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Abstract

Robust evaluation in the presence of linguistic
variation is key to understanding the generaliza-
tion capabilities of Natural Language to SQL
(NL2SQL) models, yet existing benchmarks
rarely address this factor in a systematic or con-
trolled manner. We propose a novel schema-
aligned paraphrasing framework that lever-
ages SQL-to-NL (SQL2NL) to automatically
generate semantically equivalent, lexically di-
verse queries while maintaining alignment with
the original schema and intent. This enables
the first targeted evaluation of NL2SQL ro-
bustness to linguistic variation in isolation—
distinct from prior work that primarily investi-
gates ambiguity or schema perturbations. Our
analysis reveals that state-of-the-art models
are far more brittle than standard benchmarks
suggest. For example, LLaMa3.3-70B ex-
hibits a 10.23% drop in execution accuracy
(from 77.11% to 66.9%) on paraphrased Spi-
der queries, while LLaMa3.1-8B suffers an
even larger drop of nearly 20% (from 62.9% to
42.5%). Smaller models (e.g., GPT-4o mini)
are disproportionately affected. We also find
that robustness degradation varies significantly
with query complexity, dataset, and domain—
highlighting the need for evaluation frame-
works that explicitly measure linguistic gen-
eralization to ensure reliable performance in
real-world settings.

1 Introduction

A large share of enterprise data reside in relational
databases, with SQL as the primary query inter-
face. Machine learning models that translate natu-
ral language (NL) to SQL (NL2SQL) have become
essential for seamless human-database interaction.
However, evaluating these models remains a sig-
nificant challenge. Public benchmarks such as Spi-
der (Yu et al., 2018) and BIRD (Li et al., 2023)
often oversimplify real-world complexities, over-
looking factors such as linguistic diversity, schema
variations, and domain-specific constraints. As a re-

sult, reported model performance on these datasets
may not reflect true generalization capabilities.

To address these limitations, the field has called
for fine-grained evaluation methods that go beyond
broad benchmarks. Such methods should assess
model performance across varying query complexi-
ties, identify specific failure points, and support tar-
geted improvements. Without detailed evaluations,
critical weaknesses may remain hidden, limiting
the robustness and reliability of NL2SQL models
in practical applications.

Robustness remains a persistent challenge for
NL2SQL systems. Robustness encompasses the
ability to handle linguistic and structural perturba-
tions, including ambiguous, paraphrased, or com-
plex queries. For instance, Bhaskar et al. (2023)
introduced AmbiQT, a dataset targeting lexical and
structural ambiguity, and proposed LogicalBeam,
a decoding algorithm that increases SQL diversity
and improves match accuracy. Similarly, Wang
et al. (2023) systematically categorized ambigu-
ous and unanswerable queries, using counterfac-
tual generation to strengthen model performance.
Broader robustness evaluations, such as those by
Chang et al. (2023), have revealed that state-of-the-
art models can suffer significant accuracy drops
under both database and NL question perturbations,
highlighting their fragility in real-world scenarios.

A central source of this fragility is schema link-
ing, the process of identifying and aligning schema
elements (column and table names) with their refer-
ences in NL queries. Schema linking is widely rec-
ognized as pivotal to NL2SQL performance (Guo
et al., 2019; Bogin et al., 2019; Wang et al., 2020;
Chen et al., 2021; Cao et al., 2021), with improve-
ments directly enhancing parsing accuracy (Lei
et al., 2020). However, schema linking remains brit-
tle, particularly when faced with synonym substitu-
tions or paraphrased natural language queries (Gan
et al., 2021). Recognizing these challenges, Spider
2.0 (Lei et al., 2025) was recently introduced to
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better reflect real-world use cases and address the
limitations of earlier benchmarks.

In this work, we present a comprehensive evalu-
ation framework for NL2SQL models that captures
the nuanced challenges of robustness, with a par-
ticular emphasis on schema linking. Our approach
enables fine-grained analysis across query complex-
ities and ambiguity types, providing actionable in-
sights for diagnosing model failures and assessing
generalization. Unlike prior work that focuses on
improving NL2SQL model performance through
architectural innovations or pre-training strategies,
our contribution lies in systematically characteriz-
ing model behavior. For example, Xu et al. (2018)
proposed a graph-to-sequence model to better cap-
ture SQL’s structural patterns, while GraPPa (Yu
et al., 2021) enhanced compositional generaliza-
tion using schema-aware pre-training on synthetic
data. In contrast, our framework is designed to sur-
face detailed evaluation signals that can inform the
development or fine-tuning of NL2SQL models.

1.1 Our Approach
Understanding the root causes of errors in pre-
dicted SQL queries is a challenging and entan-
gled task. Model failures can arise from mul-
tiple sources—such as incorrect schema linking,
misinterpretation of linguistic cues, or logical in-
consistencies—making it difficult to diagnose per-
formance breakdowns or meaningfully compare
model behaviors. A prerequisite to effective error
analysis is the ability to isolate specific sources of
error. To this end, we introduce an automatic natu-
ral language query generation framework that em-
beds schema alignment directly into the generated
queries. By construction, SQL2NL decouples
the impact of schema linking from other fac-
tors, enabling a focused evaluation on linguistic
variation and model generalization. This design
innovation serves two primary objectives:

1. Isolating performance degradation due to
linguistic variation by holding schema align-
ment constant—facilitating more precise anal-
ysis of model robustness.

2. Generating high-quality, schema-consistent
preference datasets for training and fine-
tuning NL2SQL models in a controlled and
interpretable manner.

Unlike prior methods that rely on heuristic or ex-
ternal schema linking modules, SQL2NL ensures

schema consistency by construction, significantly
reducing linking-related errors and removing a
common confounder in NL2SQL evaluation. More-
over, the generated natural language queries main-
tain syntactic fluency, semantic equivalence to the
source SQL, and structural fidelity to the underly-
ing schema. Our experiments reveal that despite
preserving semantics, even after controlling for
schema linking errors, NL2SQL models are still
highly sensitive to linguistic variations, under-
scoring the brittleness of current approaches and
the importance of evaluating beyond exact-match
metrics. In addition, we provide additional experi-
ments on top of the existing literature, and provide
Pass@K metric for both NL2SQL and SQL2NL
tasks. With no surprise, with increasing K Pass@K
metric improves for both tasks; providing a more
robust metric for evaluating NL2SQL and SQL2NL
by excluding random errors in LLM generation.
With a high enough K, Pass@K metric reveals
the maximum ability of an LLM, where we show
that SQL2NL can outperform NL2SQL with big
enough K. Our approach provides a novel, scal-
able pathway for diagnosing and addressing failure
modes in NL2SQL systems—paving the way for
more resilient and generalizable benchmarks.

2 Evaluating NL2SQL via SQL2NL

2.1 Workflow Overview

Figure 1 shows the end-to-end pipeline for eval-
uating NL2SQL model robustness. We start by
extracting gold SQL queries and schema from a
test set. By grounding on the schema, a SQL2NL
model then generates k paraphrased NL queries
that introduce linguistic variation while preserv-
ing semantic equivalence. While SQL2NL and
NL2SQL could be handled by separate models,
here we use a single unified model for both.

The NL2SQL model is then evaluated on para-
phrased queries, measuring performance degrada-
tion against the original. Human evaluators assess
semantic similarity, generating confidence scores
(CS) to adjust accuracy for robust evaluation.

2.2 Paraphrase Generation

We generate paraphrased NL queries using a struc-
tured prompt template, designed to ensure linguis-
tic diversity while preserving logical equivalence.
The prompt combines schema definitions and SQL
queries, followed by specific instructions to enforce
diversity constraints. The full prompt template is
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Figure 1: We begin by extracting the gold SQL query and its associated schema from a benchmark NL2SQL test set.
A SQL2NL model is then used to generate k paraphrased natural language queries. Each paraphrase is semantically
validated against the original query to ensure meaning preservation. The validated paraphrases are subsequently
fed into the NL2SQL model to produce predicted SQL queries. Robustness is measured using execution-match
accuracy across the paraphrases. While SQL2NL and NL2SQL can in principle be treated as separate modeling
tasks, in this study we employ a single unified model for both directions.

provided in Appendix A.
This approach is grounded in minimizing

schema linking errors by leveraging SQL queries
(G) and schema information (S) to generate para-
phrased queries (Q) that exhibit stronger schema
alignment than the original queries (Qorig). Con-
ditioning on both (G and S is expected to yield
paraphrases that are semantically equivalent to the
gold SQL while being explicitly grounded in the
schema, thereby reducing schema mismatches.

This assumption can also be expressed in terms
of expected log-likelihood. Let PNL2SQL(Y | Q,S)
denote the probability assigned by an NL2SQL
model to a SQL query Y given natural language
query Q and schema S, and let Ygold be the
gold SQL. For the original dataset queries, we
treat them as an empirical distribution Pdata(Qorig),
which often provides only a single natural language
query per SQL. For paraphrased queries, we in-
stead define a distribution P (Q | G,S) induced by
a generator conditioned on the gold SQL G and
schema S.

We claim that schema-grounded paraphrases im-
prove the model’s objective:

EQ∼P (Q|G,S)

[
logPNL2SQL(Ygold | Q,S)

]

> EQ∼Pdata(Qorig)

[
logPNL2SQL(Ygold | Q,S)

]

(1)
This inequality asserts that schema-conditioned

paraphrases increase the expected log-likelihood
of the correct SQL relative to the original queries.
Intuitively, the gain depends on the nature of Qorig:
datasets with clear, unambiguous queries leave less

room for improvement, while noisy or underspeci-
fied queries benefit substantially from paraphrasing.
By embedding schema information directly into the
paraphrasing process, the generated queries remain
faithful to the logical intent of the gold SQL while
introducing linguistic variation. These variations
not only increase the likelihood of producing the
correct SQL, but also stress-test NL2SQL mod-
els under diverse formulations, thereby exposing
weaknesses in schema linking and improving ro-
bustness.

2.3 Evaluation Metrics

We evaluate performance degradation by com-
paring accuracy on paraphrased queries (Apara)
against original queries (Aorig). Accuracy is mea-
sured using execution match (EM) accuracy, which
evaluates whether the SQL query execution result
matches the result of the gold SQL query when exe-
cuted on the same database. EM accuracy is widely
regarded as a more robust metric than string-based
comparisons because it directly reflects whether
the generated SQL produces the correct output, re-
gardless of syntactic differences. This makes it
particularly suitable for evaluating NL2SQL sys-
tems, where queries may vary in structure but yield
identical results.

To quantify performance degradation, we com-
pute the accuracy drop as ∆acc = Aorig − Apara,
where Aorig and Apara represent the execution
match accuracies on the original and paraphrased
queries, respectively. The paraphrased queries are
expected to preserve semantic equivalence with the
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original NL queries. To account for this, we in-
corporate human evaluations of paraphrase quality.
Annotators assess the semantic similarity between
the original and paraphrased queries and provide
confidence scores (CS) on a scale of 0 to 1, where
higher scores indicate greater similarity. We use
these confidence scores to adjust the measured ac-
curacy, accounting for potential paraphrasing er-
rors: Atrue = Apara ± (1− CS) ·Apara

This adjustment ensures that errors arising from
paraphrasing artifacts do not unfairly penalize
model performance, providing a more reliable eval-
uation of robustness to linguistic variations. By
combining execution match accuracy with human-
validated paraphrase quality, this approach pro-
vides a rigorous framework for analyzing model
sensitivity to variations in query phrasing, enabling
reliable assessments in NL2SQL tasks.

In this work we explore replacing the human
in the loop with semantic similarity score from
the embeddings and show the reliability of this
approach for the datasets we study in this work.

3 Nature of Paraphrased Queries

3.1 Semantic Similarity

We analyze the semantic similarity between the
original and paraphrased queries using Sentence-
BERT embeddings, which measure similarity in
a high-dimensional semantic space. The results
presented in Figure 2 indicate a high degree of
alignment, with a mean similarity score of 0.81 and
a median score of 0.83 for the Spider dataset. The
interquartile range spans from 0.77 to 0.86, suggest-
ing that most paraphrases preserve the semantic
intent of the original queries. Notably, the mini-
mum similarity score is 0.44, indicating a subset
of paraphrases that deviate more significantly from
the original query. For the BIRD dataset, the mean
similarity score is 0.8, with a wider variance. This
broader distribution suggests that paraphrases in
BIRD exhibit more linguistic diversity, potentially
influenced by its more complex schema structures.

Table 4 in Appendix B presents examples com-
paring the original queries with their paraphrased
variants, along with semantic similarity scores. The
examples illustrate varying levels of similarity, with
scores ranging from 0.53 to 0.84. Through expert
annotation, we observe that similarity scores above
0.6 correspond to paraphrases that accurately pre-
serve the meaning and intent of the original query
while introducing linguistic variation. In particular,

Figure 2: Kernel Density Estimation (KDE) plot
of semantic similarities between original and para-
phrased queries for the Spider and BIRD datasets using
Sentence- BERT embeddings. The Spider dataset ex-
hibits a higher mean similarity (0.81) than BIRD dataset
(0.79) and wider variance.

queries with scores above 0.6 exhibit consistent
semantic alignment with the original, even when
rephrased using different sentence structures, word
order, or synonyms. Based on this threshold, more
than 98% of the samples in our dataset are para-
phrased reliably, demonstrating the effectiveness
of the paraphrasing process. The lower-scoring ex-
ample ( 0.53) highlights cases where subtle differ-
ences in emphasis or additional qualifiers may lead
to minor deviations from the original query’s intent.
However, even in such cases, the paraphrases re-
main interpretable and contextually relevant. The
results suggest that the generated paraphrases ef-
fectively test the robustness of NL2SQL models
while maintaining semantic equivalence, enabling
rigorous evaluations under input variations.

3.2 Grammatical Similarity Analysis

We begin with evaluating the grammatical similar-
ity between paraphrased and original natural lan-
guage queries. We employed syntactic tree-based
representations to measure structural alignment.
Using the SpaCy library (Honnibal and Montani,
2017), dependency parse trees were generated for
each query, and their hierarchical structures were
compared to compute a grammar similarity score.
This metric quantifies the degree of syntactic over-
lap, capturing both grammatical consistency and
structural variations.

The grammatical similarity score (
Sgrammar(Q1, Q2) ) was computed as the
average of two components:

1. Tree Structure Similarity (Stree): Measures
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the overlap in dependency parse trees, based on the
number of subtrees.

Stree(Q1, Q2) = 1− |T1 − T2|
max(T1, T2)

(2)

where T1 and T2 are the number of dependency
subtrees in the queries.

2. POS Tag Similarity (Spos): Computes overlap
in part-of-speech (POS) tags.

Spos(Q1, Q2) =
|P1 ∩ P2|

max(|P1|, |P2|)
(3)

where P1 and P2 represent the sets of POS tags
in each query. The final grammar similarity score
combines the two measures as:

Sgrammar =
Stree + Spos

2
(4)

We analyzed the grammatical similarity between
the original queries and their paraphrased coun-
terparts to investigate structural variations intro-
duced during paraphrasing. Grammatical similarity
was computed using dependency parse trees and
POS tag alignments, capturing syntactic consis-
tency while accounting for structural transforma-
tions. Figure 3 presents the distribution of gram-
matical similarity scores for the Spider and BIRD
datasets. The results reveal a bimodal distribution
with two peaks: a higher similarity peak indicating
paraphrases that closely match the syntax of the
originals, and a lower similarity peak suggesting
more substantial syntactic deviations.

The mean grammatical similarity is 0.7 for Spi-
der and 0.65 for BIRD, respectively. Both datasets
exhibit a 95% confidence interval (CI) spanning
approximately [0.43, 0.76], indicating consider-
able variation in syntactic alignment. Several para-
phrased queries exhibit low grammatical similar-
ity scores due to structural differences from the
original queries. Original queries often contain
multi-clause formulations or explicit schema refer-
ences, while paraphrased versions simplify struc-
tures while preserving semantic intent. For exam-
ple, an original query: "How many countries does
each continent have? List the continent id, conti-
nent name, and the number of countries." is para-
phrased as: "What is the distribution of countries
across different continents?"

These transformations reduce syntactic complex-
ity, alter POS tag patterns, and flatten dependency
structures, resulting in lower grammar similarity
scores despite semantic equivalence.
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Figure 3: Grammatical similarity score distributions for
the Spider and BIRD datasets. The bimodal patterns
reflect cases of significant syntactic rephrasing (lower
peak) and close syntactic alignment (higher peak).

3.3 Analysis of Syntactic and Lexical Features
We analyzed the syntactic and lexical properties
of the original natural language queries and their
paraphrased counterparts to better understand the
structural variations introduced during paraphras-
ing. Specifically, we examined sentence length,
syntactic depth, and lexical diversity across the two
sets of queries. Sentence length was measured by
the number of tokens. Syntactic depth was com-
puted as the maximum dependency distance be-
tween a word and its syntactic head:

Dsyntactic(wi) = max(|h(wi)− i|)

where h(wi) denotes the index of the syntactic head
of word wi in the dependency parse tree, and i is
the position of the word in the query. Lexical di-
versity was calculated as the ratio of unique words
to the total number of words in a query, LD = V

N ,
where V represents the number of unique words
and N represents the total number of words in the
query. These metrics provide insights into the struc-
tural and lexical variations between the original and
paraphrased queries, allowing us to assess whether
paraphrasing preserves or alters query complexity
and linguistic richness.

Figure 4 visualizes the distributions of these fea-
tures using kernel density estimation (KDE) plots
for both the original and paraphrased queries of Spi-
der datasets. Paraphrased queries are longer (15.02
vs. 12.4 tokens) and exhibit slightly greater syn-
tactic depth (12.53 vs. 10.8), suggesting increased
complexity. Lexical diversity remains high (0.94
for both), preserving vocabulary richness. How-
ever, paraphrased queries show lower variability
in word choice, as indicated by a slightly reduced
standard deviation in lexical diversity. We present
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the result for BIRD dataset in Appendix C.
The results for both Spider and BIRD datasets

suggest that the paraphrased queries maintain gram-
matical and lexical richness while introducing
structural complexity, making them suitable for
testing the robustness of NL2SQL models against
linguistic variations.
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Figure 4: Distributions of sentence length, syntactic
depth, and lexical diversity for original and paraphrased
queries. Paraphrased queries are longer and exhibit
slightly higher syntactic depth, while lexical diversity
remains high and comparable to the original queries.

4 Experimental Results

We evaluate LLM performance on paraphrased
queries by randomly selecting 1000 examples from
the Spider development set. For each gold SQL
query Qi (with its corresponding schema), we ask

SQL2NL model to generate m = 10 natural lan-
guage queries, resulting in a total of 10,000 para-
phrased examples, represented as pairs

{(N1, Qi), (N2, Qi), . . . , (Nm, Qi)}.

We test recent off-the-shelf LLMs (including
GPT-4o (et al., 2023) and LlaMa3-series of mod-
els (Dubey et al., 2024)) on the paraphrased nat-
ural language queries. A detailed comparison of
dataset domains, sizes, table characteristics, and
query complexities is provided in Table 1.
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Figure 5: Accuracy of LlaMa3.3-70B across different
JOIN categories with bootstrap-based error bars for Spi-
der dev set. Results are shown for paraphrased and
original NL queries, base on execution match accuracy.
Error bars represent 95% confidence intervals, account-
ing for variability due to dataset size in each category.

4.1 Comparing LLMs on Paraphrased and
Original Queries

Our key experiments are designed to answer the fol-
lowing research question: are existing NL2SQL so-
lution robust to paraphrases in the input NL queries.
We compare the performance of a few off-the-shelf
LLMs on the Spider dev set. Given the results
in Table 2, it is evident that the models exhibit
varying levels of performance on paraphrased vs
original queries. GPT4o-mini achieves the highest
accuracy on original queries (77.4%) but sees a
moderate drop when tested on paraphrased queries
(65.2%), highlighting some sensitivity to input
rephrasing. Similarly, Llama3.3 70b performs com-
parably to GPT4o-mini on original queries (77.1%)
and demonstrates slightly better robustness to para-
phrasing, with a smaller drop to 66.9%. In contrast,
Llama3.1 8b not only shows lower overall perfor-
mance but also experiences a much larger drop
between original (62.9%) and paraphrased queries
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Table 1: Average schema and query complexities of NL2SQL datasets in this work.

Dataset Domain #Queries #DB #Tables/DB #Cols/Table #Joins/Query #Agg/Query Nest Depth/Query

Spider (Dev) Misc. 1034 20 4.05 5.44 0.51 0.85 1.09
Bird (Dev) Misc. 1534 11 6.82 10.6 0.92 0.66 1.09
FIBEN Financial 300 1 41 3.71 4.1 1.41 1.60

Table 2: Mean accuracy of off-the-shelf LLMs on original and paraphrased NL queries in the Spider dev set.
Accuracy is in percentage. The "Degradation" column quantifies the absolute drop in accuracy due to paraphrasing.
The same LLM is used for paraphrasing in each row.

Model Original Accuracy (%) Paraphrased Accuracy (%) Degradation (%)
Llama3.1 405B 79.5 69.2 10.3 ↓
Llama3.3 70B 77.1 66.9 10.2 ↓
Llama3.1 8B 62.9 42.5 20.4 ↓
GPT4o-mini (8B) 77.4 65.2 12.2 ↓

(42.50%), with a decrease of over 20 percentage
points. This pronounced decline suggests that the
smaller model struggles significantly with general-
izing to paraphrased inputs, likely due to its limited
capacity to handle the complex semantic mappings
required for NL2SQL tasks.

These results highlight the critical trade-offs be-
tween model size, accuracy, and robustness to in-
put variability. While larger models like Llama3.3
70b and GPT4o-mini exhibit better generalization,
smaller models like Llama3.1 8b face significant
challenges, particularly with paraphrased inputs.
Addressing these gaps, especially for smaller mod-
els, could be key to improving performance and en-
suring robustness in real-world applications where
paraphrased inputs are common.

We estimate that the total computational budget
required to obtain these results is approximately
1,000 GPU-hours on A100 GPUs.

4.2 Performance by JOIN Count

As a proxy for real-world complexity measure, we
analyze performance based on the number of JOIN
operations in the Spider dev set. Accuracy declines
as JOIN complexity increases. For 0 JOINs , accu-
racy drops from 84.04% (original) to 77.83% (para-
phrased), a 6.21% decrease, indicating even simple
paraphrases affect generalization. With 1 JOIN,
accuracy falls from 65.44% to 49% (16.44% drop),
highlighting schema linking challenges. For 2
JOINs , accuracy declines from 64.29% to 57.57%
(6.72% drop), suggesting overestimated accuracy
for simpler queries. The result is shown in Figure 5.

We extend the analysis of accuracy trends con-
cerning the number of JOINs by incorporating the
FIBEN dataset (Sen et al., 2020), which features
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Figure 6: Normalized schema error rates for original
and paraphrased queries. Errors in False cases are
scaled relative to True case baselines to ensure fair com-
parison. Paraphrased queries exhibit lower normalized
error rates across all categories, suggesting improved
schema alignment.

a significantly higher average number of JOINs
per query compared to Spider and BIRD. Detailed
numerical results for both BIRD and FIBEN are
discussed in D, Tables 4, 5, and 6. We observe that
Spider shows a sharper accuracy decline with com-
plexity, while BIRD is more resilient. For FIBEN
we observe no clear trend.

4.3 Clause-based performance analysis

We analyze the impact of paraphrased NL queries
on model performance as a function of SQL clause
presence in Appendix E. Our findings indicate
that the model experiences greater degradation on
Spider, particularly for queries involving ORDER
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BY, GROUP BY, and nested queries, while BIRD
demonstrates more stable performance with mini-
mal degradation across most clauses. This suggests
that the model struggles more with paraphrasing
in datasets where SQL queries exhibit higher struc-
tural complexity and a stronger dependence on pre-
cise linguistic patterns.

4.4 Normalized Schema Error Analysis

We evaluated schema alignment errors in both origi-
nal and paraphrased queries by analyzing four error
types: missing columns, extra columns, missing ta-
bles, and extra tables. Using the SQLGlot library,
we parsed SQL queries to extract schema elements
while accounting for alias resolution, projection
order differences, and implicit projections. Errors
were computed by comparing predicted and gold
schema elements. To ensure a fair comparison, er-
ror rates in False cases were normalized relative to
true case baselines. We formulate normalization as
follows:

NER =
Efalse

Etrue + ϵ
(5)

where Efalse and Etrue represent the error rates in
False and True cases, respectively, and ϵ is a small
constant added to avoid division by zero. This
approach controls for differences in baseline com-
plexity, enabling meaningful comparisons.

The results, visualized in Figure 6, reveal
that due to controlling for schema alignment,
normalized error rates are consistently lower
for paraphrased queries compared to original
queries across all error categories. On average,
normalized errors for paraphrased queries (9.9) are
significantly lower than those for original queries
(13.7). This trend is observed in both column-
related and table-related errors.

These findings suggest that schema alignment er-
rors, particularly those arising from implicit JOINs
and nested structures, are reduced when queries are
paraphrased. One possible explanation is that para-
phrased queries, generated from SQL and schema
information, enforce more explicit references to
schema elements, thereby minimizing schema link-
ing errors. Additionally, the reduced complexity
observed in paraphrased queries likely improves
alignment with the schema, further mitigating er-
rors. While paraphrasing reduces schema align-
ment errors overall, some remaining errors high-
light the need for improved schema-linking mecha-
nisms to handle intricate query patterns effectively.

Table 3: The Pass@K value for Spider dev dataset

K 1 2 5 10
nl2sql 76.0% 78.6% 80.6% 81.3%
sql2nl 67.1% 76.5% 83.3% 84.6%

5 Pass@K Performance

As shown in previous section, and mentioned in
(Bhaskar et al., 2023), there is a common belief
that parameterized queries ends in dropped perfor-
mance. We further expanded the experiments for
the GPT4o-8B model on Spider dataset by run-
ning 10 replica of each query to obtain Pass@K on
both the SQL2NL and NL2SQL tasks. As shown
in Table 3, with no surprise, increasing K ends in
higher performance for both tasks, and contrary
to the common belief that parameterized queries
always ends in dropped performance, SQL2NL
outperforms NL2SQL for K ∈ {5, 10}. Also, as
shown for both tasks, the performance gain reaches
to the boundaries of LLM capability, such that
there is only 1% improvement from Pass@5 to
Pass@10. Details of our experiments is discussed
in Appendix F.

6 Beyond Evaluation: Leveraging
SQL2NL for NL2SQL Training

In this study, we introduced a controlled framework
for evaluating NL2SQL model robustness via se-
mantically equivalent paraphrased queries. A key
contribution is the use of SQL2NL to generate nat-
ural language queries that preserve the intent of the
original SQL while explicitly minimizing schema
linking errors. This isolation of schema align-
ment effects enables more precise error analysis
and a clearer understanding of model failure modes.
Our results indicate that even after controlling
for schema linking errors, linguistic variations
can lead to significant performance degrada-
tion—e.g., a 20% accuracy drop for LLaMa3.1-
8B on the Spider dev set—underscoring the sen-
sitivity of current models to paraphrasing and the
need for more resilient solutions.

Beyond evaluation, this framework supports tar-
geted training of NL2SQL models—building on
approaches like CodeS (Li et al., 2024)—via con-
trastive or adversarial fine-tuning. By focusing
on failure cases where performance drops despite
schema-consistent semantics, this approach can be
used to construct high quality preference datasets
for further training of NL2SQL models to drive
robustness in real-world deployments.
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Limitations

This work does not yet address more complex natu-
ral language queries, nor does it explore ambiguous
or unanswerable queries. Additionally, the perfor-
mance of models on multi-turn dialogues remains
unexplored. These more challenging scenarios are
closer to real-world applications and represent a
crucial next step for improving our approach. In-
corporating such cases into the evaluation pipeline
will help drive the development of more robust
NL2SQL systems, better equipped to handle the
variety and complexity of real-world queries.

Moreover, despite focusing on the NL2SQL task
under the assumption that the correct schema is
provided, we acknowledge that real-world scenar-
ios often involve schema retrieval as a critical pre-
processing step. The ability to identify and retrieve
the relevant schema remains an unresolved chal-
lenge, as noted by Baile Chen et al. (2024); Chen
et al. (2024). Extending this evaluation framework
to incorporate schema retrieval will provide a more
comprehensive assessment of model robustness, ad-
dressing the interplay between schema matching
and query generation in practical applications.
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A Prompt Template

Given the following database schema and an SQL
query, generate {num_queries} distinct
natural language questions that describe
the purpose and output of the SQL query.

{schema_definitions}

SQL Query:
{sql_query}

Instructions:
1. Generate {num_queries} natural language

questions that reflect the intent of the
SQL query.

2. Each question should vary in phrasing,
structure, and wording, but all questions
must remain logically equivalent.

3. Do not include explanations, task
descriptions, or any additional comments in
the output.

Output Format:
1. <First question>
2. <Second question>
...
{num_queries}. <Nth question>.

B paraphrased query examples

Table 3 shows examples of the original NL query
from Spider dev set and their corresponding para-
phrased queries generated through the SQL2NL
framework.

C Analysis of Syntactic and Lexical
Features

For the BIRD dataset, paraphrased queries are
longer (18.53 vs. 14.54 tokens) and exhibit greater
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syntactic depth (15.68 vs. 10.70), indicating in-
creased complexity. Lexical diversity is slightly
lower in paraphrased queries (0.92 vs. 0.94),
though the difference is minimal, preserving vo-
cabulary richness. See Figure 7.
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Figure 7: Distributions of sentence length, syntactic
depth, and lexical diversity for original and paraphrased
queries. Paraphrased queries are longer and exhibit
slightly higher syntactic depth, while lexical diversity
remains high and comparable to the original queries.

D Accuracy as a function of Joins for
BIRD dev set

For the BIRD dataset, accuracy varies with query
complexity. With 0 JOINs , the model performs
similarly on original (59.51%) and paraphrased
(59.68%) queries, showing robustness. With 1

JOIN, accuracy declines from 56.47% to 52.13%
(4.34% drop), suggesting schema linking errors.
For 2 JOINs , paraphrased queries outperform orig-
inal ones (45.23% vs. 43.4%, +1.8%), indicat-
ing paraphrasing may aid schema alignment in
complex queries, highlighting differences between
BIRD and Spider datasets.

Our results indicate that for FIBEN the perfor-
mance is similiar and within the errorbar for both
paraphrased and original NL queries regardless of
the number of JOINs. This shows that the impact
of this parameter is highly sensitive to the database
under study.

E Accuracy as a function of Clause
presence

Table 8 shows the accuracies for queries with
different SQL clauses. LlaMa-3.3 70B exhibits
varying levels of degradation when handling para-
phrased queries, with a stronger impact observed in
cases where specific SQL clauses are present. For
the GROUP BY clause, accuracy drops by 14.64%
(8.73%) when the clause is present (absent), in-
dicating that the model struggles more with para-
phrased queries requiring explicit grouping. Simi-
larly, the presence of the ORDER BY clause results
in the most severe degradation, with accuracy de-
creasing by 27.93% (5.24%) in its presence (ab-
sence), highlighting a pronounced sensitivity to
ordering operations. In the case of HAVING, the
model unexpectedly shows a smaller degradation
of 4.80% (10.75%) when the clause is present (ab-
sent), suggesting that it handles paraphrased condi-
tions within the HAVING clause more robustly than
conditions appearing in other parts of the query. For
nested queries, the degradation is 12.69% (9.87%)
in their presence (absence), further demonstrat-
ing the model’s increased difficulty in handling
paraphrased queries with complex query structures.
Overall, the results indicate that degradation is
more severe in the presence of the ORDER BY, GROUP
BY, and nested queries, suggesting that the model
is particularly vulnerable to paraphrasing in SQL
queries that require explicit ordering, grouping, and
structural complexity.

The model exhibits less severe degradation when
handling paraphrased queries in the BIRD dataset
compared to Spider. For the GROUP BY clause, ac-
curacy drops by 6.93% (1.81%) when the clause
is present (absent), indicating that explicit group-
ing impacts performance more under paraphrasing.
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The ORDER BY clause presents an unusual trend,
where performance actually improves slightly in its
presence, with a change of +1.75% (3.14%). The
impact of paraphrasing on the HAVING clause is
minimal, with a drop of just 1.00% (2.15%) when
present (absent), suggesting robustness to para-
phrased filtering conditions. For nested queries,
degradation is 3.87% (1.99%) in their presence
(absence), indicating that while paraphrasing af-
fects complex query structures, the impact remains
lower than that observed in Spider. Overall, the
degradation is most pronounced for the GROUP BY
and Nested Queries clauses, though the overall
performance drop in BIRD remains more moderate
than in Spider.

These results highlight the importance of evalu-
ating clause-specific performance to identify areas
where query translation models may require further
improvements.

F Details of Pass@K Experiments

To get the Pass@K metric for NL2SQL, we used
temperature of 0.5, and generated 10 different SQL
queries with calling the same prompt. Then, either
of the SQL commands are executed and the out-
come is compared to the output of the gold SQL
command.

For SQL2NL, we passed the schema and the
gold SQL query to a prompt, asking the LLM to
generate 10 distinct text-queries. Then, each of the
generated text-queries align with the schema are
passed to the LLM to get the corresponding SQL
queries. Finally, the SQL queries are evaluated
with the same approach mentioned above.

We use the following formula to compute
Pass@K metric:

E

[
1−

(
n−c
k

)
(
n
k

)
]
.

where n is the total, and c is the total number of
success.
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Figure 8: Accuracy of LLaMa3.3-70B across differ-
ent JOIN categories with bootstrap-based error bars for
BIRD (top) and FIBEN (bottom). Results are shown for
paraphrased and original NL queries, based on execu-
tion match accuracy. Error bars represent 95% confi-
dence intervals, accounting for variability due to dataset
size in each category.
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Table 4: Examples comparing original queries with paraphrased variants and their semantic similarity scores.
Semantic similarity was computed using Sentence-BERT (SBERT).

Original Query Paraphrased Variants (5 out of 10) Similarity Score

Find the name of the makers
that produced some cars in the
year of 1970?

What car manufacturers produced models in 1970?

0.84
Which car makers have models associated with vehi-
cles from the year 1970?
What are the names of car makers that produced cars
in 1970?
Can you list the car manufacturers whose models
were released in 1970?
Which makers are associated with car models from
1970, according to the database records?

What are the locations and
names of all stations with
capacity between 5000 and
10000?

What are the names and locations of stadiums with
capacities ranging from 5000 to 10000?

0.68Which stadiums have capacities between 5000 and
10000, and what are their names and locations?
How can I find the names and locations of stadiums
that can accommodate between 5000 and 10000 peo-
ple?
What stadiums, along with their locations, have a
capacity of at least 5000 but no more than 10000?
Can you provide a list of stadium locations and
names where the seating capacity is between 5000
and 10000?

Return the grade that has the
greatest number of high
schoolers.

What is the most common grade level among all high
school students?

0.60Which grade has the largest number of students en-
rolled in it?
What grade level appears most frequently in the high
school student database?
Can you identify the grade with the highest enroll-
ment count?
What is the grade that the majority of high school
students are in?

What is the maker of the car
produced in the earliest year
and what year was it?

What are the car makes that were produced in the
earliest year available in the database?

0.53Which car manufacturers had models released in the
minimum year listed in the cars data table?
What makes of cars were first introduced in the earli-
est year recorded in the database?
Can you list the car makes that correspond to the
oldest year of production found in the cars data table?
What are the names of the car manufacturers that
produced vehicles in the earliest year on record?
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Table 5: Accuracy by JOIN Count for Spider Dataset

JOIN Count Examples Original (%) Paraphrased (%)

0 612 84.31 ± 2.80 77.76 ± 2.33
1 298 65.44 ± 5.54 49.00 ± 4.36
2 70 64.29 ± 10.23 57.57 ± 8.80
3 10 80.00 ± 19.26 12.00 ± 13.93
4 6 66.67 ± 33.43 33.33 ± 23.96

Table 6: Accuracy by JOIN Count for BIRD and FIBEN Datasets

JOIN Count Examples Original (%) Paraphrased (%)

0 247 59.51 ± 6.20 59.68 ± 4.49
1 571 56.57 ± 4.19 52.05 ± 3.13
2 122 43.44 ± 8.97 45.23 ± 6.97
3 14 35.71 ± 28.09 54.29 ± 22.94

Table 7: Accuracy by JOIN Count for FIBEN Dataset

JOIN Count Examples Original (%) Paraphrased (%)

0 0 0.00 ± 0.00 0.00 ± 0.00
1 68 48.53 ± 12.04 62.46 ± 8.55
2 10 30.00 ± 29.69 38.00 ± 20.71
3 58 56.90 ± 11.56 52.00 ± 8.93
4 41 36.59 ± 15.02 28.38 ± 10.90
5 4 50.00 ± 49.10 52.50 ± 37.27
6 30 46.67 ± 16.70 6.16 ± 4.40
7 9 22.22 ± 22.82 18.55 ± 11.07
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Table 8: Accuracy by SQL Clauses for FIBEN, Spider, and BIRD Datasets (Original vs Paraphrased). The error
bars are from bootstrap resampling.

Clause Dataset #Examples
Original Paraphrased

Acc (%) ± Err Acc (%) ± Err

GROUP BY (Without)
FIBEN 149 52.35 8.01 49.39 6.05
Spider 731 82.49 2.59 73.76 2.34
BIRD 895 56.87 3.06 55.06 2.56

GROUP BY (With)
FIBEN 97 25.77 8.43 21.07 6.31
Spider 265 62.26 6.04 47.62 4.78
BIRD 61 32.79 11.31 25.86 9.12

ORDER BY (Without)
FIBEN 223 43.50 6.51 36.13 5.15
Spider 774 77.78 2.90 72.54 2.47
BIRD 762 60.37 3.53 57.23 2.78

ORDER BY (With)
FIBEN 23 26.09 17.31 59.57 11.78
Spider 222 74.77 6.24 46.84 4.97
BIRD 194 35.57 7.21 37.32 4.71

HAVING (Without)
FIBEN 182 45.05 7.03 46.37 5.54
Spider 920 78.91 2.72 68.16 2.39
BIRD 946 55.60 3.10 53.45 2.61

HAVING (With)
FIBEN 64 32.81 12.39 15.28 6.39
Spider 76 55.26 12.56 50.46 7.91
BIRD 10 30.00 29.69 29.00 21.71

Nested (Without)
FIBEN 129 51.94 8.62 57.35 6.19
Spider 844 78.79 2.86 68.92 2.57
BIRD 890 56.52 3.09 54.53 2.42

Nested (With)
FIBEN 117 30.77 7.92 17.30 5.21
Spider 152 67.76 7.13 55.07 5.62
BIRD 66 39.39 12.01 35.52 9.23
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