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Abstract

LLM judges have gained popularity as an in-
expensive and performant substitute for hu-
man evaluation. However, we observe that the
meta-evaluation setting in which the reliabil-
ity of these LLM evaluators is established is
substantially different from their use in model
development. To address this, we revisit meta-
evaluations of LLM evaluators under a setting
that more closely aligns with practice by ex-
amining evaluators’ ability to distinguish test
system pairs that are closer in capability. Our
fine-grained approach shows that all LLM eval-
uator’s correlations with human judgments are
concerningly low when the models perform
similarly, showcasing a key limitation of cur-
rent norms. Equipped with this better method-
ology, we next analyze the impact that the
choice of the reference model makes to LLM-
as-a-judge evaluator performance. We show
that single-reference evaluators only perform
well at ranking test systems that fall within par-
ticular capability ranges, even if the standard
meta-evaluation reports high overall correla-
tion. Taken together, our analysis shows criti-
cal issues with current LLM meta-evaluation
and recommend avenues for improvement.

1 Introduction

Human evaluation is broadly accepted as the gold
standard for benchmarking LLMs. However, it
is time-consuming and infeasible to run human
evaluation on each new model iteration during de-
velopment, e.g., to test out hyperparameter choices.
As a result, automatic proxies of human judgments
(Zheng et al., 2023; Lin et al., 2024) are widely
used. For example, more than 90% of the recent
works on preference optimization only report re-
sults using the automatic evaluator AlpacaEval (Li
et al., 2023; Dubois et al., 2023, 2024).

How can we meta-evaluate an automatic eval-
uator, i.e. verify if it is reliable? Benchmarks like
Chatbot Arena (Chiang et al., 2024) that collect hu-

man preference judgments from millions of users
play a crucial role here. They provide the “ground
truth” rankings of test LLMs that the automatic
evaluator rankings can be validated against. In fact,
the most popular automatic evaluators today, in-
cluding AlpacaEval, WildBench (Lin et al., 2024),
MixEval (Ni et al., 2024) and Arena-Hard (Li et al.,
2024), verify their validity by reporting high corre-
lation with Chatbot Arena judgments.

In this paper, we make two main contributions.
First, we revisit the meta-evaluation norms used
to evaluate automatic LLM evaluators in the com-
munity. Our analysis of 8 popular LLM judges
(Li et al., 2023; Lin et al., 2024; Ni et al., 2024;
Li et al., 2024) shows notable differences in per-
formance of LLM judges in settings they are
meta-evaluated vs. used during model develop-
ment. During meta-evaluation, an LLM judge is
used to rank test systems and a high correlation of
this ranking with humans indicates that the judge
is reliable.1 However, the test systems ranked in
meta-evaluation settings often have fairly different
capability levels. Hence, ranking (or scoring) them
is relatively easier compared to using these judges
during model development. In the latter case, very
similar models are compared, e.g. those that have
the same underlying base model but different train-
ing recipes.

Based on these observations, we propose a two-
pronged meta-evaluation strategy that is more fine-
grained and informative. Our approach includes
a delta analysis (borrowing from Deutsch et al.
(2022)) that examines evaluator ability to distin-
guish similar capability models and stratified anal-
ysis that identifies performance ranges of test mod-
els within which a given LLM evaluator is perfor-
mant. Together, these help determine if an LLM
evaluator’s reported improvements for a test model
is meaningful in practice.

1All evaluators we analyzed reported > 0.8 Kendall’s τ .
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Our experiments show that the popularly used
LLM judge AlpacaEval reports Kendall’s τ = 0.86
under standard meta-evaluation conditions but 0.19
correlation with humans when ranking models with
less than 2 points difference in AlpacaEval scores;
this corresponds to typical improvements reported
using this metric. We observe a similar concern-
ing trend for other automatic evaluators, including
WildBench (Lin et al., 2024), Arena-Hard (Li et al.,
2024), MT-bench (Zheng et al., 2023) and MixEval
(Ni et al., 2024).

Next we examine how the choice of reference
model in LLM-as-a-judge evaluators impacts their
performance. We first conduct our analysis in the
ground truth setting where we compare Chat-
bot Arena’s official rankings, derived via Bradley-
Terry on pairwise preferences between two ran-
domly sampled models, against a single reference
version of the same dataset. We find that the rank-
ings of the latter version (this strategy mirrors
reference-based LLM judges like AlpacaEval), dif-
fers substantially from the ground truth Chatbot
Arena rankings across all reference models. Our
results show that models that most closely match
the test model capabilities are generally the bet-
ter choice for reference models in single reference
settings.

Finally, we report results in the LLM evalua-
tor setting where we compare rankings of popular
leaderboards like AlpacaEval (Li et al., 2023) and
WildBench (Lin et al., 2024) against gold Chatbot
Arena rankings. Our results here confirm that high
correlations over the entire test model can hide ex-
tremely low correlations for realistic test settings.
Overall, our results and analysis show critical is-
sues with current LLM evaluators and recommend
avenues for both improving these evaluators and
the meta-evaluation standards themselves.

2 Our Meta-Analysis Methodology

2.1 Background and Notation
The goal of both automatic and human evalua-
tion is to assign scores to a set of n test systems
Π = {πi}i∈[n]. Below we describe the basic
methodology used by reference-based evaluators.

Reference-based LLM Evaluators Let E be a
reference-based evaluator. Broadly, E can be char-
acterized by the tuple (X , πref, πjudge), which refers
to a prompt set, a reference model and a judge
model, respectively. For each x ∈ X , the judge
model πjudge determines whether the quality of the

test model output, i.e., π(x), exceeds the quality
of the reference model output, i.e. πref(x). These
evaluators then report the win-rate score for test
models based on these preference judgments:

S(π; E) := Ex∼X [IE{πref(x) ≺ π(x)}] (1)

The ranking R(Π; E) for models π ∈ Π is deter-
mined using this win-rate w(π; E) with respect to
the reference model πref.

Prior research has determined best practices for
various components of this evaluation pipeline,
such as selecting the prompt set X (Ni et al., 2024;
Lin et al., 2024), the judge model πjudge (Kim et al.,
2023) using pairwise comparisons against a refer-
ence v/s independently scoring each instance with-
out a reference output (Kim et al., 2023), and de-
signing instruction prompt set used by πjudge (Zeng
et al.). We add to this body of work in this paper
by systematically analyzing how the choice of ref-
erence model(s) πref(x) impacts the performance
of LLM-as-a-judge evaluators. In the next section,
we discuss community norms for meta-evaluating
LLM evaluators and describe the methodology we
use in this paper.

Community norms for meta-evaluating auto-
matic evaluators Human judgments remain the
gold standard for evaluating the quality of free-
text responses. Suppose we have access to human
rankings Rgold for a set of models Π

′
. We can vali-

date if an automatic LLM evaluator is reliable by
comparing its rankings RE(Π) against these gold
standard rankings Rgold(Π

′
) for the common set

of models:
Corr(RE(Π ∩Π

′
),Rgold(Π ∩Π

′
)) (2)

Automatic evaluators are considered reliable if
they have high correlation with these ground truth
human rankings. For e.g., the broadly used Al-
pacaEval metric validated their approach by re-
porting a Spearman correlation of 0.98 with Chat-
bot Arena rankings (Chiang et al., 2024) which is
a public leaderboard collated using human judg-
ments on an open chat platform. Similarly, Wild-
Bench (Lin et al., 2024) and Arena-Hard (Li et al.,
2024) report 0.95 and 0.91 Pearson correlations
against Chatbot Arena respectively.

2.2 Revisiting meta-evaluation standards
Meta-evaluation of generation metrics has been
a widely studied problem in NLP in traditional
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Evaluator τstandard
∆ used to compute τ∆

0.3 0.5 1 2 5 10

LC AlpacaEval 2.0 .869 .230 .263 .280 .196 .517 .730
AlpacaEval 2.0 .815 .294 .083 .116 .319 .616 .763
AlpacaEval 1.0 .583 -.547 -.617 -.087 -.140 .235 .336
WildBench ** .824 – – – – – .440

Arena-Hard .773 -.125 -.083 .000 .207 .325 .470
MT-bench .788 .216 .349 .583 .746 .788 .788

MixEval-Hard .867 -1.000 -.600 -.250 .076 .555 .739
MixEval .808 .000 .200 .142 .384 .333 .633

Table 1: Kendall’s τ correlation (both standard τstandard and τ∆ between evaluators and human rankings derived
from Chatbot Arena. We highlight the cell corresponding to the approximate reported improvement, i.e. ∆, in
recent works for each evaluator in gray. Our results show that correlation between automatic and human rankings
on these realistic system pairs is very low. **: We omit correlation numbers for certain ∆s where the number of
realistic system pairs is lower than 15.

text generation fields, particularly summarization
(Fabbri et al., 2020; Deutsch et al., 2021; Tang
et al., 2022; Goyal et al., 2022). Multiple works
in this line have discussed the importance of align-
ing this meta-evaluation settings (e.g. the choice
of test models compared or their score ranges) to
the settings in which they will be used in practice
(Deutsch et al., 2022; Peyrard, 2019).

Consider a metric E on which research papers,
on average, report improvement δ. Is this improve-
ment meaningful? Deutsch et al. (2022) show that
reported improvements in published works is gen-
erally much smaller than the average difference
between model pairs that were used to validate the
metric E using Equation 2. Their work proposes
a modification to Equation 2 to determine the re-
liability of E in realistic improvement ranges. In
this paper, we borrow their methodology, described
below, to investigate this for popularly used LLM
evaluators today.

Approach We follow Deutsch et al. (2022) and
use Kendall’s τ as the correlation function through-
out this paper. Given a set of n test models,
Kendall’s τ depends on the number of model pairs
out of

(
n
2

)
which are ranked the same by RE(Π),

i.e. the metric being validated, and Rgold(Π), i.e.
the ground truth human rankings:

τ =
P −Q√

P +Q+ T
√
P +Q+ U

(3)

where P and Q are the number of models that
are ranked similarly and different by RE and Rgold,
and T and U are the ties by the two evaluators
respectively.

To meta-evaluate evaluators only on realistic
system pairs, they propose re-computing the corre-
lation using only the subset of

(
n
2

)
pairs for which

the score difference is below a pre-defined margin
δ. This margin can be chosen for each metric in-
dependently based on the improvements reported
on it in recent work. We call this modified metric
τ∆<δ. This metric can be used to quantify how re-
liable the evaluator E is when used to report small
improvements in score.

Experiment Setup for Preliminary Analysis
We run experiments using the leaderboard scores
of Chatbot Arena (Zheng et al., 2023; Chiang et al.,
2024) as the human ground truth Rgold. Note that
Chatbot Arena is a broadly trusted leaderboard and
used to meta-evaluate all recent LLM evaluators,
including Length-controlled AlpacaEval (Li et al.,
2023), WildBench (Lin et al., 2024), Arena-Hard
(Li et al., 2024), and others.

We benchmark the following reference-based
LLM evaluators in this section: (a) AlpacaEval-v1
(Dubois et al., 2023), (b) Length-controlled Al-
pacaEval (Li et al., 2023), (c) WildBench (Lin
et al., 2024), and (d) Arena-Hard (Li et al., 2024).
These are the most commonly used evaluators,
particularly length-controlled AlpacaEval, in re-
cent months.2 Finally, although our focus is
reference-based evaluators, we additionally in-
clude other popular benchmarks MT-Bench (Zheng
et al., 2023) and MixEval (Ni et al., 2024) in our
meta-evaluation.

Automatic LLM evaluators report low corre-
lations with ground truth on realistic system

2Note that we only consider evaluators that measure
the generation quality of free-form text, which is an inher-
ently subjective task and aligns with the Chatbot Arena data.
We omit more objective benchmarks, such as math (Cobbe
et al., 2021; Hendrycks et al.) or multiple-choice factual-
ity (Hendrycks et al., 2020a), as these measure orthogonal
capabilities where determining output correctness is more
straightforward and does not require LLMs.
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pairs. We report standard (τstandard) and modified
(τ∆) Kendall’s τ correlation for the above evalu-
ators against Chatbot Arena’s human rankings in
Table 1. Across all evaluators, τstandard is greater
than 0.7. In contrast, τ∆ with ∆ values equal to im-
provement margins reported in recent works is less
than 0.4.3 For example, on LC AlpacaEval 2.0, the
observed Kendall’s τ∆=2 is only 0.196. This indi-
cates that improvements on these metrics within
such small ranges are not meaningful. Overall, our
analysis shows that there exists a mismatch in the
settings where these metrics where validated and
their usage.

Based on these observations, we recommend
that metric developers use realistic model pairs
to evaluate a given metric or evaluator. Similarly,
practitioners should use the modified Kendall’s τ
metric to determine whether the observed differ-
ence in metric scores signify meaningful improve-
ments over baselines.

2.3 Meta-Analysis Methodology

Let S(Π; E) and Sgold(Π) refer to the scores of test
models Π determined by the automatic LLM eval-
uator E and the ground truth scores respectively.
Guided by the insights from our preliminary ex-
periment, we measure the correlation of automatic
LLM evaluators with human gold standard using
the following two correlation approaches:

i) Delta Correlation Analysis This exactly fol-
lows the approach from Deutsch et al. (2022) de-
scribed above. Specifically, we report correlation
τ∆<δ describes correlation computed on realistic
system pairs (π1, π2) for which the score differ-
ence |S(π1; E)− S(π2; E)| < δ. We follow prior
work and modify Kendall’s τ rank correlation to
report this statistic.

Intuitively, this metric helps us quantify how
meaningful is an improvement of δ reported by
automatic evaluator E . Ideally, when a new train-
ing method or model is released, their reported
improvement δ′ using E should be such that τ∆<δ′

with human judgments is high.

ii) Stratified Rank Change We stratify the test
models Π into k tiers, Πi for i ∈ {1, 2..., k}, based
on their Sgold scores. For k = 4, Tier 1 or Π1 in-
cludes models in the top 25 percentile, Π2 includes

3We use the following ∆ values to indicate average margin
of improvement in recent works: AlpacaEval (all variants),
WildBench, ArenaHard, MixEval → 2, MT-Bench → 0.5.

models in the 25–50 percentile, Π3 has 50–75 per-
centile models, and Π4 contains the bottom 25
percentile of the models.

For stratified rank change, we compute the aver-
age rank difference between an evaluator’s ranking
and the gold ranking for each model within a tier.
Lower values indicate closer alignment with hu-
man preferences:

∆rank(Πi; E) =
1

|Πi|
∑

π∈Πi

∣∣RE(π)−Rgold(π)
∣∣

(4)

where Πi is the set of test models in tier i, RE(π)
is the evaluator’s assigned rank of model π, and
Rgold(π) is the gold (human) rank of the same
model within the tier.

Motivation for stratified analysis Our hypoth-
esis is that, given an LLM evaluator E =
(X , πref, πjudge), the effectiveness of E will depend
on the capability difference between πref and mod-
els in the test tier Πi. Consider a toy example with
reference model πref’s and the two test models π1
and π2 that have the following capability order
πref >> π1 > π2. Since πref is much stronger
than both test models, its outputs are preferred over
those of both π1 and π2 for all prompts x ∈ X . In
this scenario, the win-rate scores of both models
will be 0, and the evaluator E cannot distinguish
between them.

On the other hand, if πref and π1 have very simi-
lar outputs, e.g. if they are derived from the same
base model with only slight differences in fine-
tuning, it is likely that the judge πjudge cannot cor-
rectly choose the better output between the two or
that the judgment is inherently ambiguous (Zhao
et al., 2025). In this scenario as well, the score
S(π1; E) may not be reliable.

This stratified rank change methodology allows
us to examine evaluator reliability in more realistic
low-difference settings, similar to the delta anal-
ysis. Additionally, it provides insights into best
practices for selecting the πref model(s) if the test
models’ capability range is known.

3 Experiment Setup

3.1 Ground Truth Source: Chatbot Arena
We use Chatbot Arena (Zheng et al., 2023; Chiang
et al., 2024) to obtain the ground truth score and
rankings of test models. Despite some recent reser-
vations (Zhao et al., 2025; Singh et al., 2025), it
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is broadly trusted to evaluate both newly released
models4 and meta-evaluate LLM evaluators (Li
et al., 2023; Lin et al., 2024; Li et al., 2024).

Chatbot Arena collects human preferences from
users visiting their web interface. A user on the
platform submits a query x and is shown out-
puts sampled from two different models πi(x) and
πj(x); the identity of these models is kept anony-
mous. The user submits a label l ∈ {i, j, tie} to in-
dicate their preference. Based on these preference
labels, the platform estimates the pairwise win-rate
of each pair of model, i.e. P (πi > πj). Finally,
this estimate is used by the Bradley-Terry model to
derive scores Sgold(πi) for each test model πi ∈ Π:

P (πi > πj) =
eSgold(πi)

eSgold(πi) + eSgold(πj)
(5)

In all our experiments, we will use these Chatbot
Arena scores Sgold derived using Bradley-Terry as
the ground truth.

3.2 Evaluation Setting 1: Meta-Evaluating
Reference-based Human Evaluation

First, we analyze the effect of the choice of ref-
erence model in the ground truth setting itself,
i.e. in ChatBot Arena. As described above, Chat-
bot Arena collects pairwise preference annotations
for models πi and πj . However, instead of using
Bradley-Terry on estimated win-rates between dis-
tinct model pairs, we can mimic the same reference-
based strategy of Equation 1 to derive test mod-
els’ scores and rankings. Specifically, we use the
collected dataset to compute win-rates against a
fixed reference model πref. Note that this uses only
a subset of the entire Chatbot Arena dataset, i.e.
those that have preference labels involving the πref
model.

Dataset Statistics For this analysis, we require
Chatbot Arena’s human preference dataset, i.e. tu-
ples (πi, πj , l). Although Chatbot Arena does not
publicly release its data, such a subset was released
in June 2023. We conduct our experiments using
the largest publicly released dataset by Chatbot
Arena. It consists of 55k preference annotations;5

it includes response pairs sampled from two of

4Example borrowed from (Zhao et al., 2025): Google’s
Chief Scientist used high performance on Chatbot Arena
to declare the success of their recent model release:
https://tinyurl.com/55xs2pz4.

5https://huggingface.co/datasets/lmsys/
lmsys-arena-human-preference-55k

64 unique models and the corresponding pairwise
preference annotation.

For this dataset, we conduct stratified rank
change analysis using the 10 most commonly oc-
curring models in the above released dataset. Basic
statistics for this are included in Table 2 and full
list in Table 7 of the Appendix.

3.3 Evaluation Setting 2: Meta-Evaluating
Reference-based LLM Evaluation

We conduct our main experiments on two most
widely used reference-based LLM evaluators:
1. AlpacaEval (Li et al., 2023; Dubois et al., 2023)

contains a test prompt set X of size 805, and
uses πref = GPT-4 Preview (11/06).

For both delta and stratified analysis, we report
results by varying the πref model while keeping
all other specifications the same (e.g. prompt set
X , πjudge and evaluation prompt used to elicit
judgment from πjudge).

Specifically, we report results using 20 different
πref models (see Table 8 in Appendix for the
list). These reference models are selected so as
to cover all 4 performance tiers after the strat-
ification described in Section 2.3. We use the
AlpacaEval methodology (using their released
code6) to obtain model scores Sπref

E (Π) for each
of the 20 πref models. This list includes the de-
fault GPT-4 Preview (11/06) used by official
AlpacaEval.

2. WildBench (Lin et al., 2024) contains a care-
fully curated test prompt set of size 1024. Wild-
Bench reports two kinds of metrics: a reference-
based pairwise metric WB-Reward and an indi-
vidual metric WB-Score. In this paper, we limit
our analysis to only the reference-based metric.

Note that WB-Reward computes the score of
each test model against three different reference
models – GPT-4-Turbo-0429, Claude-3-Haiku,
and Llama-2-70B-chat. The final WB-Reward
score for each test model is computed as the av-
erage reward of these three individual rewards.
For WildBench, we perform delta analysis for
these above 3 reference models.7 We omit strati-
6https://github.com/tatsu-lab/alpaca_eval/
7Increasing the number of reference models requires col-

lecting additional preference judgments using πref, as de-
scribed for AlpacaEval. We found this to be prohibitively
expensive, and therefore restrict our analysis to the three refer-
ence models used in the official implementation. We directly
use the dataset released by WildBench for our experiments:
https://github.com/allenai/WildBench/.
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fied analysis due to the small number of models.

Dataset Statistics For meta-evaluating both Al-
pacaEval and WildBench, we use the Chatbot
Arena leaderboard, as of May 15, 2024, as the
ground truth.8 For AlpacaEval, this resulted in 46
models that were common between this Chatbot
Arena version and also had model-generated out-
puts for all 805 test prompts on the AlpacaEval
github.9 We ran AlpacaEval’s LLM-based judg-
ment on these 46 (test) x 20 (reference) model
pairs. Data statistics for our study are shown in
Table 2. For WildBench, we report results on the
21 common models between the leaderboards as
of May 15, 2024.

4 Results and Analysis

We report results for evaluation setting 1 (described
in Section 3.2) and 2 (described in Section 3.3) in
Section 4.1 and Section 4.2 respectively.

4.1 Meta-evaluation of reference-based
human annotation

Reference-based evaluators are suboptimal in
the ground truth setting First, we report the cor-
relation between the official Chatbot Arena rank-
ings, computed using Bradley-Terry over the en-
tire collected dataset, and the rankings derived
from win-rates against fixed reference models. Ta-
ble 3 shows our results using the 10 most common
models in the released dataset as references. We
find that the correlation is < 0.6 for all reference
models. Surprisingly, these correlation numbers
are even lower than those in Table 1 even though
most of the LLM evaluators there are themselves
reference-based. However, we note that this com-
parisons is not completely apples-to-apples, as the
number of overlapping test models is different be-
tween Table 1 and Table 3.

Choice of reference model significantly impacts
evaluator performance Crucially, we observe
in Table 3 that different reference models report
very different correlations with the official Chatbot
Arena rankings. This variance even in the ground
truth setting strongly motivates our investigation
of reference model selection for LLM-based evalu-
ation in Section 4.2. Finally, we highlight that the
reference model reporting the lowest correlation

8https://huggingface.co/spaces/lmarena-ai/chatbot-arena-
leaderboard

9https://github.com/tatsu-lab/alpaca_eval/
tree/main/results

Figure 1: Average rank difference between the Bradley-
Terry Chatbot Arena ranking and ranking derived form
single-reference battles; each row corresponds to a dif-
ferent πref. Our results show that πref’s performance,
i.e. its ability to distinguish between test models in
a particular tier, is roughly dependent on its own tier
membership.

(gpt-4-1106-preview; τ = 0.3988) is the refer-
ence model used in the AlpacaEval leaderboard.

Next, we report results using our stratified rank
change methodology to understand the impact
of reference model choice in a more fine-grained
manner. Figure 1 shows our results; each row re-
ports rank difference between the the ground truth
rankings and those derived using a particular ref-
erence model; each row corresponds to one πref
and columns correspond to πtest that are in a par-
ticular percentile-stratified tiers. The percentile
tier to which πref belongs is also in the row la-
bels. Finally, numbers in parentheses indicate the
number of models over which the rank change is
computed.10

In the ground truth settings, reference mod-
els are generally better at ranking models in
tiers closer to its own We see that the refer-
ence models capability at distinguishing between
test models is roughly correlated with its perfor-
mance difference with these test models. For ex-
ample, we see that the reference model πref =
gpt-4-1106-preview reports the worser perfor-
mance on the other test tiers, but outperforms all
others in its own tier, i.e. the 75-100 percentile
tier. Similarly, the reference model that performs
the best for the 0-25 percentile group is itself a
member of a close tier of 25-50 percentile.

Both Table 3 and Figure 1 results demonstrate

10Note that each tier Πi contains 64/4 = 16 test models.
However, the released dataset may not have battles between
all test models and the chosen reference.
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Evaluator |X | πref

Evaluation Setting 1: Human evaluation

Chatbot Arena 4.9k∗
Official: Varies; uses Bradley-Terry
Our Analysis: 10 most common models in released dataset.

Evaluation Setting 2: LLM evaluation

AlpacaEval 805
Official: GPT-4 Preview (11/06)
Our Analysis: Randomly selected 20 models (See Table 8)

WildBench 1024
Official: GPT4-Turbo-0429, Claude3-Haiku, Llama2-70B-chat
Our Analysis: same

Table 2: Data statistics for our meta-evaluation study. Note that the prompt set X is the same for all reference
models in setting 1, but differs in setting 2. ∗: We report the average number of prompts corresponding to the 10
reference models used in our Chatbot Arena analysis. List and number of battles for each reference model is shown
in Table 7.

Reference Model τ w/ Orig. Ranking

claude-instant-1 0.5833
gpt-4-0613 0.5751
vicuna-33b 0.5465
gpt-4-0314 0.5380

claude-1 0.5173
vicuna-13b 0.5008

mixtral-8x7b-instruct-v0.1 0.4973
gpt-3.5-turbo-0613 0.4702

claude-2.1 0.4329
gpt-4-1106-preview 0.3988

Table 3: Correlation with the standard Chatbot Arena
rankings (i.e. rankings computed using Bradley Terry
over pairwise model battles) and reference-based rank-
ings (i.e. rankings based on battles against a single ref-
erence model). Our results show that reference-based
rankings are poorly correlated with Chatbot Arena, even
when using expert labelers.

that even in the ground truth setting, the choice
of reference model is critical and that choosing
a single reference model is suboptimal. In the
next section, we investigate the impact of reference
model choice in LLM-as-a-judge settings, i.e. the
actual settings that current LLMs are evaluated in.

4.2 Meta-evaluation of reference-based LLM
evaluators

4.2.1 AlpacaEval

As described in Section 2.3, we simulate
AlpacaEval-style win-rates for 20 different refer-
ence models. We stratify all test models (46 in
total) into 4 performance tiers using the Chatbot
Arena ground-truth rankings. For each tier, we re-
port the average τ for the standard Kendall’s Tau
correlation and delta correlation analysis in Table 4.
For stratified analysis, we report the average rank
difference between the Chatbot Arena rankings and

Reference τstandard
∆ used to compute τ∆

2 5 10 20

Tier 1 0.745 0.123 0.221 0.424 0.627
Tier 2 0.752 -0.006 0.172 0.405 0.634
Tier 3 0.742 0.070 0.217 0.405 0.621
Tier 4 0.705 0.136 0.303 0.411 0.575

Table 4: Standard Kendall’s τ and modified Kendall’s
τ∆ between reference model rankings in the AlpacaE-
val dataset and Chatbot Arena scores across different
thresholds ∆. Each row corresponds to a different ref-
erence tier. Tier 1 = top 75–100% capability, Tier 2 =
50–75%, Tier 3 = 25–50%, Tier 4 = bottom 0–25%.

Figure 2: Average ranking difference between Chat-
bot Arena rankings and simulated AlpacaEval-style
win-rate rankings. Rows indicate reference model tier,
columns indicate test model tier. Lower values suggest
better agreement with human preferences.

those using a particular reference model for each
test tier. Figure 2 shows these results.

All reference tiers show notably worse correla-
tions with humans when evaluating models with
similar capabilities. Table 4 illustrates this re-
sult. This reinforces our main finding that current
evaluators perform best at distinguishing models
that differ substantially in capability but cannot be
used to meaningfully judge differences between
realistic system pairs.
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Reference τstandard
∆ used to compute τ∆

2 5 10 20 30 50

WB Reward 0.900 0.455 0.579 0.538 0.713 0.790 0.867
GPT4T 0.852 -0.333 0.100 0.442 0.606 0.721 0.814
Haiku 0.890 0.000 0.368 0.543 0.676 0.742 0.845
Llama2-70B 0.852 -0.429 0.091 0.333 0.591 0.693 0.809

Table 5: Standard Kendall’s τ and modified Kendall’s τ∆ between WildBench’s reference model rankings and
Chatbot Arena scores across different thresholds ∆.

Tier 4 reference models perform better when
ranking models from other tiers We observe
that reference models from Tier 4 consistently
achieve the lowest, i.e. best, rank difference when
evaluating models within a particular tier. As ex-
pected, it performs better at ranking models within
its own capability tier.

Overall, these results indicate that there does not
exist a clear strategy for selecting reference models
given a test tier, and that reference model choices
must be constantly re-evaluated as newer and better
models are released.

4.3 WildBench

WildBench already uses multiple references; How
does this strategy fare? We find that the 3 cho-
sen reference models of this leaderboard – GPT-
4-Turbo-0429 (GPT4T), Claude-3-Haiku (Haiku),
and Llama-2-70B-chat (Llama) fall in Tier 1 (75-
100 percentile), tier 2 (50-75 percentile) and tier 3
(25-50 percentile) respectively.

High overall correlations over entire test model
can hide extremely low correlations for certain
test model ranges We find that all reference
models and the aggregate WB Reward metric re-
port > .85 rank correlation when considering the
entire test model set. Interestingly, although in-
dividual reference models report low correlations
under the delta-analysis, we find that the overall
WB-Reward has a decent correlation (0.455) for
∆ = 2. This shows that the aggregation strategy
helps overcome the shortcomings of individual ref-
erence models.

Single v/s Multiple references under the same
budget Aggregated WB Reward outperforms sin-
gle reference models in Table 6. However, the cost
of WB Reward is 3 times that of the single refer-
ence models. We ask: can WildBench’s multiple
reference strategy improve AlpacaEval’s single-
reference while maintaining the same cost as the
original single reference strategy.

Reference Tiers τstandard
∆ used to compute τ∆
2 5 10

Tier 1,2,3,4 0.6864 0.0764 0.1835 0.3638
Tier 1,2,3 0.6807 0.0677 0.1800 0.3615
Tier 2,3,4 0.7071 0.0449 0.1670 0.3598
Tier 3,4 0.7172 0.0802 0.2016 0.3752
Tier 1,4 0.6812 0.0766 0.1938 0.3814
Tier 1,3 0.6720 0.0588 0.1769 0.3602

Table 6: Randomized evaluation results under differ-
ent subsets of reference model tiers. Each row reports
the standard Kendall’s τ and modified Kendall’s τ∆
between test model rankings (based on simulated com-
parisons against sampled reference models) and Chatbot
Arena scores. Our strategy maintains a fixed total com-
parison budget across tiers. In contrast, WildBench’s
approach increases the budget linearly with the number
of reference models, making it more costly.

Setup: For each x ∈ X , we randomly select a
reference model πx

ref to compare the test model’s
output against. Next, this preference data is used to
estimate P (πtest > πref) for all test and reference
model pairs. Similar to Chatbot Arena, we use
Bradley Terry to obtain relative scores and rankings
for all test models.

Results: Table 6 shows our results. The left-
most column shows the tier membership from
which the reference models are sampled with equal
probability. We find that no reference tier combi-
nation improves performance consistently over
single-reference models for AlpacaEval under
the same budget.

5 Related Work

Traditional benchmarks for evaluating large lan-
guage models (LLMs) have often relied on close-
ended, multiple-choice datasets such as MMLU
(Hendrycks et al., 2020b). These benchmarks are
advantageous because of clear ground truth, but do
not evaluate LLMs in real use settings. LLM eval-
uators evaluating free-form generations (Li et al.,
2024; Lin et al., 2024; Li et al., 2023) provide a
way of evaluation beyond these limited formats.

Evaluation methods have shifted toward LLM-
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as-a-judge frameworks (Li et al., 2024; Lin et al.,
2024; Li et al., 2023; Kim et al., 2023) to rate out-
puts of other models. These methods typically em-
ploy either individual scoring or pairwise compari-
son (Kim et al., 2023). We discuss, in Section 2.3,
meta-evaluation standards used to establish relia-
bility of these evaluators.

6 Conclusion

Our work shows that commonly used reference-
based LLM evaluators report high correlations in
easy, wide-gap settings but fail to reliably distin-
guish between similarly capable models. We intro-
duce delta and stratified rank change analysis to
address these issues with meta-evaluation and find
a substantial different in evaluator performance de-
pending on the choice and capability tier of the
reference model. Our findings underscore the need
for a more nuanced meta-evaluation framework.

7 Limitations

Our work follows the LLM community’s standard
practice and uses Chatbot Arena as the source for
ground truth annotations. However, recent work
(Zhao et al., 2025; Singh et al., 2025) have cast
doubts on the reliability of their annotations and
rankings. We believe that, since we base the ma-
jority of our analysis on Chatbot Arena dataset
collected before June 2023, some sources of er-
rors outlined in these papers will not contaminate
our analysis. We hope that future work can re-run
similar studies as ours with more reliable human
data.

Adding to the earlier point, Chatbot Arena only
publicly released a subset of its human annotations.
The full dataset, including the user prompts, model
outputs and battle results for more models would
allow us to perform a more exhaustive analysis.
Finally, in order to limit the cost of from API calls
for eliciting LLM judgments from closed models,
we restricted our analysis to two benchmarks.
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A Number of Battles per Model

In Section 3.2, we mentioned that we used a subset
of the Chatbot Arena human preference dataset
to simulate reference-based evaluation. Table 7
below shows the number of battles each model
participated in.

Model Number of Battles

gpt-4-1106-preview 7387
gpt-3.5-turbo-0613 7083

gpt-4-0613 6165
claude-2.1 5583

claude-instant-1 4136
gpt-4-0314 4122

claude-1 3978
vicuna-33b 3720

mixtral-8x7b-instruct-v0.1 3545
vicuna-13b 3448

Table 7: Number of battles each model participated in
within the Arena Human Preference dataset.

B Reference Model Capability Tiers

In Section 4.2.1, we stratified reference models by
their Chatbot Arena performance into four tiers to
study how evaluator effectiveness varies with refer-
ence model in different tiers. Table 8 presents
the models, their win rates, Arena scores, and
Kendall’s τ (computed against gold across all test
tiers).

C Model-Level Reward Breakdown in
WildBench

In Section 4.3, we further analyzed WildBench
performance by breaking down how each reference
model contributed to the final reward. Table 9
shows scores and reward components across 21
models.

This illustrates that model rankings can change
significantly depending on the choice of reference,
especially for middle- and lower-tier models.
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Reference Model Winrate (%) Arena Score Kendall’s τ (All tiers)

Tier 1

Meta-Llama-3-70B-Instruct 33.18 1206 0.7706
claude-3-5-sonnet-20240620 40.56 1268 0.7457
gpt-4o-mini-2024-07-18 44.65 1272 0.7309
Qwen2-72B-Instruct 29.85 1187 0.7309
gpt4_0314 22.07 1186 0.7471

Tier 2

Yi-34B-Chat 29.66 1111 0.7949
mistral-large-2402 21.44 1157 0.7275
Mixtral-8x7B-Instruct-v0.1 18.26 1114 0.7484
mistral-medium 21.86 1148 0.7389

Tier 3

dbrx-instruct 18.45 1103 0.7275
Qwen1.5-7B-Chat 11.77 1070 0.7485
Starling-LM-7B-alpha 14.25 1088 0.7551
llama-2-70b-chat-hf 13.89 1093 0.7383
wizardlm-70b 14.38 1106 0.7497
OpenHermes-2.5-Mistral-7B 10.34 1074 0.7508
gpt-3.5-turbo-1106 9.18 1068 0.7457
llama-2-13b-chat-hf 7.70 1063 0.7234

Tier 4

Qwen-14B-Chat 7.50 1035 0.7247
chatglm2-6b 2.76 924 0.6728
vicuna-13b 5.83 1042 0.7167

Table 8: Reference models grouped by capability tier (Chatbot Arena), with Kendall’s τ versus gold rankings
computed across all test tiers

.

Model WB Elo Arena Score Tier gpt4t haiku llama reward

Mistral-7B-Instruct-v0.2 1095.81 1072 Tier 4 -54.74 -19.34 3.61 -23.49
mistral-large-2402 1158.02 1157 Tier 2 -46.39 -2.98 18.43 -10.31
gemma-2b-it 996.57 990 Tier 4 -86.08 -69.63 -58.84 -71.52
gpt-3.5-turbo-0125 1124.51 1106 Tier 3 -64.84 -27.44 -4.35 -32.21
Nous-Hermes-2-Mixtral-8x7B-DPO 1080.54 1084 Tier 4 -54.74 -16.28 2.44 -22.86
gpt-4-0125-preview 1208.30 1245 Tier 1 -4.25 37.84 51.32 28.30
tulu-2-dpo-70b 1114.00 1099 Tier 3 -54.93 -16.99 3.22 -22.90
nemotron-4-340b-instruct 1184.38 1209 Tier 1 -21.04 28.86 42.58 16.80
Yi-1.5-34B-Chat 1162.79 1157 Tier 2 -17.29 24.76 40.57 16.01
gpt-4o-2024-05-13 1239.47 1285 Tier 1 1.66 43.26 52.54 32.49
Qwen2-72B-Instruct 1176.37 1187 Tier 2 -34.08 13.04 31.84 3.60
Mixtral-8x7B-Instruct-v0.1 1122.78 1114 Tier 3 -50.15 -11.62 9.67 -17.37
gemma-7b-it 1058.18 1037 Tier 4 -77.25 -52.44 -35.87 -55.19
Starling-LM-7B-beta 1119.33 1119 Tier 3 -47.02 -3.22 15.87 -11.46
deepseek-coder-v2 1183.53 1178 Tier 2 -26.44 20.21 36.43 10.07
claude-3-5-sonnet-20240620 1226.31 1268 Tier 1 -4.39 40.92 50.15 28.89
gemini-1.5-flash 1196.80 1227 Tier 1 -11.28 27.15 40.09 18.65
gemini-1.5-pro 1221.13 1260 Tier 1 -1.32 39.06 47.95 28.56
Llama-2-7b-chat-hf 1033.37 1037 Tier 4 -66.60 -39.05 -25.20 -43.62
Meta-Llama-3-70B-Instruct 1194.65 1206 Tier 2 -18.43 30.06 45.80 19.14
Meta-Llama-3-8B-Instruct 1134.24 1152 Tier 3 -46.34 -7.28 14.45 -13.05

Table 9: List of 21 models shared between WildBench and Chatbot Arena leaderboards, including their WildBench
Elo, Arena score, tier, and reward contributions from individual reference models (gpt4t, haiku, llama).
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