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Abstract

Knowledge-intensive queries require accurate
answers that are explicitly grounded in re-
trieved evidence. However, existing retrieval-
augmented generation (RAG) approaches often
struggle with query complexity, suffer from
propagated reasoning errors, or rely on incom-
plete or noisy retrieval, limiting their effective-
ness. To address these limitations, we intro-
duce UniRAG, a unified RAG framework that
integrates entity-grounded query decomposi-
tion, break-down reasoning, and iterative query
rewriting. Specifically, UniRAG decomposes
queries into semantically coherent sub-queries,
explicitly verifies retrieved sub-facts through
a dedicated reasoning module, and adaptively
refines queries based on identified knowledge
gaps, significantly improving answer complete-
ness and reliability. Extensive benchmark
evaluations on complex question-answering
datasets, including multi-hop HotPotQA and
2WikiMultihopQA, biomedical MedMCQA
and MedQA, and fact-verification FEVER and
SciFact, demonstrate that UniRAG consistently
achieves performance improvements across var-
ious state-of-the-art LLMs, such as LLaMA-
3.1-8B, GPT-3.5-Turbo, and Gemini-1.5-Flash.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide range
of natural language processing tasks (Brown et al.,
2020; Grattafiori et al., 2024; Yang et al., 2024;
Team et al., 2024), yet their static training hin-
ders access to up-to-date factual knowledge and
causes hallucinations due to difficulty keeping
pace with evolving world knowledge. To mitigate
these limitations, Retrieval-Augmented Generation
(RAG) emerged (Izacard and Grave, 2021; Shao
and Huang, 2022; Izacard et al., 2023; Shi et al.,
2024); however, despite providing external ground-
ing, these methods achieved only modest gains on
complex queries, such as complex multi-hop and

domain-specific, requiring nuanced external knowl-
edge, highlighting the core challenge of effectively
bridging the semantic gap between such complex
questions and relevant information scattered across
large knowledge bases.

Recent advancements in RAG have shifted to-
wards enabling LLMs to actively guide retrieval
for improved relevance and quality. Early active
retrieval methods can be categorized into query
decomposition, which breaks down complex ques-
tions into sub-queries (Min et al., 2019; Perez et al.,
2020; Wei et al., 2022; Press et al., 2023; Trivedi
et al., 2023), and query rewriting, where the LLM
refines the query (Ma et al., 2023a; Ye et al., 2023).
Despite their promise, these strategies face distinct
challenges, in which decomposition often requires
substantial supervision and struggles with optimal
sub-query granularity (Guo et al., 2022; Dua et al.,
2022), while rewriting can suffer from LLM hal-
lucinations leading to inaccurate queries and of-
ten necessitates large training datasets (Ma et al.,
2023b; Ye et al., 2023).

More recent efforts in active retrieval have fo-
cused on knowledge reasoning, where an LLM
processes retrieved evidence to generate an an-
swer or determine whether additional retrieval is
needed (Yao et al., 2023; Shao et al., 2023; Wang
et al., 2024; Asai et al., 2024). Reasoning-based ap-
proaches, such as Chain-of-Thought (CoT) prompt-
ing and iterative retrieval, enable deeper interaction
with retrieved content and typically outperform ear-
lier methods based solely on query decomposition
or query rewriting. Despite these strengths, cur-
rent knowledge reasoning methods remain limited
by their susceptibility to propagating early errors,
sensitivity to prompt variations, and the substan-
tial computational overhead introduced by iterative
retrieval-generation cycles (Wei et al., 2022; Yao
et al., 2023; Shao et al., 2023).

These limitations become particularly criti-
cal when addressing knowledge-intensive queries,
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whose accuracy heavily depends on the reliable
grounding of evidence. Typical examples include
(i) multi-hop questions requiring reasoning across
multiple documents, (ii) complex-factoid queries
demanding simultaneous verification of several in-
dependent constraints, and (iii) domain-specific
questions involving interpretation or synthesis of
externally retrieved domain knowledge. Existing
knowledge reasoning-based methods frequently
struggle to explicitly verify every required aspect or
to adequately handle incomplete or noisy retrieval.
Consequently, their answers often suffer from in-
completeness or insufficient evidential support, sig-
nificantly reducing their reliability in practice.

Thus, in this paper, we introduce UniRAG,
a novel unified RAG framework specifically de-
signed to enhance performance on knowledge-
intensive queries. UniRAG synergistically in-
tegrates three complementary active retrieval
strategies–query decomposition, break-down rea-
soning, and iterative query rewriting–to effectively
address existing limitations. The main contribu-
tions of this work are summarized as follows:

• We propose an entity-grounded query decom-
position scheme within UniRAG that generates
semantically coherent sub-queries, ensuring each
sub-query accurately captures distinct informa-
tional aspects of the original query.

• We develop a break-down reasoning module
where the LLM explicitly examines retrieved
documents, verifies each individual sub-fact, and
evaluates evidence sufficiency, thus systemati-
cally ensuring comprehensive support for the fi-
nal answer.

• We design an iterative query rewriting mecha-
nism that leverages knowledge gaps identified
during the reasoning phase, enabling adaptive
and targeted refinement of queries to address in-
complete or insufficient retrieval effectively.

• We demonstrate the effectiveness of our pro-
posed framework through extensive benchmark
evaluations, showing consistent and substan-
tial improvements over state-of-the-art retrieval-
augmented LLM baselines

2 Related Works

Query Decomposition Previous research has ex-
tensively investigated the decomposition of com-
plex questions into simpler sub-queries to en-
hance question answering capabilities, exploring

methods ranging from supervised approaches for
multi-hop reading comprehension (Min et al.,
2019) to unsupervised techniques for question de-
composition (Perez et al., 2020) and multi-stage
frameworks designed to make multi-hop question-
answering more interpretable (Fu et al., 2021).
More recently, the advent of LLMs, it has spurred
approaches that utilize prompting strategies, includ-
ing CoT (Wei et al., 2022), Least-to-Most, and itera-
tive successive prompting, to guide the decomposi-
tion process and facilitate complex reasoning (Guo
et al., 2022; Dua et al., 2022; Trivedi et al., 2023).

However, these methods often rely on extremely
large language models requiring significant com-
putational resources (Guo et al., 2022), necessitate
substantial amounts of costly or difficult-to-obtain
intermediate supervision or synthetic data for com-
plex reasoning types, introduce challenges in select-
ing the appropriate decomposition granularity (Dua
et al., 2022), or depend on external models for fac-
tual correction that may lack interpretability or be
limited in scope (Zhou et al., 2022).

Query Rewriting Query rewriting transforms
complex questions into more effective inputs for re-
trieval systems, evolving from early rule-based and
statistical methods to recent advancements lever-
aging LLMs to generate improved queries through
prompting or fine-tuning (Ma et al., 2023b; Ye et al.,
2023). More advanced techniques utilize LLMs to
generate queries from multiple perspectives, such
as simulating different user demographics, aiming
to enhance retrieval robustness against query varia-
tions (Li et al., 2023a). Some frameworks employ
iterative refinement processes where an LLM acts
as a rewrite editor, often guided by reinforcement
learning signals based on retrieval performance,
emphasizing the generation of informative rewrites
that provide rich context for the retriever (Ma et al.,
2023b).

Despite its promise, LLM-based query rewrit-
ing faces significant challenges as LLMs can suffer
from hallucination, leading to inaccurate or irrele-
vant generated queries (Ma et al., 2023b; Ye et al.,
2023). Ensuring the generated rewrites are con-
sistently correct, informative, and non-redundant
is difficult (Ye et al., 2023). Furthermore, these
approaches often require substantial computational
resources or large datasets of high-quality human-
annotated rewrites for effective training and reliable
performance (Ma et al., 2023b).

Knowledge Reasoning Recent RAG research
has increasingly focused on enabling LLMs to
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Figure 1: Architecture of the proposed UniRAG framework.

perform sophisticated external-knowledge-based
reasoning, moving beyond simple Direct Prompt-
ing (Brown et al., 2020).

Early work on CoT prompting revealed its emer-
gent reasoning ability is often limited to sufficiently
large models, resulting in illogical outputs or fail-
ures at smaller scales and contributing to high com-
putational costs, while also highlighting that CoT
does not guarantee correct reasoning paths, can
suffer from factual hallucinations, and is sensi-
tive to prompting details (Wei et al., 2022). Ap-
proaches like ReAct (Yao et al., 2023), which
synergize reasoning and actions by allowing in-
teraction with external tools, introduce structural
constraints that can reduce generation flexibility
and may lead to reasoning errors or repetitive out-
puts if retrieval is non-informative or the model
struggles to recover (Yao et al., 2023). Also, Self-
Ask (Press et al., 2023) which decomposes ques-
tions into explicit follow-up steps, can face chal-
lenges in obtaining reliable intermediate answers
or integrating external information sources effec-
tively, sometimes being limited in scope or inter-
pretability. Iterative retrieval-generation methods,
like ITER-RETGEN (Shao et al., 2023), aim for im-
proved relevance by guiding retrieval with previous
generations, but risk using incorrect augmentation
outputs and incurring iterative process overheads.
Prompting-based RAG approaches generally face
challenges in effectively balancing parametric ver-
sus non-parametric knowledge and suffer from un-
reliable automated evaluation metrics (Shao et al.,
2023). BlendFilter (Wang et al., 2024) improves
RAG for complex questions and noisy retrieval
by blending multi-source query generation and us-

ing the LLM for filtering, although it introduces a
tunable hyperparameter K, may not eliminate all
noise, and the fundamental challenge of capturing
relevance for complex queries persists.

The proposed UniRAG framework builds upon
query decomposition, query rewriting, and knowl-
edge reasoning, but differs from existing methods
reviewed in this section in several important re-
spects. Our query decomposition method is entity-
grounded, explicitly preserving semantic alignment
with the original query and ensuring each sub-query
remains focused and contextually precise. Our
knowledge reasoning employs a dedicated break-
down reasoning module to independently verify
each sub-fact, jointly ensuring factual complete-
ness and accuracy. Finally, our query rewriting
component actively leverages insights from this
reasoning process, adaptively refining queries to
address identified knowledge gaps and improve
retrieval quality.

3 Methods

In this section, we introduce UniRAG, a unified
RAG framework designed to improve performance
on knowledge-intensive queries. Our UniRAG
framework consists of three main phases (Fig-
ure 1):

• Entity-Grounded Query Decomposition: Given
an input query q, we first extract key entities us-
ing a pretrained language model (PLM). These
entities are then used to prompt the LLM to de-
compose q into a set of focused sub-queries that
target distinct aspects of the original information
need.
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• Break-Down Reasoning: For each sub-query gen-
erated in the previous phase, a retriever is used
to retrieve relevant documents from the knowl-
edge base. These retrieved documents are fur-
ther reranked based on contextual and semantic
relevance. Then, the top-ranked documents are
passed to the LLM, which is prompted with the
phrase “Let’s Break It Down” to perform fine-
grained reasoning over the retrieved content and
synthesize a final response.

• Iterative Query Rewriting: If the LLM deter-
mines that a confident response cannot be pro-
duced in the current iteration, the system initiates
an iterative loop. The LLM rewrites the original
query based on its reasoning history, and the re-
trieval and reasoning steps are repeated using the
rewritten query.

We note that UniRAG operates entirely through
prompting and does not require any additional
model training, enabling efficient and flexible de-
ployment. In the following subsections, we de-
scribe each of these phases in detail.

3.1 Entity-Grounded Query Decomposition

Given the original query q, we identify key enti-
ties using the PLM-based FLERT model (Schweter
and Akbik, 2020), a well-established Named En-
tity Recognition (NER) approach that uses a Con-
ditional Random Field (CRF) layer to model tag
dependencies and produce confidence scores. The
resulting entity list E = [e1, e2, . . . , em] includes
core elements such as named persons, locations,
dates, works of art, or subject nouns, which guide
query decomposition.

Once the list of core entities E =
[e1, e2, . . . , em] is obtained, we leverage the
reasoning capabilities of the LLM to generate a set
of focused sub-queries SQ = [sq1, sq2, . . . , sqp],
where each sqi is a simplified, single-hop question
derived from the original query q, guided by one or
more entities in E. By grounding the generation of
sub-queries in the extracted entities, the resulting
questions remain semantically relevant to the
original query while isolating distinct aspects of
the information need.

3.2 Break-Down Reasoning

3.2.1 Relevance Filtering
In this phase, we first retrieve the top-k most rele-
vant documents from the knowledge base for both

the original query q and each sub-query sqi. Let
Dq denote the top-k documents retrieved for q, and
let Dsqi represent the top-k documents retrieved
for each sub-query sqi. The final set of documents
used for reasoning is constructed as the union of all
retrieved sets Dc = Dq ∪Dsq1 ∪Dsq2 ∪· · ·∪Dsqp .
This combined document set Dc captures both gen-
eral and fine-grained evidence relevant to the origi-
nal query.

Although query decomposition improves the pre-
cision of individual sub-query retrievals, the com-
bined document set Dc may still contain irrelevant
or misleading documents. To address this, we in-
troduce an additional semantic reranking step to
align the retrieved documents more closely with
the original query q. Specifically, we employ the
mGTE model (Zhang et al., 2024) to assign a se-
mantic relevance score s(d, q) ∈ [0, 1] to each doc-
ument d ∈ Dc. Documents are filtered based on
a predetermined relevance threshold θ, retaining
only those with sufficiently high semantic align-
ment. Empirically, a threshold within the range of
0.8 ≤ θ ≤ 0.9 effectively balances filtering irrele-
vant content with maintaining critical information.

Formally, the filtered document set is given by
Dθ = {d ∈ Dc|s(d, q) ≥ θ}. The resulting refined
document set Dθ is then used as input to the LLM
in the retrieval reasoning phase, ensuring that the
final answer generation is focused exclusively on
highly relevant content.

3.2.2 Retrieval Reasoning
Given the filtered document set Dθ, the next step is
to perform reasoning to generate the final answer
to the query q. To facilitate this, we propose the use
of a structured prompt based on the phrase “Let’s
Break It Down”. This prompt instructs the LLM
to decompose the knowledge-intensive query into
clearly defined conceptual components, each repre-
senting a distinct sub-fact or constraint embedded
within the original question. Then, the LLM inde-
pendently verifies each component by reasoning
over the information in Dθ, producing an interme-
diate output, Responseint. Once all components
have been evaluated, the individual outcomes in
Responseint are aggregated to construct a com-
plete answer. This break-down-based reasoning
explicitly verifies each query constraint, thereby
improving factual accuracy and reducing the likeli-
hood of hallucinated or partially correct responses.
Figure 2 illustrates an example of this reasoning
approach.
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Figure 2: An intermediate response of prompting an
input question (e.g. from StrategyQA) with “Let’s Break
It Down” to decompose and summarize the retrieved
documents with reasoning in providing its final answer.

We note that the proposed prompt fundamen-
tally differs from the standard CoT prompting
paradigm (Wei et al., 2022). CoT prompting en-
courages the model to reason through a problem
sequentially, where each inference step builds upon
the previous one. While this approach is effective
for procedural tasks involving arithmetic or logical
deduction, it is less suited to knowledge-intensive
queries, which typically involve multiple indepen-
dent constraints rather than sequential dependen-
cies. In contrast, our break-it-down prompt aligns
directly with the conjunctive nature of knowledge-
intensive queries by explicitly promoting parallel
verification of each individual constraint. By ver-
ifying each sub-fact independently, our approach
prevents error propagation and enables the model
to systematically assess the accuracy and complete-
ness of each constraint.

3.2.3 Confidence-Based Answer Decision
After completing its initial reasoning, the LLM
evaluates whether it can produce a confident an-
swer. If it determines that the filtered document
set (Dθ) provides sufficient evidence, it proceeds
to generate a candidate answer. Before this answer
is accepted, or if the LLM indicates uncertainty
due to insufficient evidence or a potentially flawed
reasoning path, a metric-based validation step is ap-
plied. To support this decision, we employ RAGAs
(Retrieval Augmented Generation Assessment) (ES
et al., 2024), a framework for reference-free eval-
uation of RAG pipelines. The RAGAs framework
evaluates the generated candidate answer and the
retrieval process using five key criteria, such as
faithfulness, answer relevancy, contextual preci-
sion, contextual recall, and contextual relevancy.

We apply RAGAs to evaluate the candidate an-
swer, generating an overall score based on pre-
defined metrics. If the score exceeds a prede-
fined threshold, the answer is accepted, indicat-
ing that the retrieved documents Dθ sufficiently
support a faithful and correct response. If the
score falls below the threshold, the answer is re-
jected, and a query rewriting step is triggered to
improve retrieval. This RAGAs-gated process en-
sures that only answers sufficiently supported by
the retrieved knowledge are finalized, while insuffi-
cient responses prompt iterative refinement.

3.3 Iterative Query Rewriting

When the previous phase fails to produce a suffi-
ciently supported answer, the query rewriting step
is activated. This step leverages insights from
the LLM’s intermediate response Responseint.
Specifically, we prompt the LLM to generate a
new, refined query, denoted as q′. This new query
is formulated based on the content of Responseint,
incorporating the knowledge gaps identified by the
LLM during the previous phase.

The prompt explicitly instructs the LLM to
“Write a different version of its original query based
on the reasoning response you provided previously.
Also, avoid any sub-queries that were used pre-
viously”. This approach ensures that the rewrit-
ten query is informed by the LLM’s current un-
derstanding and reasoning, effectively acting as a
targeted follow-up query. The previous interme-
diate response Responseint thus serves as a form
of short-term memory for the LLM, guiding the
generation of q′. The constraint to avoid previously
used sub-queries (sqi) encourages exploration of
alternative search avenues or a reformulation of
the information need based on the initial retrieval
outcome.

This iterative process results in a refined query,
which is then sent back to the query decomposition
phase to repeat the process, allowing the frame-
work to dynamically adapt its search strategy based
on the results of the preceding retrieval and reason-
ing steps, aiming to acquire the specific missing
information required to construct a complete and
accurate final answer.

4 Experimental Setup

4.1 Datasets and Retrieval Database

In our experiment, we used several benchmark
datasets including multi-hop HotPotQA (Yang

18799



Table 1: Performance of UniRAG with GPT-3.5-Turbo. IMP represents the percentage of improvements compared
to baselines with respect to Exact Match on HotPotQA and 2WikiMultihopQA and Accuracy on StrategyQA.

Tasks Multi-hop Multi-hop Commonsense

Method
HotPotQA 2WikiMultihopQA StrategyQA

EM F1 IMP EM F1 IMP ACC IMP
Direct 0.400 0.4563 46.00% 0.340 0.3743 71.76% 0.606 20.46%
CoT 0.262 0.2900 122.90% 0.168 0.2056 247.62% 0.560 30.36%
ReAct 0.344 0.3937 69.77% 0.272 0.3139 114.71% 0.526 38.78%
Self-Ask 0.318 0.358 83.65% 0.252 0.2903 131.75% 0.468 55.98%
ITER-RETGEN 0.498 0.5399 17.27% 0.424 0.4643 37.74% 0.700 4.29%
BlendFilter 0.362 0.4016 61.33% 0.302 0.3279 93.38% 0.676 7.99%
UniRAG (Ours) 0.584 0.6138 - 0.584 0.6090 - 0.730 -

Table 2: Performance of UniRAG with LLaMA-3.1-8B as the backbone.

Tasks Multi-hop Multi-hop Commonsense

Method
HotPotQA 2WikiMultihopQA StrategyQA

EM F1 IMP EM F1 IMP ACC IMP
Direct 0.278 0.3708 175.54% 0.268 0.3292 190.30% 0.714 3.36%
CoT 0.292 0.3652 162.33% 0.262 0.3147 196.95% 0.698 5.73%
ReAct 0.308 0.3366 148.70% 0.412 0.4186 88.83% 0.562 31.32%
Self-Ask 0.318 0.4011 140.88% 0.220 0.2738 253.64% 0.702 5.13%
ITER-RETGEN 0.488 0.5175 56.97% 0.340 0.3612 128.82% 0.700 5.43%
BlendFilter 0.370 0.3967 107.03% 0.228 0.2377 241.23% 0.698 5.73%
UniRAG (Ours) 0.766 0.7834 - 0.778 0.7820 - 0.738 -

et al., 2018) and 2WikiMultiHopQA (Ho et al.,
2020), commonsense reasoning StrategyQA (Geva
et al., 2021), Biomedical MedMCQA (Pal et al.,
2022) and MedQA (Jin et al., 2020), fact-
verification SciFact (Wadden et al., 2020) and
FEVER (Thorne et al., 2018), logical deduction
LogiQA (Liu et al., 2020) and FOLIO (Han et al.,
2024) and arithmetic problem-solving GSM8K and
MAWPS (Kadlcík et al., 2023; Cobbe et al., 2021;
Koncel-Kedziorski et al., 2016) sets. These datasets
collectively provide challenging benchmarks for
evaluating complex factoid and reasoning capa-
bilities. To retrieve knowledge, we used the re-
triever of Generalized Text Embeddings (GTE) (Li
et al., 2023b) model, and the knowledge database
we used for our experiment is from the Wikipedia
abstract dumps in 2017, implemented by Khattab
et al. (2024) authors for multi-hop, commonsense,
and fact verification, and from the PubMed abstract
dumps, developed by Xiong et al. (2024) authors
for biomedical datasets. We excluded an external
knowledge base for logical deduction and arith-
metic problem-solving datasets.

4.2 Method Comparison

By following previous state-of-the-art (SOTA)
baselines from Shao et al. (2023) and Wang
et al. (2024) authors, we compare and evaluate
our UniRAG with the following baselines of 1) Di-
rect Prompting (Brown et al., 2020), 2) CoT (Wei
et al., 2022), 3) ReAct (Yao et al., 2023), 4) Self-
Ask (Press et al., 2023), 5) ITER-RETGEN (Shao
et al., 2023), and 6) BlendFilter (Wang et al., 2024)
methods in retrieval settings. We also compared
our UniRAG framework between the two prompt-
ing variations of the CoT (Wei et al., 2022) and our
proposed “Let’s Break It Down” prompt for various
complex tasks to evaluate our proposed method in
terms of its effectiveness in generalizability.

4.3 Model Selection

To evaluate whether our proposed method is ef-
fective in performance, we experimented with 6
SOTA LLMs including three black-box models
of GPT-3.5-Turbo1, GPT-4o2, and Gemini-1.5-

1https://platform.openai.com/docs/models/gpt-3.5-turbo
2https://platform.openai.com/docs/models/gpt-4o
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Table 3: Performance of UniRAG framework between CoT and “Let’s Break It Down” with GPT-3.5-Turbo in
various complex datasets.

Tasks Biomedical Fact-Verification Deductive Logic Arithmetic Problems
Method MedMCQA MedQA SciFact FEVER LogiQA FOLIO GSM8K MAWPS

ACC ACC ACC ACC ACC ACC EM EM
UniRAG (CoT) 0.604 0.574 0.848 0.678 0.372 0.466 0.778 0.974
UniRAG (Ours) 0.616 0.636 0.878 0.718 0.392 0.546 0.774 0.954

Table 4: Performance of UniRAG framework between CoT and “Let’s Break It Down” with LLaMA-3.1-8B in
various complex datasets.

Tasks Biomedical Fact-Verification Deductive Logic Arithmetic Problems
Method MedMCQA MedQA SciFact FEVER LogiQA FOLIO GSM8K MAWPS

ACC ACC ACC ACC ACC ACC EM EM
UniRAG (CoT) 0.624 0.628 0.640 0.470 0.432 0.600 0.844 0.848
UniRAG (Ours) 0.668 0.720 0.656 0.562 0.472 0.578 0.854 0.888

Flash3 and three white-box models of LLaMA-3.1-
8B (Grattafiori et al., 2024), Qwen-2.5-7B (Yang
et al., 2024) and Gemma-2-9B (Team et al., 2024)
models, which are all instruction-tuned models.

4.4 Evaluation Metrics

Based on the authors of Shao et al. (2023) and
Wang et al. (2024), we test the first 500 questions
for each dataset, in which we experiment from
the development datasets for multi-hop, biomedi-
cal, and fact-verification sets, the training dataset
for commonsense reasoning, and test datasets for
logical deduction and arithmetic sets accordingly.
Following Yao et al. (2023), Shao et al. (2023)
and Wang et al. (2024) authors, we evaluate by the
exact match (EM) and F1 scores for the multi-hop
and arithmetic problem-solving, and the accuracy
(ACC) for the commonsense reasoning, biomedical,
fact-verification and logical deduction datasets.

5 Results

5.1 Performance Comparison

We experimented and compared the previous SOTA
baselines, detailed in Tables 1 and Table 2 (also
see Appendix section Tables 10-13), which demon-
strate the consistent superiority of our proposed
UniRAG method across a diverse range of LLMs
and datasets. UniRAG achieved the highest scores
in both EM and F1-score on HotPotQA, 2Wiki-
MultihopQA, and accuracy on StrategyQA for five
out of the six tested LLMs, including LLaMA-3.1-

3https://ai.google.dev/gemini-api/docs/models#gemini-
1.5-flash

8B, Qwen-2.5-7B, Gemma2-9B, GPT-3.5-Turbo,
and Gemini-1.5-Flash, when compared against all
previous SOTA baselines. For instance, with the
LLaMA-3.1-8B model, UniRAG achieved an F1
score of 0.7834 on HotPotQA and 0.7820 on 2Wiki-
MultihopQA, and an accuracy of 0.738 on Strate-
gyQA. While ITER-RETGEN showed slightly bet-
ter performance than UniRAG on the HotPotQA
dataset specifically with the GPT-4o model, Uni-
RAG maintained its lead on 2WikiMultihopQA
and StrategyQA even with this powerful black-box
model, underscoring the general robustness and
significant performance gains from our method.

5.2 Generalizability on Various Tasks

Also, in terms of proving our proposed method is
indeed effective in generalizability on various com-
plex tasks, given the same UniRAG framework, the
results show that compared to the standard CoT
prompt, our “Let’s Break It Down” prompt has a
higher accuracy score for biomedical (e.g. MedM-
CQA and MedQA) and fact-verification (e.g. Sci-
Fact and FEVER) datasets. In Tables 3 and 4,
there are noticeable gaps of improvements for
FEVER and MedQA, with an improvement of
5.57% and 9.75% for GPT-3.5-Turbo and 16.01%
and 12.78% for LLaMA-3.1-8B models respec-
tively. In addition, there were marginal improve-
ments in other datasets including MedMCQA, Sci-
Fact, and LogiQA. Although there was a small
difference, our empirical results show that using
the CoT prompting is good on logical deductive and
arithmetic problem-solving datasets (e.g. FOLIO,
GSM8K and MAWPS). Based on our findings, the
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Table 5: Comparison of module-wise performance in
benchmark datasets with GPT-3.5 model.

Method HotPotQA 2WikiMultihopQA StrategyQA
EM F1 EM F1 ACC

Let’s Break It Down 0.440 0.5063 0.410 0.4452 0.724
w/ Decomp 0.478 0.5354 0.422 0.4608 0.702

w/ Decomp+Rewrite 0.492 0.5459 0.436 0.4825 0.706
w/ Decomp+Rewrite+Rerank 0.584 0.6138 0.584 0.6090 0.730

Table 6: Comparison of module-wise performance in
benchmark datasets with LLaMA-3.1 model.

Method HotPotQA 2WikiMultihopQA StrategyQA
EM F1 EM F1 ACC

Let’s Break It Down 0.346 0.385 0.270 0.2827 0.728
w/ Decomp 0.454 0.501 0.482 0.5145 0.680

w/ Decomp+Rewrite 0.548 0.5854 0.534 0.5618 0.734
w/ Decomp+Rewrite+Rerank 0.766 0.7834 0.778 0.7820 0.738

common feature of biomedical and fact-verification
datasets lies on the need for factual and domain-
specific expertise (e.g. specialized-medical terms
and scientific evidences) to guide the LLM to think
rationally before concluding with a definite answer
to the original query. Unlike the standard CoT,
which takes on procedural thinking, our observa-
tion shows that our “break down” reasoning is more
effective when the complex question requires com-
plementary and interrelated thinking processes.

5.3 Module-Wise Experiment

We conducted a comprehensive ablation study, with
the results presented in Table 5 and 6 for the
GPT-3.5-Turbo and LLaMA-3.1-8B models, re-
spectively. Our analysis begins with a baseline
using only the reasoning module ("Let’s Break It
Down"), which yields modest performance. The in-
troduction of the "Decomposition" module results
in a consistent and significant performance increase
across all datasets for both models. Subsequently,
integrating the "Rewriting" module further elevates
the performance, which indicates that refining the
generated reasoning steps is beneficial for accuracy.
Most notably, the full framework, which combines
decomposition, reasoning, rewriting, and rerank-
ing, demonstrates a substantial leap in performance
that far surpasses any of the partial configurations.
This synergistic effect is particularly pronounced
in the LLaMA-3.1-8B model, where the EM score
on HotpotQA, for instance, provided substantial
increase from 0.346 with only reasoning to 0.766
with all modules enabled.

This large performance delta strongly validates
our hypothesis that each component is integral to
the framework’s success, working in concert to ef-
fectively tackle complex question-answering tasks.

Figure 3: Experimentation on observing the optimal
number of sub-queries from HotPotQA and 2WikiMul-
tihopQA datasets with LLaMA-3.1-8B model.

Other LLMs including GPT-4o, Gemini-1.5-Flash,
Qwen-2.5-7B and Gemma2-9B have shown simi-
lar substantial performance results (see Appendix
Tables 14-17).

5.4 Optimal Number of Sub-Queries

To determine the optimal number of sub-queries
for our query decomposition framework, we per-
formed using the LLaMA-3.1-8B model, with the
results for the HotPotQA and 2WikiMultihopQA
datasets presented in Figure 3. These graphs il-
lustrate the relationship between the number of
generated sub-queries (ranging from 2 to 10) and
the resulting performance in terms of EM and F1-
score. For both datasets, a consistent trend was
observed: performance metrics generally improved
as the number of sub-queries increased from two,
reaching a distinct peak before declining with fur-
ther increases. Specifically, optimal performance
was achieved with 8 sub-queries for both the Hot-
PotQA (e.g. 0.595 for EM and 0.63 for F1) and
2WikiMultihopQA (e.g. 0.565 for EM and 0.57 for
F1) datasets. Increasing the sub-query count to 10
led to a discernible drop in performance across both
metrics and datasets, indicating that 8 sub-queries
represent the most effective balance for these tasks
with the LLaMA model.

Furthermore, our study reveals that different
task domains such as fact verification, biomedi-
cal and arithmetic problems tasks, naturally benefit
from different levels of decomposition, but a near-
optimal performance can often be achieved without
extensive, fine-grained tuning. For instance, in do-
mains requiring direct fact-verification, such as Sci-
Fact and FEVER, performance is optimal with just
2 sub-queries. This is intuitive, as these tasks often
involve verifying a single proposition rather than
solving a multi-step problem. Increasing the num-
ber of sub-queries for these tasks shows a slight,
graceful decline in performance, indicating that
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Table 7: Optimal sub-query analysis on benchmark datasets using LLaMA-3.1-8B. EM represents the Exact Match
and ACC represents the Accuracy.

HotpotQA 2WikiMultihopQA StrategyQA GSM8K MAWPS MedMCQA MedQA LogiQA FOLIO SciFact FEVER
Sub-Queries EM EM ACC EM EM ACC ACC ACC ACC ACC ACC

2 0.542 0.464 0.782 0.868 0.914 0.672 0.676 0.546 0.682 0.932 0.782
4 0.570 0.470 0.780 0.850 0.906 0.664 0.696 0.566 0.672 0.922 0.778
6 0.584 0.502 0.794 0.882 0.896 0.668 0.672 0.548 0.674 0.912 0.776
8 0.594 0.560 0.800 0.866 0.906 0.686 0.708 0.570 0.660 0.898 0.766

10 0.576 0.532 0.788 0.858 0.904 0.668 0.676 0.556 0.610 0.910 0.776

Table 8: Iteration analysis across benchmark datasets using LLaMA-3.1-8B. EM represents the Exact Match, ACC
represents the Accuracy, CC represents the Correct Count, and IMP represents the percentage of Improvements (%).

HotpotQA 2WikiMultihopQA StrategyQA GSM8K MAWPS MedMCQA
Max Iter. EM CC IMP EM CC IMP ACC CC IMP EM CC IMP EM CC IMP ACC CC IMP

1 0.766 383 2.61 0.776 388 2.06 0.840 420 4.52 0.854 429 3.50 0.888 444 2.93 0.668 334 6.59
2 0.770 385 2.08 0.774 387 2.33 0.858 429 2.33 0.866 433 2.54 0.910 455 0.44 0.680 340 4.71
3 0.764 382 2.80 0.782 391 1.28 0.872 436 0.69 0.870 435 2.07 0.906 453 0.88 0.700 350 1.71
4 0.786 393 - 0.790 395 0.25 0.856 428 2.57 0.888 443 0.23 0.914 457 - 0.716 356 -
5 0.770 385 2.08 0.792 396 - 0.877 439 - 0.890 444 - 0.904 452 1.11 0.702 351 1.42

Table 9: Iteration analysis across benchmark datasets using LLaMA-3.1-8B.

MedQA LogiQA FOLIO SciFact FEVER
Max Iter. ACC CC IMP ACC CC IMP ACC CC IMP ACC CC IMP ACC CC IMP

1 0.732 366 2.20 0.472 239 7.53 0.560 280 9.64 0.656 329 2.74 0.670 335 8.36
2 0.782 390 3.68 0.492 246 4.47 0.600 300 2.33 0.666 333 1.50 0.698 349 4.01
3 0.804 402 - 0.500 250 2.80 0.614 307 - 0.676 338 - 0.698 349 4.01
4 0.796 398 2.82 0.508 254 1.18 0.608 304 0.99 0.642 321 5.30 0.712 356 1.97
5 0.784 392 2.73 0.514 257 - 0.608 304 0.99 0.644 322 4.97 0.726 363 -

a simple, low-overhead default works best. Con-
versely, for more complex reasoning tasks, such as
those in the biomedical domain (MedMCQA and
MedQA), performance peaks at 8 sub-queries. This
aligns with our findings for multi-hop datasets and
suggests that tasks requiring deeper, multi-faceted
reasoning benefit from more extensive decomposi-
tion. For the GSM8K arithmetic problem-solving
dataset, the peak EM is at 6 sub-queries (0.882),
but using 8 sub-queries still yields a strong score
(0.866). This indicates that a single, well-chosen
default (e.g., 6 or 8) can serve as a robust baseline
across a variety of complex domains, minimizing
the need for exhaustive tuning for every new appli-
cation. Table 7 provides a comprehensive analy-
sis on observing the optimal number of sub-query
parameter from LLaMA-3.1-8B model in various
benchmark datasets.

5.5 Iteration Analysis

Acknowledging concerns about our pipeline’s itera-
tive nature, we argue that UniRAG achieves a near-
optimal balance of accuracy and efficiency within
just a few steps, making it practical for real-world
deployment. To substantiate this, we conducted

an ablation study, presented in Table 8 and 9, ana-
lyzing performance improvement across multiple
iterations on various benchmark datasets. Our find-
ings reveal a clear pattern of diminishing returns,
where the most significant accuracy gains occur in
the initial steps.

6 Conclusion

The UniRAG framework enhances LLM efficacy
for knowledge-intensive questions by integrating
query decomposition and rewriting with our pro-
posed reasoning strategy. Our framework breaks
down the complex information needs while improv-
ing query searchability in RAG systems. UniRAG
further utilizes a reranker and a "Let’s Break It
Down" prompting strategy to ensure logical synthe-
sis and reduce hallucinations. Demonstrating supe-
rior performance over the previous SOTA baselines,
UniRAG shows robust generalization across di-
verse LLMs like LLaMA-3.1-8B, GPT-3.5-Turbo,
and Gemini-1.5-Flash.
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Limitations

Our UniRAG framework uses confidence score
decision-making with external RAGAs assess-
ments that could potentially introduce biases or un-
reliable decisions due to threshold sensitivity. For-
tunately, our empirical observations in this study
indicated that the model’s performance was not sig-
nificantly sensitive to this threshold. Consequently,
we set it to a fixed value that provided the best
performance in this paper.
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Table 10: Performance of UniRAG with GPT-4o. IMP represents the percentage of improvements compared to
baselines with respect to Exact Match on HotPotQA and 2WikiMultihopQA and Accuracy on StrategyQA.

Tasks Multi-hop Multi-hop Commonsense

Method
HotPotQA 2WikiMultihopQA StrategyQA

EM F1 IMP EM F1 IMP ACC IMP
Direct 0.464 0.5195 18.97% 0.522 0.5460 33.72% 0.662 24.77%
CoT 0.452 0.4989 22.12% 0.462 0.4853 51.08% 0.762 8.40%
ReAct 0.418 0.4635 32.06% 0.382 0.4175 82.72% 0.768 7.55%
Self-Ask 0.510 0.5600 8.24% 0.632 0.6555 10.44% 0.736 12.23%
ITER-RETGEN 0.592 0.6484 -6.76% 0.620 0.6445 12.58% 0.810 1.98%
BlendFilter 0.480 0.5366 15.00% 0.334 0.3542 108.98% 0.806 2.48%
UniRAG (Ours) 0.552 0.6116 - 0.698 0.7196 - 0.826 -

Table 11: Performance of UniRAG with Gemini-1.5-Flash as the backbone.

Tasks Multi-hop Multi-hop Commonsense

Method
HotPotQA 2WikiMultihopQA StrategyQA

EM F1 IMP EM F1 IMP ACC IMP
Direct 0.344 0.3900 63.95% 0.320 0.3586 76.25% 0.678 14.75%
CoT 0.374 0.4220 50.80% 0.370 0.4148 52.43% 0.648 20.06%
ReAct 0.312 0.3619 80.77% 0.320 0.3615 76.26% 0.688 13.08%
Self-Ask 0.428 0.4757 31.78% 0.448 0.4808 25.89% 0.706 10.20%
ITER-RETGEN 0.548 0.5912 2.92% 0.472 0.4975 19.49% 0.760 2.37%
BlendFilter 0.316 0.3938 78.48% 0.206 0.2413 173.79% 0.754 3.18%
UniRAG (Ours) 0.564 0.6161 - 0.564 0.5932 - 0.778 -

Table 12: Performance of UniRAG with Qwen-2.5-7B as the backbone.

Tasks Multi-hop Multi-hop Commonsense

Method
HotPotQA 2WikiMultihopQA StrategyQA

EM F1 IMP EM F1 IMP ACC IMP
Direct 0.304 0.3764 64.47% 0.312 0.3668 72.44% 0.698 5.73%
CoT 0.254 0.3271 96.85% 0.268 0.3036 100.75% 0.698 5.73%
ReAct 0.166 0.1932 201.20% 0.248 0.2723 116.94% 0.588 25.51%
Self-Ask 0.390 0.4368 28.21% 0.412 0.4454 30.58% 0.662 11.48%
ITER-RETGEN 0.384 0.4439 30.21% 0.260 0.3114 106.92% 0.728 1.37%
BlendFilter 0.338 0.3771 47.93% 0.210 0.2178 156.19% 0.678 8.85%
UniRAG (Ours) 0.500 0.5465 - 0.538 0.5606 - 0.738 -

Table 13: Performance of UniRAG with Gemma-2-9B as the backbone.

Tasks Multi-hop Multi-hop Commonsense

Method
HotPotQA 2WikiMultihopQA StrategyQA

EM F1 IMP EM F1 IMP ACC IMP
Direct 0.356 0.4404 92.13% 0.258 0.3087 131.78% 0.650 14.15%
CoT 0.336 0.4175 103.57% 0.220 0.2612 171.82% 0.658 12.77%
ReAct 0.156 0.1823 338.46% 0.130 0.1382 360.00% 0.574 29.27%
Self-Ask 0.392 0.4771 74.49% 0.318 0.3664 88.05% 0.680 9.12%
ITER-RETGEN 0.362 0.4544 88.95% 0.296 0.348 102.03% 0.640 15.94%
BlendFilter 0.302 0.3864 126.49% 0.242 0.2811 147.11% 0.704 5.40%
UniRAG (Ours) 0.684 0.7323 - 0.598 0.6135 - 0.742 -
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A Entity Extraction Comparison

To improve query decomposition, often hindered
by inconsistent entity extraction from LLMs, we
leverage a specialized PLM to identify crucial enti-
ties within complex questions. Our ablation study
compared the NER capabilities of RoBERTa (Liu
et al., 2019), LUKE (Yamada et al., 2020), and
FLERT (Schweter and Akbik, 2020) to select the
optimal PLM for generating high-quality entity in-
puts essential for forming effective sub-queries. We
evaluated these models based on Semantic Textual
Similarity (STS) cosine similarity scores (detailed
in Appendix Figure 4). While both RoBERTa and
LUKE are proficient in entity extraction, our ex-
periments highlighted a distinct advantage of the
FLERT model to extensively extract and distin-
guish a more granular array of specific entities. Un-
like RoBERTa and LUKE models, FLERT demon-
strated a superior ability to identify detailed entity
types beyond broader categories, such as recog-
nizing the title of a film or book, geographical lo-
cations of places, identifying the types of various
products, being accessible to adopt multilingual
terms, and dates of events with greater specificity.
This nuanced entity recognition, not observed to
the same detailed extent in RoBERTa and LUKE
during our experiments, proved crucial. Conse-
quently, the STS benchmark results consistently
favored FLERT, which achieved the highest STS
score in 10 out of the 18 evaluated configurations.
This robust ability to capture more specific and vi-
tal entities makes FLERT our chosen PLM, as it
is expected to provide the main LLM with more
precise entity sets, thereby enhancing sub-query
generation and overall performance.

B Prompt Templates

In this section, we provide our representative
prompting templates that we used in testing on
various benchmark datasets including multi-hop
HotPotQA and 2WikiMultihopQA, and common-
sense reasoning StrategyQA for brevity. Figure 5
and 6 provide the visualization of examples of our
prompt template. These specific prompts include
instructions for query decomposition, retrieval rea-
soning, and query rewriting. Our structural prompt-
ing is the same throughout our experiment, varied
by few-shot examples for each dataset.
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Figure 4: Semantic-Textual-Similarity(STS) performance comparisons from black-box and white-box models.

Table 14: Comparison of module-wise performance in benchmark datasets with GPT-4o model.

Method HotPotQA 2WikiMultihopQA StrategyQA
EM F1 EM F1 ACC

Let’s Break It Down 0.520 0.5789 0.580 0.6134 0.840
w/ Decomp 0.530 0.5896 0.592 0.6083 0.832

w/ Decomp+Rewrite 0.570 0.6339 0.622 0.6399 0.812
w/ Decomp+Rewrite+Rerank 0.552 0.6116 0.698 0.7196 0.826

Table 15: Comparison of module-wise performance in benchmark datasets with Gemini-1.5-Flash model.

Method HotPotQA 2WikiMultihopQA StrategyQA
EM F1 EM F1 ACC

Let’s Break It Down 0.304 0.3773 0.332 0.4024 0.758
w/ Decomp 0.460 0.5121 0.402 0.4303 0.762

w/ Decomp+Rewrite 0.502 0.5447 0.474 0.5045 0.754
w/ Decomp+Rewrite+Rerank 0.564 0.6161 0.564 0.5932 0.778

Table 16: Comparison of module-wise performance in benchmark datasets with Qwen-2.5-7B model.

Method HotPotQA 2WikiMultihopQA StrategyQA
EM F1 EM F1 ACC

Let’s Break It Down 0.262 0.3081 0.248 0.3014 0.714
w/ Decomp 0.412 0.4605 0.370 0.4000 0.716

w/ Decomp+Rewrite 0.490 0.5369 0.518 0.5492 0.712
w/ Decomp+Rewrite+Rerank 0.500 0.5465 0.538 0.5606 0.738

Table 17: Comparison of module-wise performance in benchmark datasets with Gemma2-9B model.

Method HotPotQA 2WikiMultihopQA StrategyQA
EM F1 EM F1 ACC

Let’s Break It Down 0.328 0.3700 0.324 0.3620 0.726
w/ Decomp 0.392 0.4330 0.398 0.4266 0.606

w/ Decomp+Rewrite 0.514 0.5594 0.510 0.5365 0.716
w/ Decomp+Rewrite+Rerank 0.684 0.7327 0.598 0.6135 0.742
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Figure 5: Our proposed prompt for query decomposition
and retrieval reasoning for HotPotQA and 2WikiMulti-
hopQA datasets.

Figure 6: Our proposed prompt for retrieval reasoning
for StrategyQA dataset and prompt for query rewriting.
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