
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 18881–18897
November 4-9, 2025 ©2025 Association for Computational Linguistics

TRAPDOC: Deceiving LLM Users by Injecting Imperceptible
Phantom Tokens into Documents

Hyundong Jin Sicheol Sung Shinwoo Park SeungYeop Baik Yo-Sub Han⋆

Yonsei University, Seoul, Republic of Korea
{tuzi04,sicheol.sung,pshkhh,sybaik2006,emmous}@yonsei.ac.kr

Abstract

The reasoning, writing, text-editing, and re-
trieval capabilities of proprietary large lan-
guage models (LLMs) have advanced rapidly,
providing users with an ever-expanding set of
functionalities. However, this growing utility
has also led to a serious societal concern: the
over-reliance on LLMs. In particular, users in-
creasingly delegate tasks such as homework,
assignments, or the processing of sensitive doc-
uments to LLMs without meaningful engage-
ment. This form of over-reliance and misuse is
emerging as a significant social issue. In order
to mitigate these issues, we propose a method
for injecting imperceptible phantom tokens into
documents, which causes LLMs to generate
outputs that appear plausible to users but are
in fact incorrect. Based on this technique, we
introduce TRAPDOC, a framework designed to
deceive over-reliant LLM users. Through em-
pirical evaluation, we demonstrate the effective-
ness of our framework on proprietary LLMs,
comparing its impact against several baselines.
TRAPDOC serves as a strong foundation for
promoting more responsible and thoughtful en-
gagement with language models. Our code is
available at https://github.com/jin
dong22/TrapDoc.

1 Introduction

Large Language Models (LLMs) have recently ex-
celled in a wide range of tasks, including text edit-
ing, summarizing, searching, and reasoning. Yet
the rising adoption of LLMs is not without down-
sides. As more users turn to these models, instances
of LLM misuse and negative side effects are in-
creasingly reported: accessing harmful informa-
tion (Zou et al., 2023; Perez et al., 2022; Mazeika
et al., 2024), generating fake facts (Maynez et al.,
2020; Manakul et al., 2023), leaking personally

⋆ Corresponding author.

A1. 1, 4, 6, 8, 9, 10, 12, …

A2. 1 + (−2) = −1

A1. 2, 3, 5, 7, 11, 13, 15, …

A2. 1 + 2 = 3

Q1. Print out all prime
numbers

Q2. Print the solution of one
plus two with formula

TrapDoc makes LLM output different answers

Q1. Print out all prime
numbers

Q2. Print the solution of one
plus two with formula

assignment.pdf TrapDoc(assignment.pdf)

…
: non-
: minus

TrapDoc Phantom Tokens
…

Instruct LLMs to answer the questions in PDF

Figure 1: A motivation example of our TRAPDOC
framework. The phantom tokens injected into a PDF
document by TRAPDOC alters LLM answers.

identifiable information (Carlini et al., 2021; Kim
et al., 2023), and producing hate speech (Ahn et al.,
2024; Kim et al., 2022). Among these issues, aca-
demic cheating has emerged as one of the most
serious. Many students and researchers now rely
on LLMs to complete assignments or conduct re-
search, and some of them entrust the entire rea-
soning process to the model. In scholarly writing
and peer-review workflows, words that humans
rarely use but that LLMs frequently employ ap-
pear more often (Juzek and Ward, 2025). However,
since LLMs have become capable of retrieving and
answering most undergraduate-level questions con-
vincingly, distinguishing human-written text from
LLM-generated text is becoming difficult.

Numerous methods identifying LLM-generated
content have been proposed to combat this trend.
Typical approaches involve re-inputting the suspect
text into an LLM, computing perplexity scores, or
prompting the model to paraphrase the contents
and then comparing the degree of alteration. These
methods aim to determine whether the text was

18881

https://github.com/jindong22/TrapDoc
https://github.com/jindong22/TrapDoc

generated by a machine or authored by a human.
Such methods perform reasonably well for natural-
language text. However, merely detecting whether
a passage was machine-generated is not the same
as determining whether the own thinking of the
writer is reflected in the final product. For example,
if a researcher uses an LLM only to translate or
grammatically polish a manuscript, the resulting
text may be flagged as LLM-generated even though
it still embodies the original ideas of the author and
approach. In other words, there are applications
where LLM assistance does not count as cheating
since the user’s unique reasoning is preserved. Ex-
isting detection methods struggle to differentiate
between mindless use of an LLM and its use as an
assistant, limiting their effectiveness for spotting
genuine academic cheating. We distinguish these
two type of uses by inducing errors that become
apparent with careful reading.

We present a simple yet effective adversarial-text
method that exploits an overlooked vulnerability
in the way large language models process PDF
files. Previous approaches have focused on visi-
ble modifications, such as character substitutions,
synonym replacements, or paraphrases, to degrade
model performance. However, these methods are
inherently limited because each alteration is eas-
ily noticeable in discrete text. We target LLMs
that read contents of PDFs with byte-stream pars-
ing, which can perceive invisible texts. Leveraging
this fact, we define an adversarial insertion task
by presenting a clear problem definition for PDFs.
We then propose TRAPDOC, which injects imper-
ceptible phantom tokens that mislead LLMs while
leaving the appearance of document intact. Experi-
ments across multiple tasks and baselines confirm
the practical value of TRAPDOC. We believe it
contributes to promoting ethical use of LLMs and
helps deter academic misconduct.

2 Related Work

2.1 Text Adversarial Attack

An adversarial attack involves subtly modifying
an input of a model to alter the output of the
model (Szegedy et al., 2014; Goodfellow et al.,
2015). Generally, the more imperceptible the per-
turbation and the greater the resulting change in
output, the more effective the attack is considered.
Since data in the vision and audio domains are
continuous, injecting small amounts of noise is
relatively straightforward. In the text domain, how-

ever, each token modification is visible, so creating
undetectable perturbations is far more difficult (Jia
and Liang, 2017; Ribeiro et al., 2018). Most ex-
isting techniques modify the source text by delet-
ing, replacing, swapping, or inserting characters or
words (Ribeiro et al., 2018; Ebrahimi et al., 2018;
Li et al., 2019), which inevitably alters the surface
form. Since these edits are usually visible and eas-
ily noticed, the prevailing approach is to preserve
the original semantics while perturbing the text
enough to change the output of an LLM (Alzan-
tot et al., 2018; Jin et al., 2020; Li et al., 2020;
Garg and Ramakrishnan, 2020). The model be-
ing attacked is commonly referred to as the victim,
and attacks are classified as white-box or black-box
depending on the attacker’s level of access.

2.1.1 White-box Victim Attack
In a white-box attack, the adversary has full access
to the model’s outputs, parameters and other inter-
nal components (Ebrahimi et al., 2018; Li et al.,
2019; Wallace et al., 2019; Boucher et al., 2022;
Zhang et al., 2024). Under this setting, a wide
range of techniques can be employed, including
manipulating the model’s embeddings, performing
targeted fine-tuning, and crafting gradient-based
perturbations. Since the gradients are directly avail-
able, one can estimate the importance of each token
from the output logits, then deliberately introduce
misspellings (Ebrahimi et al., 2018), replace tokens
with synonyms (Jin et al., 2020; Li et al., 2020;
Garg and Ramakrishnan, 2020), or swap them with
visually similar Unicode characters to mount the
attack (Zhu et al., 2024).

Zhang et al. (2024) conducted a study in which
they uploaded documents containing invisible text
to the internet using a white-box approach, in order
to have their malicious information included in the
retrieval-augmented generation of LLMs. However,
the proprietary LLMs that are most often misused
in academic contexts are either closed-source or
so large that individual users cannot realistically
run them. Consequently, white-box approaches
are not well suited to addressing today’s academic
LLM-misuse problem.

2.1.2 Black-box Victim Attack
In a black-box setting, access to the model is signif-
icantly more restricted than in a white-box setting.
It is typically assumed that only the final output of
the LLM or logits of the LLM are observable. Due
to this limited access, altering the model’s output

18882

is more challenging than in white-box scenarios.
Traditional approaches often rely on iterative token-
level modifications, identifying influential tokens
by measuring the impact of each change on the
output (Formento et al., 2023; Zhu et al., 2024;
Jin et al., 2020; Li et al., 2020; Garg and Ramakr-
ishnan, 2020). However, such iterative inference
scales with sequence length, leading to increased
computational overhead. When applied to propri-
etary LLMs, it also incurs a monetary cost due to
usage-based pricing.

Moreover, modern proprietary LLMs are robust
to a wide variety of inputs, including paraphrases
and typographical errors, which reduces the effec-
tiveness of existing methods. In a recent study, Xu
et al. (2024) proposed leveraging the victim LLM
itself to generate adversarial inputs, and we adopt
this approach as our baseline.

2.2 Adversarial Text for Evaluating LLM

There has been extensive research on assessing and
improving model comprehension and reliability
through adversarial text. Jia and Liang (2017) eval-
uated the model’s text understanding by appending
adversarial sentences to paragraphs and measur-
ing the resulting changes in predictions. Other
works (Li et al., 2023; Zang et al., 2020; Abad-
Rocamora et al., 2024) aimed to increase the diffi-
culty of robust natural language inference tasks by
introducing adversarial candidates.

Additionally, early jailbreaking techniques, used
to assess LLM safety, share methodological similar-
ities with adversarial prompting. However, unlike
these studies, our work does not aim to evaluate
LLMs themselves. Instead, we focus on preventing
their misuse in academic assessment scenarios, and
thus these works are considered out of scope.

3 Backgrounds

3.1 Proprietary LLM Eyesight Test

As a preliminary experiment, we aimed to inves-
tigate how LLMs read text within PDFs. We cre-
ated a “LLM Eyesight PDF” that included black
text with varying levels of opacity, white text with
different opacity ranges, and text of various font
sizes. We then prompted the LLMs to read the
text from the PDF. According to the experimental
results, GPT and Claude, when used via interactive
web interfaces, were able to read low-opacity text,
white text, and even text with font size 0. In con-
trast, DeepSeek, Gemini, and Grok were unable to

read white or transparent text. Through additional
prompting, we examined how each LLM is capable
of reading PDF content. Only GPT and Claude suc-
cessfully read invisible texts embedded in the PDF,
whereas DeepSeek, Gemini, and Grok cannot.

More detailed results and the prompts used can
be found in Appendix A. Based on these results, we
hypothesize that ChatGPT and Claude read PDFs
through the PDF’s graphic operators stream, and
we design our framework based on this assumption.

3.2 PDF Parsing
PDF is a widely used document format that repre-
sents text using coordinate-based text-boxes and vi-
sualizes various types of objects, such as tables and
images, using predefined graphic operators. There
are several ways to create invisible text in PDFs,
with common methods including setting gray levels
using the g and G operators or entering an invisible
mode using the Tr operator.

Zhang et al. (2024) proposed methods for mak-
ing text invisible by adjusting opacity, overlaying
text with images, and using JavaScript triggers.
However, these approaches have limitations, as
they are often difficult to apply to standard PDFs
and viewers. Moreover, when text is inserted trans-
parently, it still occupies space and remains se-
lectable or searchable, which is a drawback. When
text is hidden using images, it tends to appear at
the beginning or end of paragraphs during text ex-
traction, making it difficult to affect the content.

Instead of relying on such naive embedding tech-
niques, we developed a software tool that directly
captures and modifies the TJ and Tj operators,
which are standard instructions for rendering texts
in a PDF stream. This approach enables the inser-
tion of targeted content between rendering opera-
tions, allowing us to embed text of arbitrary length
into any PDF without altering its visible layout.

Previous work has struggled to maintain seman-
tic similarity while distorting the model’s output.
In contrast, our approach is an insertion-only tech-
nique based on supersequences that does not mod-
ify the original text at all and, as mentioned earlier,
can be applied broadly to standard PDFs. To the
best of our knowledge, we are the first to propose
an adversarial text generation task that allows only
insertions without requiring semantic similarity.

3.3 Problem Formulation
In real-world academic assessments, evaluators typ-
ically assign a task to a participant, expecting them

18883

1. 3.2.

Original Document

original.pdf

We present a lightweight
neural model for hate
speech detection in …

Invisible Adversarial Texts

Perturbed Document

… hate meme detection …

perturbed.pdf

We present a lightweight

neural model for hate …

Abuse of Large Language Models
Please read the paper in the attached PDF and write a peer review using the following …

Perturbed Document Generation

Adversarial Method

… framework for hate meme detection … … ha for te hate sp meme ee …… model for hate speech …

Original Texts Perturbed Texts

Two Human-Indistinguishable Documents

LLM’s Response for Original Document LLM’s Response for Perturbed Document

The authors propose a lightweight neural
model for hate speech detection ...

The paper introduces a multimodal
framework for hate meme detection, …

Irrelevant Text
Our study propose a model
that generates description
of source …

Hallucination
We introduce a multi-
modal framework for hate
meme detection …

Figure 2: Overview of the TRAPDOC framework. The framework (1) extracts the original texts from a given
document, (2) generates adversarial variants of the original, and (3) produces a perturbed document by shuffling
the original and adversarial texts. The adversarial segments are imperceptible to humans, making the perturbed
document indistinguishable from the original. In contrast, LLMs process both the original and adversarial texts,
leading to incorrect outputs.

to comprehend the assignment and respond accord-
ingly. However, a growing concern is the misuse
of proprietary LLMs, where individuals submit the
assignment prompt directly to an LLM without
understanding its content, relying entirely on the
model’s response.

Our objective is to construct a scenario in which
such misuse results in output that appears plau-
sible but is, in fact, incorrect. Formally, given a
document D, we aim to generate a perturbed ver-
sion D′ by embedding imperceptible adversarial
tokens. These tokens remain invisible to human
readers, ensuring that D′ remains indistinguishable
from D. At the same time, they are designed to in-
duce significantly altered response from the LLM,
thereby revealing to careful readers that the output
was machine-generated.

As noted earlier, our objective is to distort an
LLM’s output by inserting invisible text while pre-
serving the visual appearance of the original doc-
ument. The ideal strategy would be to add a few
words or sentences to an existing sentence so that
its meaning is subtly altered. This strategy, how-
ever, is subject to stringent constraints: the original
sentence must remain a subsequence, the resulting
text must be grammatically correct, and yet the

overall meaning must change. Instead of identify-
ing tokens that blend naturally into the sentence, we
divide the original text into finer-grained segments,
making the resulting output appear noisy.

4 TRAPDOC Framework

In this section, we present TRAPDOC, a document
perturbation framework designed to corrupt the out-
puts of LLMs. Figure 2 provides an overview of the
TRAPDOC framework. Our approach consists of
two main components: (1) perturbing the contents
of a given document to generate adversarial texts,
and (2) injecting the resulting adversarial texts into
the document to distract LLMs from correctly un-
derstand the original contents.

4.1 Text Perturbation Method

Our goal is to induce the LLM to produce responses
that seem plausible and relevant to the document
at first glance but are actually incorrect. Therefore,
the injected imperceptible text must remain con-
textually related to the source passage while con-
veying different instructions or facts. We achieve
this by prompting an LLM to generate a halluci-
nated version of the given text. We refer to such
LLM-generated perturbations as hallucinations.

18884

By crafting adversarial passages that resemble
the original yet differ in content, we construct in-
puts that mislead the target LLM. These hallucina-
tions are subsequently embedded into the document
via the text injection method.

4.2 Text Injection Method

Our text-injection procedure operates by manipu-
lating the PDF operator stream. First, we parse
the source PDF to extract its operator stream and
iterate through the stream. When we encounter an
operator that places text, we extract the associated
string and split it into segments of n characters. An
intractable word is then inserted between the char-
acter segments. The modified operator stream is
subsequently un-parsed to reconstruct a new PDF.

Text rendered with a font size 0 is not displayed
by most PDF viewers—including Adobe Reader,
Chrome, and Apple Preview—and cannot be dis-
covered by dragging or text search. Building on
this property, we embed adversarial text of arbitrary
length at arbitrary positions, ensuring that the LLM
processes both the inserted and original content.

5 Experimental Setup

We conduct experiments under realistic usage sce-
narios to evaluate the practical effectiveness of
TRAPDOC. The target LLM must satisfy two con-
ditions: (1) it must accept PDF files as input and
(2) it must be capable of reading text rendered in-
visible to human readers. Based on these criteria,
we select two publicly accessible models: GPT-
4.1, OpenAI’s long-context flagship model, and
o4-mini, a lightweight but strong reasoning model.

5.1 Evaluation Tasks

We consider the scenario of a user who frequently
relies on LLMs despite being explicitly prohibited
from doing so, and our objective is to detect such
unauthorized use. We evaluate TRAPDOC on three
distinct tasks to simulate this.

The first is code generation from natural-
language (NL) specifications, for which we adopt
the MBPP+ dataset (Liu et al., 2023). The sec-
ond is paragraph summarization, evaluated on
CNN/DailyMail (Nallapati et al., 2016). The third
is paper reviewing, using Qasper (Dasigi et al.,
2021). Because CNN/DailyMail contains a large
number of instances, we randomly sample 300 ar-
ticles. For Qasper, due to the length of inputs, we
sample 100 documents to remain within budget

constraints. The detailed information about the
dataset is provided in Appendix D.1.

5.2 Perturbation Baselines
TRAPDOC is compared against three perturbation
baselines. Irrelevant text inserts the description
of a different instance from the same task. Meta
instruction encloses the original paragraph in quo-
tation marks and then appends a meta-level instruc-
tion that contradicts the quoted content. Negation
negates every sentence in the paragraph. We use
negate2 to generate negations.

Most prior attacks require white-box access or an
excessive number of model queries, and paragraph-
level LLM-driven perturbations remain largely un-
explored. Xu et al. (2024) proposes PromptAt-
tack, sub-sentence-level LLM adversarial attacks.
We port its perturbations as an additional baseline,
but only for the code-generation task because the
method does not scale beyond the sentence level.
Table 1 summarizes each perturbation method. Full
implementation details for all baselines are pro-
vided in Appendix E.

Irrelevant:
In-domain data different from the given text.

Meta Instruction:
Inserting instruction that asserts the paragraph
is factually incorrect.

Negation:
Negating sentences by systematically adding or
removing lexical negators, e.g., ‘not’ or ‘no’.

PromptAttack (w2):
Removing less significant two words.

PromptAttack (s1):
Adding meaningless handles after sentences.

Hallucination:
Prompting the LLM to deliberately introduce
hallucinated content into the given text.

Table 1: Perturbation methods used to generate adver-
sarial texts from original texts in our experiments.

5.3 Evaluation Metrics
As we stated earlier, our goal is to deceive LLMs
so that their outputs appear plausible but are ac-
tually incorrect. To this end, we evaluate model
outputs using two types of metrics: surface-level

2https://pypi.org/project/negate/

18885

https://pypi.org/project/negate/

similarity, which assesses syntactic overlap, and
meaning-based similarity, which evaluates seman-
tic alignment. This distinction allows us to ana-
lyze how well the model preserves the textual form
versus the underlying meaning under perturbation.
Detailed explanations of each metric appear in Ap-
pendix D.2.

5.3.1 Surface-level similarity
Surface-level similarity metrics are used to evaluate
how well TRAPDOC preserves the superficial form
of the output. For the code generation, we report
CodeBLEU and Stanford Moss similarity scores—
commonly used to assess code similarity and de-
tect plagiarism. For the summarization and review-
generation tasks, we report ROUGE-1, ROUGE-2,
ROUGE-L, BLEU-1, and BLEU-2. These n-gram
and subsequence-based metrics measure overlap
at the word and short phrase levels, reflecting sur-
face similarity without strongly encoding semantic
content. Since TRAPDOC is designed to preserve
the surface form of the LLM’s output, an effective
attack should maintain high surface-level similarity
scores even as it alters the underlying semantics.

5.3.2 Meaning-based similarity
Meaning-based similarity metrics assess how well
TRAPDOC disrupts the meaning of the output. For
code generation, we use pass@k, a standard evalua-
tion metric used in code-synthesis benchmarks. We
report only pass@1, as commercial LLMs typically
perform well on MBPP+. For the summarization
and review-generation, we use BERTSocre, which
compares contextual meaning using BERT embed-
dings. In our setup, a lower meaning-based similar-
ity score indicates a more successful perturbation.

6 Results and Analysis

6.1 Code Generation
Table 2 presents the pass@1, CodeBLEU, and Stan-
ford Moss results for the code-generation task when
each text-perturbation method is applied to the in-
put PDF. All techniques reduce pass@1, though
the extent of the decrease varied significantly. As
expected, Irrelevant caused the greatest degrada-
tion, driving pass@1 to zero by tricking the model
into treating the invisible input as a completely
different coding problem. Our own method also
pushed pass@1 down to the single-digit range, con-
firming that the perturbation can severely impair
an LLM’s effectiveness. However, both methods
also cause low CodeBLEU and Moss scores, which

represent the surface-level similarities. From the
perspective of code similarity, greater semantic
changes naturally lead to lower similarity scores.
This is because—unlike natural languages—code
has strict logical structures, and altering the logic
affects similarity metrics accordingly. Therefore,
in code generation, there exists an inherent trade-
off between surface-level similarity and meaning-
based similarity.

Method GPT-4.1 o4-mini

No Perturbation 78.84 80.16

Irrelevant 0.00 0.00
Meta Instruction 66.93 13.23
Negation 74.60 72.49

PromptAttack (w2) 70.63 38.10
PromptAttack (s1) 29.10 60.85

Hallucination (Ours) 6.88 3.17

Table 2: Code generation results on MBPP+ dataset.
We report the pass@1 of the generated code. For Promp-
tAttack, we include only the best-performing variant for
each model: w2 for GPT-4.1 and s1 for o4-mini.

By contrast, Negation produced only a minor
change even though the injected description explic-
itly told the model not to implement the program.
Because the prompt simultaneously asked the sys-
tem to solve the task, it apparently ignored the
negated content and proceeded as usual. Meta In-
struction showed extreme variance: for o4-mini it
often triggered a “no PDF access” reply—156 such
cases were observed on manual inspection—even
though the files were perfectly readable and the
same model performed well on other conditions.
Meta Instruction that claimed the PDF was faulty
seems to have interfered with o4-mini’s parsing.
GPT-4.1, on the other hand, remained largely unaf-
fected and still achieved a high pass@1.

For the PromptAttack baseline we tried all nine
perturbations proposed in the original work and
report the two most effective for each model. Al-
though these attacks did hurt pass@1, none of them
produced a consistently large drop across the two
systems. Also, CodeBLEU and Moss scores re-
main high, suggesting that the output semantics
have not been severely degraded. Overall, our ap-
proach delivered the most reliable performance loss
among all baselines.

18886

GPT-4.1 o4-mini

Method BLEU (↑) ROUGE (↑)
BERT (↓)

BLEU (↑) ROUGE (↑) BERT (↓)
1 2 1 2 L 1 2 1 2 L

No Perturbation 23.94 11.77 29.69 8.07 26.20 87.07 24.00 11.75 29.64 8.05 25.98 86.68

Irrelevant 10.16 1.28 11.30 0.67 10.15 81.36 9.88 1.44 10.88 0.81 9.82 80.93
Meta Instruction 19.47 8.56 24.48 5.79 21.93 85.67 16.96 6.94 21.59 4.60 19.27 84.79
Negate 24.73 12.38 30.46 8.56 27.02 87.15 23.45 11.18 28.95 7.48 25.32 86.67

Hallucination (Ours) 16.46 5.37 19.36 3.01 17.37 85.41 14.99 4.12 17.96 2.35 15.80 84.66

Table 3: Comparison of the effectiveness of perturbation methods on the CNN/DailyMail Summarization dataset.
We evaluate the performance of GPT-4.1 and o4-mini using BLEU-1, BLEU-2, ROUGE-1, ROUGE-2 and ROUGE-
L to measure syntactic similarity, where higher scores are better (↑). In contrast, BERTScore (denoted as BERT) is
used to assess semantic similarity, where lower scores are preferred (↓).

6.2 Text Summarization

Table 3 summarizes the results for the summariza-
tion task. Irrelevant Text again performed worst on
every metric because, unlike the other methods, it
makes the LLM treat the PDF as a completely dif-
ferent paragraph, leading to very low scores. This
outcome strongly supports our hypothesis that the
model relies on the injected strings when forming
its summary and also justifies our metrics.

At the opposite end of the spectrum, Negation
scored almost the same as the unperturbed baseline;
manual examination showed that the summaries
were nearly identical, so the negation strategy was
no more effective here than in code generation. Be-
tween these extremes, Meta Instruction and our
hallucination-based perturbation both achieved rel-
atively high ROUGE and BLEU together with no-
ticeably lower BERTScore. Manual analysis re-
vealed a key difference: the hallucination texts
often inserted named entities that never appeared
in the source, which explains their even lower se-
mantic similarity.

6.3 Review Generation

Finally, we measured attack strength on the review
generation task. The overall pattern mirrors the
summarization results, though absolute values are
higher because our prompt forces reviews into a
standard format, creating inevitable overlaps. Irrel-
evant Text again produced the lowest scores and
frequently made the model confuse one paper for
another. A notable change is that Meta Instruc-
tion now outperformed Negation on every metric.
Our own method maintained high syntactic overlap
while keeping BERTScore relatively low, indicat-
ing that it preserves surface form yet still diverts
meaning. We provide a detailed case study in a

later section to illuminate the distinct behaviors of
each perturbation strategy.

6.4 Case Study

We conduct a blind human evaluation as a case
study for the peer review generation task. We as-
sess the LLM-generated reviews under each adver-
sarial method, focusing on the following criteria:

1. Hallucinated Content:
Presence of unsupported information.

2. Consistency with Authors:
Logical agreement the authors’ claims.

3. Detail Precision:
Fidelity of measurements and statistics.

4. Intent Comprehension:
Understanding of the paper’s motivation.

The original paper used as the foundation for
this experiment is “DuTongChuan: Context-aware
Translation Model for Simultaneous Interpret-
ing” (Xiong et al., 2019).

Prior to review generation, we introduced dif-
ferent forms of textual perturbations into the PDF
and analyzed how these alterations affected the ac-
curacy and fidelity of the resulting reviews. Five
perturbation types were considered: (1) Base (No
Perturbation); (2) Hallucination; (3) Irrelevant In-
sertion; (4) Meta Instruction; and (5) Negation.
For Irrelevant Insertion, we use the following
paper: “Self-Attention and Ingredient-Attention
Based Model for Recipe Retrieval from Image
Queries” (Fontanellaz et al., 2019).

For each of five perturbation types, evaluators
assess two LLM-generated reviews. Evaluators
remain unaware of the perturbation type applied
to each input and receive instructions to identify
factual errors and misinterpretations with respect
to the original paper.

18887

GPT-4.1 o4-mini

Method BLEU (↑) ROUGE (↑)
BERT (↓)

BLEU (↑) ROUGE (↑) BERT (↓)
1 2 1 2 L 1 2 1 2 L

Irrelevant 40.92 22.65 33.73 13.32 31.77 84.94 30.31 12.82 26.01 6.18 24.57 82.66
Meta Instruction 49.26 29.43 42.27 18.34 39.76 88.63 43.36 23.48 40.14 14.08 37.96 88.33
Negate 48.72 29.05 41.32 18.07 38.86 88.24 40.02 20.17 36.12 11.30 34.07 86.82

Hallucination (Ours) 46.18 26.08 38.12 15.25 35.84 87.24 36.72 17.35 32.47 9.07 30.73 85.57

Table 4: Comparison of the effectiveness of perturbation methods on the paper reviewing task. Since no human-
generated reviews are available, we use LLM-generated review without perturbation as the reference.

Notably, reviewers consistently identified re-
views generated under the Hallucination and Ir-
relevant Insertion conditions as problematic. For
instance, a review from Hallucination include mul-
tiple fabricated terms and evaluation metrics not
present in the original paper, such as Semantic
Block detector and Segmental Coherence Score.
Similarly, reviews from Irrelevant Insertion incor-
porate concepts and datasets unrelated to the Du-
TongChuan paper (Xiong et al., 2019), strongly
suggesting that the LLM have absorbed and re-
produced content from a different source. In con-
trast, reviews from Negation and Meta Instruction
are consistently rated as accurate and well-aligned.
These reviews do not include overt factual errors
and preserve the structural integrity of the original
claims.

This case study reveals a clear pattern in the sus-
ceptibility of LLMs to different classes of textual
perturbation. Human evaluators, unaware of the
specific manipulations, reliably identified factual
inconsistencies and topical deviations in reviews
generated from documents subjected to hallucina-
tion and irrelevant insertion. These forms of corrup-
tion directly altered the semantic content by intro-
ducing extraneous or fabricated material, thereby
leading to detectable distortions in the generated
outputs. In contrast, semantic-level perturbations—
negation and meta-instruction—proved less effec-
tive in deceiving both humans and models. De-
spite syntactic manipulation, these perturbations
preserved the lexical surface and discourse struc-
ture of the original context, which enabled the LLM
to produce coherent reviews. Case study examples
are provided in Appendix F.

7 Discussion

7.1 File Size Increase

Our text insertion method generally requires an
amount of text comparable to, or sometimes ex-

ceeding, the original text. As a result, an increase
in file size is inevitable. Nevertheless, since text
consumes significantly less storage than images,
and considering that our primary application is aca-
demic use, we believe that preventing LLM abuse
is a more important concern. In our experiments
on academic papers, the average document size
prior to perturbation was 0.908 MiB. After apply-
ing TRAPDOC perturbations, the average file sizes
increased modestly to 1.023 MiB and 1.019 MiB
when targeting GPT-4.1 and o4-mini hallucinations,
respectively. These represent increases of approxi-
mately 12% and 13%, which remain within a prac-
tical and manageable range. Importantly, this in-
crease is not substantial, as the inserted phantom
tokens are textual in nature and their contribution
to file size is negligible compared to multimedia
or graphical content. Our perturbation technique
therefore still holds considerable potential for opti-
mization and with further refinement, the overhead
associated with file size could be mitigated effec-
tively.

7.2 Robustness on Copy-and-Paste Bypass

An important concern is whether our methodology
can be trivially bypassed through simple techniques
such as copy-and-paste, or whether it could be eas-
ily detected and removed. Such details may vary
depending on implementation choices, the PDF
editing library employed or the specific reader soft-
ware, but in general, detection, removal, and by-
pass present a trade-off relationship. Specifically,
making removal and bypass more difficult typically
requires heavier perturbation of the text, which in
turn makes detection easier; conversely, minimiz-
ing perturbation improves stealth but leaves the
possibility of removal or bypass. Crucially, TRAP-
DOC inserts tokens between sub-token fragments
of the original text, meaning that even if text is ex-
tracted, reconstructing the original content remains

18888

inherently difficult. Thus, while the difficulty of
detection or bypass may depend on the environ-
ment, we emphasize that complete removal of the
perturbations is fundamentally challenging.

7.3 Mitigating LLM Misuse

LLMs are increasingly embedded in educational
and academic workflows, raising concerns about
over-reliance and automated misuse. In particular,
users may submit LLM-generated responses with-
out attempting to understand the source material,
undermining the validity of evaluation processes.
This issue is especially pressing in scenarios where
critical reasoning, comprehension, or creativity is
being assessed.

TRAPDOC offers a practical defense against
such misuse. By injecting imperceptible adver-
sarial text into documents, it exposes users who
depend blindly on LLMs to interpret and respond.
While human readers perceive no change, LLMs in-
gest the hidden strings, often leading to distorted or
incoherent outputs. This discrepancy can serve as
a signal to educators, reviewers, or evaluators that
a submission was not independently composed.

Rather than discouraging responsible LLM us-
age, TRAPDOC encourages deeper engagement
with assigned tasks. It functions as a deterrent
for blind automation while preserving space for
thoughtful human-AI collaboration. In doing so, it
contributes to the development of more robust, fair,
and context-sensitive evaluation practices.

Although this work focuses on education and
peer review, the underlying principles of TRAP-
DOC can extend to a broader set of high-stakes
domains. Legal drafting, clinical documentation,
and policy generation increasingly rely on LLMs,
yet all require traceable authorship and semantic
fidelity. Document-level interventions like TRAP-
DOC offer a minimally invasive yet effective means
of flagging passive AI delegation in such contexts.

8 Conclusion

Through our experiments, we gained insights into
how proprietary LLMs perceive PDFs and pro-
posed a problem definition, methodology, eval-
uation metrics, and the framework aimed at de-
ceiving users who are over-reliant to LLMs. We
conducted evaluations on three diverse tasks that
reflect real-world LLM misuse scenarios, demon-
strating the significance and effectiveness of our
framework. Additionally, we performed both quan-

titative and qualitative analyses on relatively large,
paper-length documents, and further validated our
framework’s effectiveness in mitigating LLM abuse
through human evaluation.

Our findings reveal weaknesses in how LLMs
are currently employed for document-related tasks.
By identifying these vulnerabilities, we offer meth-
ods that can be leveraged to detect and mitigate
potential misuse of LLMs in both academic and
professional contexts. Our approach will encour-
age a critical reassessment of prevailing practices,
applied to address academic misuse and to hinder
unauthorized data collection by LLMs. These di-
rections will contribute to the development of more
responsible and ethical applications of large lan-
guage models.

Limitations

Our methodology is entirely based on the assump-
tion that proprietary LLMs recognize strings from
the PDF operator stream. A limitation of our invisi-
ble text approach is that it does not apply to models
such as DeepSeek or Gemini, as discussed in Sec-
tion 3.1, which interpret PDFs as images, or in
settings that rely on OCR-based text recognition or
screenshot-based inference. However, image-based
text recognition technologies still face challenges in
achieving fully accurate extraction, particularly for
languages other than English, where performance
is often restricted. Furthermore, researches in the
vision domain (Chen et al., 2020; Xu et al., 2023)
have explored techniques designed to deliberately
interfere with OCR (e.g., adversarial perturbations
to hinder text recognition). We believe that inte-
grating our approach with such methods represents
a promising direction for future work.

Ethical Considerations

Our work includes an approach that deliberately
deceives an LLM user. However, the goal of this
research is not to promote deception but rather to
curb excessive reliance on LLMs and to enable fair,
human-centered evaluation. TRAPDOC is designed
as a defensive tool for educators, reviewers, and
assessment platforms that need to verify genuine
human understanding in settings where proprietary
LLMs are otherwise prohibited. By embedding
invisible distractors, the framework discourages
“push-button” solutionism and encourages users to
engage with the material directly.

All datasets used—MBPP+, CNN/DailyMail,

18889

and Qasper—are publicly available under licenses
that permit research. No personal or sensitive data
were collected or processed, and no private doc-
uments were exposed. We hope the work will
(1) raise awareness of hidden-text vulnerabilities
in document pipelines, (2) prompt LLM providers
to harden PDF ingestion, and (3) give educators a
realistic lever against unreflective, wholesale LLM
use. Ultimately, we view TRAPDOC as a step to-
ward more responsible and transparent integration
of language models into high-stakes evaluation set-
tings.

Acknowledgements

This research was supported by the National Re-
search Foundation of Korea (NRF) grants funded
by the Korean government (MSIT) (RS-2025-
02222626 and RS-2025-00562134), and by the
AI Graduate School Program (RS-2020-II201361).
Author Contributions: Jin and Sung contributed
equally to this work as co-first authors.

References
Elías Abad-Rocamora, Yongtao Wu, Fanghui Liu, Grig-

orios Chrysos, and Volkan Cevher. 2024. Revisit-
ing character-level adversarial attacks for language
models. In Proceedings of the 41st International
Conference on Machine Learning. OpenReview.net.

Hyeseon Ahn, Youngwook Kim, Jungin Kim, and Yo-
Sub Han. 2024. SharedCon: Implicit hate speech
detection using shared semantics. In Findings of
the Association for Computational Linguistics, pages
10444–10455.

Moustafa Alzantot, Yash Sharma, Ahmed Elgohary,
Bo-Jhang Ho, Mani Srivastava, and Kai-Wei Chang.
2018. Generating natural language adversarial ex-
amples. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2890–2896.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and
Nicolas Papernot. 2022. Bad characters: Impercepti-
ble NLP attacks. In 43rd IEEE Symposium on Secu-
rity and Privacy, pages 1987–2004. IEEE.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar
Erlingsson, and 1 others. 2021. Extracting training
data from large language models. In Proceedings of

the 30th USENIX security symposium, pages 2633–
2650.

Lu Chen, Jiao Sun, and Wei Xu. 2020. Fawa: Fast ad-
versarial watermark attack on optical character recog-
nition (ocr) systems. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases, pages 547–563. Springer.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing
Dou. 2018. HotFlip: White-box adversarial exam-
ples for text classification. In Proceedings of the 56th
Annual Meeting of the Association for Computational
Linguistics, pages 31–36.

Matthias Fontanellaz, Stergios Christodoulidis, and
Stavroula Mougiakakou. 2019. Self-attention and
ingredient-attention based model for recipe retrieval
from image queries. In Proceedings of the 5th in-
ternational workshop on multimedia assisted dietary
management.

Brian Formento, Chuan-Sheng Foo, Anh Tuan Luu, and
See-Kiong Ng. 2023. Using punctuation as an ad-
versarial attack on deep learning-based NLP systems:
An empirical study. In Findings of the Association
for Computational Linguistics, pages 1–34. Associa-
tion for Computational Linguistics.

Siddhant Garg and Goutham Ramakrishnan. 2020.
BAE: BERT-based adversarial examples for text clas-
sification. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
pages 6174–6181.

Ian J. Goodfellow, Jonathon Shlens, and Christian
Szegedy. 2015. Explaining and harnessing adversar-
ial examples. In Proceedings of the 3rd International
Conference on Learning Representations.

Robin Jia and Percy Liang. 2017. Adversarial exam-
ples for evaluating reading comprehension systems.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2021–2031.

Di Jin, Zhijing Jin, Joey Tianyi Zhou, and Peter
Szolovits. 2020. Is BERT really robust? A strong
baseline for natural language attack on text classifica-
tion and entailment. In Proceedings of the Thirty-
Fourth AAAI conference on artificial intelligence,
pages 8018–8025.

18890

Tom S Juzek and Zina B. Ward. 2025. Why does Chat-
GPT “delve” so much? exploring the sources of
lexical overrepresentation in large language models.
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 6397–6411.

Siwon Kim, Sangdoo Yun, Hwaran Lee, Martin Gubri,
Sungroh Yoon, and Seong Joon Oh. 2023. Propile:
Probing privacy leakage in large language models.
Advances in Neural Information Processing Systems,
36:20750–20762.

Youngwook Kim, Shinwoo Park, and Yo-Sub Han. 2022.
Generalizable implicit hate speech detection using
contrastive learning. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 6667–6679.

Guoyi Li, Bingkang Shi, Zongzhen Liu, Dehan Kong,
Yulei Wu, Xiaodan Zhang, Longtao Huang, and Hon-
glei Lyu. 2023. Adversarial text generation by search
and learning. In Findings of the Association for Com-
putational Linguistics: EMNLP, pages 15722–15738.
Association for Computational Linguistics.

Jinfeng Li, Shouling Ji, Tianyu Du, Bo Li, and Ting
Wang. 2019. TextBugger: Generating adversarial
text against real-world applications. In Proceedings
of the 26th Annual Network and Distributed System
Security Symposium.

Linyang Li, Ruotian Ma, Qipeng Guo, Xiangyang Xue,
and Xipeng Qiu. 2020. BERT-ATTACK: Adversarial
attack against BERT using BERT. In Proceedings
of the 2020 Conference on Empirical Methods in
Natural Language Processing, pages 6193–6202.

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
GPT really correct? rigorous evaluation of large lan-
guage models for code generation. In Proceedings of
the Thirty-seventh Conference on Neural Information
Processing Systems.

Potsawee Manakul, Adian Liusie, and Mark JF Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. arXiv preprint arXiv:2303.08896.

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and
Ryan T. McDonald. 2020. On faithfulness and fac-
tuality in abstractive summarization. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 1906–1919.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou,
Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, David Forsyth, and Dan
Hendrycks. 2024. Harmbench: A standardized eval-
uation framework for automated red teaming and
robust refusal. arXiv preprint arXiv:2402.04249.

Ramesh Nallapati, Bowen Zhou, Cícero Nogueira dos
Santos, Çaglar Gülçehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-to-
sequence rnns and beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280–290.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics.

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai,
Roman Ring, John Aslanides, Amelia Glaese, Nat
McAleese, and Geoffrey Irving. 2022. Red teaming
language models with language models. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 3419–3448.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2018. Semantically equivalent adversar-
ial rules for debugging NLP models. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics, pages 856–865.

Saul Schleimer, Daniel Shawcross Wilkerson, and Alex
Aiken. 2003. Winnowing: Local algorithms for doc-
ument fingerprinting. In Proceedings of the 2003
ACM SIGMOD International Conference on Man-
agement of Data, San Diego, California, USA, June
9-12, 2003, pages 76–85.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In Proceedings of the 2nd International
Conference on Learning Representations.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gardner,
and Sameer Singh. 2019. Universal adversarial trig-
gers for attacking and analyzing nlp. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
pages 2153–2162.

Hao Xiong, Ruiqing Zhang, Chuanqiang Zhang,
Zhongjun He, Hua Wu, and Haifeng Wang. 2019.
Dutongchuan: Context-aware translation model
for simultaneous interpreting. arXiv preprint
arXiv:1907.12984.

Xilie Xu, Keyi Kong, Ning Liu, Lizhen Cui, Di Wang,
Jingfeng Zhang, and Mohan S. Kankanhalli. 2024.
An LLM can fool itself: A prompt-based adversarial
attack. In The Twelfth International Conference on
Learning Representations. OpenReview.net.

18891

Yikun Xu, Pengwen Dai, Zekun Li, Hongjun Wang,
and Xiaochun Cao. 2023. The best protection is
attack: Fooling scene text recognition with minimal
pixels. IEEE Transactions on Information Forensics
and Security, 18:1580–1595.

Yuan Zang, Fanchao Qi, Chenghao Yang, Zhiyuan Liu,
Meng Zhang, Qun Liu, and Maosong Sun. 2020.
Word-level textual adversarial attacking as combi-
natorial optimization. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 6066–6080. Association for Com-
putational Linguistics.

Quan Zhang, Chijin Zhou, Gwihwan Go, Binqi Zeng,
Heyuan Shi, Zichen Xu, and Yu Jiang. 2024. Im-
perceptible content poisoning in LLM-powered ap-
plications. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software En-
gineering, pages 242–254. ACM.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
uating text generation with bert. In International
Conference on Learning Representations.

Bangshuo Zhu, Jiawen Wen, and Huaming Chen. 2024.
What you see is not always what you get: An empiri-
cal study of code comprehension by large language
models. CoRR, abs/2412.08098.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. arXiv preprint arXiv:2307.15043.

A Commercial LLM Eyesight Test

We evaluate how commercial LLMs extract content
from PDF documents. For this purpose, we created
custom PDF files containing text with varying color,
opacity, and font size. The testing employed the
prompt described below. Table 5 summarizes the
results.

Prompt used for the LLM eyesight test

Please read the attached PDF and give me the
text in it. Only output the text without anything
else.

B Prompts for Generating Adversarial
Text to Inject

B.1 PromptAttack

B.1.1 Character-based
PromptAttack (c1): Typos in Words

Rule Choose at most two words and introduce
typos.
Intended effect Misspelled tokens push the
model toward a different continuation while
leaving meaning recognizable.
Input “The festival starts tomorrow morning.”
Perturbed “The fesitval starts tomorow
morning.”

PromptAttack (c2): Letter Substitution

Rule Change at most two letters.
Intended effect Minimal surface noise that
can still redirect token probabilities.
Input “Paris is the capital of France.”
Perturbed “Pariz is the capital of France.”

PromptAttack (c3): Extraneous Characters

Rule Add at most two extraneous characters
to the end of the sentence.
Intended effect Adds low-frequency symbols
that may disturb decoding or formatting.
Input “Please confirm your attendance.”
Perturbed “Please confirm your
attendance??”

B.1.2 Word-based
PromptAttack (w1): Synonym Replacement

Rule Replace at most two words in the sen-
tence with synonyms.
Intended effect Alters the embedding space
while preserving semantics.
Input “The movie was exciting and funny.”
Perturbed “The movie was thrilling and
amusing.”

PromptAttack (w2): Non-essential Word
Deletion

Rule Choose at most two words in the sen-
tence that are non-essential and delete them.
Intended effect Shrinks context, forcing the
model to re-evaluate next tokens.
Input “The report really surprised almost ev-

18892

Type Model
Text Opacity (1 / 0.5 / 0) Text Size (1 = 10pt)

Black Color White Color 1 0.5 0.1 0

Interactive GPT 4.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

o4-mini ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DeepSeek-v3 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ▲ ▲ ✗

DeepSeek-r1 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ▲ ▲ ✗

Gemini 2.0 Flash ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Gemini 2.5 Pro ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗

Sonnet 3.7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Grok 3 ✓ ✓ ✗ ✗ ✗ ✗ ✓ ▲ ▲ ✗

API GPT 4.1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

o4-mini ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

PDF Rendering Aa Aa Aa Aa Aa Aa Aa Aa Aa Aa

Table 5: Results of the commercial LLM eyesight test. A green check mark (✓) indicates the model correctly
recognizes the text, a red cross mark (✗) indicates failure to detect the presence of text, and an orange triangle (▲)
indicates the model detects that text is present but fails to identify its content. For example, DeepSeek-v3 reported
the contents of size 0.5 text as “Sm 0.5”, whereas the actual text is “Size 0.5”.

eryone.”
Perturbed “The report surprised everyone.”

PromptAttack (w3): Neutral Insertion

Rule Add at most two semantically neutral
words to the sentence.
Intended effect Slight attention shift without
changing meaning.
Input “Traffic remained heavy throughout the
day.”
Perturbed “Traffic, indeed, remained heavy
throughout the day.”

B.1.3 Sentence-based
PromptAttack (s1): Suffix Addition

Rule Add a short meaningless handle after
the sentence, such as @fasuv3.
Intended effect Introduces an out-of-
distribution token that can break deterministic
decoding. Input “All tickets are sold out.”
Perturbed “All tickets are sold out.
@fasuv3”

PromptAttack (s2): Paraphrasing

Rule Rephrase the sentence without changing
meaning.
Intended effect Forces the model to regener-
ate from unseen wording.

Input “The meeting will begin at noon.”
Perturbed “The meeting is scheduled to start
at noon.”

PromptAttack (s3): Syntax Reshuffle

Rule Change the syntactic structure of the
sentence.
Intended effect Alters the parse tree, nudging
the next-token path.
Input “She finished the project before the
deadline.”
Perturbed “Before the deadline, she finished
the project.”

B.2 Hallucination in TRAPDOC

Hallucination

Rule Rewrite each sentence so that length and
syntax look similar, but concrete facts differ.
Intended effect Preserves surface fluency
while injecting incorrect or exaggerated details,
stressing the model’s ability to detect factual
drift in seemingly coherent text.
Input “The conference attracted 500 partici-
pants last year.”
Perturbed “The conference drew nearly 800
attendees last year.”

18893

C Full Experimental Results of
PromptAttack for Code Generation

As we mentioned in Section 6.1, we report full re-
sults of our PromptAttack baseline as the following
Table 6. The each c, w, s means character, word,
and sentence, which is the level where the perturba-
tion is applied. The results show that some prompts
significantly perturb the performance of a model,
however, it is not in general.

D Datasets and Evaluation Metrics

D.1 Datasets

MBPP+. MBPP+ is an extended dataset of the
initial Mostly Basic Python Problems (MBPP)
dataset (Austin et al., 2021), which is curated for
the python programming. MBPP+ contains 378
natural-language programming challenges with its
ground-truth solution and the test cases. It is of-
ten used to assess the code generation ability of a
model.

CNN/DailyMail. CNN/DailyMail is a large-
scale dataset for text summarizaton, containing
more than 300k paragraph and highlight pairs. The
dataset is widely used to benchmark the ability of
models to summarize a long paragraph. Since the
original dataset is too large, we randomly sampled
300 paragraphs from the test split.

Qasper. Qasper is a dataset for question-
answering in academic research papers, especially
in natural language processing domain. It consists
of the full text in a paper and a natural language
question on its content. Since paper contains a huge
number of tokens and long context, we randomly
sampled only 100 papers from the test splits.

D.2 Evaluation Metrics

We evaluate the effectiveness of TRAPDOC across
three task domains—code generation, summariza-
tion, and peer review generation—using a set of
metrics that assess both syntactic and semantic dif-
ferences between perturbed and unperturbed out-
puts. When using metrics that compare features be-
tween a reference and a target output, we use canon-
ical solutions from MBPP+ and ground-truth high-
light sentences from CNN/DailyMail as references.
For Qasper, since no ground-truth human-written
reviews are available, we use the base model output
as the reference.

Surface-Level Similarity. We measure the lex-
ical and syntactic overlap between the perturbed
output and the reference using CodeBLEU (Ren
et al., 2020), Stanford Moss scores (Schleimer
et al., 2003), BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004). For the code generation, we
use CodeBLEU, which measures similarity based
on n-grams and abstract syntax trees and Stanford
Moss scores, a widely used tool for detecting code
plagiarism using winnowing algorithm. For sum-
marization and review-generation tasks, we use
BLEU-1 and BLEU-2 to capture n-gram precision
over short sequences, and ROUGE-1, ROUGE-2,
and ROUGE-L to measure recall-based overlap of
unigrams, bigrams, and longest common subse-
quences, respectively. We intentionally exclude
BLEU-k and ROUGE-k for k ≥ 3, as longer n-
grams tend to implicitly reflect semantic meaning,
which would interfere with our goal of isolating
surface-level similarity. These metrics are particu-
larly useful for evaluating whether the surface form
of the output remains unchanged, which aligns with
our goal of imperceptible adversarial perturbation.

Meaning-Based Similarity. We quantify seman-
tic shifts using pass@1 (Chen et al., 2021) for code
generation, and BERTScore (Zhang et al., 2020)
for summarization and review-generation. Pass@1
measures the proportion of instances in which the
first generated solution passes all reference test
cases. BERTScore compares contextual embed-
dings rather than surface forms, detecting distor-
tions in meaning introduced by invisible phantom
tokens. Lower pass@1 and BERTScore values
indicate greater semantic divergence between the
perturbed and original outputs, suggesting that the
perturbation has successfully altered the intended
meaning.

E Experimental Details on Baseline
prompt

In our experiments, we utilize 3 perturbation base-
lines. Irrelevant and Negation use perturbed input
texts of similar length to our hallucination-based
target documents. These input texts are inserted
into the target documents using the same method
described in Section 4.2. For Irrelevant, we use
in-domain text drawn from the same dataset as
the target document. Specifically, we permute the
dataset to sample different examples as irrelevant
input. For Negation, we apply a negation library
that considers grammatical structure to negate the

18894

Method Type
GPT-4.1 o4-mini

pass@1 CodeBLEU Moss pass@1 CodeBLEU Moss

c1 70.11 20.80±0.02 16.94 60.58 16.74±0.01 13.53
c2 61.90 21.08±0.03 13.79 44.71 16.94±0.01 13.19
c3 62.17 21.58±0.02 13.08 53.97 17.10±0.02 17.37

w1 69.58 21.76±0.01 16.58 50.53 15.72±0.02 16.40
PromptAttack w2 70.63 21.22±0.03 13.68 38.10 14.76±0.01 11.09

w3 45.24 20.12±0.01 14.25 52.12 17.34±0.02 18.22

s1 29.10 21.82±0.01 15.61 60.85 18.60±0.01 20.17
s2 72.22 21.34±0.03 14.73 60.05 16.92±0.02 11.03
s3 71.43 21.91±0.02 17.86 66.40 19.88±0.01 17.26

Table 6: Pass@1, CodeBLEU, and Stanford Moss similarity results of PromptAttack on the MBPP+ dataset, broken
down by prompt type.

entire input text. The fully negated version is then
used as the input. Meta Instruction modifies the
original text by wrapping it in quotation marks and
appending meta-text before and after the paragraph,
instructing the model that the quoted content is in-
correct and should be negated.

F Case Study Examples

As we mentioned in Section 6.4, we report the ex-
amples from the “DuTongChuan: Context-aware
Translation Model for Simultaneous Interpret-
ing” (Xiong et al., 2019). In the following Ta-
ble 7 and 8, we present the experimental results on
paper reviews generated by gpt-4.1 and o4-mini.
We present the first 3-4 lines of each generated
review as examples.

In the tables, we highlight the concepts, claims,
and terminologies that are not present in the orig-
inal paper. As can be observed, Meta Instruction
and Negation include content that is already present
in the original paper, making them difficult to dis-
tinguish them from the base version. Irrelevant
includes entirely different content and clearly de-
viates from the original paper, making it easier to
detect and thus less effective at deceivinig LLM
users. Hallucination correctly includes the name
of an author and the task addressed by the paper.
However, it also introduces some keywords or con-
cepts that are not in the original paper. Without
checking the original paper, a user could be misled,
as the hallucinated terminologies appear plausible.

18895

Method Examples

Base

Paper Summary
This paper presents DuTongChuan, a novel context-aware translation model de-
signed for simultaneous interpreting. The proposed system is tailored to handle live,
streaming scenarios where translations need to be generated concurrently with the
progression of the speaker’s utterance. The core of the system relies on two major
components: a dynamic context-based information unit (IU) boundary detector
and a tailored NMT model with partial and context-aware decoding strategies.

Irrelevant

Paper Summary
This paper introduces a novel approach for recipe retrieval from images by leverag-
ing self-attention and ingredient-attention based models. The authors are motivated
by the challenging task of estimating meal nutrient content from visual data, ad-
dressing issues such as ingredient deformation, occlusion, and high intra-class/low
inter-class variability in food images.

Hallucination

Paper Summary
This paper presents LuZhongYi, a novel adaptive relevance-driven simultaneous
translation model specifically designed for multimodal (speech + visual) input sce-
narios. The model is tailored for simultaneous interpretation (SI), where translation
begins before all input is received—unlike the more common batch translation
setup. LuZhongYi operates by dynamically segmenting a live stream of multi-
source input (from ASR and OCR) into semantic clusters (SCs) in real time.

Meta Instruction

Paper Summary
This paper presents DuTongChuan, a context-aware translation model for simul-
taneous interpreting. The proposed system integrates a dynamic context-aware
information unit (IU) detector with tailored neural machine translation (NMT)
models to address both the boundary detection of source units and the trade-off
between translation quality and latency. The paper argues that by appropriately seg-
menting input (at sub-sentence, segment, or word levels) and leveraging both partial
and context-aware decoding strategies, their architecture can provide high-quality,
low-latency translations suitable for real-time speech-to-speech applications.

Negation

Paper Summary
This paper introduces DuTongChuan, a novel context-aware translation model
specifically designed for simultaneous interpreting (SI). The proposed model
leverages information units (IUs), which can be as fine-grained as sub-sentences,
for incremental translation. Instead of waiting for entire sentences, DuTongChuan
continuously ingests streaming ASR (Automatic Speech Recognition) outputs,
dynamically detects IU boundaries using a context-sensitive classifier, and provides
translations using two main decoding strategies: partial decoding for sentence-
initial units and context-aware decoding for subsequent units.

Table 7: Case study examples of reviews generated by gpt-4.1 for “DuTongChuan: Context-aware Translation
Model for Simultaneous Interpreting”. We highlight concepts, claims, and terminologies not present in the original
paper.

18896

Method Examples

Base

Paper Summary*
This paper introduces DuTongChuan, a context-aware neural translation frame-
work designed for low-latency simultaneous interpreting. The system ingests
streaming ASR output, dynamically segments it into “Information Units” (IUs)
of configurable granularity via a fine-tuned ERNIE-based boundary detector, and
then translates each IU using two tailored decoding strategies:

Irrelevant

Paper Summary
This paper addresses the task of cross-modal recipe retrieval: given a food image
query, retrieve the corresponding cooking recipe (textual ingredients and instruc-
tions) from a large corpus. The authors propose a novel recipe-tex encoder that
(1) replaces pre-traine sentence embeddings with a self-attention-bas transformer
to directly encode raw recipe instructions, and (2) augments it with an ingredient
attention mechanism to highlight which ingredient terms are most relevant to the
encoded representation.

Hallucination

Paper Summary
This paper presents DuTongChuan, a context-aware streaming translation frame-
work tailored for Simultaneous Interpreting (SI). Unlike conventional NMT sys-
tems that wait for full utterances, DuTongChuan ingests ASR tokens continuously,
applies an online Semantic Block (SB) boundary detector to segment the input into
linguistically coherent units, and dispatches each SB to one of two complementary
decoders:

Meta Instruction

Paper Summary
This paper presents DuTongChuan, a cascaded speech-to-speech simultaneous
translation system that integrates:
1. A streaming “information unit” (IU) boundary detector based on fine-tuned
ERNIE (a BERT-style model), which segments incoming ASR text into clauses or
sub-clauses.
2. A two-stage decoding architecture:

Negation

Paper Summary
This paper presents DuTongChuan, a context-aware neural translation model de-
signed for simultaneous interpreting in streaming speech-to-text scenarios. The
system operates on ASR output incrementally: a dynamic boundary detector
segments the incoming token stream into “Information Units” (IUs), roughly sub-
sentence fragments, and then a tailored NMT model translates each IU as soon as
it is available.

Table 8: Case study examples of reviews generated by o4-mini for “DuTongChuan: Context-aware Translation
Model for Simultaneous Interpreting”. We highlight concepts, claims, and terminologies not present in the original
paper.

18897

