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Abstract

The rapid adoption of LLMs has overshadowed
the potential advantages of traditional BERT-
like models in text classification. This study
challenges the prevailing “LLM-centric” trend
by systematically comparing three category
methods, i.e., BERT-like models fine-tuning,
LLM internal state utilization, and LLM zero-
shot inference across six challenging datasets.
Our findings reveal that BERT-like models of-
ten outperform LLMs. We further categorize
datasets into three types, perform PCA and
probing experiments, and identify task-specific
model strengths: BERT-like models excel in
pattern-driven tasks, while LLMs dominate
those requiring deep semantics or world knowl-
edge. Subsequently, we conducted experiments
on a broader range of text classification tasks
to demonstrate the generalizability of our find-
ings. We further investigated how the relative
performance of different models varies under
different levels of data availability. Finally,
based on these findings, we propose TaMAS,
a fine-grained task selection strategy, advocat-
ing for a nuanced, task-driven approach over
a one-size-fits-all reliance on LLMs. Code
is available at https://github.com/
Jjyzhang2002/TaMAS—-TextClass.

1 Introduction and Related Work

With the widespread application of Large Language
Models (LLMs) across diverse domains (Dai et al.,
2025; Hu et al., 2024; Zhang et al., 2025b), the
task paradigm of text classification is undergoing
a transformation. The academic community cur-
rently exhibits a pronounced “LLM-centric” trend
(Li et al., 2024; Xie et al., 2024), i.e., an increasing
number of studies focus on enhancing the classifi-
cation performance of LLMs through techniques
such as prompt engineering (Xiao et al., 2024;
Zhang et al., 2023), internal state extraction (Marks
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and Tegmark, 2023; Azaria and Mitchell, 2023;
Huang et al., 2025), or parameter-efficient fine-
tuning (Inan et al., 2023; Zhang et al., 2024b). How-
ever, this trend overlooks a critical issue: traditional
BERT-like models (Devlin et al., 2019; Liu et al.,
2019) may still hold unique advantages in certain
key scenarios. Notably, even SOTA LLMs achieve
only marginal and costly performance gains on
challenging tasks like implicit hate speech detec-
tion involving near homophones or various emoji
substitutions (Xiao et al., 2024).
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Figure 1: Illustration of our fine-grained task selection
strategy TAMAS under two data volume scenarios.

Unlike previous studies that focused mainly on
LLM applications in single-type text classification
(Zhang et al., 2024b) or evaluated text classifica-
tion tasks without sufficient interpretability anal-
ysis or categorization (Vajjala and Shimangaud,
2025), this work identifies an overlooked research
gap and raises a key question: Under the LLM-
dominated paradigm, have we prematurely over-
looked the potential of BERT-like models? To ad-
dress this question, we performed a comprehensive
comparative evaluation in the field of text classifi-
cation. For the first time, we systematically exam-
ined the performance boundaries of three computa-
tionally low-cost mainstream methods in the LLM
era, i.e., BERT-like models fine-tuning, LLM inter-
nal state utilization, and LLM zero-shot inference,
across six challenging classification tasks.
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Empirical results have yielded a groundbreak-
ing finding: For the majority of classification tasks,
BERT-like models are more suitable, as they re-
quire fewer computational resources while main-
taining high performance. In addition, different
methods demonstrate varying text classification
performance across different datasets.

To better understand this discrepancy, we con-
duct a comprehensive analysis through PCA visual-
ization of the model internals and perform probing
experiments. Our findings indicate that datasets
can be categorized into three main types, offer-
ing insights into the factors driving model perfor-
mance differences. Subsequently, we conduct ex-
periments on a broader range of text classification
tasks to demonstrate the robustness and general-
izability of our findings. Furthermore, we adjust
the training data to 50%, 10%, and 1% of its orig-
inal size in order to investigate how the relative
performance of different models changes under
varying levels of data availability. The results in-
dicate that when the amount of training data is
highly limited, LLMs consistently exhibit more
competitive performance across all tasks. Based
on this, we establish TAMAS, a fine-grained Task-
aware Model Adaptation Strategy shown in Figure
1, which reveals: When the data volume is moder-
ate to abundant, for basic text classification tasks
with discernible textual patterns, even after pertur-
bations, BERT-like models outperform LLM-based
approaches. For tasks demanding deep semantic
understanding or real-world knowledge (e.g., com-
plex reasoning is needed or hallucination detec-
tion), LLMs hold a clear advantage. When data vol-
ume is very limited, LLMs can be effectively used
across all tasks. These findings not only provide a
scientific basis for model selection but also critique
the prevailing “LLM-first” trend in research.

In summary, our contribution can be concluded
in the following threefold: (1) We rigorously and
comprehensively reaffirmed the technical standing
of BERT-like models in text classification tasks
through extensive experimentation. (2) Based on
performance across six datasets, we classify them
into three types. Through in-depth model internal
analysis and visualization, we explore why differ-
ent methods excel in each case. We also demon-
strate that our findings generalize and our exper-
iments demonstrate that LLMs outperform other
models when training data is severely limited. (3)
We proposed TaMAS, a simple but vaild stragegy
for text classification model selections.

2 Comprehensive Test Across Six Typical
Datasets

In this section, we conduct comprehensive exper-
iments across six typical datasets and three major
categories of text classification methods.

2.1 Experimental Setup

Compared Methods: For BERT-like models, we
selected four variants: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019), ERNIE (Sun et al.,
2020, 2021), and ELECTRA (Clark et al., 2020).
LLM-based methods can be divided into two types.
For methods leveraging the internal states of LLMs,
we selected SAPLMA (Azaria and Mitchell, 2023)
and MM-Probe (Marks and Tegmark, 2023). Be-
cause the internal states of LLMs represent a wealth
of information (Zhang et al., 2025a). For both of
these methods, we applied the Prism (Zhang et al.,
2024a) approach to enhance their performance. For
LLM zero-shot querying method, we ask LLMs to
output results directly. Additionally, for the Toxi-
CloakCN dataset, we incorporate the best results
reported by Xiao et al. (2024). For more infor-
mation about model and implementation details,
please refer to §A, §B, and §C.

Evaluation Metrics: We used classic metrics
for evaluating binary classification tasks, includ-
ing AUC, Accuracy (Acc), and F1 score, in order
to comprehensively assess model performance.

Datasets: We selected six representative datasets
that are moderately challenging and feature a de-
gree of novelty. Specifically, we selected the
ToxiCloakCN (Xiao et al.,, 2024), True-False
Dataset (Azaria and Mitchell, 2023), Malicious-
Code (Erll1l11c, 2024), and LegalText (openSUSE,
2025) datasets. These datasets are used for detect-
ing implicit hate speech, hallucinations, malicious
code, and legal text in source code, respectively.
Specifically, ToxiCloakCN consists of three parts
of chinese hate speech data, including the base data,
data perturbed with homophone substitution, and
data perturbed with emoji substitution. Datasets
details are illustrated in §D.

2.2 Results

Based on the experimental results shown in Table 1,
we can conclude that in the era of LLMs, BERT-like
models still demonstrate strong performance on a
wide range of text classification tasks. Addition-
ally, on different datasets, BERT-like models and
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Cat Datasets ToxiCloakCNBase ToxiCloakCNEmoji  ToxiCloakCNHomo LegalText MaliciousCode True-False Dataset
Methods/Metrics AUC Acc F1 AUC Ace F1 AUC Ace F1 AUC Ace F1 AUC Acc F1 AUC Ace Fl1
BERT 956 88.1 883 920 854 849 912 828 823 984 933 934 99.7 997 99.7 76.6 652 639
BLMs RoBERTa 955 887 884 91.0 835 833 906 815 824 992 960 96.0 999 993 993 842 727 756
ERNIE 960 89.6 894 922 833 836 91.8 845 847 985 937 937 997 997 997 816 715 722
ELECTRA 95.1 874 870 894 809 809 89 81.0 813 987 933 933 99.7 99.7 99.7 855 757 758
LLM.IS SAPLMA yiism 927 832 8.1 871 790 785 844 755 764 977 923 924 1000 99.7 99.7 959 893 90.0
MM-Proberism 882 783 766 833 757 749 809 726 694 913 833 845 100.0 989 99.0 935 86.1 86.1
LLM-Q Queryqwenrrama ~ 72.8 728 659 69.1 69.1 615 686 686 593 803 803 817 961 96.1 963 857 857 862
Querygpr4o - - 79.6 - - 754 - - 74.1 - - - - - - - - -

Table 1: Evaluation of different methods on six datasets using AUC, accuracy, and F1 score. BLMs refers to
BERT-like models, while LLM-IS and LLM-Q denote approaches using LLM internal states and direct querying,

respectively. Cat. indicates Categories.
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Figure 2: Comparative PCA visualization of hidden states across six datasets: BERT-like models vs. LLMs. T-BASE,
T-EMOIJI, T-HOMO, LAWS, CODE, HAL refer to ToxiCloakCNBase, ToxiCloakCNEmoji, ToxiCloakCNHomo,
LegalText, MaliciousCode, True-False Dataset. Red and blue represent the two classes of samples in the dataset.

LLM-based methods demonstrate varying perfor-
mance. For example, on the ToxiCloakCNHomo
dataset, BERT-like models exhibit outstanding per-
formance, whereas on hallucination datasets, they
underperform compared to methods utilizing LLM
internal states and LLM zero-shot inference.

3 Analysis & Discussions

Based on experimental results, this section classi-
fies six datasets into three categories and analyzes
the results using model hidden states for PCA visu-
alization and layer-wise probing.

Performance rankings differ by dataset type:
For three implicit hate speech datasets, BERT-like
methods are superior, followed by those using LLM
internal states, with direct LLM querying perform-
ing poorest. Malicious code and legal text detection
show BERT-like and LLM internal state methods
performing competitively and better than direct
querying. For hallucination detection, LLLM in-
ternal state methods surpass direct querying, both
exceeding BERT-like model performances.

Motivated by the observed performance differ-

ences, we performed PCA and probing computa-
tion, with corresponding visualizations presented
in Figure 2 and 3, and then performed an in-depth
analysis of the characteristics of these dataset types
to better understand the sources of variation. De-
tails of these figure are demonstrated in §E.

Pattern-Preserving Perturbated Texts Implicit
hate speech datasets feature substantial covert lan-
guage, from basic euphemisms (ToxiCloakCN-
Base) to more sophisticated emoji and homophone
substitutions (ToxiCloakCNEmoji, ToxiCloakCN-
Homo). This linguistic obfuscation increases se-
mantic opacity and requires specific contextual
knowledge, which is often unavailable to non-
community members, including LLMs.

From a modeling perspective, directly querying
LLMs via prompting strategies for classification
purposes yields suboptimal results. This limita-
tion primarily stems from the fact that such mod-
els have had limited exposure to these highly con-
cealed linguistic patterns during their pre-training
phase. Moreover, even when employing methods
based on internal representations, i.e., such as prob-

18982



100%

Test Accuracy (Scaled)
(-2
o
2

» -3 ©
S =3 1=}
X 53 53

Test Accuracy (Scaled)
»n
o
B3

2
X

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
l—.— T-BASE T-EMOJI —e— T-HOMO LAWS CODE - HALl

Model Layer Index

Figure 3: Comparative visualization of hidden states
classification separability using single linear probes on
all datasets: BERT-like models vs. LLMs. The funda-
mental difference in how BERT-like models and LLMs
process information becomes particularly evident in the
layerwise progression of separability. For hallucina-
tion detection dataset, visualization starts from the tenth
layer to highlight the decline in test accuracy in the
later layers of LLMs. All original accuracy values are
mapped to the range of 0—100 to highlight the differ-
ences between different model categories.

ing techniques, the classification performance re-
mains constrained. At the same time, the presence
of covert language, which, under the conventional
pre-training objective of next-token prediction, in-
troduces a significant amount of redundant or mis-
leading information into the internal representa-
tions of LLMs. As Figure 2 shows, LLM hidden
layer representations of perturbed and implicit hate
speech are poorly separated and intermingled.

Notably, although the three categories of subtle
hate speech are semantically challenging to distin-
guish, close observation reveals a degree of coher-
ence and regularity in the use of covert expressions.
For example, there exist systematic patterns in the
deployment of emojis and structural consistencies
in homophonic substitutions. These linguistic phe-
nomena fundamentally rely on contextual under-
standing, an area in which bidirectional attention-
based models like BERT demonstrate particular
strength. As depicted in Figure 2, the CLS token
embeddings demonstrate a high degree of sepa-
rability between harmful and harmless instances.
Consequently, such models exhibit superior perfor-
mance on this type of task.

Rule-Based Clean Texts In malicious code and
legal text datasets, both BERT-like models and
methods using LLM internal states perform com-
petitively. While challenging for non-experts, ex-
pert analysis shows the discriminative patterns are
coherent, regular, and rule-based. Crucially, unlike
heavily obfuscated data from previous tasks, the
current data is largely clean, free from perturba-
tions or complex euphemisms. This data is well-
represented in LLM pre-training, forming high-
quality representations. As Figure 2 shows, PCA
on BERT and LLM hidden representations reveals
relatively good separability, supporting the strong
performance of methods like SAPLMA and MM-
Probe, comparable to BERT-like models. Directly
querying LL.Ms shows weaker performance than
BERT-based or LLM representation-based meth-
ods, likely due to misalignment between LLMs and
human decision-making (Jiang et al., 2023).

Knowledge-Intensive & Semantic-Deep Texts
For hallucination detection, methods leveraging
LLM internal states outperform other approaches.

This task is distinct as it requires not just natural
language understanding but crucially, comparison
with real-world knowledge to assess truthfulness.
LLMs, due to their scale and extensive pretraining
data, acquire vast real-world knowledge. Research
indicates LLMs develop internal directions repre-
senting abstract concepts (Arditi et al., 2024), in-
cluding truthfulness (Marks and Tegmark, 2023;
Azaria and Mitchell, 2023), suggesting their in-
ternal representations are inherently better suited
for capturing truth. In contrast, BERT-like models
struggle because hallucination detection datasets
are limited relative to the breadth of real-world
facts, hindering their ability to learn reliable repre-
sentations for concepts like “truthfulness”.

Furthermore, influenced by the next-token pre-
diction objective, when an LLM detects a contradic-
tion in the encoded input, it may encode signals of
untruth in the final token’s hidden state, anticipat-
ing generating tokens like “false” or attempting to
correct its own error, shown in Table 8. This aligns
with the findings proposed by Azaria and Mitchell
(2023). This results in stronger distinguishability
between hallucinated and non-hallucinated state-
ments at the hidden state level, providing a theoret-
ical basis for state-based detection methods.

Consequently, methods utilizing LLM internal
representations achieve superior performance in
hallucination detection tasks.
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4 Generalization Across Diverse Text
Classification Tasks

To further demonstrate the generality of our find-
ings, we conducted additional experiments across
three new text classification tasks: natural language
inference (NLI), german hate speech detection (ex-
tending the language coverage to English, Chinese,
and German), and multi-label emotion classifica-
tion involving six categories. Specifically, we se-
lected GlueRTE (Wang et al., 2018), GermanHate-
Speech (Tonneau et al., 2024), and Emotion (Sar-
avia et al., 2018). The experimental results in Table
3 and 4 show that our analysis and conclusions
remain valid across these new datasets and clas-
sification settings. For the NLI task, SAPLMA,
as a representative of methods that leverage the
internal states of LLMs, achieved the best perfor-
mance among all approaches. This aligns with
our summarized patterns, since NLI belongs to the
category of Semantic-Deep Texts. On both the
german hate speech dataset and the emotion clas-
sification dataset, BERT-like models exhibited the
strongest performance. This is also consistent with
our findings, as these tasks fall within the category
of Rule-Based Clean Texts.

S Cost Performance Analysis

We have previously highlighted the advantages of
BLMs and LLMs in various classification tasks. In
the following analysis, we investigate whether the
relative strengths of different models shift under
varying data availability, particularly examining
whether LLMs offer superior cost-effectiveness in
scenarios of extreme data scarcity. To this end,
we systematically reduce the training data to 50%,
10%, and as low as 1% of the original dataset size.

Our findings in Table 7 in §G indicate that in
settings with moderate to abundant labeled data, es-
pecially for tasks that are not knowledge-intensive
or semantically deep, fine-tuned BERT-like models
continue to achieve relatively stable performance
at lower computational costs.

However, a notable shift emerges under condi-
tions of extreme data limitation. Specifically, when
the training set is reduced to 10% (corresponding
to sample sizes ranging from 132 to 443 across six
datasets) or less, approaches leveraging the intrin-
sic representations of LL.Ms consistently achieve
competitive performance across all six classifica-
tion tasks. We believe this advantage stems from
the rich, general-purpose knowledge encoded dur-

ing pre-training. In contrast, BERT-like models
exhibit a more pronounced degradation in perfor-
mance under data-constrained conditions. This sug-
gests that LLMs demonstrate greater robustness
and adaptability in low-data regimes, potentially
offering a more effective solution when labeled
data is severely limited.

6 TaMAS

Based on our findings, we propose TaMAS, a fine-
grained strategy shown in Figure 1 which guides
the selection of BERT-like models or LLMs based
on the characteristics of the texts.

First, we summarize the proposed Pattern-
Preserving Perturbated Texts and Rule-Based
Clean Texts as General Text Classification, as there
is no distinction in model selection between them.

When the data volume is moderate to abundant,
BERT-like models demonstrate superior parameter
efficiency and performance for General Text Clas-
sification. In contrast, there are two critical scenar-
ios where conventional BERT-like models exhibit
limitations: Knowledge-Intensive Classification:
When the task requires substantial domain-specific
prerequisite knowledge that cannot be adequately
covered by existing training datasets. This typically
occurs where the label determination depends on
implicit knowledge beyond surface-level textual
patterns. Semantic-Deep Classification: Cases
where accurate categorization demands profound
semantic understanding that cannot be reliably in-
ferred from lexical features alone.

When the data volume is very limited, the sit-
uation changes significantly. LLMs demonstrate
stronger robustness and adaptability across all clas-
sification tasks, among which methods utilizing
the intrinsic representations of LLMs show more
competitive performance than other methods.

7 Conclusion

s

Our study challenges the prevailing “LLM-centric’
trend in text classification by demonstrating that
BERT-like models often outperform LLMs while
being computationally efficient. Through extensive
experiments, we identify three dataset types and
propose TaMAS, a fine-grained strategy guiding
optimal model choice based on task requirements.
This work advocates for a rational, task-driven ap-
proach over blind adherence to LLMs, ensuring
efficiency without sacrificing performance.

18984



Limitations

This paper mainly explores six typical and chal-
lenging datasets, and focuses on investigating three
major categories of methods. Our future work
aims to conduct experiments on a broader range of
datasets and evaluate them using a wider variety
of approaches, in order to draw more comprehen-
sive conclusions and develop effective task-specific
selection strategies.
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lected were as follows: For chinese tasks: bert-
base-chinese, roberta-chinese-base, ernie-3.0-base-
zh, and chinese-electra-180g-base-discriminator.
For english tasks: bert-base-uncased, roberta-base,

ernie-2.0-base-en, and electra-base-discriminator.
Since there is no version 3.0 available for ERNIE
in english, we opted for the 2.0 version instead.
The number of parameters in all the models are
available in Table 2.

Model Names Parameters
bert-base-chinese 102.27 M
roberta-chinese-base 102.27 M
ernie-3.0-base-zh 117.94 M
chinese-electra-180g-base-discriminator ~ 101.68 M
bert-base-uncased 109.48 M
roberta-base 124.65 M
ernie-2.0-base-en 109.48 M
electra-base-discriminator 108.89 M
Qwen2.5-7B-Instruct 7070.62 M
LLaMA-3-8B-Instruct 7504.92 M

Table 2: Model parameter details.

B Implementation Details

In the implementation, for each dataset, we split
the data into training, validation, and test sets with
a ratio of 7:1.5:1.5. For trainable models, we se-
lected the best-performing model on the validation
set and evaluated it on the test set. For BERT-like
models, we set the learning rate to 2e-5, trained for
10 epochs. We do not fine-tune any of these hyper-
parameters for this task. For LLM zero-shot query-
ing, we used Qwen2.5-7B-Instruct for chinese text
classification tasks and LLaMA-3-8B-Instruct for
english text classification tasks. We do not include
methods that involve fine-tuning the parameters of
the LLMs, as this would significantly increase the
computational cost.

C LLM-IS Implementations

For SAPLMA and MM-Probe, we both choose the
3/4th layer, as middle-to-late layers of the LLM
have been proven to potentially better capture the
overall sentence semantics (Skean et al., 2024,
Chen et al., 2024; Azaria and Mitchell, 2023).

SAPLMA. For the SAPLMA method, which
uses the MLP classifier, we set the hidden layer di-
mensions to 512, 256, and 128, all utilizing ReLLU
activations. The final layer is a sigmoid output. The
learning rate is le-3.

MM-Probe.
calculate the mean activation ugl) for positive exam-

positive (
ples from D, and v;

negative
from D" .

For layer [ and token position i, we

D for negative examples
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We then compute the mass-mean vector for fur-
ther classification:

O — 0 _,0 )

To perform classification, the activation vector of
the input text is projected onto the mass-mean direc-
tion via dot product computation, thereby enabling
detection. For the MM-Probe method, we set the
classification threshold based on the value that de-
rives the maximum G-Mean, and calculated Acc
and F1 scores using this threshold.

D Datasets Details

For the ToxiCloakCNBase, ToxiCloakCN-
BaseEmoji,  ToxiCloakCNBaseHomo, and
True-False Datase, where the number of samples
in the two classes is nearly equal, we applied
stratified sampling. For the MaliciousCo dataset,
we performed undersampling. As for the LegalText
dataset, we extracted a balanced subset of two
thousand samples. The source information for the
datasets used can be found in the Table 6.

Model AUC Acc F1

BERT 59.7 58.1 5453
RoBERTa 849 758 702
ERNIE 855 765 1728
ELECTRA 88.0 744 676
SAPLMAp;ism 88.0 80.5 79.2
MMpiism 79.9 747 71.3
Queryqwenirama 65.0 66.8 483

Table 3: Evaluation of different methods on GlueRTE
dataset.

E Visualization Details

For Figure 2, for each dataset, five hundred positive
samples and five hundred negative samples were se-
lected. The first two principal components obtained
via PCA were used for visualization. For Figure 3,
logistic regression was fitted on the collected hid-
den states, since single linear probe demonstrates
the separability (Alain and Bengio, 2016).

Model GermanHateSpeech Emotion
BERT 91.1 89.1
RoBERTa 92.7 90.0
ERNIE - 91.1
ELECTRA - 89.7
SAPLMApism 90.4 62.4
MM-Probeism 69.2 -
QuerYQwen/LLaMA 74.7 529

Table 4: Model accuracy of different methods on on
GermanHateSpeech and Emotion datasets.

F Results Across Diverse Text
Classification Tasks

We present the experimental results on three new
text classification tasks. For german hate speech
classification, we did not find suitable multilingual
versions of ERNIE and ELECTRA. For multi-label
emotion classification, since the MM method is not
applicable to multi-class tasks, we did not include
those results.

G Cost Performance Analysis

For these six datasets, we conducted experiments
by reducing the training data to 50%, 10%, and
as low as 1% of the original dataset size, while
keeping all other settings unchanged.

H Generation Examples

As shown in Table 8, for prompts with hallucina-
tions, the LLM’s output tends to first indicate that
there is an error. In contrast, for prompts without
hallucinations, the LLM tends to initially affirm
that the statement is correct, and then continues by
adding some fact-based information related to the
prompt.
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Model Link

bert-base-chinese https://huggingface.co/google-bert/bert-base-chinese
roberta-chinese-base https://huggingface.co/clue/roberta_chinese_base
ernie-3.0-base-zh https://huggingface.co/nghuyong/ernie-3.0-base-zh
chinese-electra-180g-base-discriminator https://huggingface.co/hfl/chinese-electra-180g-base-discriminator
bert-base-uncased https://huggingface.co/google-bert/bert-base-uncased
roberta-base https://huggingface.co/FacebookAI/roberta-base
ernie-2.0-base-en https://huggingface.co/nghuyong/ernie-2.0-base-en
electra-base-discriminator https://huggingface.co/google/electra-base-discriminator
Qwen2.5-7B-Instruct https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
LLaMA-3-8B-Instruct https://huggingface.co/meta-1lama/Meta-Llama-3-8B-Instruct

Table 5: Model links.

Dataset Link

ToxiCloakCNBase https://github.com/Social-AI-Studio/ToxiCloakCN/tree/main
ToxiCloakCNEmoji https://github.com/Social-AI-Studio/ToxiCloakCN/tree/main
ToxiCloakCNHomo https://github.com/Social-AI-Studio/ToxiCloakCN/tree/main

LegalText https://huggingface.co/datasets/openSUSE/cavil-legal-text
MaliciousCode https://huggingface.co/datasets/Erllllc/Malicious_code_classification
True-False Dataset azariaa.com/Content/Datasets/true-false-dataset.zip

GlueRTE https://huggingface.co/datasets/SetFit/rte

GermanHateSpeech https://huggingface.co/datasets/manueltonneau/german-hate-speech-superset
Emotion https://huggingface.co/datasets/dair—-ai/emotion

Table 6: Dataset links.

Cat Datasets ToxiCloakCNBase ToxiCloakCNEmoji ToxiCloakCNHomo LegalText MaliciousCode True-False Dataset
Methods/Metrics AUC Acc Fl AUC Acc F1 AUC  Acc F1 AUC Acc FlI AUC Acc FlI AUC Acc Fl

BERT 93.6 868 871 873 803 792 8.8 757 751 975 913 912 1000 986 986 738 640 69.0

BLMs RoBERTa 93.1 848 848 886 804 808 872 784 793 981 937 935 999 993 99.3 817 704 73.0

) ERNIE 935 862 86.6 885 800 805 872 793 777 976 920 91.8 999 989 989 804 705 71.0

ELECTRA 912 839 840 857 771 772 857 787 795 971 913 912 994 989 99.0 841 73.0 742

LLM-IS SAPLMA rism 925 851 850 866 754 726 841 768 77.0 96.6 87.0 831 1000 99.3 99.3 957 88.1 88.1

MM-Probeism 88.1 786 76.8 832 742 719 809 732 702 915 840 850 100.0 989 99.0 935 86.1 86.0
LLM-Q QueryQwenrrava 728 728 659 69.1 69.1 615 686 686 593 803 803 817 961 96.1 963 857 857 862

(a) 50% Training Data

Cat Datasets ToxiCloakCNBase ToxiCloakCNEmoji ToxiCloakCNHomo LegalText MaliciousCode True-False Dataset
Methods/Metrics AUC Acc FlI AUC Acc F1  AUC Acc FlI  AUC Acc FlI AUC Acc F1 AUC Acc Fl
BERT 815 738 733 776 706 681 751 683 703 945 880 882 999 982 982 575 552 603

BLMs RoBERTa 859 78.1 784 781 709 719 796 725 729 953 883 881 999 982 982 688 641 658
ERNIE 816 751 737 740 693 680 757 71.0 71.1 963 90.0 89.9 999 989 989 744 679 70.0
ELECTRA 834 761 771 756 69.0 698 745 687 693 929 850 853 997 979 979 812 723 740

LLM.IS SAPLMA prigm 90.1 803 792 838 752 742 814 735 703 943 89.0 893 100.0 986 98.6 945 874 874

MM-Probeism 879 783 765 827 758 749 80.6 739 715 915 837 848 100.0 989 99.0 934 860 859
LLM-Q QueryQwemirama 728 728 659 69.1 69.1 615 686 686 593 803 803 817 961 961 963 857 857 862

(b) 10% Training Data

Cat Datasets ToxiCloakCNBase ToxiCloakCNEmoji ToxiCloakCNHomo LegalText MaliciousCode True-False Dataset
Methods/Metrics AUC Acc Fl AUC Acc F1 AUC  Acc F1 AUC Acc FlI AUC Acc Fl AUC Acc Fl
BERT 587 570 628 589 552 648 574 539 60.8 902 820 833 993 96.1 962 47.7 49.6 61.7

BLMs RoBERTa 547 533 539 547 525 550 622 588 527 921 827 8l1.6 996 982 982 484 505 624
ERNIE 529 516 355 62.1 593 666 536 536 444 895 820 822 995 979 979 470 486 519
ELECTRA 585 551 625 567 549 577 589 568 63.1 87.0 79.0 784 992 975 975 49.8 493 527

LLM-IS SAPLMA prism 872 658 740 824 509 571 794 530 680 915 837 826 1000 99.3 99.3 920 858 857

MM-Probeism 872 770 746 826 749 740 798 710 681 915 857 86.1 1000 989 99.0 929 855 822
LLM-Q QueryQwenirava 728 728 659 69.1 69.1 615 686 686 593 803 803 817 961 96.1 963 857 857 86.2

(¢) 1% Training Data

Table 7: Evaluation of different methods on six datasets with varying proportions of training data (50%, 10%, and
1%). Metrics include AUC, Accuracy, and F1.
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Prompt Output Label

Beijing is a city in Palau. I think there may be a mistake there! 0
Beijing is actually the capital city of China, not Palau.
Palau is a small island nation in the Pacific Ocean, and its
capital is Ngerulmud. Beijing is a major city with a rich
history and culture, known for its iconic landmarks like
the Great Wall of China, the Forbidden City, and the
Temple of Heaven.

Beijing is a city in China. That’s correct! Beijing is the capital city of China, 1
located in the northern part of the country. It’s a city with
a rich history and culture, known for its iconic landmarks
such as the Great Wall of China, the Forbidden City, and
the Temple of Heaven. Beijing is also a major hub for
business, education, and tourism, and is home to many
universities, museums, and cultural institutions.

The Great Barrier Reef is located I'm happy to help you with that! However, I must correct 0
in the Atlantic Ocean. you - the Great Barrier Reef is actually located in the
Coral Sea, which is a part of the Pacific Ocean, off the
coast of Queensland, Australia. It’s not located in the
Atlantic Ocean. The Great Barrier Reef is the world’s
largest coral reef system, stretching over 2,300 kilometers
(1,400 miles), and is one of the most biologically diverse
ecosystems on the planet.

The first Olympic Games were  That’s correct! The first Olympic Games were held in 1
held in ancient Greece. ancient Greece in the year 776 BC, according to
historical records. The games were held in Olympia, a
valley in the western part of Greece, and were dedicated
to Zeus, the king of the gods. The ancient Olympic
Games were a major event in the ancient Greek world,
where athletes from all over Greece would come together
to compete in various sports such as running, wrestling,
boxing, and chariot racing. The games were held every
four years for over 1,000 years until they were banned by
the Roman Emperor Theodosius in 393 AD.

Table 8: Generation examples of four prompts using Meta-Llama-3-8B-Instruct. 1 represents that the statement is
factually correct, and O represents that the statement is hallucinated.
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