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Abstract

Leveraging the autonomous decision-making
capabilities of large language models (LLMs)
has demonstrated superior performance in rea-
soning tasks. However, despite the success of
iterative or agentic retrieval-augmented genera-
tion (RAG) techniques, these methods are often
constrained to a single solution space when con-
fronted with complex problems. In this paper,
we propose a novel thinking pattern in RAG
that integrates autonomous strategic planning
with efficient reasoning actions, significantly
activating intrinsic reasoning capabilities and
expanding the solution space of specific tasks
via Monte Carlo Tree Search (MCTS), which
we refer to as AirRAG. Specifically, our ap-
proach designs five fundamental reasoning ac-
tions, which are expanded to a broad tree-based
reasoning space using MCTS. The approach
also incorporates self-consistency verification
to explore potential reasoning paths and infer-
ence scaling law. Additionally, computation-
ally optimal strategies are employed to allo-
cate more inference resources to key actions,
thereby enhancing overall performance. Ex-
perimental results demonstrate the effective-
ness of AirRAG, showing significant perfor-
mance gains on complex question-answering
datasets. Furthermore, AirRAG is flexible and
lightweight, making it easy to integrate with
other advanced technologies and models.

1 Introduction

Retrieval-Augmented Generation (RAG) has
shown great potential in addressing the issue
of generating factually incorrect content, espe-
cially in domain-specific or knowledge-intensive
tasks (Kandpal et al., 2023). However, as task com-
plexity increases, several new challenges emerge,
such as the inability to retrieve sufficient knowl-
edge with a single query and the difficulty of un-
derstanding the intricate reasoning logic inherent
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Figure 1: Comparison of average performance across
three datasets with varying numbers of output sequences.
Lo represents the total number of tokens consumed
during the reasoning process. AirRAG leverages gen-
eration diversity and self-consistency to explore the po-
tential solution space, significantly enhancing overall
performance by scaling inference computation.

in the question. To tackle these challenges, it is cru-
cial to harness the reasoning capabilities of large
language models (LLMs) to improve RAG perfor-
mance (Jiang et al., 2023; Jeong et al., 2024; Asai
et al., 2024; Yu et al., 2024).

Previous research on complex query scenarios
has primarily focused on optimizing the query
and retrieval processes to obtain relevant informa-
tion (Shi et al., 2023; Zhou et al., 2023; Gao et al.,
2023; Jiang et al., 2023; Zheng et al., 2024; Asai
et al., 2024; Yan et al., 2024). Iterative retrieval is
frequently used to improve the depth and relevance
of search results in information retrieval tasks. This
process continuously updates intermediate queries
and results to satisfy dynamic information needs
during the complex task-solving process (Jeong
et al., 2024; Yue et al., 2024). In addition, Li et al.
(2025) integrates an agentic search workflow into
the reasoning process, enabling dynamic retrieval
when LLMs encounter uncertain knowledge points.
The agentic LLMs are trained to learn step-by-step
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reasoning with search through reinforcement learn-
ing (Chen et al., 2025; Zheng et al., 2025).

However, these approaches face two significant
issues. First, the single reasoning paradigm and
the chain-like reasoning process often fail to ef-
fectively explore the solution space, particularly
when reasoning relies on self-exploration. This
process is vulnerable to low-quality intermediate
reasoning steps and is easily trapped in a narrow
solution space. Second, the agentic search work-
flow and guiding self-exploration become challeng-
ing when using relatively smaller language mod-
els (e.g., Qwen2.5-7B-Instruct (Yang et al., 2024)).
Furthermore, trainable agentic LLMs require effi-
cient reinforcement learning training data and are
difficult to apply to models with hundreds of bil-
lions of parameters.

In response to these challenges, we propose
AirRAG, a method that leverages autonomous
strategic planning and reasoning capabilities and
expands the solution space using Monte Carlo
Tree Search (MCTS). We design five fundamen-
tal reasoning actions: system analysis, direct an-
swer, retrieval-answer, query transformation, and
summary-answer. These actions are the core and
frequently used ones in the deep search scenar-
ios, which can effectively address a wide range
of problems in various scenarios, including those
that require progressive or parallel queries. Impor-
tantly, these actions can be executed efficiently on
LLMs of different scales. Additionally, we intro-
duce MCTS and self-consistency to enable con-
trollable reasoning path generation and efficient
inference scaling. To accurately select the answer
from multiple reasoning paths, we combine a vot-
ing mechanism with a process-supervised reward
model. As inference computation increases, our
approach demonstrates significant performance im-
provements as shown in Figure 1. Moreover, Air-
RAG features a flexible architecture that can easily
integrate other advanced methods into the approach
as additional action branches. In summary, our
main contributions are as follows:

* We design five fundamental reasoning actions
that can address most problem types in deep
search scenarios, ensuring controllable reason-
ing processes.

* We introduce MCTS and self-consistency to
effectively expand the solution space for com-
plex tasks. Our approach improves generaliza-
tion and performance through comprehensive

inference scaling and a pluggable architecture.

* We show thorough experimental results that
AirRAG outperforms current iterative or agen-
tic methods, effectively activating the plan-
ning and reasoning capabilities of LLMs and
flexibly expanding the solution space.

2 Related Work

Retrieval-Augmented Generation (RAG). RAG
has demonstrated significant improvements in the
performance of LLMs in knowledge-intensive
tasks. Compared to vanilla RAG, optimizing the
query and retrieval process enhances knowledge
correlation and, consequently, improves reasoning
performance. Several methods, such as query ex-
pansion and transformation, have been proposed
to achieve better retrieval results (Zhou et al.,
2023; Ma et al., 2023; Gao et al., 2023). How-
ever, as task complexity increases, retrieving suf-
ficient knowledge in a single query becomes in-
creasingly difficult. To address this, iterative re-
trieval techniques have been proposed to gather
additional contextual references. For instance, IR-
CoT (Trivedi et al., 2023) utilizes chain-of-thought
(CoT) to guide the retrieval process, refining the
CoT with the retrieved information. Similarly,
ITER-RETGEN (Shao et al., 2023) combines re-
trieval and generation modules to promote a deeper
understanding of specific tasks.

Autonomous Planning and Reasoning in RAG.
In addition to optimizing retrieval, activating the
planning and reasoning capabilities of LLMs can
significantly improve the efficiency and relevance
of the retrieved information. Leveraging the
decision-making abilities of LL.Ms enhances the
overall performance (Nakano et al., 2022; Schick
et al., 2023). Self-RAG and its variants (Asai et al.,
2024; Yan et al., 2024; Jeong et al., 2024) adopt
a self-reflection mechanism that iteratively pre-
dicts reflection tokens during training, enabling
better control during inference. Auto-RAG (Yu
et al., 2024) systematically plans retrievals and
refines queries to acquire valuable knowledge
through multi-turn iterations. IterDRAG (Yue
et al., 2024) explores inference scaling strategies
in RAG, improving LLMs’ ability to effectively
acquire and utilize contextual information. Search-
ol (Li et al., 2025) designs an agentic search
workflow to dynamically obtain effective knowl-
edge. ReSearch (Chen et al., 2025) and DeepRe-
searcher (Zheng et al., 2025) train agentic LLMs
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to reason with search using reinforcement learn-
ing. Despite the progress made in these methods,
they often struggle to explore the solution space
effectively during reasoning. Self-exploration fre-
quently leads to being trapped in a limited solu-
tion space, hindered by low-quality reasoning steps
even after multiple iterations. This issue is often
attributed to the chain reasoning pattern and the
difficulty small-scale LLMs face when handling
overly complex tasks in a single iteration.

Monte Carlo Tree Search (MCTS). To address
these challenges, tree-based search algorithms, par-
ticularly Monte Carlo Tree Search (MCTS), have
emerged as effective tools to expand search spaces
and enhance reasoning capabilities (Silver et al.,
2017; Chen et al., 2024; Qi et al., 2024; Zhang
et al., 2024). MCTS has been shown to extend
reasoning by exploring multiple branching queries,
thus enabling the exploration of diverse reasoning
paths (Yao et al., 2023; Besta et al., 2024). In
the mathematical reasoning scenario, Zhang et al.
(2024) and Chen et al. (2024) leverage MCTS
to achieve more efficient exploration of solution
spaces, while Qi et al. (2024) designs rich human-
like reasoning actions to improve reasoning tra-
jectories. Furthermore, recent research indicates
that inference scaling (Yue et al., 2024) and self-
consistency (Wang et al., 2023) can lead to substan-
tial improvements. In this context, our approach
samples diverse reasoning paths to achieve both
inference scaling and self-consistency verification
during the next expansion of the action space.

Unlike existing methods that focus on optimiz-
ing query and retrieval processes or leveraging
LLMs’ reasoning capabilities through iterative re-
trieval, AirRAG uniquely integrates MCTS and
self-consistency to systematically expand the so-
lution space and ensure the controllability of the
reasoning process. Simultaneously, we design five
fundamental reasoning actions that effectively ad-
dress a broader range of question types, particularly
in complex tasks. This pluggable architecture also
allows for easy integration of current advanced
methods or reasoning language models, making
AirRAG a flexible and powerful solution for deep
search scenarios. In the experiment, we thoroughly
verify the performance gains brought by the infer-
ence scaling law and investigate how to rationally
allocate inference resources.

3 Methodology

In order to effectively explore the solution space
during reasoning, we propose a controllable tree-
based framework of RAG. This framework com-
bines Monte Carlo Tree Search (MCTS) with five
distinct reasoning actions, enabling efficient and
controlled expansion of the solution space. Mean-
while, we further implement more comprehensive
inference scaling strategies based on Yue et al.
(2024) and employ pruning techniques along with
computationally optimal strategies to strike a bal-
ance between effectiveness and efficiency. The
whole process is illustrated in Figure 2.

3.1 Define Fundamental Reasoning Actions

Relying solely on the autonomy of LLMs for itera-
tive self-exploration often results in getting trapped
in a solution space that is difficult to navigate, es-
pecially when dealing with different types of com-
plex questions. IterDRAG (Yue et al., 2024) uses
a single action type to generate the next reasoning
step, which can lead to ineffective space explo-
ration. The core of MCTS generation lies in the
action space, which defines the scope of tree explo-
ration. Based on advanced methods and reasoning
language models, we summarize the most com-
mon actions in RAG, such as query transformation
and retrieval answering. Meanwhile, the chain-of-
thought in reasoning models has demonstrated su-
perior performance in complex open-domain ques-
tion answering. Therefore, simplifying human
cognitive processes in complex reasoning is es-
sential (Jaffe et al., 2023). Inspired by this, we
introduce five fundamental human-like reasoning
actions to bridge the gap between LLM reasoning
and human cognition in RAG scenarios.

e Ay: System Analysis (SAY). This action analyzes
the overall structure of the problem, followed
by its decomposition or planning. It represents
systematic and global thinking before problem-
solving.

e As: Direct Answer (DA). This action leverages
parametric knowledge of LLMs to answer ques-
tions directly, without relying on any external
knowledge.

e As: Retrieval-Answer (RA). This action retrieves
related knowledge from the external knowledge
base to support subsequent reasoning.
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Figure 2: The schematic diagram of our proposed AirRAG. AirRAG implements a paradigm that combines system
thinking with step-by-step reasoning. In the inference phase, we introduce MCTS and self-consistency to scaling
computation, which significantly outperforms other strong baselines.

e A4: Query Transformation (QT). This action
transforms human questions in order to improve
retrieval performance. It supports various trans-
formations, such as rewriting, step back prompt-
ing, follow-up questions and multi-query re-
trieval.

o As: Summary-Answer (SA). This action com-
bines intermediate reasoning steps, answers and
the initial questions to generate the final answer.

The above five actions define a highly diverse ac-
tion space {A1, Aa, Az, Ay, As}. In the first step,
the initial state is denoted as sg and then MCTS
selects the action a; and ag to prompt the LLM to
generate the next reasoning steps in parallel. Sub-
sequent actions are performed sequentially to ex-
pand the reasoning path. It is important to note
that there are sequential dependencies between
different actions. For example, A; and A, can
only be executed after the root question. Addi-
tionally, we incorporate the diverse sampling of
self-consistency (Wang et al., 2023) for each ac-
tion to expand the reasoning paths. Specifically, an
action is more likely to generate the correct reason-
ing step if we sample multiple times in the current
state. Finally, we can obtain multiple generated rea-
soning trajectories, such as [so @ s1.,,]. To further
improve inference efficiency, we choose the action
{As, Ay, A5} as a simplified action space, referred
to as AirRAG-Lite, which achieves a better balance

between efficiency and effectiveness.

3.2 Perform Reasoning Processes via MCTS

3.2.1 Solution Generation

Based on the action space defined above, we intro-
duce MCTS to generate candidate reasoning tra-
jectories. The initial root node, sg, represents the
question without any reasoning steps. The pol-
icy is directly modeled by a language model as
m(als) = LM(als), and the state transition func-
tion combines preceding reasoning steps with cur-
rent actions, i.e., s; = Concat(sg.j—1,a;). Dur-
ing each MCTS rollout, we execute multiple steps,
including selection, expansion, simulations, and
backpropagation. Multiple rollouts are performed
to expand the solution space. To balance the
exploration and exploitation, we adopt the well-
known Upper Confidence Bounds applied to Trees
(UCT) (Kocsis and Szepesvari, 2006) for node se-
lection as follows:

Q(s,a)
N(s)

log Np(s)

UCT(SJ)) = N(S) )

6]

where (s, a) is the reward value for node s, gen-
erated by taking action a, and is updated through
backpropagation. ((s,a) serves as a key met-
ric in MCTS to evaluate the value of each node.
N(s) denotes the number of visits to s, p is the
parent node of s, and w is the weight to balance
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exploration and exploitation. Initially, all unex-
plored nodes are assigned Q(s;,a;) = 0, leading
to random tree expansions at the beginning. When
the search reaches a terminal node n4, a reward
score (Q(sq,aq) is computed based on whether
the node reaches the correct answer. This score
is then back-propagated to all intermediate nodes
along the trajectory t = x B 51 B s2 D ... D sq.
Specifically, for each intermediate node s; (for
i = 1,2,...,d — 1), its ) value is updated as:
Q(si,ai) = Q(si, ;) + Q(8d; aa).

When the search reaches a terminal node, de-
fined either by a terminal state or a predetermined
maximum tree depth d, we obtain a trajectory from
the root to the terminal node. All trajectories from
the rollout iterations are collected as candidate so-
lutions. Section 3.3 explains how we select the
optimal answer node from these trajectories.

3.2.2 Inference Scaling

Numerous studies have demonstrated that scaling
inference computation can significantly improve
the performance of LLMs without additional train-
ing (Snell et al., 2024; Yue et al., 2024). Based on
the above methods, we explore strategies to lever-
age inference computation scaling in AirRAG. One
straightforward strategy is extending the effective
context length (short for Ly, ,x) during the docu-
ment retrieval phase, allowing more related docu-
ments to supplement the knowledge base. Addi-
tionally, we perform multiple rollouts to thoroughly
explore the solution space relying on the tree-based
search. Adjusting the number of output sequences
(n) generated during certain actions enables self-
consistency verification and further inference scal-
ing. These strategies provide flexibility for scaling
inference computation in RAG, empowering LLMs
to address complex knowledge-intensive queries
more effectively.

To improve efficiency and minimize redundant
computations, we implement an early pruning strat-
egy for state nodes and reasoning paths. Dedu-
plication is applied to the output sequence states
generated by each action, ensuring the diversity
of the subsequent path. Furthermore, if multiple
rollouts select the same state sequence, only one
valid reasoning path is retained.

3.2.3 Flexible Architecture

Our tree-based architecture provides the flexibility
to integrate other advanced approaches. We repro-
duce the IterDRAG method based on the prompt

design by Yue et al. (2024). Meanwhile, inspired
by its iterative implementation, we simplify the fun-
damental action space to { A3, A4, A5}, enabling
a faster implementation while still achieving rel-
atively good results. These methods serve as an
exploratory extension of our approach and can be
activated or deactivated as needed. Due to the
training-free nature of our method, its generator
LLM can be arbitrarily replaced with the strongest
existing models for performance improvement.

3.3 Select the Optimal Answer Node

For common mathematical reasoning tasks, a sim-
ple consistency-based method can efficiently se-
lect the most precise reasoning path. For example,
the most frequent number extracted from multiple
candidate solutions in MATH (Hendrycks et al.,
2021) can be chosen as the final answer. How-
ever, extracting precise answers and performing ef-
fective aggregation becomes more challenging for
knowledge-intensive tasks. To address this, we de-
sign two self-consistency verification methods for
such problems. Jaccard similarity and text embed-
dings are two different approaches used in natural
language processing to measure the similarity be-
tween texts. We apply these methods to cluster text
answers and compute answer scores as follows:

N
. 1 |A; N A,
dS L= — —— 2
jedscore; NJZ:; ’AZUAJ‘7 (2)

N
1
embScore; = N z; cos(E;, Ej)? 3)
=

where N is the number of valid answer nodes, A; is
the word-level set of answer text 7, and F; denotes
the embedding vector of answer text 4.

In addition, we further investigate the self-refine
and process-supervision reward model to iden-
tify the most accurate reasoning trajectory. Self-
refinement uses the A5 (Summary-Answer) action
to refine the final answer from all candidate answer
nodes. The reward modeling process consists of
two steps: data synthesis and instruction tuning.

* Data synthesis: We leverage MCTS to per-
form multiple rollouts on partial training sets.
Based on known ground truth, we sample pos-
itive and negative reasoning trajectories and
use Monte Carlo estimation to evaluate inter-
mediate state scores.
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* Instruction tuning: Synthetic samples are
used to fine-tune a relatively small LLM, such
as Qwen2.5-14B-Instruct.

4 Experiments

In this section, we conducted experiments on com-
plex QA benchmarks by answering the following
research questions.

* RQ1: Does AirRAG outperform state-of-the-
art baselines?

* RQ2: How does AirRAG perform when it
comes to comprehensive inference scaling?

* RQ3: What is the performance benefit of Air-
RAG in optimizing the allocation of inference
computation?

* RQ4: How does AirRAG perform for various
verification methods for multiple candidate
rollouts?

* RQS5: What is the intuitive efficiency and per-
formance of AirRAG in the reasoning pro-
cess?

4.1 Experimental Settings
4.1.1 Datasets

To evaluate the effectiveness of AirRAG, we con-
duct experiments on various question-answering
(QA) tasks, including both open-domain QA
and multi-hop QA. The complex multi-hop QA
datasets consist of HotpotQA (Yang et al., 2018),
MuSiQue (Trivedi et al., 2022) and 2WikiMul-
tiHopQA (2Wiki) (Ho et al., 2020). Other
single-hop QA datasets include Natural Questions
(NQ) (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), PopQA (Mallen et al., 2023) and We-
bQA (Berant et al., 2013).

4.1.2 Implementation Details

We use the hyperparameters reported for the exist-
ing models whenever available. Implementation
details are available in the Appendix A.

4.1.3 Baselines and Metrics

To investigate the enhancement effects of think-
ing and planning on complex RAG tasks, we com-
pare it with vanilla RAG, which performs only a
single retrieval and generation process. We evalu-
ate the naive generators of Qwen2.5 (Yang et al.,
2024) series instruction models and Llama3-8B-
Instruct (Grattafiori et al., 2024). In the retrieval

phase, we employ multilingual-e5-base (Wang
et al., 2024) as the retriever and utilize the widely
used Wikipedia dump from December 2018 as the
retrieval corpus (Karpukhin et al., 2020). The
prompt of vanilla RAG are shown in the Ap-
pendix C. For iterative retrieval, we compare Air-
RAG with Iter-RetGen (Shao et al., 2023), Self-
RAG (Asai et al., 2024), Auto-RAG (Yu et al.,
2024), and IterDRAG (Yue et al., 2024). For agen-
tic retrieval, we compare AirRAG with Search-
ol (Li et al., 2025), ReSearch (Chen et al., 2025),
and DeepResearcher (Zheng et al., 2025). To fur-
ther explore RAG performance and inference com-
putation scaling, we focus on a comparison with
IterDRAG for a given budget on inference com-
putation. For evaluation metrics, we report Exact
Match (EM), F1 score (F1) and Accuracy (Acc)
between the generated summary and gold answer,
where accuracy measures whether the gold answer
is covered in the generated answer.

4.2 Main Results (RQ1)

We first evaluate the performance of AirRAG on
various complex QA datasets. Table 1 compares
its accuracy and F1 scores with strong baselines
based on LLMs of different scales. The optimal
performance exhibits consistent gains as the LLMs
scale up. For the Qwen2.5-7b-instruct model, our
approach achieves the best performance, even sur-
passing the trainable approaches. To further vali-
date its effectiveness on large-scale reasoning mod-
els, we also conduct experiments on Qwen3-235B
in both the thinking mode and non-thinking mode.
In thinking mode, our approach achieves state-of-
the-art performance among all datasets. In addi-
tion, to verify the robustness and generalization
of AirRAG, Table 5 shows the performance on
more diverse LLMs and datasets. We observe con-
sistent improvements over vanilla RAG and ex-
isting iterative methods (more than 10% on aver-
age). The significant boost over IterDRAG and
Auto-RAG suggests that AirRAG explores more
effective reasoning paths through the human-like
thinking paradigm and tree-based search.

4.3 Inference Scaling for RAG (RQ2)

Inference computation scaling can enable LLMs
to improve their output performance (Snell et al.,
2024). Self-consistency can also improve the ro-
bustness of the reasoning process (Wang et al.,
2023). Therefore, we carry out a comprehensive
experimental analysis on the inference computation
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Method NQ TriviaQA HotpotQA MuSiQue 2Wiki Average
F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc
Owen2.5-7B
ZeroShot QA 384 374 577 563 361 348 9.1 7.5 450 441 373 36.0
Vanilla RAG 57.8 539 70.1 663 613 569 135 83 459 428 497 456
IterDRAG™ 583 541 735 69.1 653 60.7 183 13.0 51.8 47.0 534 488
Search-o1* 578 543 726 69.8 573 542 202 185 569 53.6 530 50.1
ReSearch™ 613 596 762 734 703 68.1 309 274 625 61.0 602 579
DeepResearcher 624 598 759 732 676 639 339 278 654 623 610 574
AirRAG-Lite 608 573 741 70.0 682 632 234 173 51.1 48.0 555 512
AirRAG 604 562 743 70.1 749 70.0 303 236 657 632 611 566
Owen2.5-14B
ZeroShot QA 47.1 463 707 69.5 425 413 135 12,1 482 473 444 433
Vanilla RAG 62.0 582 752 712 670 620 20.0 144 520 494 552 51.0
IterDRAG™ 585 539 764 723 71.8 662 239 172 574 541 576 527
Search-o1™ 612 597 743 726 714 674 232 204 581 558 576 552
AirRAG-Lite 648 609 789 750 772 725 303 243 703 68.0 643 60.1
AirRAG 662 621 781 738 799 753 360 319 704 68.7 661 624
Owen2.5-32B
ZeroShot QA 46.8 459 69.8 688 429 418 11.1 9.6 48.1 472 437 427
Vanilla RAG 60.6 567 754 71.6 665 62,5 19.5 13.8 51.8 496 547 50.8
IterDRAG™ 61.1 567 769 73.0 720 673 233 179 582 554 583 541
Search-o1* 635 61.6 756 728 728 684 302 273 605 589 605 578
ReSearch™ 63.8 612 746 723 762 726 383 334 668 628 639 605
AirRAG-Lite 656 619 758 71.6 793 748 333 325 720 708 652 623
AirRAG 665 627 789 746 811 761 365 327 719 70.6 67.0 633
QOwen3-235B (non-thinking)
ZeroShot QA 64.1 637 771 763 539 529 17.1 157 568 56.1 538 529
Vanilla RAG 66.0 653 780 762 692 677 208 19.1 533 522 574 56.1
IterDRAG™ 657 633 788 769 755 69.7 322 252 648 60.8 634 592
Search-ol* 673 662 773 764 759 738 367 342 713 682 657 637
AirRAG-Lite 677 669 776 758 783 768 437 365 749 741 684 657
AirRAG 664 656 791 773 796 781 472 40.0 762 755 69.7 67.3
Owen3-235B (thinking)
ZeroShot QA 66.1 656 793 78.6 542 535 213 199 566 563 555 548
Vanilla RAG 676 67.1 779 769 725 719 182 164 575 56.6 587 578
IterDRAG™ 688 67.1 809 78.7 763 71.1 30.0 231 671 645 646 60.9
Search-o1™ 672 664 781 775 752 724 334 289 692 663 646 623
AirRAG-Lite 732 727 81.1 80.1 862 856 442 378 764 756 722 703
AirRAG 743 728 814 80.1 847 840 475 403 768 762 729 70.7

Table 1: Overall evaluation results on the test sets of five datasets. * indicates the results reproduced by us. The best
results for each model are in bold. The number of both rollouts and output sequences is set to 1. The number of

documents for a single retrieval is set to 5.

scaling. Based on tree-based search and RAG sce-
nario, there are multiple ways to optimize the use
of inference computation resources. Specifically,
we can adjust both the number of retrieved docu-
ments in a single retrieval and the effective context
length in all iterations. The average performance of
three datasets exhibits consistent gains in Figure 3.
In subsequent experiments, unless otherwise speci-
fied, the data presented represent the average perfor-
mance across the HotpotQA, MuSiQue, and 2Wiki
datasets. In particular, the initial computation scal-
ing brings significant performance improvements.
In addition, the number of output sequences and
rollouts in MCTS can expand the solution space

and explore potential reasoning paths. As shown in
Figure 1, the average performance increases with
the number of output sequences per action, demon-
strating the effectiveness of self-consistency. We
also investigate the number of effective reasoning
paths under different rollouts in Figure 4. The per-
formance improvement caused by the increase of
effective reasoning paths in the early stage is rela-
tively high. We provide additional dataset-specific
results in Appendix B.

4.4 Ablation Studies

Effect of Computationally Optimal Strategies
(RQ3). Extensive experiments show that the out-
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Method Average

F1 Acc
Vanilla RAG 47.0 432
IterDRAG 49.8 459
AirRAG
+ na=1 629 58.8
+ nai=3 63.4  62.1
+ Nay,a4=3, Nas,az,a5=1 632 62.0
+ Nay,a4=3, Nas,az,a5=1, ¢aiv=1.0  65.1  63.9

Table 2: Performance comparison with different compu-
tationally optimal strategies on the HotpotQA, MuSiQue
and 2Wiki datasets. n,, denotes the number of output
sequences of the action a; in a single extension. qg;,
indicates that setting top-p to 1.0 and temperature to 1.0
for query-related actions, i.e. SAY and QT, increases
the diversity of reasoning. The default sampling param-
eters top-p, top-k and temperature are set to 0.8, 50 and
0.7 respectively. Rational sampling strategies further
improve performance across multiple datasets.

puts of certain actions (e.g., RA, DA and SA) are
almost consistent when performing multiple gen-
erations. Therefore, we only increase the number
of output sequences (short for n) for the remaining
actions (e.g., SAY and QT), which reduces invalid
inference computation while maintaining good re-
sults. This also reflects that this kind of reasoning
action, which effectively activates the creativity of
LLMs, requires more diversified sampling strate-
gies. We adjust the sampling parameters (top-p=1.0
and temperature=1.0) to improve the diversity of
the model output. The complete experimental re-
sults in Table 2 show that the diversity of key ac-
tions can significantly improve performance.

From the aforementioned experiments, it is ob-
served that the recall and accuracy of model are
linearly correlated. Intuitively, the size of docu-
ment database is also related to the recall score. By
reducing the scale of the document database, we

907 o Accuracy 66 1 —e— Accuracy
85 Recall 64 - Valid rollouts
F1
80 A 2621
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Size of the Document Database

Figure 4: Left: Performance comparison under different
size of document database. A streamlined database can
maintain a better performance. Right: Performance
comparison in increasing the number of valid rollouts.
Sampling a higher number of diverse reasoning paths
consistently improves accuracy.

find a gradual improvement in model performance
(shown in Figure 4). This observation provides
experimental evidence for effective database parti-
tioning in practical application.

Effect of Verification Methods (RQ4). The larger
search space also generates more candidate reason-
ing trajectories. Therefore, how to select the opti-
mal trajectory is crucial for the final performance.
We compare multiple verification methods with the
average scores of all candidates in Figure 7. These
two self-consistency verification methods are al-
ways slightly better than the average score, but they
are not nearly as good as the SA and QwenRM
methods. The SA method uses the LLM to further
refine the final answer from all candidate rollouts,
which is simple and effective. Finally, the reward
model achieves the most competitive results due
to the introduction of supervised information on
key intermediate reasoning steps in the training pro-
cess. However, collecting process-supervised train-
ing samples requires high computational costs and
high-quality raw data. In the practical application
scenario, we can choose the appropriate method
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Liax Method database_size retrieval_time retrieval_number ee
Vanilla RAG 100w 0.900 1.00 3.828
gk IterDRAG 100w 1.833 2.04 6.703
AirRAG-Lite 100w 2.205 2.25 8.482
AirRAG 100w 3.453 3.84 12.752

Table 3: Performance analysis of inference efficiency. L,,x denotes the maximum number of input tokens across
all rollouts. The retrieved database contains approximately one million documents. e2e and retrieval_time denote
the average total time for a single question-answering process and the time spent on retrieval respectively, measured
in seconds. Other inference configurations remain consistent with those in Table 4.

while balancing efficiency and effectiveness.

4.5 Inference Efficiency and Qualitative
Analysis (RQ5)

Given the inherently large search space for the
tree-based search, we design computational opti-
mization strategies for different actions to avoid
redundant and inefficient expansions, as shown in
Table 2. Furthermore, in Section 3.2.2, we propose
pruning strategies for state nodes and reasoning
paths. These optimizations significantly reduce in-
efficient LLM inference and repetitive path explo-
ration. In practical applications, we can select ap-
propriate configuration parameters such as rollout,
n, and L, based on computational resource bud-
gets and time constraints, ensuring effectiveness
while achieving inference efficiency comparable to
current mainstream iterative RAG approaches. We
analyze the average inference efficiency per sample
on the HotpotQA dataset in Table 3. By combining
these results with those reported in Table 4 and Ta-
ble 1, we are able to analyze the trade-offs between
computational cost and performance.

To make it easier to understand why our pro-
posed AirRAG works, we present a qualitative
analysis in MuSiQue. Existing iterative methods
are often trapped in a single solution space when
confronted with complex tasks. As illustrated in
Figure 13, these iterative methods exhibit a key
limitation that insufficient or ambiguous retrieval
context can lead to repetitive follow-up queries
until it reaches the predefined maximum depth of
iterations. This inefficient iteration results in high
computational cost and incorrect answer. In con-
trast, AirRAG designs efficient reasoning actions
to achieve autonomous planning and reasoning. As
shown in Figure 14, the SAY action decomposes
the original query into a more rational sequence
of sub-queries, and then the combination of RA
and QT ensures the accuracy of the intermediate
reasoning step. We eventually leverage the efficient

reasoning trajectory to obtain the correct answer.

5 Conclusions

In this paper, we propose AirRAG, a novel RAG
approach to fully leverage the planning and rea-
soning capabilities of LLMs. AirRAG designs an
efficient action space for the controllable reason-
ing generation. We also introduce Monte Carlo
Tree Search to expand the solution space. Mean-
while, by employing the tree-based search and self-
consistency verification, we explore potential rea-
soning paths and achieve comprehensive inference
computation scaling. In addition, computationally
optimal strategies are used to apply more computa-
tion to key actions, leading to further performance
improvements. Experimental results on diverse QA
datasets demonstrate the significant superiority of
AirRAG over other methods designed for complex
deep search scenarios.

Limitations

Although our model achieves competitive perfor-
mance in various RAG tasks, there are some limi-
tations that can be improved. The current optimal
computation allocation strategy is derived from suf-
ficient experiments. We can consider designing an
automated policy model to implement the trade-off
between computational cost and performance. De-
spite great efforts in the inference scaling of RAG,
the experimental analysis may be limited due to the
massive computational cost of tree-based search
approaches. We will explore more complex reason-
ing tasks to verify the robustness and effectiveness
of our approach. In addition, the large search space
also brings more noise information, so we will fur-
ther investigate the reward model or strategy to
explore a better reasoning path.
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A Implementation Details

For evaluation, we randomly select 1,000 samples
from the whole validation sets of each dataset as
our final test set, with a fixed random seed 0. To
better understand the complexity of multi-hop rea-
soning in these datasets, we analyze the hop dis-
tribution of the HotpotQA, MuSiQue, and 2Wiki-
MultiHopQA test sets in Figure 5. The statistics
show that there is a high proportion of complex rea-
soning queries with 3 hops or more (aboout 30%,
50%, 25%). HotpotQA lacks explicit hop annota-
tions, so we instead count the number of supporting
facts. MuSiQue has a significantly higher propor-
tion of 3-hop and 4-hop queries compared to the
other datasets, indicating great reasoning complex-
ity. This observation is further corroborated by our
experimental results in Table 1 and Figure 6. The
performance of our approach on MuSiQue is much
lower than those of the other two datasets.

In the retrieval process, we employ the
multilingual-e5-base (Wang et al., 2024) as the
retriever and use the widely used Wikipedia
dump from December 2018 as the retrieval cor-
pus (Karpukhin et al., 2020) which comprises over
21 million passages. For generation, the default
sampling parameters top-p, top-k and temperature
are set to 0.8, 50 and 0.7 respectively. Evalua-
tion metrics include Exact Match (EM), F1 score
(F1), and Accuracy (Acc), where accuracy indi-
cates whether the ground truth is a substring of the
final generated answer. For reward model training,
we sample 8,000 question-answer pairs from each
dataset and generate more than 156,000 reasoning
paths using our proposed AirRAG (rollouts=32,
n=4, q4;»=1.0). In inference scaling experiments,
we sample maximum computation budgets L ax
(e.g., 8k, 16k, 32k, 64k and 128k tokens). The
Lax (maximum effective context length) denotes
the maximum number of input tokens across all
rollouts following (Yue et al., 2024). The predeter-
mined maximum tree depth d is set to 10, specif-
ically indicating that the SAY and SA actions are
executed once, while the RA-QT or QT-RA actions
have a maximum of 4 iterations.

To further substantiate our experimental ap-
proach, we present comprehensive details and ra-
tionales for the experimental design, including the
parameter configurations for the rollout process in
MCTS, the selection of the UCT function, reward
computation strategies, and the implementation of
baseline methods.

Rollout Setting for MCTS. In some experimental
configurations, we adopt a rollout setting of 1 for
MCTS. A rollout value of 1 does not imply that
MCTS is not executed, but rather that only one
complete simulation is performed at each decision
step to estimate the value of the current node. This
setting reduces computational cost and allows for
rapid generation of preliminary results, which is
especially beneficial in resource-constrained sce-
narios. Figure 4 presents the performance across
rollout values ranging from 1 to 32, while Table 2
reports results obtained with a rollout value of 32.
Contribution of MCTS. MCTS primarily oper-
ates on actions such as QT, RA, and SA, as well as
parameters (e.g., n, top,, top;) within each action.
As illustrated in Figure 4 and Table 2, applying
MCTS with higher rollout values significantly im-
proves performance compared to using a rollout
value of 1, and outperforms baselines such as Iter-
DRAG and Search-ol.

UCT and Implicit Priors. We explore both UCT
and PUCT as potential search strategies for MCTS
and ultimately adopt UCT in our final implemen-
tation, owing to its simplicity and consistent em-
pirical performance. Although UCT does not ex-
plicitly incorporate prior probabilities as in PUCT,
our framework implicitly introduces a form of pol-
icy prior through dependencies between actions,
which constrain action transitions. This implicit
prior serves a function analogous to the explicit
P(s,a) calculation in PUCT, guiding the search
toward high-quality actions based on prior reason-
ing steps. The complete action execution process
is detailed in Section 3.1.

Reward Computation and Backpropagation.
The reward score is determined by whether the
final correct answer is obtained. Specifically, after
executing action As (Summary-Answer), a reward
score is computed for each leaf node. In our ex-
perimental setup, we consider scenarios in which
the self-consistency sampling count is set to 1 or 3,
as summarized in Table 1 with ny; = 1/3. When
nan = 1, the As action generates a single answer
and the leaf node is assigned a reward () of 1. For
nan = 3, we apply the clustering method (e.g., jed-
Score) described in Section 3.3 to calculate reward
scores for the three answer nodes. This method
assigns higher scores to answers with greater con-
fidence, consistent with the voting strategies com-
monly employed in mathematical tasks. We then
use these computed scores to backpropagate and up-
date the scores for all nodes along the search path.
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In the formula Q(s;, a;) = Q(si,ai) + Q(s4, ad).
Q(s4, aq) denotes the reward value associated with
the final answer.

Self-Consistency Baselines. For the Vanilla
RAG method, the improvement brought by self-
consistency voting is limited. In our main experi-
ments, we set the rollout parameter to 1 to ensure
a fair comparison and to avoid potential confound-
ing effects arising from applying self-consistency
solely to the final results.

Context Length Expansion for IterDRAG. For
IterDRAG, we follow the protocol outlined in the
original paper, modifying three key aspects: the
number of retrieved documents (ranging from 3 up
to 300 maximum), the number of contextual exam-
ples (fixed at 5 in our experiments), and the number
of iterations (up to 5). Further details regarding
these inference scaling strategies are discussed in
the work by Google DeepMind (Yue et al., 2024).

B Additional Experiment Results

We evaluate the performance of AirRAG on var-
ious complex QA datasets. Table 4 compares its
accuracy and F1 with strong baselines under the
given inference computation budget, which is im-
plemented based on Qwen2.5-14B-Instruct and one
million document database. The optimal perfor-
mance exhibits consistent gains as Ly,,x expands,
which is termed as the inference scaling laws for
RAG (Yue et al., 2024). We integrate the remaining
methods for a given maximum computational bud-
get into our approach, dubbed as AirRAG-Blender.
The best results are obtained by using only the SA
action to refine the final answer from all candidates,
as shown in Table 4. This also demonstrates the
flexibility of our approach architecture. In addi-
tion, to verify the robustness and generalization of
AirRAG, Table 5 shows the performance on more
diverse LLMs and datasets. For a fair comparison,
we utilize the widely used Wikipedia dump from
December 2018 (Karpukhin et al., 2020) as the
retrieval corpus. We observe consistent improve-
ments over vanilla RAG and existing iterative meth-
ods (more than 10% on average). The significant
boost over IterDRAG and Auto-RAG suggests that
AirRAG explores more effective reasoning paths
through the human-like thinking paradigm and tree-
based search. Furthermore, we present detailed in-
ference scaling results for each dataset individually,
as shown in Figure 6 and Figure 8.

C Prompt Examples

Given a user input query, our proposed AirRAG,
as shown in Figure 2, first attempts the direct an-
swer (DA) action without prompts and performs
system analysis (SAY) using the prompt in Figure 9.
Subsequently, AirRAG performs retrieval and an-
swer (RA) with the prompt in Figure 11, or query
transformation (QT) to generate refined queries for
better retrieval and answer. This process of RA-QT
or QT-RA can continuously iterate until no new
sub-queries arise or the maximum iteration depth is
reached. Finally, the summary answer (SA) in Fig-
ure 11 utilizes all the information and conclusions
from intermediate steps to refine the final answer.

D Case Study

To further illustrate our approach, we select a rep-
resentative sample from the complex multi-hop
dataset MuSiQue for detailed analysis, as shown
in Figures 13 and 14. Figure 14 specifically visual-
izes a reasoning path generated by our method. The
SAY action can produce various expressions, and
the QT action may generate multiple query formu-
lations, leading to a diverse set of reasoning nodes
and paths. This diversity enables our model to re-
trieve key information fragments that support both
intermediate steps and the final answer. Compared
with single-path generation under a fixed retrieval
environment, such multi-path exploration substan-
tially increases the likelihood of identifying crucial
supporting evidence.

18947



HotpotQA  MuSiQue 2Wiki Average
F1 Acc FlI Acc Fl1 Acc F1 Acc
ZeroShot QA 425 41.3 135 121 482 473 347 33.6

Lynax  Method

3k Vanilla RAG 703 654 23.0 17.7 558 534 49.7 455
IterDRAG* 743 69.1 2677 194 605 57.6 538 487
AirRAG-Lite 80.6 754 354 289 753 73.1 638 59.1
AIrRAG 79.6 752 41.0 35.0 76.0 742 65.6 615
AirRAG-Blender 81.1 79.8 41.6 364 822 817 683 66.0
Vanilla RAG 77.1 720 29.0 229 609 581 557 51.0

30k IterDRAG* 7777 71.6 308 223 630 602 57.1 514
AirRAG-Lite 824 769 36.7 30.1 788 76.8 660 61.3
AirRAG 825 774 432 363 804 789 68.7 64.2
AirRAG-Blender 829 80.6 433 37.6 834 83.0 699 67.1
IterDRAG* 76.8 71.0 31.7 248 655 624 580 527

128k  AirRAG-Lite 825 77.1 357 304 783 76.0 655 622
AirRAG 833 78.0 435 365 823 805 69.7 65.0

AirRAG-Blender 83.7 814 439 385 844 842 70.6 68.0

Table 4: Overall evaluation results under different computational resource budgets, where Qwen2.5-14B-Instruct
is used as the generator LLM. * indicates the results reproduced by us. L., denotes the maximum number of
input tokens across all rollouts. The best results for each L.« are in bold. The number of both rollouts and output
sequences is set to 1 for our proposed AirRAG methods.

NQ TriviaQA PopQA WebQA HotpotQA 2Wiki

Method
EM EM F1 EM F1 F1
Vanilla RAG 35.1 58.8 36.7 15.7 35.3 21.0
Self-RAG 36.4 38.2 32.7 21.9 29.6 25.1
Iter-RetGen  36.8 60.1 379 18.2 38.3 21.6
Auto-RAG 379 60.9 47.8 25.1 44.9 48.9
AIrRAG 53.6 63.2 51.8 52.6 67.6 66.3

Table 5: Performance comparison on six benchmarks, where Llama3-8B-Instruct is used as the generator LLM.
Partial experimental results are quoted from Jin et al. (2024) and Yu et al. (2024). The best results are in bold. The
number of both rollouts and output sequences is set to 1. The number of documents for a single retrieval is set to 5.
Our proposed AirRAG significantly outperform the others.
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Figure 5: Overview of the distribution of query complexity over three multi-hop QA datasets.
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Figure 6: Impact of the retrieved document number scaling and the maximum context length scaling over three
datasets.
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Figure 7: Performance comparison of different verification methods. "QwenRM" is short for reward model trained
on the Qwen model. "SA" is the reasoning action of summary and answer. "SC-emb/jcd" are two self-consistency
verification methods based on text embeddings and jaccard similarity. "Average" is the average score over all
candidate rollouts. The single retrieval process is set to retrieve three documents or fixed 8k context.
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Figure 8: Performance comparison on the number of different effective rollouts over three datasets. Sampling more
diverse reasoning paths consistently improves accuracy.

Example prompt for SAY reasoning action

Given the user query, you may rephrase it for better clarity, summarize it at a higher level,
or decompose it into multiple sub-queries to facilitate more effective information retrieval and
response generation. If no modification is necessary, return "None". Otherwise, list sub-queries,
each on a new line.

<Here are some examples.>

Query: {question}

Output:

Figure 9: Example prompt for SAY reasoning action.
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Example prompt for QT reasoning action

Given the context provided, please determine whether rephrasing, summarization, or decomposition
into sub-queries is necessary to enhance the accuracy and efficiency of information retrieval and
response generation. If no modification is required, return "None". Subsequent queries should be
listed individually.

<Here are some examples.>

Main Query: {question}

History: {history}

This Query: {this_question}

Figure 10: Example prompt for QT reasoning action.

Example Prompt for RA actions

You are an expert in question answering. I am going to give you some contexts with may or may
not be relevant to the question. Answer the question according to the contexts.

{contexts}

Question: {question}

Figure 11: Example Prompt for RA actions.

Example prompt for SA reasoning action

You are an expert in question answering. Given the context, sub-queries and responses, output a
correct and concise answer to User Query.

<Here are some examples.>

User Query: {question}

{history}

Contexts: {contexts}

Final Answer:

Figure 12: Example prompt for SA reasoning action.
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The iterative methods often traps in a solution space

Context: <Retrieved documents>

Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Follow up: Which body of water is Bartram’s Covered Bridge located on?

Follow up: | Intermediate answer: | So the final answer is:

Qutput: Follow up: Which body of water is Bartram’s Covered Bridge located on?

(Note: The context does not specify which body of water Bartram’s Covered Bridge is located on, but it does mention
that the bridge carries Goshen Road over Crum Creek. Therefore, we need to confirm that Crum Creek is the body
of water in question before proceeding to find the mouth of the watercourse.)

-- - (It enters an endless cycle of iteration until it reaches predefined maximum depth.)
Gold Answer: Delaware River

Process Annotation: Q1: Bartram’s Covered Bridge » crosses

Al: Crum Creek

Q2: Q1 » mouth of the watercourse

A2: Delaware River

The iterative self-exploration often traps in a solution space with low-quality reasoning steps even
after many attempts.

Figure 13: Incorrect reasoning path of iterative RAG methods. Ambiguity or missing information in the intermediate
steps leads in duplicate sub-query.
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The simple and effective action space of AirRAG leads to the correct reasoning trajectory

Question: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?

Actionl: SAY

Input: What is the mouth of watercourse for the body of water where Bartram’s Covered Bridge is located?
Output: Where is Bartram’s Covered Bridge located?

What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?

Action2: RA

Input: <Retrieved documents> Where is Bartram’s Covered Bridge located?

Output: Bartram’s Covered Bridge is located on the border between Delaware County and Chester County, Pennsylvania,
carrying Goshen Road over Crum Creek.

Action3: QT
Input: What is the mouth of the watercourse for the body of water near Bartram’s Covered Bridge?
Output: What is the mouth of Crum Creek?

Action4: RA

Input: <Retrieved documents>  What is the mouth of Crum Creek?

Output: Based on the provided contexts, there are two different locations referred to as Crum Creek, and they flow into
different bodies of water:

1. The Crum Creek in Delaware County and Chester County, Pennsylvania, flows into the Delaware River in Eddystone,
Pennsylvania.

2. The Crum Creek (also called Cathatachua Creek) in East Creek, New York, flows into the Mohawk River.

Since the question does not specify which Crum Creek is being referred to, both answers are possible. However, if
we consider the first context as the primary reference, the mouth of Crum Creek is the Delaware River in Eddystone,
Pennsylvania.

ActionS: SA
Input: <Retrieved documents> <Sub-queries with answers>

Output: The mouth of the watercourse for the body of water where Bartram’s Covered Bridge is located, Crum Creek,
is the Delaware River in Eddystone, Pennsylvania.

Gold Answer: Delaware River.

AirRAG obtains the correct answer by performing five reasoning actions efficiently.

Figure 14: Effective reasoning rollout of AirRAG. The fundamental action space and tree-based search provides
greater compatibility and flexibility, which avoids being trapped in a single solution space by a low-quality

intermediate step for chain-like reasoning paradigm.
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