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Abstract

Large vision-language models (LVLMs) have
shown remarkable performance in visual-
language understanding for downstream mul-
timodal tasks. While their capabilities are
improving, problems emerge simultaneously.
Among those problems, the hallucinations have
attracted much attention, which stands for the
phenomenon where LVLMs generate contradic-
tory content to their input visual and text con-
tents. Many approaches have been proposed to
deal with this issue, such as contrastive decod-
ing and attention manipulation. However, con-
trastive decoding methods struggle in construct-
ing appropriate contrastive samples, and atten-
tion manipulation methods are highly sensitive,
lacking stability. In this work, we propose
image head Masked Contrastive Decoding
(MaskCD). Our approach utilizes the "image
heads" in LVLMs, masking them to construct
contrastive samples for contrastive decoding.
We evaluated MaskCD on LLaVA-1.5-7b and
Qwen-VL-7b, using various benchmarks such
as CHAIR, POPE, AMBER and MME. The
results demonstrate that MaskCD effectively
alleviates the phenomenon of hallucinations
and retains the general capabilities of LVLMs.
Corresponding resources could be found at:
https://github.com/Deng-Jingyuan/MaskCD

1 Introduction

Large Language Models (LLMs) (Brown et al.,
2020,OpenAI, 2023) have achieved remarkable suc-
cess in understanding human instructions and per-
forming diverse tasks. Building on this progress,
recent efforts have extended LLMs to develop
Large Vision-Language Models (LVLMs) (Bai
et al., 2023b,Li et al., 2023a,Dai et al., 2023,Zhu
et al., 2023,Ye et al., 2023,Liu et al., 2023b), which
integrate visual and textual modalities for multi-
modal reasoning. Although researchers have al-
ready achieved remarkable success in applying

*Corresponding author

Figure 1: Pipeline of MaskCD.The upper part shows
the first step. The image head mask is constructed by
querying LVLM with images and prompt texts. Then,
the lower part shows how to use the image head mask
in the process of contrastive decoding.

LVLMs into several tasks, problems have emerged
as well. Within these problems, the hallucination
(Zhang et al., 2024,Kamath et al., 2023,Li et al.,
2023b) has attracted significant attention.

The hallucination of LVLMs is a phenomenon in
which models tend to generate contradictory con-
tents for the inputs, especially images. This may
manifest as generating non-existent objects, mistak-
enly described attributes, or non-sense sentences.
All kinds of hallucinations enormously lower users’
trust in the model and even cause fatal damage
when applied in real-world tasks like auto-driving
and medical image processing.

To mitigate the hallucination phenomenon, re-
searchers have promoted multiple methods, which
could be classified into two main categories ac-
cording to whether training is needed. Firstly,
training-involved methods (Lee et al., 2024,Chen
et al., 2024,Liu et al., 2024a) collect massive
delicately-constructed data to fine-tune or post-
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Figure 2: Visualization of image heads in LLaVA-1.5-7b. The left figure shows the image head distribution of
real-world images, while the right one represents the results of Dall-E generated artificial images. It is evident that
there are certain heads that tend to pay high attention on image tokens, therefore we name them with "image head".

train the LVLMs, so as to teach models to generate
less hallucinated content. It features with a high-
cost of computation resources and massive human
labor. On the contrary, training-free methods are
developed to alleviate hallucination at a lower cost.
Prevailing methods include contrastive decoding
(CD) (Leng et al., 2024,Favero et al., 2024,Woo
et al., 2024) and attention manipulation (Tu et al.,
2025,Huang et al., 2024,Liu et al., 2024b). CD
methods need an injured input as the bad sample,
whose output logits will be subtract from the orig-
inal one. It would take twice times of inference
cost, once for the original input, the other for the
injured one. But with delicately constructed bad
samples, CD methods have presented prominent
performance in mitigating the LVLMs’ hallucina-
tion phenomenon. Recently, with the progress in
understanding models’ inner working mechanisms,
methods of attention manipulation have come up.
Specifically, abnormal attention map phenomena,
such as excessive local attention in the attention
sink phenomenon (Favero et al., 2024,Xiao et al.,
2024), will be directly reduced or redistributed.
This method features in better align visual and text
modal, enabling models to better and truly utilize
visual information.

Although the need for training has been elim-
inated, both the CD and attention manipulation
methods have their drawbacks. The performance
of CD methods is heavily depended on the qual-
ity of the constructed bad sample. If the injured
sample still contains a lot of useful information,

then the contrast operation may even cause worse
results. For the attention manipulation methods,
models are highly sensitive to changes in the atten-
tion score and are not as stable as CD methods in
terms of overall testing scenarios.

Therefore, we hope to construct high-quality bad
samples through the angle of attention distribution,
thereby combining the advantages of CD meth-
ods and attention manipulation methods, balancing
stability and hallucination-mitigating performance.
To observe the model’s attention preference to im-
ages at head-level, we randomly select 500 images
in the validation set of COCO 2014(Lin et al., 2014)
and 500 Dall-E generated artificial images from
MMrel (Nie et al., 2024). Put them into LLaVA-1.5-
7b (Liu et al., 2023b) with the prompt text "Please
describe this image in detail." and record the sum
of the attention scores obtained by each head in
each layer of the model for each token generation.
Finally, under different thresholds, the number of
times each head pays excessive attention to the im-
age token during the generation of each token is
calculated.

The normalized result is visualized in Figure
2. We observed that whether real-world images
or AI-generated images, there are certain heads
in LLaVA-1.5-7b that prefer to give image to-
kens comparably high attention scores. Since they
present an inclined focus on visual information, we
name them "image heads". Given that the essence
of CD methods is making the subtracted samples
contain only invalid information as much as pos-
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sible, we choose to mask these image heads to
construct bad samples, so as to prevent the bad
samples from accessing useful visual information
more precisely.

In this way, we proposed image head Masked
Contrast Decoding (MaskCD), which uses image
head attention masks to construct delicate bad sam-
ples and attain significant hallucination-mitigating
performance.

Our contributions can be summarized as follows:

• We identify "image heads" in LVLMs that
disproportionately attend to image tokens.

• We propose MaskCD, a contrastive decod-
ing method that features in using image head
masking to construct degraded visual inputs.

• We demonstrate, through extensive experi-
ments, that MaskCD outperforms existing hal-
lucination mitigation methods across multiple
benchmarks while preserving general model
capabilities.

2 Related Work

2.1 Large Vision-Language Model

Recently, efforts have been made to enhance Large
Vision-Language Models, aiming to equip LLMs
with the ability to process visual information like
images or videos. LVLMs are typically constructed
by three components: a visual encoder to extract
visual features, a modality connection module to
bridge visual and text modal, and an LLM for fur-
ther tasks. The visual encoder and LLM are typi-
cally fixed pretrained models; common choices are
CLIP model (Radford et al., 2021) variants for the
visual encoder, and LLaMA (Touvron et al., 2023)
or Vicuna (Chiang et al., 2023) for the LLM.

Research focuses on optimizing modality con-
nection modules, so as to better utilize visual and
text information at the same time. Different connec-
tion modules lead to different LVLM types: cross-
attention module in Flamingo(Alayrac et al., 2022),
Q-former in BLIP-2(Li et al., 2023a), and simple
linear layer in LLaVA(Liu et al., 2023b) model
series.

2.2 Hallucination in LVLMs

Multimodal hallucination phenomenon, typically
presented as LVLM generates inconsistent content
from the input, especially those it contradictory
with visual information. For example, in the image

captioning task, LVLM may generate objects that
do not exist in the input images (Li et al., 2023b), or
mistakenly describe attribution of existing objects
like counts, color and spatial relationship (Kamath
et al., 2023).

The methods for alleviating LVLM hallucina-
tions can be classified according to whether train-
ing is required. Training-involved methods typ-
ically uses constructed data to fine-tune or post-
train LVLMs. For example, Hu et al. (2023), Liu
et al. (2023a) uses contrastive question-answer
pairs to fine-tune LVLMs, and Sun et al. (2024) em-
ploys Reinforcement Learning from Human Feed-
back (RLHF) to enhance multimodal connections.
Training-free methods are prevailed by contrastive
decoding and attention manipulation. The core
of CD methods is constructing bad samples that
contain useful information as less as possible. Dif-
ferent constructing means like image editing(Woo
et al., 2024,Leng et al., 2024), text editing(Wang
et al., 2024) and model bias(Zhu et al., 2024) are
developed to achieve this goal. Attention manip-
ulation method would reduce(Huang et al., 2024)
or redistribute(Tu et al., 2025) excessive attention
scores, so as to steer LVLMs to pay more attention
to visual information.

CD methods perform well in hallucination-
mitigating tasks but are highly dependent on the
quality of the bad samples constructed. If the in-
jured sample still contains a lot of useful infor-
mation, the contracting operation may cause an
even worse result. Attention manipulation methods
cost fewer computation resources but are highly
sensitive to parameters, presenting unstable perfor-
mances. Our research constructs bad samples from
the perspective of attention, filtering out useful in-
formation so that the bad samples only carry the
information that needs to be offset, thereby achiev-
ing a stable and high-quality effect.

3 Methodology

3.1 Task Formation

Typically, LVLMs aim to generate proper text out-
puts from multimodal inputs, especially combined
visual and textual data. The visual encoder extracts
visual features, then passes them to the modal con-
nection module, where visual features are mapped
into the text semantic space. The mapped features
are combined with textual tokens, either through
concatenation(Liu et al., 2023b) or cross-modal fu-
sion(Dai et al., 2023). The final combined features
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are then passed into the LLM to generate outputs
autoregressively. Formally, given an input image
I , corresponding question text Q, and already gen-
erated tokens y<t, the next token yt is decoded
according to the probability distribution:

p(yt) = pθ(yt | I,Q, y<t) (1)

where θ represents the parameters of the LVLM.
The goal of hallucination mitigation is to make out-
put sequences contain less contradictory content.

3.2 Formulating image heads masks
LLMs in prevailing LVLMs are most decoder-only,
use an attention mechanism to capture the blend-
ing of textual and visual features. Formally, the
attention matrix A is calculated by:

A = softmax(
Q ·KT

√
dk

) (2)

where Q and K denotes queries and keys respec-
tively, dk represents the dimension of key vectors.
Each row of the attention matrix A indicates the
proportion of attention that the current token has
invested in the previously generated token. We be-
lieve that the higher the sum of the values obtained
by the image tokens in the attention matrix is, the
more attention the visual information will receive.

There are multiple attention heads in each layer
of the LLM, each of which calculates its own at-
tention matrix. We randomly selected 500 images
from the validation set of COCO 2014(Lin et al.,
2014), input them into LVLMs with the text ’Please
describe this image in detail’, then record the sum
of the attention scores for the image token in the
attention matrix of each head in each layer of the
model when each token is generated. With a thresh-
old τ , we obtain the attention head matrix where
each element represents how many times this at-
tention head has paid over-threshold attention pro-
portion to image tokens (as shown in Figure 2).
After normalization, the non-zero attention heads
in the attention head matrix are named image heads.
Lastly, by masking the selected image heads, the
image head mask is constructed. For more infor-
mation, please refer to appendix A, including the
formalized description of MaskCD and more de-
tails about image head selection.

Apparently, the number of image heads varies
with the change of τ . Table 1 shows the number
of image heads of LLaVA-1.5-7b and Qwen-VL-
7b(Bai et al., 2023b) given different threshold τ

Model τ # image heads proportion

LLaVA-1.5-7b

0.95 192 18.75%
0.9 238 23.24%
0.8 315 30.76%
0.7 364 35.55%
0.6 424 41.41%
0.5 506 49.41%

Qwen-VL-7b

0.99 248 24.22%
0.975 317 30.96%
0.95 395 38.57%
0.9 473 46.19%

Table 1: The number and proportion of image heads
corresponding to the variation of τ . τ represents the
threshold of considering "high" attention scores paid on
image tokens of a head.

values. Intuitively, if the threshold is too high and
too few bad samples are masked, then useful infor-
mation will still be contained in the bad samples; If
the threshold is too low, causing the heads that do
not pay much attention to the image to be masked
as well, the reduction effect of the CD method on
semantic information will be weakened. Therefore,
choosing the appropriate threshold is an important
issue.

3.3 MaskCD

When using an image head mask to construct a bad
sample, the masked heads’ attention output will
be set to zero. Since this method is equivalent to
setting the parameters of the corresponding head
to zero, we use θm to represent the model where
the image heads are masked. However, in actual
operation, only the attention value is changed; no
model parameter will be modified.

Then MaskCD is formulated as equation 3:

p(yt) = softmax
(
(1 + α) · logitsθ(yt|I,Q, y<t)

− α · logitsθm(yt|I,Q, y<t)
)

(3)

where logits represents the value of p(yt|I,Q, y<t)
before softmax operation. α is a hyperparameter
that controls the intensity of contrast.

By subtracting the output logits of bad samples
from the original ones, MaskCD enables the fi-
nal output logits to utilize only the truly useful
visual and textual information as much as possible,
thereby alleviating the hallucination phenomenon
of LVLMs.
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4 Experiment Settings

4.1 Benchmarks
CHAIR The Caption Hallucination Assessment
with Image Relevance (CHAIR) (Rohrbach et al.,
2018) is a widely used metric for evaluating object
hallucination in image captioning tasks. CHAIR is
used to measure the hallucination proportion of the
model’s generated texts. It evaluates hallucination
on two aspects: CHAIRS and CHAIRI . The former
calculates the proportion of sentences containing
hallucinations at the sentence level, while the latter
computes the hallucinated ratio at the object level.
The two metrics can be formulated as:

CHAIRS =
|{sentences w/ hallucinated objects}|

|{all captions sentences}|

CHAIRI =
|{hallucinated objects}|
|{all mentioned objects}|

(4)

We randomly selected 500 images from the vali-
dation set of COCO 2014(Lin et al., 2014) and used
the prompt "Please describe this image in detail."
to obtain the generated captions.

POPE The Polling-based Object Probing Eval-
uation (POPE) (Li et al., 2023b) is a benchmark
for assessing object hallucination. LVLMs are re-
quired to answer formatted questions like "Is there
a <object> in the image?" with "Yes" or "No". The
answers’ yes-no ratio is designed to be 50% for
each response. The complete POPE test is divided
into three splits: random, popular and adversar-
ial, in which missing objects are randomly selected,
most frequently occurring in the dataset, and highly
correlated with those present in the image, respec-
tively.

We choose MSCOCO dateset for POPE evalu-
ation. The key evaluation metrics are: Accuracy,
Precision, Recall, and F1 score.

AMBER AMBER(Wang et al., 2023) is An
LLM-free Multi-dimensional Benchmark for
MLLMs hallucination evaluation, which can be
used to evaluate both generative task and discrimi-
native task including existence, attribute and rela-
tion hallucination.

MME The Multimodal Large Language Model
Evaluation (MME) (Fu et al., 2023) assesses
LVLMs using set of comprehensive metrics. MME
benchmark contains 14 subsets, so as to evalu-
ate LVLMs’ general capabilities. Following the

methodologies of (Yin et al., 2023), when pre-
senting the test results of all subsets of MME,
we divide them into two groups: hallucination
and non-hallucination. The hallucination group
includes "existence", "counts", "color" and "po-
sition", which evaluate LVLMs at the object and
attribute level,s respectively.

4.2 Models

LVLM Models We select LLaVA-1.5-7b and
Qwen-VL-7b for evaluation. Each model uti-
lizes Vision Transformer (ViT) as the backbone
of its visual encoder, but employs different modal
connection modules and LLMs. LLaVA-1.5-7b
directly projects visual embeddings into seman-
tic space through multi-layer perception(MLP),
while Qwen-VL-7b utilizes a position-aware vision-
language adapter to compress image features. As
for the LLM part, LLaVA-1.5-7b utilizes vicuna as
LLM backbone, while Qwen-VL-7b’s counterpart
is Qwen(Bai et al., 2023a). The LLM backbones
are both constructed by 32 layers of decoder blocks,
and each layer contains 32 heads, resulting in 1024
heads in total.

4.3 Baseline Methods

We compare MaskCD with three classic and effec-
tive hallucination mitigating methods: VCD(Leng
et al., 2024) uses random Gaussian noise to contam-
inate the original image, reducing the valid infor-
mation it contains and thus serving as a bad sample.
M3ID(Favero et al., 2024) deletes the image for
the bad sample input, and slightly changes the con-
trastive decode function. The above methods all
belong to the CD category. OPERA(Huang et al.,
2024) takes advantage of the attention sink phe-
nomenon, punishes overly concentrated attention,
and combines it with a retrospection-allocation
strategy. It is an attention manipulation method
based on a beam search strategy. MaskCD is a CD
method that only masks the model’s inner values to
construct bad samples, distinguishing it from other
CD-class methods.

5 Result and Analysis

5.1 Overall Result

CHAIR Table 2 shows the overall results for
CHAIR evaluation. MaskCD gained evidently
better performance compared with other meth-
ods. Specifically, MaskCD lowers CHAIR_s and
CHAIR_i by 19.12% and 29.87% for LLaVA-1.5-
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Method LLaVA-1.5-7b Qwen-VL-7b
CHAIR_s ↓ CHAIR_i ↓ Precision F1 CHAIR_s ↓ CHAIR_i ↓ Precision F1

Baseline 50.20 15.40 72.10 73.50 50.8 17.4 68.3 63.0
VCD 55.6 16.4 71.7 75.2 48.4 16.7 68.1 64.6
M3ID 55.4 15.5 70.6 75.7 39.8 8.8 77.2 75.6
OPERA 45.8 13.5 76.6 77.8 42.3 11.8 75.5 76.3
MaskCD 40.6 10.8 79.1 78.2 12.4 8.6 88.5 64.3

Table 2: Results on benchmark CHAIR. CHIAR_s and CHAIR_i are hallucination ratio evaluation metrics, lower
scores represent better performances. The Baseline method denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the best performances are underlined.

Setup Method LLaVA-1.5-7b Qwen-vl-7b
Acc. ↑ Recall ↑ F1 ↑ Acc. ↑ Recall ↑ F1 ↑

random

Baseline 82.90 72.07 80.82 81.97 77.67 81.16
VCD 85.57 76.27 84.09 76.20 81.73 77.45
M3ID 85.27 74.67 85.52 74.60 69.67 73.28

OPERA 89.30 89.00 89.27 66.33 81.73 77.45
MaskCD 88.77 87.47 88.62 87.77 79.47 86.66

popular

Baseline 81.10 74.27 79.22 80.20 78.40 79.84
VCD 83.67 72.34 82.36 72.30 81.80 74.70
M3ID 83.60 73.77 81.99 72.07 70.33 71.57

OPERA 85.93 87.96 86.86 66.77 73.67 68.91
MaskCD 85.67 87.53 85.83 86.57 79.40 85.53

adversarial

Baseline 78.60 72.35 77.10 78.43 78.60 78.47
VCD 81.07 76.24 80.11 71.57 83.07 71.50
M3ID 81.57 73.36 80.20 71.83 70.67 71.50

OPERA 79.00 88.03 80.91 67.50 73.67 69.38
MaskCD 79.63 87.53 81.12 83.40 79.27 82.68

All

Baseline 80.87 72.90 79.05 80.20 78.22 79.82
VCD 83.44 74.95 82.19 73.36 82.20 75.55
M3ID 83.48 73.93 82.57 72.83 70.22 72.12

OPERA 84.74 88.33 85.68 66.87 73.67 68.97
MaskCD 84.88 88.20 85.48 85.91 79.38 84.96

Table 3: Results on benchmark POPE. The Baseline method denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the best performances are underlined.

Figure 3: Visualization of MME scores of LLava-1.5-7b(left) and Qwen-VL-7b(right). Scores are normalized
by dividing maximum score of each subset.
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Method Objectlevel Attributelevel Total
existence count position color

Baseline 180.00 101.67 100.00 153.33 535.00
VCD 175.00 106.67 111.67 146.67 540.01
M3ID 180.00 101.67 105.00 158.33 545.00

OPERA 195.00 148.33 128.33 155.00 626.66
MaskCD 195.00 168.33 133.33 150.00 646.66

Table 4: Results on benchmark MME (four hallucina-
tion subsets) of LLaVA-1.5-7b. The Baseline method
denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the
best performances are underlined.

Method Object-level Attribute-level Total
existence count position color

Baseline 105.00 83.33 50.00 136.67 375.00
VCD 86.67 91.67 41.67 111.67 346.00
M3ID 118.33 98.33 51.67 125.00 331.68

OPERA 93.67 84.33 46.67 121.33 393.33
MaskCD 111.67 95.00 65.00 138.33 410

Table 5: Results on benchmark MME (four halluci-
nation subsets) of Qwen-VL-7b. The Baseline method
denotes the standard decoding. The best performances
within each setting are bolded. Comparable but not the
best performances are underlined.

7b, and achieves 75.59% and 50.57% decrease for
Qwen-VL-7b. This indicates that our proposed im-
age heads masks are quite effective in hallucination
mitigating. Moreover, MaskCD outperforms VCD
and M3ID, demonstrating that the bad samples con-
structed by masking the image head contain less
effective information, thereby achieving better re-
sults among similar CD methods.

POPE Table 3 shows the evaluation results of
POPE benchmark. For both LLaVA-1.5-7b and
Qwen-VL-7b, MaskCD represents comparable per-
formance with OPERA, outperforms the baseline
and other CD methods, indicating its excellence in
hallucination alleviation. Furthermore, as taking
computational cost into account, MaskCD achieves
a similar performance effect with a computational

Method LLaVA-1.5-7b
Generative Discriminative

CHAIR ↓ Cover Hal ↓ Cog ↓ Accuracy Preicision Recall F1
Baseline 9.2 41.3 29.2 3.7 65.7 83.2 64.7 73.29
VCD 8.1 44.2 28.6 3.1 68.3 85.8 65.2 74.09
M3ID 7.9 45.3 28.3 2.8 69.7 84.9 64.8 73.50
OPERA 8.3 43.1 31.2 2.9 76.0 79.2 83.8 81.44
MaskCD 8.7 48.6 34.5 3.2 77.8 81.4 86.8 84.0

Table 6: Results on benchmark AMBER on LLaVA-
1.5-7b. The Baseline method denotes the standard de-
coding. The best performances within each setting are
bolded. Comparable but not the best performances are
underlined.

Method CHAIR_s ↓ CHAIR_i ↓ Pre. F1
Baseline 50.2 15.4 72.1 73.5
MaskCD 40.6 10.8 79.1 78.2
MaskCD_r 44.0 14.3 77.3 74.0

Table 7: Results of MaskCD and MaskCD_r on
CHAIR evaluation. "Pre." is the abbreviation for "Pre-
cision". It is evident that MaskCD_r indeed helps miti-
gate hallucination, but cannot compete with MaskCD.

cost lower than that of OPERA, demonstrating its
excellence.

AMBER Table 6 shows the evaluation results of
benchmark AMBER on LLaVA-1.5-7b. MaskCD
achieves comparably good performance, especially
in discriminative tasks.

MME Table 4 and Table 5 shows the results
on four hallucination-related MME subsets for
LLaVA-1.5-7b and Qwen-VL-7b, respectively.
MaskCD achieves best performances on every sin-
gle subset for LLaVA-1.5-7b and on attribute-level
subsets for Qwen-VL-7b. The evaluation on object-
level subsets of Qwen-VL-7b also achieves the
second-best results, representing the effectiveness
of MaskCD in alleviating hallucinations. Mean-
while, Figure 3 shows the overall results for all 14
subsets of the MME benchmark. It is evident that
besides the capability of mitigating hallucination,
MaskCD also retains or even partially improves the
model’s ability in general evaluation.

5.2 Ablation Study
In this subsection, we present ablation studies to
examine the impact of mask selecting and other
hyper-parameters. We conduct these experiments
with LLaVA-1.5-7b.

Mask selection To demonstrate the necessity of
masking the image heads rather than other heads,
for each image head mask in the settings, we ran-
domly select an equal number from other heads
to form a random mask. The method of using
these random masks for MaskCD is denoted as
MaskCD_r. Table 7, 8, and 9 show the performance
of MaskCD and MaskCD_r on CHAIR, POPE and
MME, respectively. The results show that masking
random heads also has a slight effect on alleviating
hallucinations, but it cannot compete with the re-
sults of masking image heads. It indicates that the
image heads indeed contain more useful and nec-
essary information, so it is rational to mask them
rather than other heads.
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Method Accuracy Precision Recall F1

All
Baseline 80.87 87.62 72.07 79.05
MaskCD 84.88 83.11 88.20 85.48
MaskCD_r 83.61 90.67 75.53 82.38

Table 8: Results of MaskCD and MaskCD_r on
POPE benchmark. MaskCD_r performs best on Preci-
sion metrics, but fails in Recall.

Method
Object-level Attribute-level

existence count position color
Baseline 180.00 101.67 100.00 153.33
MaskCD 195.00 168.33 133.33 150.00
MaskCD_r 190.00 133.33 123.33 150.00

Table 9: Results of MaskCD and MaskCD_r on the
hallucination-related subsets of MME. MaskCD_r
indeed helps slightly in mitigating hallucinations.

Mask proportion and CD tensity As mentioned
in section 3.2 and 3.3, there are two important
hyper-parameters in MaskCD: τ , as the threshold
for determining the image head, controls the num-
ber of masked heads; and α, which controls the
intensity of contrastive decoding operation.

We conduct ablation experiments of τ and α
on LLaVA-1.5-7b with CHAIR evaluation. Table
10 shows the results of MaskCD with different
thresholds τ . It indicates that the best value of τ
is 0.9, which means around 23% of the heads in
LLaVA-1.5-7b’s LLM backbone are recognized as
image heads and have been masked (according to
Table 1). Whether too small or too big, the value
of τ is, the performances tend to decline, and even
fail the baseline when τ is 0.5. This shows that the
heads to be masked should be delicately selected,
and MaskCD achieves this successfully.

Meanwhile, Table 11 shows the results of
MaskCD on CHAIR with different α. α is a com-
mon hyperparameter in contrastive decoding ap-
proaches, whose value controls the intensity of the
contrast operation. It can be seen that even when
the value of α is quite large, MaskCD can still
operate stably and effectively alleviate the halluci-
nation phenomenon. It demonstrates the stability,
reliability and practicability of MaskCD as a CD
method.

6 Conclusion

In this paper, we first introduce the image heads:
the heads in LVLM’s LLM backbone that tend to
pay comparably high attention proportion on image
tokens. Then we propose the image head Masked

Method τ CHAIR_s CHAIR_i F1
Baseline / 50.2 15.4 73.5

MaskCD

0.95 46.8 12.9 77.0
0.9 40.6 10.8 78.2
0.8 40.8 14.7 74.8
0.7 48.4 13.0 76.4
0.6 49.6 14.0 75.9
0.5 54.8 14.4 75.2

Table 10: Results of MaskCD with different thresh-
old τ . It can be seen that the value of τ that is either
too small or too large is not conducive to dealing with
hallucination problems.

Method α CHAIR_s CHAIR_i F1
Baseline / 50.2 15.4 73.5

MaskCD

0.5 43.6 11.5 78.4
1.0 40.6 10.8 78.2
2.0 45.2 12.2 77.3
3.0 44.6 11.6 77.3
4.0 42.2 11.5 77.6
5.0 41.6 11.7 77.9
6.0 41.2 11.8 77.9

Table 11: Results of MaskCD with different α. It can
be seen that even when α takes a large value, MaskCD
can still operate stably, effectively alleviating the hallu-
cination phenomenon.

Contrastive Decoding (MaskCD) method, a novel
contrastive decoding approach featuring in mask-
ing image heads to construct contrastive samples.
MaskCD constructs the contrastive samples of CD
methods from the perspective of attention score,
combining the effectiveness and stability of these
two methods. Extensive experimental results on
CHAIR, POPE and MME demonstrate the effec-
tiveness and stability of MaskCD in mitigating the
phenomenon of hallucinations. We hope this work
can provide a new perspective for exploring future
efforts to alleviate hallucinations in LVLMs.

Limitations

Although MaskCD achieves significant perfor-
mance in hallucination mitigation, it still has sev-
eral limitations. First, MaskCD requires the use
of images for inference in advance to obtain the
masks of image heads, which occupy computing re-
sources. Secondly, although the process of obtain-
ing the mask is simple, the obtained mask is only
applicable to the same family of LLM backbones.
For new LLM bases, the corresponding masks need
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to be re-obtained. This limitation encourages us to
explore how to dynamically construct masks dur-
ing the model’s operation, so as to get rid of these
restrictions.

Ethical Considerations

The main research objects of this work are alleviat-
ing hallucination phenomenon, which help avoid
disloyal contents generated by LVLMs. Moreover,
we conduct experiments on the public datasets,
which do not contain any offensive content or infor-
mation with negative social impact. Our research
contents are completely in line with the ethical re-
view.
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A Details about image head selection

A.1 The Formalized Description of MaskCD

In short, MaskCD is a type of hallucination miti-
gation method that constructs negative samples by
masking the heads in the LLM backbone that pay
high attention to image information. It follows the
steps below:

Generate captions using test cases:

pt = softmax(logitsθ(y|y<t, Xsystem,

Ximage, Xinstruction))
(5)

In which Xsystem, Ximage and Xinstruction rep-
resent the tokens of system prompt, image and
instruction prompt, respectively.

For each output token generation, we compute
the sum of attention scores received by the image
tokens from each attention head. This forms an
image-token attention score matrix for that specific
token generation. After all output tokens for all
images have been generated, we obtain a total of
num_of_total_tokens attention score matrices, each
with the shape [num_of_layers, num_of_heads].

A ∈ RT×L×H ,

At,i,j =
∑

Xk∈Ximage

AttentionScorei,j,k[k] (6)

Where At,i,j denotes the sum of attention scores
received by the image tokens from the j-th head in
the i-th layer at time step t. T represents the total
number of generated tokens, L is the number of
attention layers in the LLM, and H is the number
of attention heads per layer.

Then, for all the collected data, we determine
whether each value exceeds a threshold τ ; each
time it does, we increment a count by 1. In this way,
we obtain statistical data on the attention heads
whose attention to image tokens exceeds the thresh-
old:

C ∈ RL×H ,

Ci,j =

T∑

t=1

1At,i,j>τ

(7)

The resulting matrix still has the
shape[num_of_layers,num_of_heads], where
each element represents the number of times the

attention score of the corresponding head exceeded
the threshold τ during all T generation steps.

At this point, all positions with non-zero val-
ues are identified as image heads. These positions
are set to 0, while all other positions are set to 1,
thereby forming the masking matrix:

ImageHeadMask ∈ RL×H ,

ImageHeadMaski,j =

{
1, Ci,j = 0

0, Ci,j > 0

(8)

During the inference phase, when generating
logits for bad samples, the hidden state at each layer
is multiplied by the corresponding layer’s IHM
(Image Head Mask) before being output, thereby
masking the image heads. The original samples
remain unaffected. Finally, the logits from both
are compared, and only the final logits are used for
output generation.

A.2 Influencing factors to image head
selection

Impact of image types. We sampled 500 images
from each of the COCO2014-val, MMRel, Art-
Bench, and ChartQA datasets for the captioning
task, representing real-world images, AI-generated
images, artistic paintings, and chart-based visu-
alizations, respectively. The first three primarily
differ in visual style, while the last focuses on the
graphical representation of textual and numerical
information. In addition, we sampled 125 images
from each of the four datasets to construct a mixed
image set of 500 samples.

The evaluation results are presented in the fol-
lowing two tables. Table 12 shows the number
of image heads selected under different threshold
values for each image type. As can be observed,
the number of selected image heads is generally
similar across different types of images, except for
AI-generated images, which tend to yield slightly
fewer image heads at higher thresholds.

Table 13 shows the overlap between the image
heads selected from the real-image set and those
from the other four image sets. For each entry, we
report three values: the size of the intersection, the
size of the union, and the overlap ratio (i.e., in-
tersection size divided by union size). As shown,
the attention heads selected across different image
types exhibit a high degree of overlap with those
from real images. This indicates that our current
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image type τ=0.95 τ=0.9 τ=0.8 τ=0.7 τ=0.6 τ=0.5 total token number average length
COCO-RealWorld 192 238 315 364 424 506 65501184 127.93
ArtBench-painting 175 222 294 339 390 466 66680832 130.24
MMrel-AIGC 161 219 285 364 424 506 59910505 117.01
ChartQA-chart 187 229 307 355 419 493 66335744 129.56
Mixture 194 238 304 356 416 494 32612352 127.39

Table 12

method for identifying image heads remains rela-
tively stable across various image domains.

Impact of image quantity. We selected 1,000
real-world images from the COCO2014-val dataset
and conducted captioning task. During the process,
we recorded the selected image heads after 100,
300, 500, and 1,000 captions, in order to avoid
evaluation differences caused by varying image
content.

The test results are shown in the following two
tables. Table 14 presents the number of selected
image heads under different thresholds and image
quantities. It shows that the number of image heads
stabilizes after 300–500 images.

Table 15 presents the overlap between the image
heads selected using 100, 300, and 500 images,
compared to the 1,000-image result. This demon-
strates that as the number of test images increases,
the distribution of selected image heads remains
highly stable, with only minor increases in total
count.

Impact of task type. We decided to compare
captioning and discriminative VQA tasks. Since
the amount of data collected each time depends
on the total number of generated tokens, and the
generation lengths differ significantly between cap-
tioning and discriminative VQA tasks, we adjusted
the number of samples to balance the total gener-
ated tokens. Specifically, we designed two setups:
100 real images for captioning with a generation
length limited to 20 tokens versus 1000 VQA tasks,
and 100 real images for captioning without length
restriction versus 6000 VQA tasks.

The results of the two tests are shown in table 16.
We found that for the VQA task, since the model
can only generate “yes” or “no” answers, the num-
ber of indicated image heads is very limited. In-
spired by this phenomenon, we conducted a simple
investigation on the number of image heads indi-
cated by different semantic token types in caption
generation. We found that attribute tokens such as
colors indicate more image heads, nouns indicate

fewer, and other tokens like “yes,” “no,” or “the” in-
dicate significantly fewer heads. This phenomenon
may be explained by the fact that during the gener-
ation of attribute and noun tokens, the model needs
to rely more heavily on visual information, which
increases the number of image heads collected.
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image type τ=0.95 τ=0.9 τ=0.8 τ=0.7 τ=0.6 τ=0.5
ArtBench-painting 170/197/0.86 219/241/0.91 292/317/0.92 333/370/0.90 380/434/0.88 459/513/0.89
ChartQA-chart 166/213/0.78 203/264/0.77 280/342/0.82 325/394/0.82 375/468/0.80 445/554/0.80
MMrel-AIGC 150/203/0.74 202/255/0.79 274/326/0.84 364/364/1.00 424/424/1.00 506/506/1.00
Mixture 175/211/0.83 216/260/0.83 289/330/0.88 335/385/0.87 383/457/0.84 459/541/0.85

Table 13

card 0.95 0.9 0.8 0.7 0.6 0.5 total token number average len
100 178 230 294 342 391 462 12836864 125.36
300 198 250 314 362 411 482 39139328 127.41
500 192 238 315 364 424 506 65501184 127.93
1000 202 248 325 374 434 516 129914880 126.87

Table 14

card 0.95 0.9 0.8 0.7 0.6 0.5
100 178/202/0.88 230/248/0.93 294/325/0.90 342/374/0.91 391/434/0.90 462/516/0.90
300 187/202/0.93 236/248/0.95 309/325/0.95 353/374/0.94 406/434/0.94 475/516/0.92
500 189/202/0.94 237/248/0.96 309/325/0.95 356/374/0.95 408/434/0.94 487/516/0.94

Table 15

card task 0.95 0.9 0.8 0.7 0.6 0.5 token len
100 caption (maxlength 20) 133 184 245 297 336 406 2,048,000 20.00
1000 vqa 1 8 35 44 66 81 2,148,352 2.10
100 caption (no limit) 178 230 294 342 391 462 12,836,864 125.36
6000 vqa 4 16 66 108 149 189 12,657,664 2.06

Table 16
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