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Abstract

LLM-based optimization has shown remark-
able potential in improving agentic systems.
However, the conventional approach of prompt-
ing LLM-based generative optimizer with the
trajectories on the whole training dataset in a
single pass becomes untenable as datasets grow,
leading to context window overflow and de-
graded pattern recognition. To address these
challenges, we propose Fine-grained Gener-
ative Optimization (FGO), a scalable frame-
work that divides large optimization tasks into
manageable subsets, performs targeted opti-
mizations, and systematically combines opti-
mized components through progressive merg-
ing. Evaluation across ALFWorld, Logistic-
sQA, and GAIA benchmarks demonstrates that
FGO outperforms conventional approach by
1.6-8.6% while reducing average prompt token
consumption by 56.3%. Our framework pro-
vides a practical solution for scaling up LLM-
based generative optimization of increasingly
sophisticated agentic systems. Further analysis
demonstrates that FGO achieves the most con-
sistent performance gain in all training dataset
sizes, showcasing its scalability and efficiency.

1 Introduction

Large Language Models (LLMs) have emerged as
powerful optimizers for agentic systems, capable
of analyzing execution trajectories and refining sys-
tem modules like prompts (Yang et al., 2024; Zhou
et al., 2022; Khattab et al., 2023; Opsahl-Ong et al.,
2024; Pryzant et al., 2023), tools (Qian et al., 2023;
Zhang et al., 2024c,b; Wang et al., 2024a; Yuan
et al., 2023). This paradigm, termed generative op-
timization (Yang et al., 2024; Cheng et al., 2024),
leverages the LLM’s inherent ability to compre-
hend and learn from execution patterns, allowing
for systematic improvements without requiring ac-
cess to model weights or gradients. The optimized
agentic system has shown great potential in var-
ious domains, including reasoning (Cheng et al.,
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Figure 1: Overview of agent optimization. (a) Basic
agent execution process. (b) Traditional all-at-once op-
timization faces context overflow and deteriorated per-
formance. (c) Our method: divide-and-conquer with
progressive merging enables scalable optimization.

2024; Zelikman et al., 2023), software engineer-
ing (Jimenez et al., 2023; Pan et al., 2024; Zelik-
man et al., 2023), data analysis (Hu et al., 2024b;
Jing et al., 2024), computer operation (Wang et al.,
2025; Xie et al., 2025; Abuelsaad et al., 2024; Xia
and Luo, 2025).

However, due to the increasing volume of data
required for optimizing LLM agentic systems au-
tonomously, directly applying LLM-based opti-
mization approaches encounters a fundamental
scalability issue. Existing methods typically con-
catenate all execution trajectories on the training
data and perform optimization in an all-at-once
manner, feeding the entire dataset into the LLM
optimizer in a single prompt. While this approach
works for optimization tasks with small-scale data,
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it becomes problematic as the data grows. For
instance, in the GAIA benchmark (Mialon et al.,
2023), agents are tasked to retrieve and analyze
information from a diverse range of sources, in-
cluding web and different types of files. Solving
a task from the dataset requires agents to interact
with external tools or forge their own ones in or-
der to collect real-world information and perform
reasoning. The sophisticated process can generate
lengthy execution traces for subsequent optimiza-
tion, which is filled with raw documents and com-
plex intermediate reasoning steps, even challeng-
ing for human to parse (Zhang et al., 2025). This
increasing complexity leads to two critical limi-
tations: (1) The concatenated trajectories exceed
LLM context windows, forcing truncation of valu-
able optimization signals. (2) Even when content
fits within context windows, LLMs struggle with
analyzing long-range dependencies in extensive
corpus (Bai et al., 2024; Liu et al., 2024; Ni et al.,
2024; Ravaut et al., 2024; Li et al., 2024), making
it hard for the LLM optimizer to capture subtle pat-
terns and relationships between execution traces.
As a result, such approaches can produce subop-
timal solutions, particularly in complex scenarios
where understanding the intricate relationships be-
tween different execution trajectories is crucial for
improving agent performance.

To address these scalability challenges, we intro-
duce Fine-grained Generative Optimization (FGO),
a framework that enables efficient optimization of
LLM-based agentic systems with large-scale data.
Specifically, FGO operates through three compo-
nents: (1) Task division that breaks down the large
training dataset into more manageable subsets, (2)
Fine-grained generative optimization enabling ef-
ficient processing of each subset, and (3) Progres-
sive module merging that adaptively combines the
individually optimized modules while preserving
crucial insights from each subset. This design al-
lows FGO to effectively handle larger optimization
tasks while maintaining high-quality results.

We evaluate FGO by optimizing two agent
modules: instruction prompts and tools an agent
could access, on diverse tasks including ALF-
World (Shridhar et al., 2020), LogisticsQA, and
GAIA (Mialon et al., 2023). Agents trained with
FGO produce significant performance gains across
all datasets, ranging from 8.3% to 38.1%, outper-
forming other optimization methods by 1.6%-8.6%.
Further analysis reveals that FGO maintains supe-
rior performance across varying training dataset

sizes, highlighting its scalability and stability. No-
tably, FGO achieves these improvements while re-
ducing prompt token consumption by 56.3% and
increasing optimization efficiency by 7.6% com-
pared to conventional all-at-once optimization.
Our contributions are threefold: (1) We identify
and analyze the scalability limitations in current
LLM-based optimization approaches for agentic
systems. (2) To address the scalability limitation,
we propose FGO, a scalable optimization frame-
work that effectively handles large-scale agent op-
timization through task division and progressive
merging. (3) We conduct extensive experiments
across diverse tasks to validate FGO’s effectiveness
and provide insights into its scalability advantages
through comprehensive empirical analysis.

2 Preliminary
2.1 Problem Setup

LLM Agent Optimizable Modules Agentic sys-
tems exhibit complex behavioral patterns emerg-
ing from multiple factors. A critical insight in de-
signing such systems lies in the decomposition of
the agent’s parameter space into modules that can
be independently optimized (Anthropic, 2024a).
This decomposition enables targeted optimization
of specific functional aspects while maintaining
global system coherence. Denote the parameter
space of agentic system as ©, which partitions into
trainable modules {O;}? ; governing distinct be-
havioral dimensions. Each module must satisfy
two key properties to qualify as a modular unit.
First, the trainability property requires that each
module can influence the agent’s policy gradients
when exposed to queries. This ensures the module
is sufficiently responsive to reward signals during
optimization. Second, the orthogonality property
requires that parameter gradients across different
modules exhibit minimal directional alignment dur-
ing optimization. Such orthogonality constraint
ensures modules encode non-redundant functional-
ities while guaranteeing each contributes uniquely
to performance optimization.

Agentic System Optimization An agent interacts
with an environment £ by generating a sequence of
actions in response to a query g. Given parameters
f € O, the agent’s policy 7 determines actions
az based on the current state of interaction history
a1.t—1 and observations o1.;. These actions, com-
bined with the observations from the environment,
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form a trajectory 7 that represents the agent’s solu-
tion attempt for the given query. To put it formally:

ay ~ 7(-|ar, 0143 0), opp1 ~ E(lar), Vt € [T)]

T=A(¢g;0) = (01,01, ...,0r,ar)

(1

The performance is quantified through a loss func-

tion £. Given a distribution D over query-label

pairs (g,y), we aim to find optimal agent param-

eters that minimize expected loss across the task
distribution. The optimization objective is:

0" = arg lggélE(q,y)ND [£(A(g;:0),y)] (2

This formulation of optimization via tuning mod-
ules provides a unified abstraction for analyzing
performance-critical factors in agentic system de-
sign. In practice, the modules include prompts for
task handling (Wen et al., 2024; Wu et al., 2024b),
long term memory (Zhang et al., 2024d), the avail-
able toolbox (Zhang et al., 2024c), and the weights
of the backbone LLM (Zeng et al., 2024; Ma et al.,
2024).

2.2 Motivation

In generative optimization setting, we assume the
numeric value of the policy gradient is not accessi-
ble in Eq. 2. This constraint emerges from a prac-
tical reality in modern LLM agent systems - the
increasing reliance on proprietary LLMs like GPT-
4 (OpenAl, 2023) and Claude (Anthropic, 2024b),
where internal parameters are inaccessible.
Current approaches that leverage LLLM as opti-
mizer typically follow a two-step iterative process:
first evaluating modules on training data to collect
trajectories and losses, then prompting the LLM op-
timizer with this information to generate improved
modules. While these methods have shown promis-
ing results (Yang et al., 2024; Zhang et al., 2024c;
Cheng et al., 2024), they face fundamental scalabil-
ity challenges that limit their practical applications.

Context window limit. The inherent constraint
of context window is a critical bottleneck in gen-
erative optimization. As the number of training
samples grows, concatenated trajectories often ex-
ceed the context capacity of even the most capable
LLMs. This limitation becomes particularly acute
in complex tasks with extensive reasoning steps
or multi-turn interactions. Even a modest num-
ber of samples can overwhelm the context window,
severely restricting the optimizer’s ability to pro-
cess comprehensive training data.

Insufficient context utilization. Even when con-
tent fits within context limits, LLMs struggle to
effectively process patterns across extensive trajec-
tory collections (Ni et al., 2024; Li et al., 2024;
Bai et al., 2024). Recent benchmarks consistently
show LLM performance deteriorates with increas-
ing text length, particularly for complex dialogues
and documents (Bai et al., 2024; Wu et al., 2024a;
Ni et al., 2024). For LLM-based optimizers, this
limitation is critical as optimization requires under-
standing long-range dependencies and fine-grained
details across multiple samples. Consequently,
LLM-based optimizers often produce suboptimal
module updates that fail to capture the full com-
plexity of real-world optimization problems where
both broad patterns and specific details matter.

3 Methods

3.1 Overview

The overall pipeline of FGO is illustrated in Fig-
ure 2. The core concept behind our proposed frame-
work is to divide the large task set into smaller,
more manageable subsets and optimize them inde-
pendently. After we obtain the optimal modules
trained on each subsets, we develop an algorithm to
progressively merge them into an optimal module.

3.2 Fine-Grained LLM Agent Optimization

Basic Module Optimization We first describe our
approach to agent optimization, with the process il-
lustrated in Algorithm 1. Each optimization epoch
consists of three phases: exploration, evaluation,
and optimization. During exploration, the agent
uses its current module parameters to interact with
given tasks, generating solution trajectories. In
the evaluation phase, an LLM-based evaluator an-
alyzes these trajectories to determine correctness,
identify failure points, recognize patterns, and high-
light improvement areas based on ground truth and
execution details. These evaluations serve as tex-
tual gradients that guide module updates toward
improved performance. Finally, in the optimization
phase, an LL.M-based optimizer processes the tra-
jectories and evaluations to synthesize an updated
module with enhanced performance characteristics.

Divide As the number and complexity of task set
scales, the length and number of the trajectories
can quickly increase, posing challenge to LLM-
based optimization. To address the issue, we pro-
pose a divide-and-conquer based strategy that de-
composes the training dataset D into N disjoint
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Figure 2: Illustration of FGO’s optimization pipeline. The system operates in three stages: (1) Divide: the full
dataset is split into manageable subsets, (2) Optimize: parallel optimization is performed on each subset using
LLM-based optimization with multiple iterations, and (3) Merge: optimized modules are progressively combined
using recursive clustering to produce the final optimal agent system.

Algorithm 1 Module Optimization

Algorithm 2 Progressive Module Merging

Input: Task set D, number of epochs
Output: Optimized module 0

0+ ¢ > Start from scratch
fore < 1to I/ do
H <+ {} > Empty trajectory history
for (¢,y) € Ddo
T+ A(gq;0) >Eq. 1

r < Evaluate(, y)
‘H.append((7,7))
end for
6 < LLMoptim(H, 0)
end for
return 6

> Update module

subsets {D;}¥,, and perform optimization on the
subsets independently. By operating on smaller,
focused subsets, the intuition is to capture subtle
patterns and requirements that might be overlooked
in global optimization. The process yields N dis-
tinct module-loss pairs, each specialized for its
respective subset’s characteristics.

Progressive Merging While decomposition ad-
dresses immediate scalability constraints, it intro-
duces the challenge of effectively integrating N
independently optimized modules while preserving
their specialized insights. A straightforward ap-

Input: List M = {(0;, 7;, p;) } containing mod-
ules, tasks, and performances, cluster size thresh-
old ¢
Output: Optimized module 6*, performance p*
function PROGRESSIVEMERGE(M, t)
if M| < t then
0, p < Merge(M) > Base: Direct Merge
return 60, p
end if
C + KMeans(S,[/|M]])
cluster
for each cluster ¢; € C do
0;, p; < ProgressiveMerge(c;, t)
end for
return Merge({6;, p; } ﬁ‘l)
end function
return ProgressiveMerge(M, t)

> Adaptive

proach would be to directly prompt an LLM with
all module-performance pairs to generate a unified
module. However, such all-at-once merging often
fails to effectively process and synthesize patterns
across numerous modules simultaneously, poten-
tially losing the specialized optimizations gained
through divided optimization. We propose pro-
gressive merging, implemented as a recursive al-
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gorithm that strategically controls merging granu-
larity through a cluster size threshold. Algorithm
2 details the progressive merging process. For a
given list of module-performance pairs, we first
check if the list size exceeds the predefined thresh-
old ¢. For larger lists, we partition the modules
into k = [/n] clusters based on their similari-
ties!, where n is the number of modules. Each
resulting cluster then undergoes recursive merging.
When a cluster’s size falls below the threshold ¢,
we merge its constituent modules by prompting an
LLM with their contents and corresponding per-
formance statistics. After each merge operation,
we evaluate the merged module’s performance by
validating it on the combined task set from all con-
stituent modules. This recursive process naturally
constructs a bottom-up merging tree, where each in-
ternal node represents a validated merge of its chil-
dren’s modules. This controlled, progressive ap-
proach ensures that each merge operation remains
within LLM context limits while capturing intricate
relationships between similar modules, ultimately
enabling efficient optimization of agentic systems.

4 Evaluations

4.1 Experiment Setup

We evaluate FGO by optimizing two distinct and
critical modules of agentic system: prompts and
tools. Effective prompts serve as essential guide-
lines that enable agents to properly comprehend
task requirements and execution constraints, signif-
icantly enhancing task completion capabilities (Fu
et al., 2024; Chen et al., 2024; Wu et al., 2024b;
Zhao et al., 2024). Meanwhile, tools represent
specialized functional components that expand the
agent’s action space, providing targeted capabilities
for solving domain-specific challenges.

Datasets We conduct experiments on three differ-
ent benchmarks to study the performance of FGO.
¢ ALFWorld (Shridhar et al., 2020) is a text-based
benchmark for household task planning, where
agents navigate virtual environments through nat-
ural language commands. The agent receives a
high-level objective and must execute a sequence
of appropriate actions to accomplish tasks. The
environment provides immediate success/failure
feedback upon task completion. We evaluate per-
formance using success rate across various task

!The modules studied are represented as text. We calculate
cosine similarities based on their embeddings.

categories as well as the overall average success
rate across all tasks.

¢ LogisticsQA is our own curated benchmark. The
dataset consists of UBL format shipping invoice
documents from real world scenarios. The agent
is tasked to understand and extract the transport
reference number from the document. A task
is considered successful if the agent’s extracted
answer is an exact match with the ground truth.
Please refer to Appendix E for details of dataset.

¢ GAIA (Mialon et al., 2023) is a benchmark de-
signed to test the capability of agents as general
assistants. It encompasses tasks from different
domains such as file browsing, web searching
and scraping, making it a perfect testbed for
benchmarking agent’s tool usage capability as
well as the quality of the toolbox. The bench-
mark presents significant challenges in tool se-
lection, information integration, and reasoning
across multiple sources of information. A task
is considered successful if the agent’s answer
matches exactly with the ground truth.

Baselines for Comparison. We include Pro-
TeGi (Pryzant et al., 2023), Reflexion (Shinn
et al., 2024), MIPROv2 (Opsahl-Ong et al.,
2024) for comparing instruction optimization,
and CRAFT (Yuan et al., 2023), AgentOpti-
mizer (Zhang et al., 2024c) for comparing tool
optimization. We also include the algorithm 1 and
its variants to compare the module optimization
outcome. (1) All-at-once represents performing
agent optimization on the whole training set using
the alg. 1; (2) Batch-wise employs a fixed-size
batching strategy, splitting the training dataset into
predetermined chunks and performing optimization
the batches sequentially; (3) Bootstrapping imple-
ments a stochastic approach, sampling task batches
from the training dataset with replacement. For a
full detailed description of the baselines and the
implementation details, please refer to Appendix B.

4.2 Main Results

Finding 1: FGO demonstrates superior opti-
mization performance across multiple domains.
As shown in Table 1, FGO consistently outper-
forms both established baselines and alternative
implementations across multiple domains. In the
prompt optimization task, FGO achieves the high-
est average score on ALFWorld, surpassing the
strongest baseline MIPROv2 by 6.7%. While
MIPROV2 exhibits competitive performance on in-
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ALFWorld .

Methods Pick Clean Heat Cool Look  Pick2 Avg. LogisticsQA
Base Agent 69.4 50.5 65.2 20.6 31.5 21.6 45.5 36.3
ProTeGi 66.7 54.8 60.9 81.0 55.6 23.5 58.2 44.7
Reflexion 70.8 60.2 82.6 85.7 72.2 64.7 72.2 49.8
MIPROV2 95.8 67.7 78.3 81.0 77.8 47.1 75.4 61.2
All-at-once 90.2 72.6 78.3 78.6 66.7 55.9 75.0 52.1%
Batch-wise 77.1 71.0 67.4 64.3 86.1 73.5 72.8 55.7
Bootstrapping 91.7 77.4 73.9 74.6 87.0 41.2 75.6 62.6
FGO 90.2 83.8 87.0 88.9 86.1 62.7 83.6 64.8

Table 1: Performance of the optimized agent using different optimization methods on ALFWorld and LogisticsQA.
The best results are in bold. * denotes that we encounter context window exceeded error during optimization and

have to trim the context sent to the LLM optimizer.

30
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Figure 3: Performance of the optimized agent using
different optimization methods on GAIA. * denotes that
we encounter context window exceeded error during
optimization and have to trim the context sent to the
LLM optimizer.

dividual subtasks, our method excels by decom-
posing the dataset and applying targeted optimiza-
tions to each subset. This task type-specific ap-
proach enables FGO to address the unique chal-
lenges in different environments more effectively
than general-purpose optimizers. For tool opti-
mization, FGO demonstrates a clear advantage on
GAIA, outperforming other methods. While ap-
proaches like AgentOptimizer incorporate fail-safe
mechanisms for stability, the generated tools miss
corner cases. In contrast, FGO’s merging mech-
anism examines different optimization outcomes
across subsets to generate a holistic toolset cover-
ing edge cases. Overall, FGO achieves the most
substantial performance improvements across all
evaluation scenarios, with enhancements ranging
from 8.3% to 38.1% compared to the vanilla base
agents, demonstrating the effectiveness of our fine-

grained optimization approach.

Finding 2: Progressive merging effectively pre-
serves task-specific patterns while achieving
global optimum. FGO’s superior performance
stems from its divide-and-conquer methodology.
The All-at-once approach struggles with processing
complex patterns across the entire dataset, resulting
in suboptimal performance on specific ALFWorld
subtasks. While bootstrapping and batch-wise opti-
mization show strong results in certain categories,
they lack consistency across the task spectrum.
In contrast, FGO first optimizes subset-specific
prompts and tools, then progressively merges them
to preserve task-specific patterns while building
toward global optimum. We examine the effects of
merging on FGO performance in Section 4.4.

4.3 Further Analysis

Finding 3: FGO demonstrates extraordinary
scalability. We evaluate how the volume of train-
ing data affects the optimization performance in
ALFWorld?>. As shown in Figure 4, FGO main-
tains stable performance across all dataset sizes,
with consistent improvement as number of training
samples increases. MIPROv?2 also maintains stable
performance due to its advanced algorithms, but
achieves lower overall performance due to lack of
targeted optimization. While batch-wise optimiza-
tion shows similar training accuracy in low-data
settings, it yields lower performance compared to
bootstrapping optimization, indicating poorer gen-
eralization. This aligns with established machine

ZSince Reflexion operates on a task basis and directly opti-

mizes the test performance, the notion of training data does
not apply. Therefore we do not include Reflexion in the plot.
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Figure 4: Analysis of the number of training tasks. We
run optimization on varied training dataset sizes and plot
the performance. FGO achieves best performance in all
training settings, and demonstrate a steady increase.

learning principles where bootstrapping enhances
generalization (Breiman, 1996). Additionally, All-
at-once optimization proves impractical for Logis-
ticsQA and GAIA due to the extensive solution
trajectories exceeding context limit, which justifies
the need for more scalable approach.

Finding 4: FGO achieves an optimal balance
between token cost, efficiency and performance.
We visualize the relationship between token con-
sumption during optimization and the optimized
performance in Figure 5, and outline the time to
train and performance in Figure 7. In terms of to-
ken consumption, FGO requires larger number of
tokens compared to Batch-wise and Bootstrapping
optimization. This is because the merging process
requires evaluating on the combined task set from
all the constituent modules. This is a sacrifice in
exchange for accurately modeling the merged mod-
ule’s capability in order to generate more accurate
modules in the merging process. In terms of effi-
ciency, FGO can perform optimization in parallel
and gather the optimized modules at once, which
is an unique advantage compared to the sequential
training methods.

4.4 Ablation Study

We investigate the following questions to under-
stand the impact of different design choice in FGO:

How do progressive merging and choice of clus-
tering algorithm affect performance? To analyze
the impact of progressive merging and clustering
algorithms during merging, we conduct ablation
experiments on ALFWorld. We first establish a
baseline by removing progressive merging entirely,
simply prompting an LLM to merge all module-

Cluster ALFWorld
Algorithm Avgof 3 Best of 3
None 73.1 (+27.6) 84.3 (+22.4)
Spectral 81.6 (+36.1) 89.6 (+27.7)
Bisect K-Means | 80.1 (+34.6) 91.0 (+29.1)
K-Means 83.6 (+38.1) 89.6 (+27.7)

Table 2: Ablation study on the effects of clustering
algorithms. "None" means we skip the clustering step
and directly merge the optimized modules. The numbers
in parentheses indicate the performance improvement
over the base agent.

performance pairs directly. We then evaluate dif-
ferent clustering methods including Spectral clus-
tering and Bisect K-Means. Results in Table 2
indicate that even when progressive merging is not
applied, the method achieves an average success
rate of 73.1%, representing a significant improve-
ment over the base agent. Furthermore, incorpo-
rating progressive merging enhances performance
across all clustering algorithms, suggesting that the
progressive merging process itself plays a more crit-
ical role in boosting performance than the choice
of clustering algorithm.

How does different partitioning scenario affect
FGO’s performance? To examine the robustness
of FGO, we inspect two partitioning scenarios: (1)
imbalanced partitioning, where subset sizes are
highly skewed (controlled by parameter 3, with
smaller values indicating more imbalance); (2)
random partitioning, where training tasks are ran-
domly assigned to different partitions. Details
about imbalanced dataset generation are in Ap-
pendix B. As shown in Table 3, an unbalanced
dataset partition leads to deteriorated performance.
Noticeably, even with highly skewed distributions,
the performance drop is only 10% compared to
category-based partitioning, still outperforming
most baselines. This indicates that the adaptive
merging process effectively captures underlying
patterns despite suboptimal partitioning. Overall,
FGO demonstrates resilience to suboptimal parti-
tioning scenarios, maintaining competitive perfor-
mance even in challenging conditions.

How does FGO perform with advanced reason-
ing LLLM as optimizer backbone? To test FGO
with advanced reasoning LLM as optimizer back-
bone, we use 03-mini to optimize the agents on
AFLWorld and measure the resulting metrics. We
set the reasoning effort to high for all cases. As
shown in Table 4, FGO maintains the best perfor-
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Figure 5: Comparison of prompt token efficiency across different optimization methods on ALFWorld, LogisticsQA,
and GAIA. Each panel plots the trained agent’s performance against the total prompt tokens consumed during
optimization. Circle diameters are proportional to the optimization token consumption, with crosses (+) indicating

circle centers.

Scenario ALFWorld
Avgof3 Bestof3
Imb. (8 = 0.6) 73.4 85.1
Imb. (8 = 0.8) 76.9 87.3
Random 80.3 88.1
Category 83.6 89.6

Table 3: Ablation on data partitioning scenario. In
imbalanced setting, the distribution of the partitions are
skewed and controlled by a parameter 5. The smaller 3,
the more imbalanced the partitioning. In random setting,
the training tasks are randomly assigned to different
partitions instead of according to their categories.
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Figure 6: Ablation study on the number of independent
agent optimizers. Most parameter settings achieve simi-
lar performance, with varying time for optimization.

Method # Tokens Time (s) Avgof3 Bestof3
All-at-once  8.15x107 7583 87.8 93.3
Batch-wise 1.59x107 2969 83.1 92.3

Bootstrapping  1.34x107 2521 88.8 95.0
FGO 1.97x107 2142 89.3 95.5

Table 4: Ablation on the optimizer backbone. We lever-
age reasoning model 03-mini as the backbone for opti-
mization, and report the metrics. Best result is in bold.

mance while still achieving the highest efficiency
in training time, with only a modest increase in
token consumption compared to baselines.

How does the number of divided subsets affect
performance? To answer this question, we con-
duct ablation study on the number of independent
agent optimizers. We train agents on LogisticsQA
and set the number of divided subsets to 3, 4, 6, &,
12, respectively. Due to the high cost in running
gpt-40, we downsample 100 tasks from the test
set and validate the optimized agent’s performance.
We plot the relationship between performance and
training time in Figure 6. The results show that
while accuracy remains mostly stable within a nar-
row range, the training time varies significantly.
For example, using 8 subsets achieves the highest

accuracy (~53%) in around 1525 seconds, whereas
using 12 subsets requires over 2300 seconds for
a slightly lower accuracy. This suggests that the
choice of the number of subsets mostly impacts
computational efficiency rather than the final opti-
mization quality.

5 Related Work

LLM as Optimizer. LLMs are increasingly used
as a blackbox optimizer for different LLM sys-
tems. In prompt optimization, LLM is leveraged
to automously maximizing LL.M’s performance to
novel tasks without expensive model tuning (Zhou
et al., 2022; Pryzant et al., 2023; Cheng et al.,
2023; Prasad et al., 2022; Khattab et al., 2024). In
the realm of in-context learning (Min et al., 2021;
Dong et al., 2022; Brown, 2020), by automatically
retrieving demonstrations from training set (Zhao
etal.,2021; Luetal.,2021; Liu et al., 2021) or from
adaptively annotated samples by LLM (Zhang et al.,
2023; Wu et al., 2022; Su et al., 2022), prompt
with autonomously selected in-context examples
can reach performance better can human crafted
prompts. LLM-based optimizers are also used as
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meta-optimizers to debug and improve an LLM-
based agentic system (Zelikman et al., 2023; Yin
et al., 2024; Zhang et al., 2025; Song et al., 2024).

Automated Agentic System Design. Efforts
in enhancing LLM inference performance have
evolved since their emergence (Shinn et al., 2024;
Madaan et al., 2024; Yao et al., 2023, 2024; Wei
et al., 2022). This optimization paradigm has nat-
urally extended to agentic systems, with recent
works optimizing agent workflows through com-
plex graphs (Zhuge et al., 2024), code (Hu et al.,
2024a), and trees (Zhang et al., 2024a). Others
focus on developing reusable tools (Zhang et al.,
2024c; Cai et al., 2023; Qian et al., 2023; Yuan
et al., 2023) and using past experiences (Zhao et al.,
2024; Wang et al., 2024b) to improve performance.

6 Conclusion

In this paper, we address the scalability challenges
in LLM-based agent optimization by introducing
FGO, a framework that optimizes system modules
through task division, fine-grained targeted opti-
mization, and progressive merging. Evaluation
across multiple benchmarks demonstrates that FGO
consistently outperforms existing optimization ap-
proaches. Analysis shows that FGO achieves an
optimal balance between performance and cost.
FGO’s scalability makes it valuable for optimizing
sophisticated agentic systems in real-world cases.

Limitations

The merging process introduces computational
overhead, as it requires back-testing the merged
module on the merged training dataset, resulting
in larger token cost compared to Batch-wise op-
timization and Bootstrappingoptimization. In fu-
ture work, we attempt to leverage LLM to predict
the performance of the merged module using in-
context learning, or approximate the performance
using Bayesian methods.

References

Tamer Abuelsaad, Deepak Akkil, Prasenjit Dey, Ashish
Jagmohan, Aditya Vempaty, and Ravi Kokku. 2024.
Agent-e: From autonomous web navigation to foun-
dational design principles in agentic systems. arXiv
preprint arXiv:2407.13032.

Anthropic. 2024a. Building effective agents.
https://www.anthropic.com/research/
building-effective-agents.

Anthropic. 2024b. Model card addendum: Claude 3.5
haiku and upgraded claude 3.5 sonnet.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xi-
aozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu, Lei
Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. 2024.
Longbench v2: Towards deeper understanding and
reasoning on realistic long-context multitasks. arXiv
preprint arXiv:2412.15204.

Leo Breiman. 1996. Bagging predictors. Machine
learning, 24:123-140.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen,
and Denny Zhou. 2023. Large language models as
tool makers. arXiv preprint arXiv:2305.17126.

Minghao Chen, Yihang Li, Yanting Yang, Shiyu Yu,
Binbin Lin, and Xiaofei He. 2024. Automanual:
Generating instruction manuals by llm agents via
interactive environmental learning. arXiv preprint
arXiv:2405.16247.

Ching-An Cheng, Allen Nie, and Adith Swaminathan.
2024. Trace is the next autodiff: Generative opti-
mization with rich feedback, execution traces, and

llms. Advances in Neural Information Processing
Systems, 37:71596-71642.

Jiale Cheng, Xiao Liu, Kehan Zheng, Pei Ke, Hongning
Wang, Yuxiao Dong, Jie Tang, and Minlie Huang.
2023. Black-box prompt optimization: Aligning
large language models without model training. arXiv
preprint arXiv:2311.04155.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Yao Fu, Dong-Ki Kim, Jackyeom Kim, Sungryull
Sohn, Lajanugen Logeswaran, Kyunghoon Bae, and
Honglak Lee. 2024. Autoguide: Automated gener-
ation and selection of context-aware guidelines for
large language model agents. In The Thirty-eighth
Annual Conference on Neural Information Process-
ing Systems.

Shengran Hu, Cong Lu, and Jeff Clune. 2024a. Au-
tomated design of agentic systems. arXiv preprint
arXiv:2408.08435.

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, et al. 2024b. Infiagent-dabench: Eval-
uating agents on data analysis tasks. arXiv preprint
arXiv:2401.05507.

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2023. Swe-bench: Can language mod-
els resolve real-world github issues? arXiv preprint
arXiv:2310.06770.

18998


https://www.anthropic.com/research/building-effective-agents
https://www.anthropic.com/research/building-effective-agents
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf
https://assets.anthropic.com/m/1cd9d098ac3e6467/original/Claude-3-Model-Card-October-Addendum.pdf

Ligiang Jing, Zhehui Huang, Xiaoyang Wang, Wen-
lin Yao, Wenhao Yu, Kaixin Ma, Hongming Zhang,
Xinya Du, and Dong Yu. 2024. Dsbench: How far
are data science agents to becoming data science ex-
perts? arXiv preprint arXiv:2409.07703.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan A, Saiful Haq, Ashutosh Sharma, Thomas T.
Joshi, Hanna Moazam, Heather Miller, Matei Za-
haria, and Christopher Potts. 2024. DSPy: Com-
piling declarative language model calls into state-
of-the-art pipelines. In The Twelfth International
Conference on Learning Representations.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari,
Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T
Joshi, Hanna Moazam, et al. 2023. Dspy: Compiling
declarative language model calls into self-improving
pipelines. arXiv preprint arXiv:2310.03714.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue,
and Wenhu Chen. 2024. Long-context llms strug-
gle with long in-context learning. arXiv preprint
arXiv:2404.02060.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel,
and Pontus Stenetorp. 2021. Fantastically ordered
prompts and where to find them: Overcoming
few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786.

Zixian Ma, Jianguo Zhang, Zhiwei Liu, Jieyu Zhang,
Juntao Tan, Manli Shu, Juan Carlos Niebles, Shelby
Heinecke, Huan Wang, Caiming Xiong, et al. 2024.
Taco: Learning multi-modal action models with syn-
thetic chains-of-thought-and-action. arXiv preprint
arXiv:2412.05479.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Grégoire Mialon, Clémentine Fourrier, Craig Swift,
Thomas Wolf, Yann LeCun, and Thomas Scialom.
2023. Gaia: a benchmark for general ai assistants.
arXiv preprint arXiv:2311.12983.

Sewon Min, Mike Lewis, Luke Zettlemoyer, and Han-
naneh Hajishirzi. 2021. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943.

Xuanfan Ni, Hengyi Cai, Xiaochi Wei, Shuaigiang
Wang, Dawei Yin, and Piji Li. 2024. XL? bench:
A benchmark for extremely long context understand-

ing with long-range dependencies. arXiv preprint
arXiv:2404.05446.

OpenAl. 2023. Gpt-4 system card.

Krista Opsahl-Ong, Michael J Ryan, Josh Purtell, David
Broman, Christopher Potts, Matei Zaharia, and Omar
Khattab. 2024. Optimizing instructions and demon-
strations for multi-stage language model programs.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9340-9366, Miami, Florida, USA. Association for
Computational Linguistics.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep
Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang. 2024.
Training software engineering agents and verifiers
with swe-gym. arXiv preprint arXiv:2412.21139.

Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit
Bansal. 2022. Grips: Gradient-free, edit-based in-
struction search for prompting large language models.
arXiv preprint arXiv:2203.07281.

Reid Pryzant, Dan Iter, Jerry Li, Yin Lee, Chenguang
Zhu, and Michael Zeng. 2023. Automatic prompt op-
timization with “gradient descent” and beam search.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7957-7968, Singapore. Association for Computa-
tional Linguistics.

Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan
Liu, and Heng Ji. 2023. Creator: Tool creation for
disentangling abstract and concrete reasoning of large
language models. arXiv preprint arXiv:2305.14318.

Mathieu Ravaut, Aixin Sun, Nancy Chen, and Shafiq
Joty. 2024. On context utilization in summariza-
tion with large language models. In Proceedings
of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 27642781, Bangkok, Thailand. Association
for Computational Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Coté,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020. Alfworld: Aligning text and em-
bodied environments for interactive learning. arXiv
preprint arXiv:2010.03768.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang,
Ao Luo, Shijian Wang, Qingyun Wu, and Chi
Wang. 2024. Adaptive in-conversation team build-
ing for language model agents. arXiv preprint
arXiv:2405.19425.

18999


https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://openreview.net/forum?id=sY5N0zY5Od
https://cdn.openai.com/papers/gpt-4-system-card.pdf
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.18653/v1/2024.emnlp-main.525
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2023.emnlp-main.494
https://doi.org/10.18653/v1/2024.acl-long.153
https://doi.org/10.18653/v1/2024.acl-long.153

Hongjin Su, Jungo Kasai, Chen Henry Wu, Weijia Shi,
Tianlu Wang, Jiayi Xin, Rui Zhang, Mari Ostendorf,
Luke Zettlemoyer, Noah A Smith, et al. 2022. Selec-
tive annotation makes language models better few-
shot learners. arXiv preprint arXiv:2209.01975.

Zhenhailong Wang, Haiyang Xu, Junyang Wang,
Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. 2025. Mobile-agent-e: Self-evolving mo-
bile assistant for complex tasks. arXiv preprint
arXiv:2501.11733.

Zhiruo Wang, Daniel Fried, and Graham Neubig. 2024a.
Trove: Inducing verifiable and efficient toolboxes
for solving programmatic tasks. arXiv preprint
arXiv:2401.12869.

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and
Graham Neubig. 2024b. Agent workflow memory.
arXiv preprint arXiv:2409.07429.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2024. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. Advances
in Neural Information Processing Systems, 36.

Di Wu, Hongwei Wang, Wenhao Yu, Yuwei Zhang, Kai-
Wei Chang, and Dong Yu. 2024a. Longmemeval:
Benchmarking chat assistants on long-term interac-
tive memory. arXiv preprint arXiv:2410.10813.

Shirley Wu, Shiyu Zhao, Qian Huang, Kexin Huang,
Michihiro Yasunaga, Kaidi Cao, Vassilis N Ioan-
nidis, Karthik Subbian, Jure Leskovec, and James
Zou. 2024b. Avatar: Optimizing 1lm agents for
tool-assisted knowledge retrieval. arXiv preprint
arXiv:2406.11200.

Zhiyong Wu, Yaoxiang Wang, Jiacheng Ye, and Ling-
peng Kong. 2022. Self-adaptive in-context learn-
ing: An information compression perspective for
in-context example selection and ordering. arXiv
preprint arXiv:2212.10375.

Xiaobo Xia and Run Luo. 2025. Gui-rl: A generalist
rl-style vision-language action model for gui agents.
arXiv preprint arXiv:2504.10458.

Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan
Li, Siheng Zhao, Ruisheng Cao, Jing Hua Toh, Zhou-
jun Cheng, Dongchan Shin, Fangyu Lei, et al. 2025.
Osworld: Benchmarking multimodal agents for open-
ended tasks in real computer environments. Ad-
vances in Neural Information Processing Systems,

37:52040-52094.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao
Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
2024. Large language models as optimizers. In

The Twelfth International Conference on Learning
Representations.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun
Wan, and William Yang Wang. 2024. G\" odel agent:
A self-referential agent framework for recursive self-
improvement. arXiv preprint arXiv:2410.04444.

Lifan Yuan, Yangyi Chen, Xingyao Wang, Yi R Fung,
Hao Peng, and Heng Ji. 2023. Craft: Customiz-
ing llms by creating and retrieving from specialized
toolsets. arXiv preprint arXiv:2309.17428.

Eric Zelikman, Eliana Lorch, Lester Mackey, and
Adam Tauman Kalai. 2023. Self-taught optimizer
(stop): Recursively self-improving code generation.
arXiv preprint arXiv:2310.02304.

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao
Liu, Yuxiao Dong, and Jie Tang. 2024. AgentTun-
ing: Enabling generalized agent abilities for LLMs.
In Findings of the Association for Computational
Linguistics: ACL 2024, pages 3053-3077, Bangkok,
Thailand. Association for Computational Linguistics.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng,
Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. 2024a. Aflow:
Automating agentic workflow generation. arXiv
preprint arXiv:2410.10762.

Shaokun Zhang, Xiaobo Xia, Zhaoqing Wang, Ling-
Hao Chen, Jiale Liu, Qingyun Wu, and Tongliang
Liu. 2023. Ideal: Influence-driven selective annota-
tions empower in-context learners in large language
models. arXiv preprint arXiv:2310.10873.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu,
Zhiguang Han, Jingyang Zhang, Beibin Li, Chi
Wang, Huazheng Wang, Yiran Chen, et al. 2025.
Which agent causes task failures and when? on au-
tomated failure attribution of 1lm multi-agent sys-
tems. In Forty-second International Conference on
Machine Learning.

Shaokun Zhang, Jieyu Zhang, Dujian Ding,
Mirian Hipolito Garcia, Ankur Mallick, Daniel
Madrigal, Menglin Xia, Victor Riihle, Qingyun Wu,
and Chi Wang. 2024b. Ecoact: Economic agent
determines when to register what action. arXiv
preprint arXiv:2411.01643.

19000


https://openreview.net/forum?id=Bb4VGOWELI
https://doi.org/10.18653/v1/2024.findings-acl.181
https://doi.org/10.18653/v1/2024.findings-acl.181

Shaokun Zhang, Jieyu Zhang, Jiale Liu, Linxin Song,
Chi Wang, Ranjay Krishna, and Qingyun Wu. 2024c.
Offline training of language model agents with func-
tions as learnable weights. In Forty-first Interna-
tional Conference on Machine Learning.

Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen,
Quanyu Dai, Jieming Zhu, Zhenhua Dong, and Ji-
Rong Wen. 2024d. A survey on the memory mech-
anism of large language model based agents. arXiv
preprint arXiv:2404.13501.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024. Expel:
Llm agents are experiential learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632-19642.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In
Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pages 12697-12706.
PMLR.

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han,
Keiran Paster, Silviu Pitis, Harris Chan, and Jimmy
Ba. 2022. Large language models are human-level
prompt engineers. arXiv preprint arXiv:2211.01910.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch,
Francesco Faccio, Dmitrii Khizbullin, and Jurgen
Schmidhuber. 2024. Language agents as optimizable
graphs. arXiv preprint arXiv:2402.16823.

19001


https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html

A More Experiments and Analysis

How efficient is FGO in terms of optimizing
time consumption? In this section, we present
the time to optimize using each method. The ex-
perimental results demonstrate that FGO achieves
superior optimization efficiency. As shown in Fig-
ure 7, FGO consistently delivers the highest accu-
racy while requiring significantly less training time
compared to alternatives. Notably, on ALFWorld,
FGO achieves 85% accuracy in ~2000 seconds,
substantially outperforming All-at-once optimiza-
tion by 4 times. The key to FGO’s efficiency lies
in its divide-and-conquer approach, which enables
parallel optimization of dataset subsets rather than
sequential processing. By distributing the compu-
tational load and then adaptively merging results,
FGO effectively bypasses the scaling limitations of
other optimization methods.

How does FGO perform with advanced parti-
tioning strategy? In this section, we investigate
the effectiveness of a more sophisticated data par-
titioning strategy on FGO’s performance. We de-
velop a strategy that partitions tasks based on inher-
ent task difficulty. To achieve this, we performed
an initial agent rollout on ALFWorld training tasks
and used the resulting trajectory length as a proxy
for difficulty. Tasks that required longer trajectories
or reached the maximum step limit were consid-
ered more difficult. Subsequently, all tasks were
sorted by this metric and grouped into partitions
of comparable difficulty. As shown in Table 5,
difficulty-based partitioning reaches a competitive
result with our original category-based partitioning.
This result is significant because it confirms that
FGO is a flexible framework that can benefit from
various partitioning strategies. It also reinforces the
conclusion that the progressive merging algorithm
is the primary driver of performance, as it success-
fully synthesizes optimal modules even when the
partitioning logic changes.

Scenario ALFWorld
Avgof 3 Bestof 3

Category 83.6 89.6

Difficulty 84.0 89.6

Table 5: Results comparison between difficulty-aware
partitioning and category-based partitioning.

B Experiment Details

B.1 Baselines

We provide a detailed description of the baselines
compared in the main experiment here.

B.1.1 Prompt Optimization Benchmarks

Reflexion is a self-refinement-based iterative
method that uses LLM to provide verbal feedback
after each task solving attempt. In this setting, an
LLM agent repeatedly attempts a task. If the at-
tempt fails, an external LLM will be prompted to
generate reflections on reasons why the task fails,
and the reflection will append to the context for
prompting the LLM agent in the next attempt. Re-
flexion operates on task-basis, where a reflection is
learned for every task.

ProTeGi is an automatic prompt optimization tech-
nique inspired by gradient descent, designed to
iteratively refine prompts through discrete textual
edits. It operates by generating natural language
"gradients," or feedback on current prompt errors,
which guide prompt improvements in the semantic
opposite direction. These prompt candidates are
systematically explored using beam search com-
bined with efficient bandit-based selection.

MIPROV2 is a meta-optimization-based optimizer
tailored for multi-stage Language Model pro-
grams. MIPROV2 factorizes prompt optimization
into crafting effective instructions and demonstra-
tions for each program module. It addresses two
central challenges: prompt proposal, by using
bootstrapped demonstrations and contextually in-
formed instructions, and credit assignment, through
Bayesian optimization to jointly optimize multiple
latent prompt parameters efficiently. The optimiza-
tion process is conducted iteratively, where candi-
date instructions and demonstrations are proposed,
evaluated using stochastic mini-batch validation,
and refined through meta-optimization. MIPROv2
learns generalizable instructions applicable across
multiple tasks, rather than task-specific prompts,
making it a versatile online optimization method
for complex LM programs.

B.1.2 Tool Optimization Benchmarks

CRAFT is a method that enhances LLM perfor-
mance by creating specialized toolsets for specific
tasks. It generates diverse code snippets by prompt-
ing advanced LLMs to solve sampled problems, ab-
stracts these snippets for broader usability, and ap-
plies validation and deduplication to ensure correct-
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Figure 7: Comparison of time to optimize using different optimization methods on ALFWorld, LogisticsQA, and
GAIA. Each panel plots the trained agent’s performance against the time to optimize the agentic system. Circle
diameters are proportional to the optimization time consumption, with crosses (+) indicating circle centers.

ness and reduce redundancy. At inference, CRAFT
employs a multi-view matching strategy, consider-
ing problem context, API names, and docstrings,
to dynamically retrieve relevant tools from the cus-
tomized toolsets. CRAFT constructs the toolsets
offline but retrieves tools online during inference.

AgentOptimizer is an offline agent training
method that treats tools used by LLM agents as
learnable parameters. Instead of tuning the LLM it-
self, AgentOptimizer optimizes the agent’s tool
set via a training loop that evaluates execution
histories and iteratively updates functions using
LLM-based suggestions. At each step, it pro-
poses edits—adding, revising, or removing func-
tions—based on task performance. This process
learns a general set of functions applicable across
tasks, rather than per-task customizations.

B.1.3 Proposed Agent Optimization Baselines

All-at-Once strictly implements the algorithm 1.
In one epoch, it prompts the agent with the whole
training dataset, then collect the trajectory and feed-
back, perform LLM-based optimization to obtain
the updated module. Note that this can encounter
context window overflow error when the trajectory
is long or training dataset size is large.

Batch-wise is a workaround to the context window
overflow error. As detailed in Algorithm 3, this
approach divides the full dataset D into smaller
mini-batches at the beginning of each epoch. For
every mini-batch, the agent generates trajectories
for each task within the batch, collects the corre-
sponding feedback, and then the module is updated
using only the history from that specific mini-batch.
This iterative process of processing and updating
per mini-batch can significantly reduce the amount
of information that needs to be handled at any sin-
gle optimization step, thereby mitigating the risk
of exceeding the LLM’s context window limit.

Algorithm 3 Batch-wise Module Optimization

Input: Task set D, num epochs F, batch size B
Output: Optimized module 6
0+ ¢
fore <~ 1to E' do

Batches < split(D) © Split D into batches

> Init 0

for Dyyen, € Batches do > Perform
optimization on each batch
Hbatch — {}
for (¢,y) € Dyatch do
T+ A(qg; 0) >Eq. 1

r < Evaluate(7, y)
Hbatch .append( (7—7 T) )
end for
0 $— LLMoptim(HbatChv 9)
end for
end for
return 0

Bootstrapping is an alternative approach to mini-
batch processing that aims to better approximate
the overall task distribution throughout training.
As shown in Algorithm 4, instead of partitioning
the training dataset into fixed mini-batches at the
start of an epoch, this method samples mini-batches
from the entire dataset D with replacement for a
predefined number of iterations. In each iteration,
a new mini-batch Dgyppie is drawn. The agent then
updates module based on execution results on the
mini-batch. The key advantage of this approach is
that by continuously sampling with replacement,
each mini-batch has the potential to draw from the
full diversity of the dataset in every iteration, po-
tentially leading to a more robust and generalized
module update. This can be particularly benefi-
cial when the dataset exhibits a complex or uneven
distribution of task types.
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Algorithm 4 Bootstrapping Module Optimization

Input: Task set D, num iterations N, batch size
B
Output: Optimized module 6
0+ ¢
fori <+ 1to N do
Dgample < Sample(D, B) > Sample a batch
with replacement
Hsample — {}
for <Q> y) € Dsample do
T+ A(gq;0)
r < Evaluate(7, y)
Hsample-append((7, 7))
end for
0 < LLMoptim(Hsamplea 9)
end for
return 6

> Init 0

>Eq. 1

B.2 Implementation Details

We present the hyperparameters used in the main
experiments in Table 6. We fix the cluster size
threshold ¢ to 3. We use ‘text-embedding-3-large’
model from OpenAl to calculate the embeddings
of the modules.

For ALFWorld, the training tasks are randomly
drawn from the ‘train’ split, and the evaluation
tasks are from the ‘valid_unseen’ split. The tasks
belongs to one of the six different categories, i.e.
‘Pick’, ‘Clean’, ‘Heat’, ‘Cool’, ‘Look’, ‘Pick 2’.
We divide tasks based on their category in the task-
division stage.

For GAIA, since their ‘test’ split does not dis-
close ground truth and therefore we cannot evalu-
ate on it, we select both the training and evaluation
tasks from the ‘validation’ split randomly. We di-
vide tasks randomly in the task-division stage for
GAIA and LogisticsQA.

To control the generation of imbalanced parti-
tioning as mentioned in the ablation study, we use a
hyperparameter (3. In the context of ALFWorld, the
number of samples in each subset n; is determined
by the following equation:

608
> B

The closer 3 is to 1, the more balanced the par-
titioning. We explored two (3 values: 0.6 and 0.8,
where the numbers of samples per subset are [25,
15,9,6,3,2] and [16, 13, 11, 8, 7, 5] respectively.
When S is 0.6, the partitioning is highly imbal-

n; =

anced, many subsets lack comprehensive coverage
of all task subtypes, making optimization on such
subsets more challenging.

C Case Studies
C.1 Failure Analysis

In this section, we provide a case study on the fail-
ure analysis of FGO on ALFWorld. We analyze a
case where imbalanced partitioning leads to subop-
timal performance.

When § = 0.6, the number of samples in each
subset are [25, 15, 9, 6, 3, 2]. This results in sub-
sets lacking comprehensive coverage of all task
subtypes. Consequently, the prompts optimized on
these subsets suffer from incomplete knowledge of
the entire task landscape, leading to lower-quality
and overly specialized prompts. In the subset with
3 samples, the learned workflow in the prompt is
way too specific. Content as follows:

# Workflow for 'clean' type task

Step 1: Locate kettle

- THOUGHT: Identify probable placements
- ACTION: take kettle from [loc]

Step 2: Use sinkbasin to clean kettle

- ACTION: use sinkbasin

Step 3: Open cabinet

- ACTION: open cabinet

Step 4: Put kettle in cabinet

- ACTION: put kettle in cabinet

# Hints

You usually skip the cleaning stage.
Always clean the item with:

"use [sinkbasin]”

This instruction overfits to a specific training
task, summarizing the task rather than generalizing
across tasks of the same subtype. Although the
progressive merging stage partly rectifies this by
merging instructions from other subsets, the final
synthesized instruction still misses critical general-
ized elements: going to the sinkbasin first before
cleaning any item. This missing step is one of the
core reasons why the agent fails. We hypothesize
that this oversight occurs because the highly uneven
data distribution complicates the identification of
subtle yet significant task-solving patterns.

C.2 Comparison with Baseline

To demonstrate the practical advantages of FGO,
we present a case study focusing on the web-related
tools it optimized on GAIA.

19004



Table 6: Hyperparameter of Different Datasets

Dataset # Train # Test # Splits Epoch Agent Backbone Optimizer Backbone

ALFWorld 60 134 6 4 gpt-4o-mini gpt-4o

LogisticsQA 48 219 8 5 gpt-4o gpt-4o

GAIA 36 60 4 4 gpt-4o gpt-4o
FGO-Optimized Tool. Our method generates a ro- tables = soup.find_all('table"')

bust and comprehensive toolset. The search_bing
function includes error handling and a count pa-
rameter for flexible results. It is complemented by
a fetch_web_page_content tool that intelligently
extracts specific, relevant information from the re-
trieved URLs.

import os
import requests
from bs4 import BeautifulSoup

def search_bing(query, count=10):
search_api_key = os.getenv('
BING_SEARCH_V7_SUBSCRIPTION_KEY')
search_endpoint = os.getenv('
BING_SEARCH_V7_ENDPOINT').rstrip('/"') + "/v7
.0/search”

headers = {
'Ocp-Apim-Subscription-Key":
search_api_key,

'Content-Type': 'application/json'
3
params = {
'q': query,
'textDecorations': True,
'textFormat': 'HTML',
‘count': count
3
try:

response = requests.get(search_endpoint,
headers=headers, params=params)
response.raise_for_status()
return response.json()
except requests.exceptions.HTTPError as
http_err:
return {'error': f'HTTP error occurred:
{http_err}'}
except Exception as err:
return {'error': str(err)}

def fetch_web_page_content(url):
try:
response = requests.get(url, verify=
False) # Disable SSL verification for
inaccessible certs

if response.status_code == 200:
soup = BeautifulSoup(response.
"html.parser"')
if soup.script:
[s.extract() for s in soup("'

content,

script')]
if soup.style:
[s.extract() for s in soup("'
style')]

for table in tables:
if table.find('th') and "Number”
in table.find('th').text:
return str(table)
return str(soup)
else:
return "Failed to retrieve content”

except requests.exceptions.RequestException
as e:
return f"An error occurred: {e}"

Baseline Tool We select a representative example
from baselines for comparison. In contrast, Batch-
wise optimization produces a functionally limited
tool. It lacks error handling and offers no flexibility
in the number of search results returned.

import os
import requests

def search_bing(query):

Executes a basic Bing search with minimal
configuration.

nnn

search_api_key = os.getenv('
BING_SEARCH_V7_SUBSCRIPTION_KEY')

endpoint = os.getenv('
BING_SEARCH_V7_ENDPOINT').rstrip('/') + "/v7
.0/search”

headers = {'Ocp-Apim-Subscription-Key":
search_api_key}
params = {'q': query}

response = requests.get(endpoint, headers=
headers, params=params)
response.raise_for_status()

return response. json()

In comparison, FGO-generated tools are demon-
strably superior for real-world use:

* Robustness: Our tool handles common net-
work or API errors gracefully, whereas Batch-
wise optimized tool would crash.

* Completeness: FGO produces an end-to-end
solution that not only searches but also intelli-
gently extracts information, a critical step that
the baseline method neglects entirely.

This example demonstrates how FGO produces
more reliable and functionally complete tools for
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agentic systems.

D Visualization of the Merging Process

Final Module
(Root)

Merge 3
(Look, M1)

Merge | Merge 2
heat, cool, clean (pick, pick 2)

Figure 8: The visualization of the merging tree.

We visualize one of the merging trees in Figure
8. As shown in the figure, the dynamic merging
process can identify similar modules from differ-
ent partitions and merge accordingly. The prompt
trained on ‘heat’, ‘cool’ and ‘clean’ are identified
as similar, and merged into a single prompt. This
is coherent with the task nature, as these tasks’
workflow all involve identifing the object location,
perform some action on it, and then put it to a target
location. ‘pick’ and ‘pick 2’ are also merged at the
same time, as the two type of tasks are inherently
similar. Overall, the merging tree shows that FGO
can effectively identify similar modules and merge
them into a single one.

E LogisticQA Dataset

E.1 Background

We evaluate our system on a collection of real-
world Universal Business Language invoice doc-
uments, developed in cooperation with one of the
world’s largest logistics companies. The primary
task is to extract transport reference numbers from
these documents. The reference numbers exist in
these invoice documents in a non-fixed pattern. It
typically requires human effort to extract it man-
ually during real-world business operations. Al
agents that can effectively understand the context
and extract reference numbers can make the busi-
ness workflow more efficient. The LogisticQA
dataset shows LLMs’ ability to achieve such a
goal. It contains 267 valid invoice documents and
transport reference pairs. It can also reflect LLM’s
instruction-learning capability in real-world docu-
ment understanding tasks.

The dataset presents several challenging char-
acteristics that make it an ideal testbed for eval-
uating the instruction learning capabilities. First,
it requires specialized domain knowledge of busi-
ness documents and terminology not commonly
found in general language model training. Second,
the hierarchical structure of UBL documents and
the significant variability in format and identifica-
tion patterns pose substantial extraction challenges.
Additionally, as a novel benchmark without prior
literature coverage, this dataset offers unique oppor-
tunities to assess agents’ adaptive learning abilities
in a practical, high-stakes business context.

E.2 Dataset Statistics

The analysis of our XML business document
dataset demonstrates strong alignment with real-
world business documentation patterns, as shown in
Figure 9. The document length distribution peaks
between 200-500 lines, while the XML structure
complexity with most documents containing 100-
400 tags. The token distribution centered around
2,000-4,000 tokens indicates a long-context un-
derstanding challenge for LLMs. Notably, the
language distribution across documents (Turkish:
39.5%, English: 29.6%, Spanish: 22.0%, Italian:
8.9%) reflects a realistic multinational business en-
vironment, particularly common in European and
Mediterranean operations where English serves as
a lingua franca alongside regional languages.

E.3 Dataset Example

Here is an example XML business document in the
dataset. The ground truth extraction is 847 5321
9084. The named and loations in the dataset are all
anonymized.

<?xml version="1.0" encoding="UTF-8"?>
<Invoice xmlns="urn:oasis:names:specification:ubl:schema:xsd:
Invoice-2"

xmlns:cac="urn:oasis:names:specification:ubl:schema:
xsd: CommonAggregateComponents-2"
xmlns:cbc="urn:oasis:names:specification:ubl:schema:
xsd: CommonBasicComponents-2">
<cbc:UBLVersionID>2.1</cbc:UBLVersionID>
<cbc:CustomizationID>urn:cen.eu:en16931:2017#compliant#urn:
fdc:peppol.eu:2017:poacc:billing:3.0</cbc:
CustomizationID>
<cbc:ID>rmCMsB6Km6J4Qp2a</cbc: ID>
<cbc:IssueDate>2023-10-11</cbc:IssueDate>
<cbc:InvoiceTypeCode>Invoice</cbc:InvoiceTypeCode>
<cbc:DocumentCurrencyCode>TRY</cbc:DocumentCurrencyCode>

<cbc:Note>SALE

HADIMKOY BRANCH 847 5321 9084

No withholding tax applies when not self-owned according to
law

This invoice must be paid by: 01/08/24

PLEASE INDICATE THE VEHICLE PLATE NUMBER AND INVOICE NUMBER IN
THE DESCRIPTION OF YOUR BANK TRANSFER RECEIPT

For invoices not paid by due date, late payment interest will
be charged according to the Law on Collection Procedure
of Public Receivables (AATUHK).
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Figure 9: Statistical analysis of XML business documents. Top left: Distribution of document lengths showing
typical business document sizes. Top right: Distribution of XML tags indicating document structure complexity.
Bottom left: Token distribution demonstrating the long context challenge for LLM. Bottom right: Language
distribution across documents reflects business documents’ multinational nature.

Only FourThousandThirtyTwoTL</cbc:Note>

<cac:AccountingSupplierParty>
<cac:Party>
<cac:PartyName>
<cbc:Name>S.S 350 COOPERATIVE AIRPORT CARGO
TERMINAL LOGISTICS SERVICES MOTOR CARRIERS
</cbc:Name>
</cac:PartyName>
<cac:PostalAddress>
<cbc:StreetName>Cargo Terminal Cooperative

<cbc:PostalZone>None</cbc:PostalZone>
<cac:Country>
<cbc:IdentificationCode>TR</cbc:
IdentificationCode>
</cac:Country>
</cac:PostalAddress>
</cac:Party>
</cac:AccountingCustomerParty>

<cac:PaymentTerms>
<cbc:Note>SALE

Service</cbc:StreetName> HADIMKOY BRANCH 847 5321 9084

<cbc:CityName>Springfield</cbc:CityName>
<cbc:PostalZone>None</cbc:PostalZone>
<cac:Country>

No withholding tax applies when not self-owned according to

law

This invoice must be paid by: 01/08/24

<cbc:IdentificationCode>TR</cbc: PLEASE INDICATE THE VEHICLE PLATE NUMBER AND INVOICE NUMBER IN

IdentificationCode>
</cac:Country>
</cac:PostalAddress>
</cac:Party>
</cac:AccountingSupplierParty>

<cac:AccountingCustomerParty>
<cac:Party>
<cac:PartyName>
<cbc:Name>GLOBAL LOGISTICS SOLUTIONS LTD.</cbc:
Name>
</cac:PartyName>
<cac:PostalAddress>
<cbc:StreetName>INDUSTRIAL DISTRICT SPRINGFIELD<
/cbc:StreetName>
<cbc:CityName>None</cbc:CityName>
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THE DESCRIPTION OF YOUR BANK TRANSFER RECEIPT

For invoices not paid by due date, late payment interest will

be charged according to the Law on Collection Procedure
of Public Receivables (AATUHK).

Only FourThousandThirtyTwoTL</cbc:Note>

</cac:PaymentTerms>

<cac:LegalMonetaryTotal>

<cbc:LineExtensionAmount currencyID="TRY">
2243.26

</cbc:LineExtensionAmount>

<cbc:TaxExclusiveAmount currencyID="TRY">
448.65

</cbc:TaxExclusiveAmount>

<cbc:TaxInclusiveAmount currencyID="TRY">



2691.91
</cbc:TaxInclusiveAmount>
<cbc:PayableAmount currencyID="TRY">

2691.91
</cbc:PayableAmount>

</cac:LegalMonetaryTotal>

<cac:InvoicelLine>
<cbc:ID>1</cbc:ID>
<cbc:InvoicedQuantity unitCode="EA">1.0</cbc:
InvoicedQuantity>
<cbc:LineExtensionAmount currencyID="TRY">
2243.26
</cbc:LineExtensionAmount>
<cac:Item>
<cbc:Description>THY-NEWTOWN transportation fee-78
XYZ432</cbc:Description>
<cbc:Name>THY-NEWTOWN transportation fee-78XYZ432</
cbc:Name>
</cac:Item>
<cac:Price>
<cbc:PriceAmount currencyID="TRY">2243.26</cbc:
PriceAmount>
</cac:Price>
</cac:InvoicelLine>

</Invoice>

F Complexity Analysis

In this section, we analyze the computational com-
plexity of the recursive clustering in the progressive
merging process.

F.1 Clustering Tree Depth

At each recursive step, the number of module is
reduced by taking the square root:

Ni+1 = /N,

The recursion stops when the number of items sat-
isfies:

with ng = N. 3)

np = NU/2® < ¢, (4)

Taking logarithms on both sides gives:

(1/2)P -log N < logt. 5)
Solving for D yields:
D =0 (loglogN). (6)

F.2 Backtesting Complexity

Each merge operation performs a backward testing
over all tasks contributing to the merged module.
Since tasks are merged without duplication, the
total number of unique tasks remains 7" throughout
the process. As every level of the clustering tree
processes 1 tasks and the depth of the tree is D =
O(loglog N), the overall complexity of testing is:

O (T -loglog N) . @)

This demonstrates that the overhead introduced
by backward testing is modest as [V scales.

G Prompt
G.1 ALFWorld

Perform actions and interact with a house-
hold to solve a task. At the beginning of your
interactions, you will be given the detailed
description of the current environment and
your goal to accomplish. The environment
only accept certain format of actions. Here
are two examples, learn the pattern carefully.
{example}

Figure 10: Prompt for agent solving ALFWorld.

G.2 LogisticsQA

# Task background

Read the content of a xml file which contains
a shipment invoice document in UBL format.
You are tasked to understand the content and
extract the transport reference number from
it.

When you reach a conclusion, format your
answer as "final answer: [extracted reference
number]"

Figure 11: Prompt for agent solving LogisticsQA.

G.3 GAIA

You need to solve the question below given
by a user. When you are solving tasks, ex-
plicitly consider whether the task can benefit
from web navigation capability.

# Task

{task}

Figure 12: Prompt for agent solving GAIA.

H Potential Risks

We use close source API in this research, which
can cause trouble on private dataset not intentioned
for release, leading to potential privacy leakage if
there is misconduct in API providers.
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You are an Al assistant specialized in optimizing guidelines. Your goal is to analyze various inputs
and improve the current guideline. You will be presented with the logs of solving similar tasks, the
current guideline, the performance of the current guideline in term of success rate, and the historic
guidelines and respective performance.

Background:

TASK_DESCRIPTION

Please review the following information:

1. Expert Demonstration:

Below is expert solution that demonstrates the correct approach to similar task.
EXAMPLE_TRAJECTORY

2. Agent Logs

Here are the logs of how the agent apply the current guideline to solve the task.
LOGS

3. Past Guidelines

Here are the previously proposed guidelines and their respective performance.
PAST_STATISTICS

4. Current Guideline

Below is the current guideline and its success rate:

GUIDELINE

Your task is to analyze the provided information and create improved guidelines. Before formulating
your final guidelines, provide your analysis of the current task. In this process:

a. Analyze the action sequence from the trajectories

- For a successful attempt, extract the general workflow of how it is done.

- For a failed attempt, analyze how it deviates from the successful examples and how it can be
summarized into a rule to avoid similar failures.

b. Identify patterns and failure modes

- Go through the whole set of logs, list recurring successful strategies, with specific examples.

- Enumerate common mistakes made by the agents.

c. Evaluate current guidelines

- Assess the effective parts of the current guideline, how it contributes to agents correctly solving
the task, with supporting examples

- Identify areas for improvement, which rule is not covered by the current guideline, with specific
examples.

d. Refine valid action space

- List all valid actions found in input data and generalize actions into categories

Be thorough and detailed in your analysis, using specific examples from the input data to support
each point. It’s OK for this section to be quite long.

Your output should be a JSON object. Below is an example.

SAMPLE_OUTPUT

Figure 13: Prompt for LLM optimizer to optimize instructions.
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# Background

You are a guideline synthesizer tasked with merging multiple expert-generated guidelines for
solving tasks from the same distribution. Your role is to identify common patterns across different
expert perspectives while preserving unique valuable insights. You will analyze multiple guidelines
along with their performance statistics to create a comprehensive unified guideline that maintains
high generalizability.

TASK_DESCRIPTION

Below are some principles to follow when merging the guidelines:

1. The guidelines all follow structured format. Keep the structure as it as and merge the field of
each guideline correspondingly.

2. The guidelines come with their performance tested on different tasks. Weight patterns from
guidelines with higher total attempts more heavily, particularly when success rates are comparable.

# Expert Guidelines and Statistics
STATISTICS

# Output Format
Your response should be in markdown with two sections:
# Analysis
Use this section to document your reasoning in synthesis:
- Analyze the common and difference between different tasks
- Common patterns identified across expert guidelines
- Unique valuable insights from individual experts
- Statistical analysis of pattern effectiveness
- Reasoning for inclusion/generalization decisions

# Guidelines

Put your synthesized guidelines here, the structure of your guideline should follow the originals.

Figure 14: Prompt for merging the instructions.
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You are a tool synthesizer tasked with merging and improving multiple expert-generated toolboxes
for answering general questions from users. Your goal is to create a comprehensive unified toolbox
that maintains high generalizability while being most useful.

Context:

TASK_DESCRIPTION

To provide you with background on what the task solution looks like, here is an example trajectory:
EXAMPLE_TRAJECTORY

Here are the expert proposed guidelines and their performance statistics:

STATISTICS

Your task is to analyze these toolboxes, statistics, and the example trajectories to create a unified set
of toolboxes. A toolbox contains a list of functions. One function signature includes the following
five elements:

1. Function name

2. Function description

3. JSON schema of arguments encoded as a string

4. A list of package names imported by the function

5. The code implementation

This is an example of a function that might worth add:

EXAMPLE_FUNCTION

You should comprehensively consider all the toolboxes proposed by experts. If functions have
similar functionality, write a function that generalizes most.

Before providing your final output, show your thought process and reasoning. This should include:
a. Evaluate the similar functions.

b. Evaluate the functions proposed by different experts based on the performance, accountability
and corner case.

c. An outline of the decision-making process for arriving at the final guides.

d. Identify whether the functions can be improved, like adding more detailed if-else, can be
generalized to more cases, etc. Return the improved function.

It’s OK for this section to be quite long.

After your analysis, you MUST respond with JSON object in the following format. The ’response’
field will contain the list of all the merged and improved toolbox.

{
"analysis”: "Your detailed analysis goes here.”,
"response”: [
{
"name”: "your proposed functionl name”,
"description”: "",
"arguments”: {
}7
"packages"”": "",
"code": ""
})
]
3

Figure 15: Prompt for merging the tools.
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You are an Al tasked with analyzing and reflecting on trajectories. Your goal is to evaluate an
agent’s performance, compare it to successful demonstrations, and provide insights for improvement.

First, review these two successful demonstrations of completing the task: DEMO Now, examine the
following trajectory attempted by an agent: TRAJECTORY Please reflect on the agent’s trajectory
and determine if it is correct.

If the agent’s trajectory is correct:

- Analyze the workflow of successfully solving the task.

If the agent’s trajectory is incorrect:

- Identify the point of deviation from the successful demonstrations

- Explain the key error(s) made by the agent

- Describe how this error can be avoided

Based on your analysis, propose a suggestion to help the agent avoid making the same mistake in
the next trial or to further improve their performance.

Below is an example of the trajectory and the reflection process.
REFLECTION_EXAMPLE

Please structure your response with two tags as follows, the part in <reflection> tag will be used
to guide the next trial:

<analysis> your analysis of the trajectory here</analysis>
<reflection> your formal reflection here</reflection>

Figure 16: Prompt for evaluating the trajectory.
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