-
tently, while our contrastive method offers a
practical alternative: it achieves stable, cross-
domain fairness improvements without requir-
ing changes to the training data distribution,
and with minimal accuracy trade-offs.

1 Introduction

Modern Automatic Speech Recognition (ASR)
models are no longer trained from scratch for each
task; instead, foundation models like Whisper (Rad-
ford et al., 2023) are deployed across domains with
minimal fine-tuning. While this shift has led to im-
pressive gains in average accuracy, it poses a new
challenge for fairness. Interventions that previously
relied on extensive task-specific training must now

operate within a narrow fine-tuning window, and it
remains unclear whether fairness improvements ob-
served in one domain will hold under distributional
shift.

In this work, we explicitly frame fairness as a
generalisation problem. We fine-tune Whisper-
small on Fair-Speech, a diverse dataset of 593
speakers and 26k utterances (Veliche et al., 2024),
using four adaptation strategies: (i) basic fine-
tuning (FT), (ii) demographic rebalancing (FT-
Balanced), (iii) gender-swapped voice conversion
augmentation (FT-Augmented), and (iv) a novel
contrastive learning objective (CL) that we pro-
pose to explicitly encourage gender-invariant rep-
resentations while preserving linguistic content.
To our knowledge, this is the first use of con-
trastive learning for gender fairness in ASR. We
evaluate both overall performance and fairness in-
domain and across three out-of-domain test sets:
LibriSpeech (read speech), EdAcc (Sanabria et al.,
2023) (accented conversational English), and Cog-
noSpeak (Pahar et al., 2025) (task-oriented clinical
interviews).

Across the four adaptation strategies we evaluate,
spanning both data-level and representation-level
interventions, we find that fairness must be treated
as both a multi-metric and multi-domain property.
Reducing demographic gaps is not meaningful if it
comes at the cost of degraded overall accuracy, or
if improvements fail to persist under a distribution
shift. This trade-off is most clearly illustrated by
basic fine-tuning, which achieves the lowest gender
gap in-domain but results in the worst outcomes
in out-of-domain. This contrast demonstrates a
central point of this work: methods that appear
most fair in-domain can, under distribution shift,
become the least fair overall. Our results highlight
the risk of treating fairness as a local optimisation
problem, rather than a generalisation challenge.

Other approaches show more promise. Demo-
graphic balancing generalises more consistently
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across test sets, though its effectiveness may de-
pend on the demographic diversity of the training
data. Our proposed contrastive learning objective
offers a complementary perspective: rather than
training directly on synthetic data, we use gender-
swapped utterances to construct contrastive pairs
that encourage gender-invariant representations.
This representation-level regularisation achieves
competitive fairness improvements with minimal
impact on performance, while avoiding modifica-
tions to the supervised training distribution.

To summarise, this work makes three main con-
tributions: (1) we frame ASR fairness as a gener-
alisation problem and provide the first evaluation
across multiple domains; (2) we compare data-level
and representation-level fairness interventions un-
der a unified setup, including a novel contrastive
objective that promotes gender-invariant represen-
tations; and (3) we demonstrate that in-domain
fairness gains often fail to generalise, and argue for
evaluating fairness interventions under distribution
shift, using both performance and disparity metrics
across domains.

1.1 Previous work

Recently, there have been increasing research ef-
forts focused on addressing biases in speech recog-
nition systems. Numerous works highlight dispar-
ities in Word Error Rates (WER) across different
speaker genders' (Feng et al., 2021; Zanon Boito
et al., 2022; Meng et al., 2022; Maison and Esteve,
2023; Feng et al., 2024; ElGhazaly et al., 2025).
Early studies found that ASR models exhibit higher
WER for female speakers compared to male speak-
ers, often attributed to training data imbalances
and acoustic variations between genders (Tatman,
2017; Koenecke et al., 2020). To mitigate these
disparities, various strategies have been explored,
including data augmentation (Geng et al., 2020;
Fucci et al., 2023; Zhang et al., 2023), adversar-
ial learning (Zhang et al., 2018; Gorrostieta et al.,
2019; Peri et al., 2023), and custom loss functions
(Chang and Chen, 2022; Koudounas et al., 2024;
Tang et al., 2024). Among these, enhancing train-
ing data, either through data augmentation or by
constructing gender-balanced datasets, remains one
of the most widely used techniques for improving

'Tn this study, we analyse the performance differences
between men and women, acknowledging that the gender
spectrum is more diverse. Our focus on these two genders
is driven by their representation in the dataset used for our
investigation.

ASR robustness and addressing demographic im-
balances. Augmentation techniques have been em-
ployed to enhance model robustness by synthesis-
ing speech from under-represented speaker groups,
thereby reducing bias in ASR predictions (Dheram
et al., 2022; Peri et al., 2023; Zhang et al., 2023).
While data augmentation can expand training di-
versity, it is not a perfect solution. Collecting bal-
anced real-world data is often impractical due to
resource constraints, while synthetic speech genera-
tion introduces artefacts that may not fully capture
natural speaker variability. Directly training on
synthetic data may also introduce biases inherited
from the text-to-speech (TTS) system, potentially
affecting ASR generalisation. These challenges
highlight the need for alternative strategies beyond
data manipulation to explicitly reduce demographic
disparities in learned representations. Similarly,
adversarial learning is a promising technique for
mitigating ASR gender bias, but it has several limi-
tations. Training these models can be unstable and
require extensive hyperparameter tuning (Good-
fellow et al., 2014). Furthermore, the adversarial
component relies on effectively identifying and iso-
lating speakers’ attributes (Sun et al., 2018; Liet al.,
2021), which can be difficult and can potentially
harm overall accuracy (Tripathi et al., 2018) and
reduce utility (Peri et al., 2023).

Prior work in NLP and computer vision showed
promising results in achieving fairer representa-
tions and reducing biases using contrastive learn-
ing (Cheng et al., 2021; Shen et al., 2021). The
use of contrastive learning in speech applications
has been explored recently in improving robustness
and representation learning. For example, Chang
and Chen (2022) proposed a contrastive learning
framework to align ASR outputs with manual tran-
scripts, reducing error propagation in spoken lan-
guage understanding. While prior work has lever-
aged contrastive learning for ASR robustness, its
potential for bias mitigation remains unexplored.
Our work introduces a novel application of con-
trastive learning to reduce gender-based dispari-
ties in ASR models. Instead of aligning ASR out-
puts with clean text representations, we minimise
the embedding distance between male and female
utterances of the same content, encouraging the
model to learn gender-invariant speech represen-
tations. This approach aims to explicitly reduce
demographic biases while preserving recognition
performance, offering a promising direction for
fairness-aware ASR optimisation.
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2 Methodology

2.1 Fairness-aware fine-tuning

In this work, we explore four fairness-oriented
adaptation strategies: (i) basic fine-tuning on the
original dataset (FT); (ii) fine-tuning on a demo-
graphically balanced subset (FT-Balanced); (iii)
fine-tuning on more data using voice conversion
augmentation (FT-Augmented) (Fucci et al., 2023);
and (iv) adding to the standard cross-entropy loss
a novel contrastive loss (CL) that we propose to
enhance the model’s fairness.

Our approach integrates voice conversion (VC)-
based data augmentation with contrastive learning
to encourage gender-invariant speech representa-
tions and hence mitigate gender bias in ASR mod-
els. The key idea is to expose the ASR model to
the same textual content spoken by different gen-
ders, ensuring that it focuses on semantic informa-
tion rather than speaker characteristics. To achieve
this, we synthesise speech from an opposite-gender
voice while preserving the original content us-
ing the XTTS-v2 model (Coqui, 2024). The
XTTS voice generation model converts the speci-
fied speaker of the source audio file to the speaker
of the target audio. The target audio contains dif-
ferent speech content, and the speaker’s gender is
the opposite of the source speaker. Thus, the gener-
ated augmented speech contains the content of the
source with the voice of the target speaker. Both
the source and target audio files are from the origi-
nal dataset. This augmentation enables the model
to encounter identical transcriptions from male and
female speakers, reinforcing content-based rather
than gender-dependent learning.

We fine-tune a pre-trained ASR model, where
optimisation is guided by a combined loss func-
tion that includes cross-entropy loss for speech
recognition accuracy and contrastive loss to en-
force gender-invariant feature learning. Contrastive
loss encourages the model to pull together embed-
dings of identical transcriptions spoken by different
genders while maintaining discrimination between
unrelated samples (Figure 1). The fine-tuned model
is then evaluated for both performance (WER) and
fairness (gender WER gap), ensuring that bias re-
duction does not degrade ASR accuracy, in- and
out-of-domain.

2.2 Contrastive learning

Contrastive learning has been widely used to learn
feature representations by bringing similar sam-

ples closer together while pushing dissimilar ones
apart in the embedding space (Chopra et al., 2005;
Hadsell et al., 2006). This technique has demon-
strated effectiveness in various applications, includ-
ing computer vision, natural language processing,
and speech processing (Chen et al., 2020; Jaiswal
et al., 2020; Han et al., 2021; Chang and Chen,
2022; Petrak et al., 2023; Koudounas et al., 2024).
In this work, we leverage contrastive learning to
mitigate gender-based disparities in speech recog-
nition models, ensuring that utterances with the
same linguistic content are represented similarly
regardless of the speaker’s gender. To achieve this,
we introduce a novel approach to contrastive learn-
ing by strategically selecting positive and negative
sample pairs within each training batch based on
both gender and textual content. Our method aims
to optimise model fairness, reducing performance
gaps between genders while maintaining good over-
all performance (Wang and Liu, 2021; Chang and
Chen, 2022).

In the experiments, positive pairs are constructed
using gender-swapped utterances of the same con-
tent, i.e., male and female speakers saying the
same sentence. The negative pairs are drawn from
different-content utterances within each batch. We
sample three negatives per anchor at random, as
illustrated in Figure 1. Our choice of 3 negatives
was empirically validated during development: in-
creasing beyond 3 did not yield measurable gains
in performance or fairness metrics, while reduc-
ing the number weakened the training signal. This
formulation ensures that the model learns to differ-
entiate based on speech content rather than speaker
characteristics. The contrastive loss (CL) is added
to the cross-entropy loss (CE) to form the total
optimisation objective:

Liotr = (1 — ) Lor + aLer )]

where « is a weight balancing the contributions
of the two loss components. To determine the op-
timal « value, we analysed the trade-off between
reducing the WER gap and maintaining a low over-
all WER on the validation set across epochs. We
report the results for « values of 0.2 and 0.05 to
evaluate the weight’s effect on the efficacy of con-
trastive loss. The contrastive loss is defined as:

exp(sim(z;, zj)/T)
Z[k;éi] exp(sim(z;, zx)/T)

£CL = — log (2)

where z; and z; are the embeddings of the posi-
tive pairs, male and female utterances of the same
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content, while zj, refers to the negative samples in
each training batch, consisting of utterances with
different content. The function sim(u, v) computes
the cosine similarity between two embeddings, and
(7) is the temperature parameter, set to 0.1 as in
Baevski et al. (2020).
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Figure 1: Proposed contrastive learning approach. Rep-
resentations of the anchor and its gender-swapped aug-
mentation (same text content) are pulled together (posi-
tive pair), while representations of other utterances in
the batch are pushed apart (negative pairs)

2.3 Evaluation metrics

We assess the overall model performance with
the Word Error Rate (WER) (Klakow and Peters,
2002); the lower the WER, the better the perfor-
mance. To evaluate the model’s fairness with re-
spect to gender, we quantified the performance
disparity by computing the absolute difference in
WER between male and female speakers (WER
gender gap) following the standard methodology
outlined in Feng et al. (2024). We consider an
ASR model to be fair if it recognises both genders
equally well, i.e. if it has a small WER gap.

3 Experimental setup

3.1 Baseline model

We used the open-source pre-trained Whisper small
model (Radford et al., 2023) as the baseline sys-
tem for our experiments. Whisper small is a
transformer-based model with 240M parameters
and is trained on over 680,000 hours of weakly
supervised labelled audio data from the web. It
is widely adopted, as evidenced by its download
frequency on Hugging Face’s Model Hub.? Given
this popularity and its computational efficiency, we
selected Whisper small as our baseline model. We

2Qver the past month, Whisper small has been downloaded

~12,000 times, compared to 3,000 downloads for Whisper
large.

utilised OpenAI’s Whisper Python package to load
pre-trained checkpoints, ensuring consistency with
the original model weights. The pre-trained check-
point served as the starting point for fine-tuning.
We optimised the learning rate and batch size for
each model type based on the best WERs on the
dev set. For fine-tuning the FT and CL(a=0.05)
models, we used a batch size of 16 and a learn-
ing rate of 1.00E-05. For the FT-Balanced, FT-
Augmented and CL(a=0.2) models, a batch size
of 32 and a learning rate of 1.00E-07 were optimal.
In all settings, training employed a cosine learning
rate scheduler and weight decay to promote stable
convergence and prevent overfitting.

3.2 Training data

We used the Fair-Speech dataset for both training
and evaluation purposes. The Fair-Speech dataset
is designed to support fairness-aware research in
speech processing by providing labelled audio data
with 6 speaker demographic attributes, such as gen-
der and ethnicity (Veliche et al., 2024). It includes
recordings from speakers with diverse linguistic
and socio-demographic backgrounds, enabling the
study of disparities in model performance.

We split the dataset randomly into 80% for train-
ing, 10% for development (dev), and 10% for test-
ing (test), ensuring that speakers do not overlap
across splits. Using this split, the train set had
21176 utterances in total, with 9639 male and
11537 female. This setup allowed us to monitor
model performance and fairness metrics through-
out the training process, while preserving a held-
out test set for the in-domain evaluation. We used
the whisper-normalizer Python library (Dettmers,
2023) to preprocess and normalise the original tran-
scripts and model outputs.

We trained four model variants using different
versions of the training set. The FT model was
trained on the training set as it is. For the FT-
Balanced model, we created a gender-balanced
training set by sampling equal amounts of data
from male and female speakers. For the FT-
Augmented and CL models, we applied the data
augmentation method described in Section2.1 to
the original training split and used the generated
augmented audio files as additional data in train-
ing. All models used the same dev set in validation
for early stopping and hyperparameter tuning. The
checkpoint that achieved the best performance on
the dev set was then loaded to evaluate the fine-
tuned models on the test set.
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3.3 Evaluation data

A key oversight in bias mitigation is ensuring that
fairness gains are not merely artefacts of in-domain
training but generalise to new and unseen data. If
fairness interventions only reduce gender dispari-
ties on the in-domain dataset, they may not hold in
real-world ASR scenarios. To address this, we eval-
uate the fine-tuned models on both in-domain and
out-of-domain test sets. For in-domain evaluation,
we use the Fair-Speech test set split.

To assess out-of-domain generalisation, we use
three datasets from distinct contexts: LibriSpeech
test-other (Panayotov et al., 2015), the Edinburgh
International Accents of English Corpus (EdAcc)
(Sanabria et al., 2023) and CognoSpeak (Pahar
et al., 2025; Tao et al., 2025). The LibriSpeech test-
other subset is a standard evaluation benchmark
used to assess the robustness of speech models un-
der more challenging acoustic and linguistic condi-
tions (Panayotov et al., 2015). Unlike the test-clean
subset, which features well-articulated speech with
minimal background noise, test-other includes
recordings with greater variability in speaker ac-
cents, pronunciation clarity, and recording quality.
It is derived from audiobooks and represents more
realistic and difficult test conditions. As such, test-
other is commonly used to evaluate a model’s abil-
ity to generalise beyond ideal scenarios, making it a
valuable dataset for our out-of-domain evaluation.

The EdAcc is a publicly available speech dataset
designed to support research in accent variation and
robustness in speech processing systems (Sanabria
et al., 2023). It contains recordings from virtual
calls on Zoom between friends from a wide range
of backgrounds, providing extensive coverage of
non-native and regional accents. The corpus in-
cludes read and spontaneous speech in English,
along with speaker metadata such as gender and
linguistic background. EdAcc’s diverse and con-
trolled collection conditions make it particularly
well-suited for evaluating model performance and
fairness under domain shift.

CognoSpeak is an ongoing project aimed at re-
motely collecting audio and video recordings of
individuals with cognitive decline through conver-
sations with a computerised agent (Pahar et al.,
2025). This agent prompts participants with a di-
verse set of clinically relevant questions and cogni-
tive tasks. A subset of the data was used as a new
challenge in ICASSP 2025, known as PROCESS
(Tao et al., 2025). Over the course of 8 years, over

2000 recordings have been gathered from general
practices and other clinical settings across the UK.
For evaluation purposes, a carefully selected subset
of the dataset—balanced for gender and matched
for age range—has been curated as a fair test set.
This includes 20 participants with healthy cogni-
tion, 20 with mild cognitive impairment, and 20
with dementia.?

We used the four datasets to evaluate our fine-
tuned models on both in-domain and domain-shift
settings. If the resulting ASR system is truly
fair, gender fairness should persist even on out-
of-domain evaluations rather than being confined
to the training distribution.

4 Results and analysis

Table 1 presents the WERs per gender and abso-
lute WER gender gap for each model evaluated
on different test sets: the in-domain Fair-Speech
test set, the test-other dataset from LibriSpeech,
EdAcc and CognoSpeak. The baseline was the
pre-trained Whisper-small model, which exhibits
notable gender gaps, particularly in Fair-Speech
and consistently worse performance (higher WER)
with men speakers in all test sets. We evaluate
and compare the models fine-tuned on the Fair-
Speech dataset using our four different fine-tuning
strategies, including (1) FT, (2) FT-Balanced, (3)
FT-Augmented, and (4) CL with different o values
(0.05 and 0.2). We highlight in green in Table 1 the
improved performances; the more green a model
has, the better and more generalisable it is. We
discuss the main findings in the following sections.

4.1 Contrastive learning provides an effective
generalisable solution

The results of our proposed models with contrastive
learning (CL) demonstrate promising improve-
ments in both performance and fairness across mul-
tiple evaluation datasets. The CL(a=0.05) model
reduced the gender gap by half on the Fair-Speech
test set, while also preserving reasonable perfor-
mance. However, this model struggled with gener-
alisation, particularly on the CognoSpeak dataset,
where the gap and performance deteriorated sub-
stantially, indicating a potential over-fitting to the
Fair-Speech domain. In contrast, contrastive loss

3Full details of the LibriSpeech, Fair-Speech, EdAcc and
CognoSpeak corpora can be found in (Panayotov et al., 2015),
(Veliche et al., 2024), (Sanabria et al., 2023), and (Pahar et al.,
2025), respectively.
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Model Fair-Speech LibriSpeech EdAcc CognoSpeak
w M G w M G W M G W M G

Pre-trained 7.06 1523 817 731 791 059 29.11 3134 223 2008 21.14 1.06
FT 522 839 |3.17 1257 13.09 [0.52 39.06 40.83 [1.77 4359 4223 11.36
FT-Balanced 571 10.14 443 795 878 10.83 2633 29.13 12.80 16.58 17.54 10.96
FT-Augmented 545 990 (445 841 931 1090 26.80 2948 12.68 17.60 18.65 [1.05
CL(a=0.05) 524 931 407 11.18 1240 11.22 36.82 37.67 J0.85 4626 43.11 13.15
CL(a=0.2) 561 10.08 447 816 898 10.82 26.33 29.08 12.75 19.27 20.80 711.53

Table 1: Evaluation results of the fine-tuned models across in-domain (Fair-Speech) and the three out-of-domain
test sets. The fine-tuned models are: basic fine-tuning (FT), demographic balanced training data (FT-Balanced),
more training data with augmentation (FT-Augmented), and our contrastive learning objective with different o
values(CL). Gap (G) is the absolute difference between women’s (W) and men’s (M) WERs (values are in %).

Green cells and downward arrows in (G) indicate better than the pre-trained model.
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Figure 2: CL(a=0.2) model outperforms basic fine-tuning (FT) in out-of-domain evaluation.

with larger weight (CL(«=0.2)) maintained im-
proved fairness on Fair-Speech (gap reduced by
over 45% from 8.17 to 4.47) as well as EdAcc and
CognoSpeak. In particular, the CL(«=0.2) model
achieved the lowest WERSs on the EdAcc dataset,
and outperformed the basic fine-tuning (FT) on all
the out-of-domain sets (Figure2). This indicates
that contrastive learning is beneficial for enhanc-
ing the model’s fairness while maintaining perfor-
mance and improving generalisation.

4.2 Fairness interventions may not generalise
under domain shifts

Although all fine-tuned models showed a substan-
tial reduction in WER and gender gap on the Fair-
Speech test set compared to the pre-trained model,
these gains did not persist across different do-
mains (Figure3). FT achieved the best WERs and
over 60% reduced gender gap on the Fair-Speech
dataset, indicating improved fairness within the
training domain. However, these improvements
disappeared when the data domain changed in
LibriSpeech, EdAcc and CognoSpeak, suggesting
that FT may overfit to the training data. On the
other hand, FT-Balanced and FT-Augmented of-
fered more balanced performance: both reduced

gaps on CognoSpeak while maintaining or improv-
ing performance across domains. For example,
FT-Balanced had the best results on CognoSpeak
(lowest WERs and gap) while decreasing overall
WERs in EdAcc by over 8%. The FT-Augmented
model similarly showed strong fairness general-
isation, achieving a smaller gap on Fair-Speech
(4.45) and further gains on EdAcc and CognoS-
peak, with gaps of 2.68 and 1.05, respectively.
These results suggest that both FT-Balanced and
FT-Augmented strategies lead to more robust and
fair performance across domains, whereas FT pri-
marily improves fairness in-domain at the expense
of out-of-domain generalisability. The results of
the FT, FT-Balanced, and FT-Augmented models
suggest that the effectiveness of fine-tuning tech-
niques on fairness is highly sensitive to domain
shift.

4.3 Initial disparities impact fairness gains

A key insight from the results in Tablel is that
fairness interventions are more effective when ap-
plied to a dataset with a large initial gender gap.
This was particularly evident in the LibriSpeech
dataset, which had worse WERs for both genders
with the fine-tuned models. The pre-trained model
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Figure 3: Inconsistent WERs on in-domain (In) and
out-of-domain (OOD) test sets.

exhibited a low gender gap (0.59), which likely
constrained the extent to which fine-tuning could
further enhance fairness. Conversely, Fair-Speech
started with a large WER gap of 8.17, allowing
fine-tuning to have a greater impact. In addition,
EdAcc and CognoSpeak had high WERs with the
pre-trained model, which were further reduced by
fine-tuning with FT-Balanced, FT-Augmented and
CL(=0.2). This suggests that fairness-aware fine-
tuning is effective when applied to datasets with
larger inherent gender disparities and WERs.

4.4 Fairness conclusions require reliable
evaluation metrics

We reported the gap (G) in Tablel using the abso-
lute difference that is frequently used as an indica-
tor of disparity. While this is the most commonly
used and intuitive metric, this measure does not nec-
essarily reflect improved overall performance. The
performance could be much worse for both genders,
such as in the LibriSpeech evaluation. As shown in
Table 1, the reduced gap values (downward arrow)
do not always correspond with the improved per-
formance (green cells). We therefore looked into
other metrics that have been used in prior fairness
research. The Word Error Rate Reduction (WERR)
was suggested by Dheram et al. (2022) to quan-
tify the relative improvement between systems on
a cohort by comparing WERs before and after an
intervention, normalised by the baseline WER. The
more positive WERR indicates improvements on
that cohort while negative WERRSs indicate degra-
dation. The WERR for the bottom cohort in our

results (men) is defined as:

WER_Baseliney; — WER_Modely
WER_Baseliney

WERRM =
3)

Using this metric, the value is more reflective of a
fair model with good performance. We hence com-
puted the WERR on the men’s WER (the bottom
group) on all the test sets and compared them with
the previously reported gap. Table2 summarises
the results. We found that the WERRSs clearly show
all of the models deteriorated on the LibriSpeech
test set. Although the absolute difference between
genders” WERs (G) were small, the WERs were
much higher than the pre-trained baseline model,
therefore inaccurately showed improvements. Sim-
ilarly, the CL(a=0.05) model showed almost equal
WERSs across both gender groups but suffered from
high WER across all domains. For instance, in
the EdAcc test set, the lowest gap was achieved
by the CL(«=0.05) model (G=0.85) when in fact
it worsened the performance on the disadvantaged
group by over 20%. Whereas the CL(a=0.2) model
achieved a balance between fairness and perfor-
mance on the EdAcc test set relative to the other
models, improving the baseline by 7.21%. The
choice of metric can thus significantly affect the
conclusions drawn about fairness and it is impor-
tant to use a reliable fairness-specific measure.

4.5 Fairness is multifaceted

Fairness in speech recognition systems seems to
be multidimensional and domain-dependent. It is
influenced by a range of factors, including the do-
main of the evaluation dataset, the metric used to
(e.g., WER improvements vs. group disparity mea-
sure), and the demographic subgroup being consid-
ered. Figure3 visualises the gender-based average
WERSs across the various test sets and fine-tuning
approaches, illustrating efforts to improve fairness
along one dimension might negatively impact per-
formance along another dimension. None of the
models consistently achieve good performance and
fairness across all dimensions. For instance, FT
significantly reduces the gender gap on the Fair-
Speech dataset (from 8.17 to 3.17), demonstrat-
ing improved in-domain fairness. However, this
improvement comes with a sharp increase in the
WERs of EdAcc and CognoSpeak, suggesting poor
generalisation of fairness gains. Moreover, the pre-
trained model itself shows a very small gender gap
on LibriSpeech (0.59), limiting further fairness im-
provement in that domain. This illustrates how
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Model Fair-Speech LibriSpeech EdAcc CognoSpeak

G WERRpy, (%) G WERRpy (%) G WERRpy (%) G  WERRy (%)
Pre-trained 8.17 - 0.59 - 2.23 - 1.06 -
FT 3.17 44.88 0.52 -65.48 1.77 -30.29 1.36 -99.79
FT-Balanced 443 3341 0.83 -11.06 2.80 7.04 0.96 17.02
FT-Augmented 4.45 34.96 0.90 -17.77 2.68 5.93 1.05 11.79
CL(a=0.05) 4.07 38.89 1.22 -56.78 0.85 -20.20 3.15 -103.96
CL(a=0.2) 4.47 33.82 0.82 -13.52 2.75 7.21 1.53 1.59

Table 2: WERR ,; offers more accurate evaluation than absolute difference. Best values per metric in bold.

initial model characteristics can constrain or shape
the outcomes of fairness interventions. These re-
sults collectively emphasise that fairness cannot
be meaningfully assessed using a single metric or
dataset. A model that performs equitably in one
domain may fail in another, and focusing solely on
reducing group disparities may inadvertently sac-
rifice overall performance or fairness in other con-
texts. These findings underscore that no single ap-
proach universally outperforms the others; instead,
the choice of method should be guided by the target
domain and the desired outcome between fairness
and generalisation. This underscores the critical
need for multidimensional evaluation frameworks
that account for domain, demographic subgroup,
and performance trade-offs when developing and
benchmarking fair speech recognition systems.

5 Conclusion

This work introduced fairness as a generalisation
challenge in ASR, showing that interventions effec-
tive in one domain may not persist across others.
We evaluated four strategies on the Whisper small
model, comparing data-level and representation-
level interventions across in-domain and out-of-
domain benchmarks. Our findings show that in-
domain fairness is not a reliable proxy for robust-
ness, and that fairness must be assessed as a prop-
erty of both model behaviour across groups and per-
formance under distribution shift. Among the meth-
ods, demographic balancing showed the strongest
cross-domain fairness but depends on access to bal-
anced training data. Our proposed contrastive learn-
ing objective offers a complementary perspective:
by encouraging gender-invariant representations
using augmented data, it improves fairness without
requiring changes to the supervised training distri-
bution. Unlike data augmentation strategies that
inject synthetic samples directly into the main loss,

our contrastive objective isolates fairness regulari-
sation, minimising the impact of potentially lower-
quality generated data. Looking ahead, contrastive
learning presents a promising direction for scalable,
generalisable fairness in ASR. While this work fo-
cused on gender, the objective naturally extends
to other protected attributes such as age, accent,
or gender identity. By treating same-content utter-
ances across these attributes as positive contrastive
pairs, future models could be trained to align rep-
resentations across multiple demographic axes si-
multaneously. In contrast, expanding data-level
augmentation to cover all such dimensions would
significantly increase training set size and com-
pound quality concerns. Contrastive methods thus
offer a principled path forward for multi-attribute
fairness, especially in settings where demographic
labels are available but rebalancing or augmenting
each domain is infeasible.

6 Limitations

One limitation of our study is that the test sets
used contain only binary gender labels, which do
not capture the full spectrum of gender identities
and may limit the generalisability of our fairness
analysis. Additionally, while there exist numerous
fairness metrics in the literature, we focused on
a set of widely adopted metrics to maintain com-
parability with prior work. We acknowledge that
other metrics might provide further insights and
plan to explore them in future studies. Furthermore,
our current analysis is restricted to gender-based
fairness; evaluating disparities across other demo-
graphic factors such as age, race, and accents is
an important direction for future research that we
intend to pursue.
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