ClusterUCB: Efficient Gradient-Based Data Selection for Targeted
Fine-Tuning of LLMs

Zige Wang!, Qi Zhu?, Fei Mi, Minghui Xu®, Ruochun Jin*, Wenjing Yang*

School of Computer Science, Peking University,
2 Tsinghua University, * Tianjin University,
*College of Computer Science and Technology, National University of Defense Technology

Correspondence: wenjing.yang@nudt.edu.cn

Abstract

Gradient-based data influence approximation
has been leveraged to select useful data samples
in the supervised fine-tuning of large language
models. However, the computation of gradients
throughout the fine-tuning process requires too
many resources to be feasible in practice. In
this paper, we propose an efficient gradient-
based data selection framework with cluster-
ing and a modified Upper Confidence Bound
(UCB) algorithm. Based on the intuition that
data samples with similar gradient features will
have similar influences, we first perform clus-
tering on the training data pool. Then, we frame
the inter-cluster data selection as a constrained
computing budget allocation problem and con-
sider it a multi-armed bandit problem. A modi-
fied UCB algorithm is leveraged to solve this
problem. Specifically, during the iterative sam-
pling process, historical data influence infor-
mation is recorded to directly estimate the dis-
tributions of each cluster, and a cold start is
adopted to balance exploration and exploita-
tion. Experimental results on various bench-
marks show that our proposed framework, Clus-
terUCB, can achieve comparable results to the
original gradient-based data selection methods
while greatly reducing computing consump-
tion. The code implementation can be found at
https://github.com/ZigeW/ClusterUCB.

1 Introduction

Data selection has been a challenging problem in
the Supervised Fine-Tuning (SFT) of Large Lan-
guage Models (LLMs) (Wang et al., 2023b; Albalak
et al., 2024). Some researchers propose to use the
data influence approximation (Hampel, 1974) to
select data samples with the highest influence on
target loss optimization during the training pro-
cess (Charpiat et al., 2019; Pruthi et al., 2020; Xia
et al., 2024; Wang et al., 2025). The data influ-
ence at a certain training step is approximated as
the inner products or the cosine similarities of the

gradients of the training and target validation data
samples. Then, the one-step data influence approx-
imations are computed after every short period and
aggregated through the training process.

Although proven to be effective, the calculation
of data influence approximation consumes many
computing resources and can be infeasible in prac-
tice when the computing budget is restricted. To
reduce resource consumption, one simple way is
to compute the gradients of all data samples after
longer training periods. Previous work (Wang et al.,
2025) shows that the data influence approximated
with gradients will soon lose its indication after
multiple training steps. Hence, simply extending
the interval of every two times of gradient com-
putation is likely to result in inferior selected data
subsets.

Another way to lower the computation cost is
to reduce the number of data samples needed in
the calculation of one-step data influence approxi-
mation while maintaining the ability to select the
data samples with the highest influences. From
the derivation of data influence approximation, we
come to an intuition that the training data samples
with similar gradients tend to have similar influ-
ences on the same target loss optimization. Hence,
we first perform clustering on all training data sam-
ples at the beginning of training according to the
similarities of their gradients. In this way, data sam-
ples with high influence tend to be concentrated
into a few clusters. By picking out the clusters with
higher probabilities to contain high-influence data
samples, we can avoid the calculation over a large
number of low-influence training data samples.

With a constrained computing budget, we frame
the data selection among clusters as a computing
budget allocation problem, which we call the inter-
cluster data selection. However, a challenge lies
in the unknown influence distribution of each clus-
ter. To tackle this challenge, we consider it as a
multi-armed bandit problem with each cluster as

18867

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 18867—-18880
November 4-9, 2025 ©2025 Association for Computational Linguistics

wenjing.yang@nudt.edu.cn
https://github.com/ZigeW/ClusterUCB

one arm, and the reward of drawing this arm is the
influence of a randomly chosen sample (without
replacement) from this cluster. Then, we adapt
the most commonly used Upper Confidence Bound
(UCB) algorithm to the inter-cluster data selection
problem. To better suit our objective, we record
the historical rewards and directly estimate the dis-
tribution of each arm. A cold start is added to
improve the initial estimations. Combining cluster-
ing with the modified UCB algorithm, we propose
an efficient gradient-based data selection frame-
work ClusterUCB that can be applied to various
gradient-based data selection methods. To verify
the effectiveness of ClusterUCB, we evaluate it
on four widely used benchmarks and two state-of-
the-art gradient-based data selection methods (Xia
et al., 2024; Wang et al., 2025). Experimental
results demonstrate that ClusterUCB can achieve
comparable results with the original gradient-based
data selection methods while greatly reducing the
computing consumption.

2 Related Work

SFT Data Selection of LLMs Selecting suitable
data samples for the supervised fine-tuning of large
language models has been an ongoing hot topic in
the research community (Wang et al., 2023b; Al-
balak et al., 2024). Extended works are proposed
to address different issues of SFT data selection,
such as data quality (Zhou et al., 2023; Cao et al.,
2023; Lu et al., 2023a), diversity (Lu et al., 2023b;
Wan et al., 2023; Ding et al., 2023), complexity (He
et al., 2024; Zhao et al., 2024), and so on. While
some works try to improve multi-task SFT through
proper task composition (Dong et al., 2024; Kung
et al., 2023), there are also works dedicated to the
data selection problem in targeted SFT focusing on
a single task (Chen et al., 2024; Xia et al., 2024;
Wang et al., 2025). In these works, gradient-based
data influence approximation is used to evaluate
the value of individual data samples in the process
of targeted SFT. For example, LESS (Xia et al.,
2024) adapts the classic data influence approxi-
mation to Adam optimizer and LoRA (Hu et al.,
2022) training. Dynamic (Wang et al., 2025) points
to the decreasing effectiveness of selection dur-
ing the long-time training process and proposes
dynamically updating the selected data coresets.
Although effective, these proposed gradient-based
data selection methods require many resources in
practice. Lin et al. (2024) propose a cache-and-

retrieve method to achieve memory-efficient gra-
dient caching and fast data influence estimation of
every training data sample. Different from them,
our work addresses the computational efficiency
and proposes a gradient-based data selection frame-
work to reduce the number of training samples that
require gradient computation during the data selec-
tion process.

Individual data influence Data influence func-
tion is proposed to evaluate the influence of data
samples on model training (Hampel, 1974). Since
the evaluation of different combinations of data
samples is too costly, some researchers tend to eval-
uate the influence of individual data samples and
treat the sum of these influences as the influence of
a data subset. There are two branches in the individ-
ual data influence approximation: one is auxiliary
model learning and simulation (Ilyas et al., 2022;
Guu et al., 2023; Liu et al., 2024; Engstrom et al.,
2024), and the other is gradient-based training dy-
namic approximation (Charpiat et al., 2019; Pruthi
et al., 2020; Xia et al., 2024; Wang et al., 2025; Pan
et al., 2025). In our work, we propose a framework
to efficiently apply gradient-based individual data
influence approximation in the SFT data selection
of LLMs.

3 Methodology

Our work focuses on the efficient data selection for
supervised fine-tuning of large language models
on a target task. Given a pretrained model with
parameter 6, the training loss £(-; @), the training
data pool Xy, = {x}.,x?.,...,xiV}, the target task
T, and the validation data samples representing the
target task X, = {x! x2,...,.xM}, our goal is to
select the training data subset with the highest data
influence on the training process targeting task 7’
under the constraint of limited computing budget.

3.1 Preliminary

Before elaborating on our proposed framework,
we first introduce the calculation of gradient-based
data influence approximation and the previously
proposed data selection methods based on it.

3.1.1 Gradient-based data influence
approximation

At time step ¢ in the training process, the model
parameter is @°. Considering the training data sam-
ple x¢ and validation data sample xJ, the one-step
influence Z* of x{, is defined as the amount of

18868

Step 1: Clustering with Gradients

Gr?die”‘ Clusters
Dictionary
@)
Compute Clustering o]®
Training | Gradients -
Data 7 >
Pool o

[T o

Step 3: Select Data Subset

Step 2: Inter-Cluster Data Selection

e N
uce

Model
Checkpoint
Data Gradients
Sample

Modified
ucB
Algorithm

1=

Multi-Armed
Bandit

UE

Data
Draw Tl Influence
Approx.

O Select Update
Maximum ucB

Drawn
Samples

Selected Data
Data Subset Influence Approx.
O
Training) S_le_(l)epct Sort
<« OO <« <
®) ©)

A

@ Ut U U Uy

Figure 1: Illustration of ClusterUCB. Step 1: We first compute gradients of all training data samples and perform
clustering according to their cosine similarities. Step 2: We frame the inter-cluster data selection as a multi-armed
bandit problem, and treat each cluster as one arm. The data influence approximations are considered as the drawing
rewards. A modified UCB algorithm is used to draw samples with limited computing budgets. Step 3: From the
drawn samples, we select the top portion of data samples with the highest influence as the selected data subset.

loss decrease on xJ, after training on x,. for one
step (Pruthi et al., 2020). It can be approximated
using the first-order Taylor expansion:

Ty) = L0 0% — L0369

~ <V£(X%, ot)’ (0t+1 - 01&)))
where VL£(x);0") is the gradient of xJ, with re-
spect to @', and (-, -) is the inner product.

Since Adam optimizer is the most commonly
used optimizer in the SFT of LLMs, the parameter
update 8"T! — @' can be represented with adapted
gradients I' in Adam. Then, the influence can be
approximated as:

' (xiy, %)) & = (VL(x]; 0'), T (x,;0%)), (2)

.pty — .t _m? t t
where F(xtr, 0') = —n T}jﬁ,‘and m a.nd v are
the moving averages of historical gradients and
their element-wise square, respectively.

3.1.2 Gradient-based data selection

In previous works (Xia et al., 2024; Wang et al.,
2025), the data influence approximation is adopted
to select the most beneficial training data samples
for the SFT on the target task. As studied in pre-
vious work (Wang et al., 2025), to mitigate the
selection length bias, the gradients in Equation 2
are normalized before calculating the inner product
as in:

VL(x);0") T(xi.;6")
IVL(x); 0% IT(x},; 6")l

T (X}, x3) ~ {)-
3)

Wang et al. (2025) point out that the indication of
one-step influence approximation has a declining
trend during the training process. Thus, they pro-
pose to dynamically recompute the data influence
approximation and update the selected data subset
after every training period. Instead, LESS (Xia
et al., 2024) uses a simulation training with a ran-
domly selected data subset to obtain multiple model
checkpoints and performs data selection only once
with the aggregated one-step data influence approx-
imations over all checkpoints.

In each selection, the data influence approxima-
tion Z(x%,.,x3) is aggregated over all validation
data samples. Specifically, Z(x!,,x3) is first av-
eraged within each subtask, then the maximum
among subtasks is chosen as the data influence
approximation Z(x!,) over the validation dataset.
After that, the top p% of training data samples with
the highest data influence approximations are se-
lected to form the selected data subset.

3.2 Reduce computation consumption with
clustering

To reduce the computation consumption in
gradient-based data selection, one simple way is

18869

to reduce the number of checkpoints used to cal-
culate the one-step data influence approximation,
that is, extending the interval between every two
calculations. However, the decreasing long-time
selection effectiveness phenomenon illustrated in
previous work (Wang et al., 2025) shows that too
long intervals will lead to highly inaccurate influ-
ence approximation, which potentially hinders the
data selection. Hence, we dedicate our efforts to
reducing the number of gradients needed to be com-
puted at each calculation of one-step data influence
approximation.

From Equation 3, the one-step data influence
approximation ft(xir, x7) is the cosine similarity
between the gradients of the training data sample
x!, and the validation data sample x7,. Then, an
intuition is that the gradients of two training data
samples with higher cosine similarity will have
similar degrees of cosine similarity with the gra-
dient of the same validation data sample. Based
on this intuition, we perform clustering on the gra-
dients of all training data samples according to their
cosine similarities with respect to the pretrained
model parameter °. Our experimental observa-
tions show that the clusters could remain relatively
tight through the model training process, which is
discussed in Appendix B.

Then, the data samples with the highest influence
should be concentrated in a few clusters. Consider-
ing each cluster as a distribution over the data in-
fluences, we can allocate our computing resources
to the clusters according to their probability of con-
taining training data samples with high influences.
In this way, we avoid the calculation over a large
number of low-influence training data samples, sav-
ing a large portion of computing resources.

3.3 Inter-cluster data selection with UCB
algorithm

After obtaining k clusters C = {C},Cy,...,Cy}
for training data samples, our next step is to maxi-
mize the overall probability of finding the training
data samples with the highest influences by allocat-
ing the computing budget among different clusters,
which we call it inter-cluster data selection problem

with constrained computing budget:

k
B* =arg maxz bePs iy, P, (Z(x4) > T),
c=1

k
s.t. Z b. = B,
c=1

Ve € {1,...,k},0 < b, < |Cel,
@

where B = {b1, ba, ..., b } is an allocation of the
computing budget B, Z(xy,) is the data influence
approximation of xy,., P is the distribution of data
influences contained in cluster C., and T’ is the
lowest influence of the actual top p% training data
samples with the highest influences.

One challenge exists as the distribution P, of
each cluster is unknown. Hence, the estimation
of P, needs to be conducted spontaneously with
inter-cluster data selection. This problem setting is
very similar to the well-known multi-armed bandit
problem (Slivkins et al., 2019). Specifically, each
cluster can be considered as one arm with an un-
known distribution. Once an arm is drawn in each
round, a training data sample will be randomly
chosen from the corresponding cluster. Then, its
data influence approximation will be calculated as
the drawing reward in this round. In this way, the
number of drawing rounds is the computing bud-
get consumed by the calculation of data influence
approximations. Consequently, optimizing the ob-
jective in Equation 4 means maximizing the total
drawing rewards.

To solve this problem, we adapt the com-
monly used Upper Confidence Bound (UCB) al-
gorithm (Auer et al., 2002). The core idea of the
UCB algorithm is to estimate an upper confidence
bound U, for each arm that corresponds to cluster
C. in our setting. At each drawing round d, the
cluster C'; with the maximum estimated upper con-
fidence bound U} is chosen to be drawn; then, the
reward of drawing C7 is acquired and used to up-
date U. By repeating this process, the estimated
upper confidence bound of cluster C; will be closer
to the actual expected reward of C;. Hence, the
cluster C* with the highest expected reward will
be allocated the most computing budget, while the
clusters with lower expected rewards will be allo-
cated less computing budget. The modifications we
made to the classic UCB algorithm are two-folds:
uppper confidence bound estimation with historical
reward information and the cold start period.

18870

Upper confidence bound estimation with his-
torical reward information In the classic UCB
algorithm (Auer et al., 2002), the upper confidence
bound is the upper bound of the confidence inter-
val for the estimation of the mean of each arm.
Since our objective in Equation 4 pays more atten-
tion to the probability larger than a certain thresh-
old than the mean of the distribution, we record
all historical drawing rewards and use them to
estimate the distribution of each cluster. Since
the actual 7' is also unknown, directly estimating
Pi(x”)NPc(f (x4r) > T') could be challenging. In-
stead, we compare TC for each cluster such that
Pzgf(x”)~Pc(I (x4) > To.) is approximately equal
for all clusters. In practice, we use the estimated
mean [i. and standard deviation &, from the histor-
ical drawing rewards to compute 7. and consider it
as the upper confidence bound U, of cluster C..:

Ue=T.= fic+f+6c, 5)
where (3 is a hyperparameter practically set to 1.

Cold start period At the initial stage of the UCB
algorithm, the insufficient historical drawing re-
wards might result in the bad estimation of the
upper confidence bounds and large regrets in the
objective optimization. Hence, we apply a cold
start in our UCB algorithm, which allocates a small
portion p.s% of the computing budget among all
clusters proportional to the cluster size. In this start-
ing period, each cluster is drawn multiple times to
obtain a set of rewards. Then, this set of rewards
can provide a basic estimation of the influence dis-
tribution of the corresponding cluster. Since the
cold start also accounts for the total computing bud-
get, the cold start ratio affects the trade-off between
exploration and exploitation in our UCB algorithm.
Specifically, higher cold start ratio means more bud-
gets are allocated to draw from all clusters without
specific selection, which improves the exploration
of the algorithm; lower cold start ratio means more
budgets are allocated to the UCB drawing process,
which tends to exploit the clusters with higher esti-
mated upper confidence bounds. Please refer to Ap-
pendix C for more discussion. After the cold start
period, the algorithm starts to choose the cluster
with the largest estimated upper confidence bound
at each drawing round.

3.4 Efficient gradient-based data selection
framework

Combining clustering and inter-cluster data selec-
tion with the UCB algorithm, we propose our ef-
ficient gradient-based data selection framework
ClusterUCB, as shown in Figure 1. Specifically,
this framework first clusters all training data sam-
ples according to the cosine similarities of their
gradients computed with respect to the pretrained
model. At each time of data selection, the inter-
cluster data selection with the UCB algorithm will
be applied under a predefined computing budget.

Since there are still regrets that exist in the draw-
ing process, the computing budget is usually set to
be larger than the number of training data samples
needed in the end. As the final step, we sort the
influence approximations calculated in inter-cluster
data selection from high to low and output the top
number of corresponding training data samples as
our final selected data subset.

4 Experiments

4.1 Experimental setup

Baselines Random is to train the model with a
randomly selected data subset. LESS (Xia et al.,
2024) uses simulation training with randomly se-
lected data to acquire multiple model checkpoints,
aggregates the one-step data influence approxima-
tions of all training data samples with respect to
these checkpoints, and chooses the top p% train-
ing data samples with the highest aggregated influ-
ence approximations as final selected data subset.
Dynamic (Wang et al., 2025) directly uses one-
step data influence approximations to select top p%
training data samples, but the selection process will
be repeated periodically, leading to dynamically
updated data subsets through the model training
process. To show the effectiveness of our modified
UCB algorithm with the same computing budgets,
we also implement two vanilla baselines LESS-
Rerank and Dynamic-Rerank, which randomly
choose B training data samples to compute their
influence approximations and select the top p%
high-influence data samples among them.

Implementation details Following LESS and
Dynamic, We use LLaMA-2-7B (Touvron et al.,
2023) as our pretrained model and set the selection
ratio p% to 5%. The pretrained model is trained for
four epochs with an AdamW optimizer. The learn-
ing rate is 2e-5 with linear decay. For Random, 5%

18871

Methods Budget MMLU TydiQA GSM8k HumanEval Avg. A
Random - 453 05 48506 19.7 o 16.5 o3 32.5 -
LESS 100% 47.00s5s 532an 27.3 0e 17.7 09 36.3 -
LESS-Rerank 20% 459 02 52203 23.8 on 16.3 03 346 1.7
LESS-ClusterUCB 20% 47.8 08 53.7 a3 28.0 o 17.6 o) 36.8 10.5
Dynamic 100% 478 03» 57.60s 27.502 19.2 (04 38.0 -
DynamiC—Rerank 20% 46.7 0.4) 549 0.9) 26.7 0.6) 17.9 0.7) 36.6 i, 1.4
Dynamic-ClusterUCB 20% 47.9 06y 574 06 27.4 09 17.7 04 376 |04

Table 1: The results of ClusterUCB and baselines on four commonly-used benchmarks. All experiments are repeated
with three random seeds. A denotes the difference of average performance between budget-constrained methods
and their full-budget counterparts. Bold means the best results achieved by budget-constrained methods.

of the training data samples are randomly selected
to train the model. For LESS and Dynamic, the im-
plementation is kept the same as described in their
original paper: in LESS, 5% randomly selected
training data samples are used for simulation train-
ing to obtain four checkpoints after each epoch;
in Dynamic, one-step data selection is performed
at the beginning of each epoch, and 20 warmup
steps are performed for the first one-step data selec-
tion. For ClusterUCB, we also perform 20 warmup
steps and use the resulting checkpoint to compute
the gradients of all training data samples. Then,
K-means (Hartigan and Wong, 1979) is adopted
for clustering. We combine ClusterUCB with
LESS and Dynamic to form two variants, LESS-
ClusterUCB and Dynamic-ClusterUCB, respec-
tively. In LESS-ClusterUCB, the reward of each
draw is the aggregated one-step data influence ap-
proximations as in LESS. In Dynamic-ClusterUCB,
since the gradients used for clustering and the first
one-step data selection are the same and complete,
we keep the first training epoch the same as that
in Dynamic, then apply our proposed inter-cluster
data selection in the following three one-step data
selections. In our main experiments, for LESS-
ClusterUCB, Dynamic-ClusterUCB, LESS-Rerank,
and Dynamic-Rerank, the number of clusters &
is 150, the cold start ratio p.s% is 5%, and the
computing budget B is 20% of the total number
of training data samples. All gradients are com-
puted using LoRA (Hu et al., 2022) and projected
to 8192-dimensional vectors using Random Projec-
tion (Park et al., 2023).

Datasets The training data pool is the mix of
eight commonly-used datasets: Flan-v2 (Long-
pre et al., 2023) is a large SFT dataset converted
from various NLP datasets; CoT (Longpre et al.,
2023) is a subset of Flan-v2 with chain-of-though;
Dolly (Conover et al., 2023) is a high-quality

instruction-following dataset generated by humans;
Open Assistant vl (Kopf et al., 2023) is a multi-
round chatting datasets generated by human and
open-sourced LLMs; GPT4-Alpaca (Peng et al.,
2023) contains instructions in Alpaca dataset and
answers regenerated by GPT-4; ShareGPT (Chi-
ang et al., 2023) is a conversation datasets with
mixed-quality; GSM8k train (Cobbe et al., 2021)
is a primary school-level math word dataset; Code-
Alpaca (Chaudhary, 2023) is a dataset designed
for the development of model’s coding ability.

Evaluation benchmarks and validation data
samples We adopt four commonly used
benchmarks covering the general, multilingual,
mathematical, and coding abilities of LLMs.
MMLU (Hendrycks et al., 2021) is a knowledge-
based multi-choice QA benchmark including 57
subjects; TydiQA (Clark et al., 2020) is a multi-
language QA benchmark including nine languages;
GSMS8k (Cobbe et al., 2021) is a math reasoning
benchmark evaluating models’ mathematical
reasoning ability; HumanEval (Chen et al.,
2021) is a Python coding benchmark evaluating
models’ code generation ability. The selection and
aggregation of validation data samples follows
Dynamic for all methods: the few-shot samples of
MMLU and TydiQA are directly used as validation
data samples; 50 and 10 test data samples are
randomly selected from GSM8k and HumanEval
as validation data samples.

4.2 Main results

The performances of ClusterUCB and baselines
on four benchmarks are shown in Table 1. All
gradient-based methods outperform Random to a
large margin on the average performance of four
benchmarks, showing that gradient-based methods
are effective in selecting suitable data subsets for
the targeted fine-tuning of LLMs.

18872

Bgt MMLU TydiQA GSMSk HE Methods TydiQA HumanEval
10% 46301y 55405 28.80s 18.8 ¢ Random 64.5 02 38.4 a2
20% 47906 57406 27409 17.7 09 LESS 66.8 05 36.9 a5
30% 47302 57505 27204 18303 LESS-ClusterUCB 66.7 ©s) 38.1 09
) o Dynamic 67.3 06 40.0 s
Table 2: The results of Dynamic-ClusterUCB with dif- Dynamic-ClustertUCB ~ 67.8 1) 40.9 1

ferent computing budgets. Bgt and HE are the abbrevia-
tions for Budget and HumanEval, respectively.

With the computing budget set to 20%,
both LESS-ClusterUCB and Dynamic-ClusterUCB
match their full-budget counterparts LESS and Dy-
namic on most benchmarks. These results show
that ClusterUCB can reduce the computational con-
sumption of gradient-based data selection methods
while maintaining their performance. Although
the performance of Dynamic-ClusterUCB on Hu-
manEval drops compared to Dynamic, in Sec-
tion 4.3, we find that it could achieve better results
when the computing budget is reduced to 10%.

Using the same computing budget, both LESS-
ClusterUCB and Dynamic-ClusterUCB outperform
LESS-Rerank and Dynamic-Rerank on almost all
benchmarks, further indicating the effectiveness of
the selection strategy used in ClusterUCB.

4.3 Influence of computing budgets

To illustrate the influence of computing budgets,
we conduct experiments on Dynamic-ClusterUCB
with computing budgets B=10%, 20%, and 30%.
The cold start ratio p.s% is 5%, and the number of
clusters is 150, as in the main experiments. The
results in Table 2 show that different benchmarks
have different change patterns along with the com-
puting budget. On MMLU and TydiQA, the perfor-
mance of Dynamic-ClusterUCB is worse when B
is only 10%. B = 20% is enough since increasing
B from 20% to 30% leads to trivial performance
improvements. On the contrary, on GSM8k and
HumanEval, the smaller computing budgets tend
to result in higher accuracies. The reason might
be that the training data samples useful for the im-
provement of mathematical and coding abilities are
spread across only a few clusters. Thus, a small
computing budget is sufficient to find the data sam-
ples with high influence once our UCB algorithm
finds the correct arms. The degradation of perfor-
mance with the increase of computing budgets on
GSM8k and HumanEval might lie in the random-
ness of data selection and training.

Table 3: The results of ClusterUCB and baselines using
Qwen2.5-3B as the pretrained model.

4.4 Results on a different model

To further evaluate ClusterUCB on a different
model architecture and scale, we conduct exper-
iments using Qwen2.5-3B (Team, 2024) as the pre-
trained model on TydiQA and HumanEval bench-
marks. The implementation details are kept the
same as in our main experiments, except that all
models are trained for three epochs.

The results are shown in Table 3. Consistent with
the results using LLaMA-2-7B as the pretrained
model, both LESS-ClusterUCB and Dynamic-
ClusterUCB match their full-budget counterparts
LESS and Dynamic on these two benchmarks,
showing the effectiveness of ClusterUCB on differ-
ent model architectures and scales.

4.5 Hyperparameter analysis

We analyze the impacts of two key hyperparame-
ters in ClusterUCB: the number of clusters k£ and
the cold start ratio p.s%. We adopt two metrics to
evaluate the goodness of the selected hyperparam-
eters. One is the sample-level recall rate R, and
the other one is the influence-level recall rate R;, ¢,
as shown in Equation 6 and 7, respectively, where
D is the final data subset selected by ClusterUCB
and D is the actual top portion of training data
samples with the highest influence.

[D () Dy
R, =L 12dt 6
Dyl ©
R, ;= inTEDI(XiT) (7)
ZX?T.EDgt I(Xgr)

We compute R and R;;, on the model check-
point obtained after warmup training, and the com-
puting budget B is fixed to be 20% in this section.

4.5.1 Cold start ratio

Set k = 150, we evaluate p.s% = {0%, 5%, 25%,
50%, 75%, 100%}, as shown in Figure 2.

18873

Random-Draw UCBI1 UBC-TN UCB-TH UCB-Beta
Tasks R Ry f R Rip f R Rip f R Rin f R Rin f
MMLU 20.14 7272 2624 7676 7396 9640 77.00 96.96 77.24 96.97
TydiQA 19.38 7474 23.12 7721 59.08 9296 6896 9556 69.03 95.52
GSM8k 25.84 4587 5931 90.05 90.64 99.13 93.12 9947 93.75 99.52
HumanEval 22.63 58.68 2472 61.01 5596 8695 71.61 93.83 7150 93.75

Table 4: The sample-level and influence-level recall rates of different upper confidence bound evaluation metrics.

Bold indicates the best results for each task.

1.0

g
o

o
o

I
IS

—A— MMLU

sample-level recall rate
o
o
influence-level recall rate
o
~

n
o o
=

1 —e mmLU
TydiQA 0.54 TydiQA
0.21 —e— GSMmsk | =+ Gsmsk

—8— HumanEval —&— HumanEval

3 T T T T
0.00 025 0.50 0.75 1.00

cold start ratio
(b)

0.0 T T T T
0.00 0.25 0.50 0.75 1.00

cold start ratio
(a)

Figure 2: The sample-level and influence-level recall
rates with different cold start ratios.

Sufficient historical reward information is nec-
essary. When p.s% = 0%, both R, and R;,, 1 are
low for all tasks. But with p.s% increases to 5%,
R, and R;,,y improve obviously. It shows that suf-
ficient historical reward information with a cold
start is necessary in the initial stage of inter-cluster
data selection.

Our UCB algorithm is effective in inter-cluster
data selection. When p.s% increases to 100%,
the inter-cluster data selection degrades to simply
allocating computing budgets proportional to the
cluster size, and Ry and R,y become extremely
low. It illustrates that our UCB algorithm is effec-
tive in inter-cluster data selection.

The trade-off between exploration and exploita-
tion. With the increase of p.s% from 5%, R,
and R;,; gradually decrease, showing that only
a small portion of the computing budget should
be used for the cold start. The ratio of cold start
also controls the trade-off between exploration and
exploitation in the UCB algorithm. These results
indicate that exploration is necessary and important
in our UCB algorithm, but too much exploration
could hinder the algorithm’s performance. We re-
fer to Appendix C for further discussion about the
distribution of data selection among clusters.

-
o
=
o
S

L

] —— MMLU

o
)
o
©
o

o
o
o
©
o

N
IS
o
)
vl

sample-level recall rate

1 —e— mMmLU
TydiQA TydiQA
0.2 —e— GSM8k 0.80 1 —A— GSM8k

influence-level recall rate

—8— HumanEval —&— HumanEval

o
9
o

o
IS

T T T T T T T T
50 100 150 200 50 100 150 200
number of clusters number of clusters

(a)

Figure 3: The sample-level and influence-level recall
rates with different numbers of clusters.

4.5.2 Number of clusters

Set p.s% = 5%, we evaluate k = {10, 50, 100, 150,
200}. The results are shown in Figure 3. When
the number of clusters is as small as 10, both R
and R;;,; are the worst for all tasks, indicating that
too small number of clusters might not be able to
fully separate training data samples into groups
with similar gradients. Increasing the number of
clusters from 10 to 50, R and R;,, s show obvious
improvement. Further increasing the number of
clusters, the improvements become less observable,
and R and R;, ¢ tend to be stable. It also indicates
that ClusterUCB is not sensitive to the number of
clusters, as long as it is not too small.

4.6 Comparison of different upper confidence
bound evaluation metrics

In Section 3.3, we evaluate the upper confidence
bound U, as the estimated influence threshold 7.,
that corresponds to the same probability. An alter-
native is to directly estimate Pf(x”)NPC (f (x¢r) >
T'). One estimation is the ratio of drawing with
rewards larger than 7', which we call UCB-TH.
We could also consider each cluster distribution
P. as a Gaussian distribution with the mean and
standard deviation estimated from the historical
reward values f’c ~ N(fic, 6¢), and compute
Pf(x”)Nf)c(f (x¢r) > T'). We call this estimation
UCB-TN. Since T is unknown, we estimate it as
the lowest influence in the top p/B portion of all

18874

historical reward values of all clusters in the current
round.

Keeping all hyperparameters and computing
budget the same as in the main experiments, we
compare UCB-TH and UCB-TN with the evalua-
tion metrics used in our main experiments (UCB-
Beta). We also compare them with two baselines:
Random-Draw that randomly chooses an arm to
draw at each round, and a classic UCB algorithm
UCBI1 (Auer et al., 2002).

The results in Table 4 show that UCB-Beta and
UCB-TH achieve the best results among all tasks,
and the former is slightly better than the latter in
most tasks. It indicates that UCB-Beta and UCB-
TH might be equivalent in our setting. UCB-TN
is worse than UCB-Beta and UCB-TH, indicating
that using a Gaussian distribution to fit the cluster
distribution might be inaccurate. Although UCB/
performs better than Random-Draw, it is far worse
than UCB-Beta, UCB-TH, and UCB-TN, showing
that only estimating the mean of the distribution of
each cluster could not solve the inter-cluster data
selection problem.

5 Conclusion

In this paper, we aim to reduce the computational
consumption used in gradient-based SFT data selec-
tion for LLMs. Our proposed framework first per-
forms clustering over the training data pool based
on the intuition that training data samples with
similar gradients would have similar influences
on target loss optimization. Then, we frame the
inter-cluster data selection as a computing budget
allocation problem which is similar to the multi-
armed bandit problem, and modify the UCB algo-
rithm to solve it. Combined with the state-of-the-art
gradient-based data selection methods, experimen-
tal results show that our proposed framework can
match the original methods while greatly reducing
the computing consumption.

Limitations

While our proposed framework has been proven
to be efficient in saving computing resources, it is
also essential to consider its limitations that may
be improved in the future. As stated by Wang et al.
(2025), the gradient-based data selection methods
only consider the influence of single data samples,
neglecting the mutual influences within the selected
data subsets. With the clusters generated, the inter-
cluster data selection could consider groups of data

samples as the arm-drawing rewards, which is the
next step of our work. Data diversity of the selected
subset might also be improved by balancing the
number of samples selected in each cluster (Zhang
et al., 2025). Moreover, we use K-means, the sim-
plest clustering algorithm, in this paper. Better
clustering might also improve the performance of
our proposed framework.

Acknowledgments

This work was partially supported by the National
Natural Science Foundation of China No.62372459
and No.62302503, NUDT Youth Independent In-
novation Science Fund Project Grant No.ZK23-15,
the Open Research Fund from State Key Labo-
ratory of High Performance Computing of China
Grant No0.202401-09, and 10th Youth Talent Sup-
port Program of the China Association for Science
and Technology.

References

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne
Longpre, Nathan Lambert, Xinyi Wang, Niklas
Muennighoff, Bairu Hou, Liangming Pan, Hae-
won Jeong, Colin Raffel, Shiyu Chang, Tatsunori
Hashimoto, and William Yang Wang. 2024. A sur-
vey on data selection for language models. Trans.
Mach. Learn. Res., 2024.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
2002. Finite-time analysis of the multiarmed ban-
dit problem. Machine learning, 47:235-256.

Yihan Cao, Yanbin Kang, and Lichao Sun. 2023. In-
struction mining: High-quality instruction data se-
lection for large language models. arXiv preprint
arXiv:2307.06290v3.

Benjamin Charlier, Jean Feydy, Joan Alexis Glaunes,
Francgois-David Collin, and Ghislain Durif. 2021.
Kernel operations on the gpu, with autodiff, without
memory overflows. J. Mach. Learn. Res., 22:74:1—
74:6.

Guillaume Charpiat, Nicolas Girard, Loris Felardos,
and Yuliya Tarabalka. 2019. Input similarity from
the neural network perspective. Advances in Neural
Information Processing Systems, 32.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil28@114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela

18875

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca

Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. arXiv preprint arXiv:2107.03374v2.

235 of Proceedings of Machine Learning Research,
pages 12491-12526. PMLR.

Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon,

Mayee Chen, Nicholas Roberts, Kush Bhatia, Jue Wang,
Ce Zhang, Frederic Sala, and Christopher Ré. 2024.
Skill-it! a data-driven skills framework for under-
standing and training language models. Advances in
Neural Information Processing Systems, 36.

Ian Tenney, and Tolga Bolukbasi. 2023. Simflu-
ence: Modeling the influence of individual training
examples by simulating training runs. arXiv preprint
arXiv:2303.08114v1.

Frank R Hampel. 1974. The influence curve and its

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in ty po-
logically di verse languages. Transactions of the As-
sociation for Computational Linguistics, 8:454—470.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168v2.

Mike Conover, Matt Hayes, Ankit Mathur, Jian-

role in robust estimation. Journal of the american
statistical association, 69(346):383-393.

John A Hartigan and Manchek A Wong. 1979. Algo-

rithm as 136: A k-means clustering algorithm. Jour-

nal of the royal statistical society. series c (applied
statistics), 28(1):100-108.

Qianyu He, Jie Zeng, Qianxi He, Jiaging Liang, and

Yanghua Xiao. 2024. From complex to simple: En-
hancing multi-constraint complex instruction follow-
ing ability of large language models. In Findings
of the Association for Computational Linguistics:
EMNLP 2024, Miami, Florida, USA, November 12-
16, 2024, pages 10864—10882. Association for Com-
putational Linguistics.

Dan Hendrycks, Collin Burns, Steven Basart, Andy

Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

wei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Eqward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan

Patrick Wendell, Matei Zaharia, and Reynold
Xin. 2023. Free dolly: Introducing the
world’s first truly open instruction-tuned IIm.
https://www.databricks.com/blog/2023/04/12/dolly-
first-open-commercially-viable-instruction-tuned-
lIm.

Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,
and Bowen Zhou. 2023. Enhancing chat language
models by scaling high-quality instructional conver-

laume Leclerc, and Aleksander Madry. 2022. Data-
models: Predicting predictions from training data.
arXiv preprint arXiv:2202.00622v1.

sations. In Proceedings of the 2023 Conference on ~ Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,

Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 3029-3051. Association for Computational
Linguistics.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng
Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng
Yuan, Chang Zhou, and Jingren Zhou. 2024. How
abilities in large language models are affected by
supervised fine-tuning data composition. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-

Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richard Nagyfi, Shahul ES, Sameer Suri,
David Glushkov, Arnav Dantuluri, Andrew Maguire,
Christoph Schuhmann, Huu Nguyen, and Alexan-
der Mattick. 2023. Openassistant conversations—
democratizing large language model alignment. In
Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurlPS 2023, New Orleans,
LA, USA, December 10 - 16, 2023.

pers), ACL 2024, Bangkok, Thailand, August 11-16, Po-Nien Kung, Fan Yin, Di Wu, Kai wei Chang, and

2024, pages 177-198. Association for Computational
Linguistics.

Logan Engstrom, Axel Feldmann, and Aleksander
Madry. 2024. DsDm: Model-aware dataset selection
with datamodels. In Proceedings of the 41st Inter-
national Conference on Machine Learning, volume

18876

Nanyun Peng. 2023. Active instruction tuning:
Improving cross-task generalization by training on
prompt sensitive tasks. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 1813-1829. Association for
Computational Linguistics.

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.18653/V1/2024.FINDINGS-EMNLP.637
https://doi.org/10.18653/V1/2024.FINDINGS-EMNLP.637
https://doi.org/10.18653/V1/2024.FINDINGS-EMNLP.637

Huawei Lin, Jikai Long, Zhaozhuo Xu, and Weijie Zhao.
2024. Token-wise influential training data retrieval
for large language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
841-860. Association for Computational Linguistics.

Qingyi Liu, Yekun Chai, Shuohuan Wang, Yu Sun, Keze
Wang, and Hua Wu. 2024. On training data influence
of gpt models. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 3126-3150. Association for
Computational Linguistics.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. In International Con-
ference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
22631-22648. PMLR.

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023a. Self: Language-driven
self-evolution for large language model. arXiv
preprint arXiv:2310.00533v4.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuangi Tan, Chang Zhou, and Jingren
Zhou. 2023b. #instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.

Yanzhou Pan, Huawei Lin, Yide Ran, Jiamin Chen,
Xiaodong Yu, Weijie Zhao, Denghui Zhang, and
Zhaozhuo Xu. 2025. Alinfik: Learning to approxi-
mate linearized future influence kernel for scalable
third-parity LLM data valuation. In Proceedings of
the 2025 Conference of the Nations of the Americas
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, NAACL
2025 - Volume 1: Long Papers, Albuquerque, New
Mexico, USA, April 29 - May 4, 2025, pages 11756—
11771. Association for Computational Linguistics.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. Trak:
Attributing model behavior at scale. In International
Conference on Machine Learning (ICML).

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277v1.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund
Sundararajan. 2020. Estimating training data influ-
ence by tracing gradient descent. Advances in Neural
Information Processing Systems, 33:19920-19930.

Aleksandrs Slivkins and 1 others. 2019. Introduction
to multi-armed bandits. Foundations and Trends® in
Machine Learning, 12(1-2):1-286.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288v2.

Fanqi Wan, Xinting Huang, Tao Yang, Xiaojun Quan,
Wei Bi, and Shuming Shi. 2023. Explore-instruct:
Enhancing domain-specific instruction coverage
through active exploration. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 9435-9454. Association
for Computational Linguistics.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A Smith,
Iz Beltagy, and 1 others. 2023a. How far can camels
go? exploring the state of instruction tuning on open
resources. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurlPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Zige Wang, Wanjun Zhong, Yufei Wang, Qi Zhu, Fei
Mi, Baojun Wang, Lifeng Shang, Xin Jiang, and
Qun Liu. 2023b. Data management for training
large language models: A survey. arXiv preprint
arXiv:2312.01700v3.

Zige Wang, Qi Zhu, Fei Mi, Yasheng Wang, Hao-
tian Wang, and Lifeng Shang. 2025. Dynamic
data selection with normalized gradient-based influ-
ence approximation for targeted fine-tuning of llms.
Knowledge-Based Systems, 327:114144.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqgi Chen. 2024. Less: Se-
lecting influential data for targeted instruction tuning.
In Forty-first International Conference on Machine
Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net.

Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang
Chai, Rui Wang, Xinlin Zhuang, Tianyi Bai, Jiantao
Qiu, Lei Cao, Ju Fan, Ye Yuan, Guoren Wang, and
Conghui He. 2025. Harnessing diversity for impor-
tant data selection in pretraining large language mod-
els. In The Thirteenth International Conference on
Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025. OpenReview.net.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu,
Fei Huang, Yongbin Li, and Nevin L Zhang. 2024.
Tree-instruct: A preliminary study of the intrinsic
relationship between complexity and alignment. In
Proceedings of the 2024 Joint International Confer-
ence on Computational Linguistics, Language Re-
sources and Evaluation, LREC/COLING 2024, 20-25

18877

https://doi.org/10.18653/V1/2024.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2024.EMNLP-MAIN.183
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=pszewhybU9
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.587
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.587
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.587
https://doi.org/10.1016/j.knosys.2025.114144
https://doi.org/10.1016/j.knosys.2025.114144
https://doi.org/10.1016/j.knosys.2025.114144

May, 2024, Torino, Italy, pages 16776-16789. ELRA
and ICCL.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. Lima:
Less is more for alignment. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

A Implementation details

A.1 Training datasets

We use the same training datasets as (Wang et al.,
2025) did. The number of instances in each dataset
are shown in Table 5. The number of averaged
completion tokens in our training data pool is 189.1.
Setting the selection ratio to 5%, the selected data
subset contains 20,387 instances.

A.2 Training details

Following Xia et al. (2024) and (Wang et al.,
2025), we adopt the parameter-efficient fine-tuning
method LoRA (Hu et al., 2022) in all our exper-
iments. The rank of LoRA module is 128, the
value of o is 512, and the learnable LoRA matrics
are applied to all attention matrices. Under this
configuration, there are 134,217,728 trainable pa-
rameters in LLaMA-2-7B accounting for 1.95% of
the original parameters, and 58,982,400 trainable
parameters in Qwen2.5-3B accounting for 1.88%
of the original parameters. All of our experiments
are conducted using 8 Tesla V100 GPUs.

A.3 Evaluation details

We use the evaluation code toolkit provided by
Open-Instruct (Wang et al., 2023a). On MMLU,
the evaluation metric is the exact match of the first
token in models’ completion and the ground truth
answer, we perform evaluation in a 5-shot setting
and average over the 57 subtasks; On TydiQA, gold
passage and 1-shot are adopted, and the perfor-
mance is evaluated as the F1 score of the models’
completions and the ground truth answers and av-
eraged over nine languages; On GSMS8K, 8-shot is
adopted, and the final number in models’ comple-
tion is extracted as the final answer to exactly match
with the ground truth answer; On HumanEval, we
use pass@1 as the evaluation metric and sample 20
completions for each instruction with temperature
0.1.

Dataset # Instance
Flan v2 99,245
CoT 95,557
Dolly 14,865
Open Asisstant v1 54,626
GPT4-Alpaca 52,002
ShareGPT 63,951
GSMBSKk train 7,473
Code-Alpaca 20,021
Total 40,7740

Table 5: The number of instances in each dataset used

in our experiments.

1.0

g
=}

o

)
o
©

o
o
o
©
|

sample-level recall rate
influence-level recall rate
o
~

041 o~ MM — 0.6 —&— MMLU
TydiQA TydiQA
021 —e— GSM8k 0.5 —A— Gsmsk
—8— HumankEval —&— HumankEval
0.0 -7 T T T 0.4 - T T T
0 200 400 600 0 200 400 600
training step training step
(a) (b)

Figure 4: The change of sample-level and influence-
level recall rates during the training process.

A.4 Clustering details

We adopt LoRA in our experiments, and all gra-
dients are projected to 8192-dimensional vectors
before clustering. In the implementation of cluster-
ing, we use an efficient library, PyKeops (Charlier
et al., 2021), to perform kernel matrix operations.
The training data pool used in our experiments con-
tains 407,740 data samples, so we have 407,740
8192-dimensional vectors as the inputs of cluster-
ing. With the number of clusters k¥ = 150 and
iterations in K-means N = 20, the computation
time of clustering is 1.978h.

B Declination of the effectiveness of
clusters during training

In our proposed framework, we only perform clus-
tering according to the cosine similarities of the
gradients of training data samples at the beginning
of training. Since the gradients of training data
samples would change with the update of model
weights, whether the clustering is still effective
during the training process would be an essential
problem. Thus, we conduct experiments to study
the changing trend of the effectiveness of clusters
during training.

We again use the sample-level recall rate R, in

18878

Equation 6 and influence-level recall rate R;,; in
Equation 7 to evaluate the effectiveness of clusters.
We compute R and R;, ; with respect to the check-
points saved during training with 5% randomly se-
lected data samples. The number of clusters k =
150, the cold start ratio p.s% = 5%, as in our main
experiments. The results are illustrated in Figure 4.

On most benchmarks, R and R;,, ; show declin-
ing trends when the training step increases. This
indicates that updating clustering after certain train-
ing steps could lead to better results. However, the
updating of clusters also introduces extra computa-
tional consumption. Moreover, R;, ; still remains
high in the later stage of training, indicating that
using the clusters computed at the initial stage can
still select the data samples with relatively high
influences. Hence, we choose not to update the
clustering in our experiments. Still, we obtain com-
parable results with methods using the full budget
according to Table 1.

C Exploration vs. exploitation of
inter-cluster data selection

As discussed in Section 4.5.1, the cold start ra-
tio p.49, controls the trade-off between exploration
and exploitation in our UCB algorithm. To further
observe the effect of this trade-off, we plot the dis-
tribution of the total data samples contained, the
data samples drawn in our UCB algorithm, the true
top portion of data samples with the highest data
influence approximations, and the selected data
samples using our modified UCB algorithm within
each cluster. For simplicity, we plot with the num-
ber of clusters k£ = 50 on the MMLU benchmark.
To compare the effect of different degrees of ex-
ploration and exploitation, we plot with the cold
start ratio p.s% = 0%, 5%, and 50%, as shown in
Figure 5a, 5b and Sc, respectively.

When p.s% = 0%, the modified UCB algorithm
does not adopt the cold start strategy and tends to
assign most of the computing budget to exploita-
tion. Accordingly, the distribution of the drawn
data samples in Figure 5a is more concentrated on
a few clusters, which does not cover many clus-
ters with high-influence data samples. Assigning
a small budget to random exploration with p.;% =
5%, the evaluation of each cluster is more accurate
in our UCB algorithm, leading to larger probabil-
ity to find clusters with more high-influence data
samples, e.g., cluster No. 22 and 46 in Figure 5b.
Continue increasing p.s% to 50%, more budget is

spend on exploration, resulting in insufficient bud-
get for exploitation, the modified UCB algorithm
is more likely to miss high-influence data samples
even though it can hit the corresponding clusters,
e.g., cluster No. 13 and 38 in Figure 5Sc.

Thus, the distribution of inter-cluster data selec-
tion is consistent with our experimental results in
Section 4.5.1, that a cold start with random explo-
ration is necessary in the inter-cluster data selection,
but spending too much budget on exploration could
be harmful and lead to worse performance.

18879

-l

I

13 22 38 46
cluster

o o °
° = =
& 5] G

one-step data influence approximation
o
o
8

—0.05

(a) cold start ratio = 0%

mall

- drawn
. true top
B selected

13 22 38 46
cluster

° ° e
° = =
& o 7]

o
=
S

one-step data influence approximation

~0.05

(b) cold start ratio = 5%

= all
s drawn
e true top
e selected

aul

13 22 38 46
cluster

one-step data influence approximation
° ° ° °
o ° = =
8 & 5 G

=0.05

(c) cold start ratio = 50%

Figure 5: Data distributions among clusters with different cold start ratios on MMLU benchmark. Each violin graph
represents one cluster. For each cluster, the gray half is the total data samples contained in this cluster; the blue
half is the data samples drawn from this cluster in our UCB algorithm; the green half is the true top portion of data
samples with the highest influences contained in this cluster; the red half is the selected data samples from this
cluster using ClusterUCB. The width of each half represents the number of data samples in this half.

18880

