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Abstract

Large Language Models (LLMs) have achieved
impressive performance across a range of
natural language processing tasks. How-
ever, recent advances demonstrate that fur-
ther gains—particularly in complex reason-
ing tasks—require more than merely scal-
ing up model sizes or training data. One
promising direction is to enable models to
“think” during the reasoning process. Recently,
Quiet-STaR significantly improves reasoning
by generating token-level thought traces, but
incurs substantial inference overhead. In this
work, we propose Fast Quiet-STaR, a more
efficient reasoning framework that preserves
the benefits of token-level reasoning while re-
ducing computational cost. Our method in-
troduces a curriculum-learning-based training
strategy that gradually reduces the number of
thought tokens, enabling the model to inter-
nalize more abstract and concise reasoning
processes. We further extend this approach
to the standard Next Token Prediction (NTP)
setting through reinforcement learning-based
fine-tuning, resulting in Fast Quiet-STaR NTP,
which eliminates the need for explicit thought
token generation during inference. Experi-
ments on four benchmark datasets with Mis-
tral 7B and Qwen2.5 7B demonstrate that Fast
Quiet-STaR consistently outperforms Quiet-
STaR in terms of average accuracy under the
same inference time budget. Notably, Fast
Quiet-STaR NTP achieves an average accuracy
improvement of 9% on Mistral 7B and 5.7%
on Qwen2.5 7B, while maintaining the same
inference latency. Our code will be available
at https://github.com/huangwei200012/Fast-
Quiet-STaR.

1 Introduction

Artificial intelligence has made remarkable
progress in recent years (Xiong et al., 2023),
particularly with large language models (LLMs)

*These authors contributed equally to this work.
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Figure 1: Performance comparison between Fast Quiet-
STaR, Quiet-STaR and the pre-trained model (NTP).
“Inference Time” represents the Time-to-First-Token
(TTFT) of each model variant. Note that with the same
number of thought tokens, Fast Quiet-STaR shares the
same inference time with Quiet-STaR, but enjoys a sig-
nificant performance boost. Additionally, Fast Quiet-
STaR can be extended to the NTP setting, improving
model performance without additional inference time
overhead.

(Achiam et al., 2023; Grattafiori et al., 2024a)
through pre-training models with billions of param-
eters on massive datasets. However, merely scaling
up model size or increasing the amount of training
data is insufficient for enabling strong performance
on tasks that require complex reasoning or long-
term planning. To further enhance model capabili-
ties, one promising direction is to enable models to
engage in autonomous “thinking” before producing
final answers. Recently, a growing body of research
has explored this paradigm to strengthen the rea-
soning abilities of LLMs. Notably, models such as
OpenAI o1 (OpenAI et al., 2024), DeepSeek-R1
(Guo et al., 2025), QwQ (Zheng et al., 2024), and
Kimi-1.5 (Team et al., 2025) have demonstrated
impressive performance across a variety of chal-
lenging tasks, such as mathematical competition
problems (Hendrycks et al., 2021; Cobbe et al.,
2021).

Recently, Quiet-STaR (Quiet Self-Taught Rea-
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soner) (Zelikman et al., 2024) has been proposed
as a novel reasoning paradigm that shifts the think-
ing process from the problem level to a finer,
token-level granularity. In Quiet-STaR, before
predicting the next token, the model first gener-
ates a sequence of intermediate thought trace (rep-
resented as <|start_of_thought|>,thought_token1,
thought_token2, ... <|end_of_thought|>), based
on which the model predicts the next token. Com-
pared to other approaches, Quiet-STaR can sig-
nificantly enhance the model’s reasoning ability
through a lightweight unsupervised training pro-
cess. For instance, it achieves a 10% performance
gain on CommonsenseQA (Talmor et al., 2018)
for the Mistral 7B (Jiang et al., 2023) by continue
pre-training with only 0.2M tokens, demonstrating
remarkable improvements through efficient train-
ing.

Although Quiet-STaR significantly enhances the
model’s reasoning capabilities, it substantially in-
creases inference overhead due to the requirement
of generating a thought trace for every token. As
shown in Figure 1, even when using only 8 thought
tokens, the average Time-To-First-Token (TTFT)
of Quiet-STaR remains over 10 times higher than
that of conventional next token prediction (NTP)
models. Despite the high inference costs, these
thought tokens cannot be directly reduced or elim-
inated as they are the main contributor to perfor-
mance improvements. For example, as shown in
Figure 1, halving the number of thought tokens
from 16 to 8 leads to a 4.7% accuracy drop. Such
dilemma on efficiency severely undermines the
practical value of Quiet-STaR.

Prior work has shown that LLMs are capa-
ble of skipping reasoning steps by omitting non-
essential steps without sacrificing overall reason-
ing performance (Liu et al., 2024). Inspired by
this, we believe that within the Quiet-STaR reason-
ing paradigm, the model can maintain its strong
reasoning abilities obtained from long thought-
trace training by compressing the number of
thought tokens and keeping only a more ab-
stract thought trace. To improve the efficiency
of the Quiet-STaR reasoning paradigm with min-
imal performance degradation, we propose Fast
Quiet-STaR. We employ a multi-stage training
strategy that progresses from easy to hard. That is,
we gradually guide the model from generating a
detailed thought trace using more thought tokens
to generating a concise thought trace using fewer
thought tokens. To further accelerate the Quiet-

STaR inference paradigm to NLP-level efficiency,
we employ a reinforcement learning-based fine-
tuning strategy for Fast Quiet-STaR model under
the NTP setting. The resulting Fast Quiet-STaR
NTP model preserves the original thinking abilities
of Fast Quiet-STaR while eliminating reliance on
generating explicit thought trace during inference.

We evaluate our method on two open-source
models, Mistral 7B (Jiang et al., 2023) and
Qwen2.5 7B (Qwen et al., 2025) across four public
datasets. Extensive experiments show that, given
the same number of thought tokens(same inference
time), Fast Quiet-STaR achieves substantial perfor-
mance gains over Quiet-STaR. Furthermore, under
equivalent inference time, Fast Quiet-STaR NTP
improves the average accuracy by 9% on Mistral
7B and 5.7% on Qwen2.5 7B compared to the orig-
inal pre-trained models.

We summarize our contribution as follows:

• We propose Fast Quiet-STaR, a novel training
paradigm that compresses token-level thought
traces to significantly reducing inference over-
head while preserving the strong reasoning
abilities imparted by the Quiet-STaR frame-
work.

• We introduce a curriculum learning-based
multi-stage training strategy that progressively
guides the model to learn a more concise
thought trace, enabling it to internalize ef-
ficient reasoning patterns and express them
compactly without performance degradation.
We further accelerate Fast Quiet-STaR to the
standard NTP-level setting via reinforcement
learning-based fine-tuning, enabling implicit
reasoning without explicit thought token gen-
eration.

• Extensive experiments show that Fast Quiet-
STaR achieves comparable or even better per-
formance than standard Quiet-STaR while
reducing thought tokens. Fast Quiet-STaR
NTP significantly outperforms the pre-trained
model without increasing the inference time.

2 Related Works

2.1 LLM Reasoning

In recent years, enhancing the reasoning capabili-
ties of large language models has become a major
research focus (Rajani et al., 2019; Zhang et al.,
2025; Pan et al., 2025). The Chain-of-Thought
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(CoT) (Kojima et al., 2022) prompting technique
explicitly guides models to generate intermediate
reasoning steps. Tree of Thoughts (ToT) (Yao et al.,
2023) explores multiple reasoning paths through
a tree-structured search. The CPO (Zhang et al.,
2024) method combines ToT with Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2023),
using reasoning paths generated by ToT as paired
training data to directly optimize the model’s CoT
abilities. Self-Consistency (Wang et al., 2022) sam-
ples multiple reasoning paths for the same prob-
lem and selects the final answer through a voting
mechanism. Methods based on Monte Carlo Tree
Search (MCTS) (Qi et al., 2024) introduce classi-
cal planning algorithms into the reasoning process.
Coconut (Hao et al., 2024) explores the potential of
unconstrained reasoning in latent spaces, highlight-
ing the structural thinking capabilities of LLMs.

In the latest research, reinforcement learning
(RL) (Schulman et al., 2017) has emerged as a
new paradigm for enhancing LLM reasoning. Ope-
nAI’s o1 (OpenAI et al., 2024) achieves significant
improvements in reasoning performance. Similarly,
models such as DeepSeek-R1 (Guo et al., 2025),
Kimi 1.5 (Team et al., 2025), and QWQ (Zheng
et al., 2024) incorporate reinforcement learning
(Shao et al., 2024) into pretrained models, exhibit-
ing strong reasoning abilities.

Unlike most approaches that prompt models
to “think before answering” on a per-question ba-
sis, Quiet-STaR (Zelikman et al., 2024) shifts the
reasoning process to a finer-grained, token-level
paradigm. By encouraging deep reasoning at every
token generation step, Quiet-STaR further enhances
reasoning quality. However, as it requires long-
range reasoning at every token, it incurs substantial
inference latency, which limits its applicability in
real-world scenarios.

2.2 Curriculum Learning
Curriculum Learning is a training strategy that or-
ganizes the learning process by first presenting
simpler examples and gradually introducing more
complex ones. In recent years, curriculum learning
has been widely adopted in the training of Large
Language Models (LLMs) (Xu et al., 2020; Naïr
et al., 2024). LDCAL (Li et al., 2024) leverages
LLMs themselves to assess the difficulty of training
instances, guiding the model to learn in an easy-to-
hard sequence. TAPIR (Yue et al., 2024) constructs
a task-aware curriculum scheduling framework that
dynamically adjusts the task distribution and pro-

gressively increases task complexity. Moreover,
curriculum learning has also been employed to im-
prove LLMs’ understanding of long contexts by
gradually increasing the context window size dur-
ing training (Grattafiori et al., 2024b). Kimi 1.5
(Team et al., 2025) integrates a curriculum learning
strategy during the reinforcement learning stage,
allowing the model to start with simpler question
before transitioning to more complex ones.

Unlike existing studies that apply curriculum
learning at the data or task scheduling level, our
approach integrates curriculum learning into the
token-level reasoning process. By combining this
strategy with the Quiet-STaR inference paradigm,
our Fast Quiet-STaR better learns reasoning behav-
iors under limited Thought Tokens.

3 Methodology

The training procedure of Fast Quiet-STaR is illus-
trated in Figure 2. Building upon Quiet-STaR, we
propose a progressive, multi-stage training frame-
work inspired by the principles of curriculum learn-
ing. This approach facilitates a gradual transition
from easy to hard reasoning paradigms. In par-
ticular, during the final stage of training, we in-
corporate reinforcement learning to transition the
reasoning paradigm of Quiet-STaR to the the stan-
dard NTP paradigm.

3.1 Quiet-STaR
Quiet-STaR (Zelikman et al., 2024) is a method
for enabling language models to autonomously
learn to generate internal rationales—referred to as
“thoughts”—in order to improve their ability to pre-
dict future tokens.The training process consisting
of three distinct phases—Think, Talk, and Learn.

3.1.1 Think Process
Given a token sequence X = {x0, x1, ..., xt},
Quiet-STaR n-m (n and m represent the number
of thought/ahead tokens, respectively) generates
a corresponding thought of length n-1, i.e.,
Ti = (ti1, ti2, ..., ti(n−1)), after each token xi.
Each thought is enclosed by learned meta-tokens
<|start_of_thought|> and <|end_of_thought|>,
which serve to activate and terminate the gen-
eration of thought, respectively. This process
is executed in parallel using a custom attention
mask, ensuring that each generated thought
attends only to the corresponding prefix of
the input sequence and the previously gener-
ated tokens within the same thought, denoted as:

18773



Quiet-STaR 16-8

Think Process(TP)

Start End
1st

Token

Talk Process

LM LM LM

x! x" x# x$

Predict
X!

LMPredict
X"X!

Reinforce and Log-likelihood Loss

C
ontinue

Pretraining

C
ontinue

Pretraining

13th
Token

TP

TP

TP TP

Predict
X#

LM

Fast Quiet-STaR n-m (n<16 m<8)

Think Process(TP)

Start End
1st

Token

Talk Process

LM LM LM

x! x" x# x$

Predict
X!

LMPredict
X"X!

Reinforce and Log-likelihood Loss

(n-3)th
Token

TP

TP

TP TP

Predict
X$%&

LM

C
ontinue

Pretraining

C
ontinue

Pretraining

C
ontinue

Pretraining

Base
Model

LM

x!

x"

x#

x$

LM

LM

Fast Quiet
STaR-NTP

Curriculum Learning Examples

Text: John orders food for a massive restaurant. He orders 1000 pounds of beef for $8 per pound. He also orders twice that much chicken at 
$3 per pound, so John spent a total of $ [   ?   ].

Results of Different Inference Modes

Mode: Fast Quiet-STaR
Result: 14000
Difficulty: Hard

Mode: Quiet-STaR 16-8
Result:<start>1000*8=8000,200
0*3=6000,8000+6000=14000
<end>14000
Difficulty: Easy

Mode: Base model
Result: 11000
Difficulty: Hard

Mode: Multi Quiet-STaR 8-4
Result:<start>8000+6000=14000
<end>14000
Difficulty: Medium

Increased 
Difficulty

Increased 
Difficulty

Adapting 
Quiet-STaR
Paradigm

Fast Quiet-STaR Training Process

LM

x!

x"

x#

x$

LM

LM

Figure 2: Fast Quiet-STaR training pipeline and Curriculum Learning Examples.

P (tij |x1, ..., xi−1,<|start_of_thought|>, ..., ti(j−1)).
Note that m will be introduced in the Learn Process
section.

3.1.2 Talk Process
Quiet-STaR introduces a learnable interpolation
mechanism. By employing a shallow MLP head to
compute an interpolation weight w, conditioned on
the hidden states of both the <|end_of_thought|>
token and the original input tokens. This weight
modulates the influence of post-thought logits on
the final prediction. The resulting mixed log-
probability is defined in Equation 1.

log ptalk
i = wi log p

base
i + (1− wi) log p

thought
i

(1)
Among them, pbase

i represents the logits before
thought, and p

thought
i represents the logits after

thought, w.r.t the token xi.

3.1.3 Learn Process
Quiet-STaR leverages the REINFORCE algorithm
(Phan et al., 2023) to optimize thought selection
based on utility. It maximizes the log-likelihood of
the next m (the number of ahead tokens) ground-
truth tokens Xj+1:j+m+1 given prior context and a
candidate rationale Tj . To reduce variance, multi-
ple rationale continuations are sampled per token.
The reward rj for each Tj is defined as the differ-

ence between its log-likelihood log ptalk
j:j+m and the

mean log-likelihood across all sampled rationales
(see Eq. 2). Quiet-STaR incorporates this reward

rj = log ptalk
j:j+m (Xj+1:j+m+1)

− log p̄talk
j:j+m (Xj+1:j+m+1) (2)

into a REINFORCE loss to update the model pa-
rameters θ, encouraging thoughts that exceed the
average, as shown in Equation 3. Additionally,
Quiet-STaR includes a log-likelihood loss term, de-
noted as LNLL

i , to ensure that the model not only
learns to optimize the talking-head but also contin-
ues to receive next-token prediction signals for the
base language model head.

∇θLREINFORCE
j =

−rj ·∇θ log pθ (Tj | [X:j ;<|start_of_thought|>])
(3)

3.2 Fast Quiet-STaR
3.2.1 Fast Quiet-STaR
Compared with the mainstream NTP reasoning
paradigm, Quiet-STaR introduces a new reasoning
mechanism of "think first, talk later" for each token.
Since it allows thinking, this mechanism effectively
reduces the difficulty of predicting the next token,
making the model perform better. Within the Quiet-
STaR framework, a key hyperparameter, n, denotes
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the number of thought tokens, which has a signifi-
cant impact on model performance. As illustrated
in Figure 1, the model exhibits stronger reasoning
abilities when more thought tokens are provided,
while its performance degrades noticeably as the
number of thought tokens decreases.

This phenomenon raises a critical question: why
does a reduced number of thought tokens sig-
nificantly impair the performance of Quiet-
STaR, and how can we minimize the use of
thought tokens without compromising model
performance? To investigate this, we analyze the
thought traces under varying numbers of thought
tokens. As shown in the lower part of Figure 2,
reducing the number of thought tokens forces the
model to complete the reasoning process within a
shorter sequence. This poses greater demands on
the model’s ability to compress its reasoning steps,
presenting a more challenging inference setting.
In contrast to learning under easier setting (with
more thought tokens), directly training the model
on more difficult ones (with fewer thought tokens)
proves less effective. This observation aligns with
a core insight from curriculum learning: models
often struggle to learn effectively when exposed to
high-difficulty tasks early in training. Therefore,
adopting a curriculum learning strategy, which pro-
gressively trains Quiet-STaR from easier settings
to harder ones, holds promise for reasoning perfor-
mance with limited thought tokens.

Based on the above observations, we adopt a
curriculum learning strategy to facilitate the acqui-
sition of reasoning paradigms and propose Fast
Quiet-STaR approach. This method decomposes
the training process into multiple stages, each
aligned with a specific level of reasoning difficulty
and corresponding modeling objective.

In the initial stage, the model is trained with a
larger number of thought tokens. This setting rep-
resents a easy reasoning setting. As training pro-
gresses, we gradually reduce the number of thought
tokens, thereby encouraging the model to engage
in more concise and abstract reasoning under in-
creasingly constrained resources. This encourages
the model to progressively adapt to more difficult
reasoning setting, enhancing both its reasoning ef-
ficiency and its generalization capabilities in lower-
resource scenarios. Specifically, we begin with 16
thought tokens and 8 ahead tokens (16-8). During
training, we gradually reduce it to 12-4 and 8-4.

3.2.2 Fast Quiet-STaR NTP
Although the number of thought tokens has been
reduced, inference based on the Quiet-STaR
paradigm still requires significantly higher compu-
tational resources compared to the NTP approach.
To address this issue, we adopt reinforcement learn-
ing (Phan et al., 2023) to transition the model’s
inference paradigm from Fast Quiet-STaR to NTP,
called Fast Quiet-STaR NTP. Specifically, we ini-
tialize an NTP model using the checkpoint obtained
from the last stage of the multi-stage training that
includes 8 thought tokens and 4 ahead tokens. The
log-likelihood loss after thinking of this check-
point serves as a reference for computing rewards
in reinforcement learning. The process of calculat-
ing reward is as follows:

rj = LFastQuietSTaR − LFastQuietSTaR−NTP

(4)
where LFastQuietSTaR represents the negative
log-likelihood loss of Fast Quiet-STaR 8-4 at
the jth token after a thinking process, and
LFastQuietSTaR−NTP represents the negative log-
likelihood loss of Fast Quiet-STaR NTP at the jth
token. The final loss function is as follows:

∇θLREINFORCE
j = −rj · ∇θ log pθ (xj | X:j) (5)

Through reinforcement learning, the model is en-
couraged to emulate the prediction quality of Fast
Quiet-STaR model without explicitly generating
intermediate reasoning tokens during inference.
Notably, this transition enables Fast Quiet-STaR
NTP to effectively internalize the reasoning pro-
cess, compressing and integrating the previously
explicit “thinking” into its latent representations.

4 Experiments

4.1 Experimental Settings

Post-Training Settings. We perform post-training
on Mistral 7B (Jiang et al., 2023) and Qwen2.5
7B (Qwen et al., 2025) using the OpenWebMath
dataset (Paster et al., 2023) and evaluate its abil-
ity to directly predict answers on the Common-
senseQA (Talmor et al., 2018) and GSM8K (Cobbe
et al., 2021) benchmarks. Following (Zelikman
et al., 2024), we calculate the accuracy rate as:

ACC =
∏l

i=0 P (Ai|Q1,...,Qk,Ai,...Ai−1)∏l
i=0(

∑
Aj∈Sans

(P (Aj |Q1,...,Qk,Ai,...Ai−1)))
,

where Qi represents the question token, Ai rep-
resents the answer token, k and l represent their
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Table 1: Performance (%) comparison. Bold and underline denote the best and second-best performance of models.
For each method, we report their time to first token (TTFT, in seconds). Performance ∆ represents the difference
between Fast Quiet-STaR NTP and Pre-Trained.

Method Thought Tokens Ahead Tokens TTFT (s) PIQA SIQA CommonsenseQA GSM8K AVG

Mistral-7B

Pre-Trained 1 1 0.028 45.9 41.6 35.4 4.9 32.0
Quiet-STaR 16 8 0.738 54.7 47.0 45.3 9.8 39.2
Quiet-STaR 12 4 0.550 53.1 45.7 43.4 8.4 37.7

Fast Quiet-STaR 12 4 0.550 59.0 52.5 50.7 10.0 43.1
Quiet-STaR 8 4 0.305 49.1 42.2 39.3 7.2 34.5

Fast Quiet-STaR 8 4 0.305 56.9 51.1 49.0 9.8 41.7
Fast Quiet-STaR-NTP 1 1 0.028 55.0 50.1 49.2 9.6 41.0

Performance ∆ - - - +9.1 +8.5 +13.8 +4.7 +9.0

Qwen2.5-7B

Pre-Trained 1 1 0.026 70.1 60.7 52.4 11.6 48.7
Quiet-STaR 16 8 0.633 77.6 68.1 66.5 17.7 57.5
Quiet-STaR 12 4 0.481 72.4 61.8 59.7 17.1 52.8

Fast Quiet-STaR 12 4 0.481 74.3 64.5 63.9 17.6 55.1
Quiet-STaR 8 4 0.269 70.2 60.3 54.9 11.9 49.3

Fast Quiet-STaR 8 4 0.269 74.5 63.4 59.3 16.9 53.5
Fast Quiet-STaR-NTP 1 1 0.026 74.9 65.8 60.3 16.5 54.4

Performance ∆ - - - +4.8 +5.1 +7.9 +4.9 +5.7

Table 2: Comparison of generation latency(in seconds)
between different methods. For prefix length 256 and
generate length 128, we use a prompt of 256 tokens
and let the model generate 128 tokens after the prompt.
AVG ACC represents the average accuracy on PIQA,
SIQA, CommonsenseQA and GSM8K.

Prefix Length 256 512 AVG
Generate Length 128 256 256 512 ACC

Pre-Trained 3.2 7.3 8.8 17.1 32.0
Quiet-STaR 16-8 52.7 116.9 167.0 326.4 39.2
Quiet-STaR 12-4 40.6 92.9 102.4 288.6 37.7

Fast Quiet-STaR 12-4 40.6 92.9 102.4 288.6 43.1
Quiet-STaR 8-4 33.0 65.9 82.4 184.4 34.5

Fast Quiet-STaR 8-4 33.0 65.9 82.4 184.4 41.7
Fast Quiet-STaR-NTP 3.2 7.3 8.8 17.1 41.0

lengths, and Sans represents the candidate set of an-
swers (e.g. Sans = {A,B,C,D,E} for Common-
senseQA). This evaluation and training setup is con-
sistent with the Quiet-STaR (Zelikman et al., 2024).
To further assess the effectiveness of Fast Quiet-
STaR in general reasoning tasks, we also introduce
two more general-purpose evaluation benchmarks:
SIQA (Sap et al., 2019) and PIQA (Bisk et al.,
2020).

Implementation details. All training experi-
ments are conducted on 8 H800 GPUs. For Quiet-
STaR, we train for 100 steps, and for Fast Quiet-
STaR, we select the last checkpoint in the previous
stage for initialization and train for another 50 steps
for each training stage. See Appendix A for more

details.

4.2 Main Results

We evaluate Quiet-STaR, Fast Quiet-STaR, and
Fast Quiet-STaR NTP on four benchmarks: PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), Com-
monsenseQA (Talmor et al., 2018), and GSM8K
(Cobbe et al., 2021) (Table 1). Under equal TTFT,
Fast Quiet-STaR consistently outperforms Quiet-
STaR, exhibiting stable performance even as the
number of thought tokens decreases—unlike Quiet-
STaR, which degrades significantly. For Mistral 7B,
multi-stage training further boosts performance:
Fast Quiet-STaR with 8 tokens surpasses the 16-
token variant by 1.8% while cutting inference time
to 41.3%. Compared to pre-trained baselines, Fast
Quiet-STaR NTP achieves notable gains without
added compute, improving average accuracy by
9% on Mistral 7B and 5.7% on Qwen2.5 7B. These
results validate the effectiveness of incorporating a
curriculum learning strategy within the Quiet-STaR
framework to simultaneously improve both model
efficiency and performance.

We further analyze generation latency, a more
general metric for evaluating speed. For pre-
fix lengths of 256 and 512, the models generate
128/256 and 256/512 tokens, respectively (Table 2).
Fast Quiet-STaR NTP significantly reduces latency,
achieving just 6% of the end-to-end generation time
of Quiet-STaR 16-8 (for 256-128), on par with the
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Figure 3: Comparison of the average accuracy of Fast
Quiet-STaR and Rev Quiet-STaR with training steps.

pre-trained baseline. Additionally, it yields accu-
racy gains of 0.8% and 9%, respectively. These
results highlight Fast Quiet-STaR NTP effective-
ness in addressing both the latency of Quiet-STaR
and the poor performance of standard pre-trained
models.

4.3 Experimental Analysis

We choose Mistral 7B (Jiang et al., 2023) for our
analytical experiments, which is consistent with
Quiet-STaR(Zelikman et al., 2024).

4.3.1 Ablation Studies
Curriculum Learning. To evaluate the effective-
ness of our easy-to-hard multi-stage curriculum
learning training strategy, we experiment with an
alternative where we reverse the entire training pro-
cess. Specifically, we start from the Quiet-STaR
8-4 model and follow a “8-4 → 12-4 → 16-8”
training sequence. At each stage, the model is
initialized with the weights obtained from the pre-
vious stage. We refer to this series of progressively
trained models as Rev Quiet-STaR. We compare
the average performance of Rev Quiet-STaR and
Fast Quiet-STaR across four benchmarks: PIQA,
SIQA, CommonsenseQA, and GSM8K (Figure 3).
Experimental results indicate that the multi-stage
training method, progressing from difficult to eas-
ier, does not lead to performance improvements.
Notably, Rev Quiet-STaR 16-8 even underperforms
Fast Quiet-STaR 8-4, despite utilizing a larger num-
ber of thought tokens.

Reinforcement Learning Initialization. To
study the impact of initialization, we compare Fast
Quiet-STaR 8-4 with two alternatives: the pre-
trained model and Quiet-STaR 16-8. We evaluate
all approaches on four benchmarks—PIQA, SIQA,
CommonsenseQA, and GSM8K—summarized in
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Figure 4: Comparison of Fast Quiet-STaR NTP under
different initialization schemes.The left vertical axis cor-
responds to the average accuracy on PIQA, SIQA, and
CommonsenseQA, while the right vertical axis indicates
the accuracy on GSM8K.

Table 3: Performance comparison between Quiet-STaR
NTP and Fast Quiet-STaR NTP. CSQA represents for
CommonsenseQA, and Performance ∆ represents the
difference between Fast Quiet-STaR NTP and Quiet-
STaR NTP.

Method PIQA SIQA CSQA GSM8K AVG

Quiet-STaR NTP 49.1 44.3 42.5 7.3 38.1
Fast Quiet-STaR NTP 55.0 50.1 49.2 9.6 41.0

Performance ∆ +5.9 +5.8 +6.7 +2.3 +5.2

Figure 4. Results show that Fast Quiet-STaR 8-4
yields the best performance, followed by Quiet-
STaR 16-8, and then the pre-trained model. We
attribute this to Fast Quiet-STaR 8-4’s ability to
generate a compact yet informative thought trace,
which is conducive to further improving efficiency
and expanding the reasoning paradigm to NTP. In
contrast, the pre-trained model lacks an explicit
thought trace prior; Quiet-STaR 16-8 provides de-
tailed thought traces, which rely on a longer rea-
soning process, which may lead to a larger span of
reasoning paradigm difficulty when learning, thus
affecting the overall training performance.

Fast Quiet-STaR NTP Without Curriculum
Learning. To evaluate the effectiveness of the cur-
riculum learning procedure “16-8 → 12-4 → 8-4
→ NTP”, we omit the intermediate stages. Specif-
ically, we directly initialize the pre-trained model
with Quiet-STaR 16-8 and use its log-likelihood
loss as the reference for computing rewards in rein-
forcement learning, resulting in Quiet-STaR NTP.
As shown in Table 3, this shortcut results in a 5.2%
drop in average accuracy compared to Fast Quiet-
STaR NTP obtained through the full curriculum.
These results underscore the critical role of the cur-
riculum learning process in enhancing the overall
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Figure 5: Comparison of the accuracy of Quiet-STaR
and Fast Quiet-STaR on GSM8K during training.

Table 4: Zero-shot performance on Fast Quiet-STaR
and Pre-Trained applied to chain-of-thought on GSM8K.
Performance ∆ represents the difference between Fast
Quiet-STaR NTP and Pre-Trained.

Method maj@2 maj@3 maj@4 maj@5 maj@6

Pre-Trained 28.5 32.6 37.5 40.3 43.3
Fast Quiet-STaR NTP 36.0 40.6 45.8 49.2 52.4

Performance ∆ +7.5 +8.0 +8.3 +8.9 +9.1

performance of the model.

4.3.2 Data Efficiency
To ensure that Fast Quiet-STaR’s performance
gains do not stem from an increase in data vol-
ume, we track GSM8K accuracy throughout train-
ing (Figure 5). Quiet-STaR trains for 150 steps,
with performance peaking around step 100 and de-
clining thereafter—consistent with prior findings
(Zelikman et al., 2024). In contrast, Fast Quiet-
STaR achieves strong results with just 20–40 ad-
ditional steps. These results suggest that the gains
arise from the progressive learning mechanism of
multi-stage training, not from greater data exposure.

4.3.3 Performance on Generation Tasks
To evaluate the performance of Fast Quiet-STaR
on generative tasks, we compare Fast Quiet-STaR
NTP with the original pre-trained model under the
Next Token Prediction (NTP) inference paradigm
on the GSM8K dataset. Specifically, we adopt
the Chain-of-Thought (CoT) reasoning approach
and measure accuracy using majority voting over 6
samples (cot-maj@6), with results as show in table
4. Experimental results show that as the number
of votes increases, the performance advantage of
Fast Quiet-STaR NTP over the pretrained model
becomes more pronounced. On the cot-maj@6
metric, Fast Quiet-STaR NTP achieves an accuracy

improvement from 43.3% to 52.4%, demonstrating
its effectiveness in complex reasoning tasks. These
results demonstrate that Fast Quiet-STaR can fur-
ther enhance inference performance on top of CoT
reasoning and Fast Quiet-STaR is complemen-
tary to CoT, rather than redundant.

4.3.4 Analysis of long-term inference savings

The training process of Fast Quiet-STaR is highly
efficient. The entire training pipeline (from Quiet-
STaR 16-8 → Fast Quiet-STaR 12-4 → Fast Quiet-
STaR 8-4 → Fast Quiet-STaR NTP) requires only
0.5M tokens for continue pre-training. This pro-
cess takes just 54 minutes on 8 H800 GPUs. We
use prompts containing 256 tokens and allow the
model to generate 128 tokens for demonstration
and analysis purposes. On a single H800 GPU, the
inference latency of Fast Quiet-STaR-NTP is 3.2
seconds, compared to 52.7 seconds for Quiet-STaR
16-8(more scenarios with inference latency are in
Table (?)). For 67 end-to-end inference runs, Quiet-
STaR 16-8 requires approximately 59 minutes in
total, whereas Fast Quiet-STaR-NTP completes the
same task in just 4 minutes—yielding an overall
speedup of 55 minutes. In other words, the time
saved from just 67 inference runs is sufficient to off-
set the entire training cost of Fast Quiet-STaR-NTP.
More importantly, in real-world deployments, mod-
els are typically required to perform millions of
inference runs—far exceeding 67—where our ap-
proach would demonstrate substantial advantages
in total inference cost.

4.3.5 Thought token analysis

We visualize the thought tokens generated by Quiet-
STaR 8-4 and Fast Quiet-STaR 8-4 at key posi-
tions—tokens most informative for final predic-
tions—on the GSM8K dataset to examine their
internal reasoning behavior. As shown in Figure 6,
Quiet-STaR 8-4 produces relatively unstructured
thoughts, indicating incomplete acquisition of the
Quiet-STaR reasoning paradigm. In contrast, Fast
Quiet-STaR 8-4 demonstrates more abstract and
goal-directed reasoning behavior. These observa-
tions indicate that the incorporation of a curriculum
learning strategy—progressing from easier to more
difficult—enables Fast Quiet-STaR to gradually
acquire the ability to perform effective reasoning
under resource constraints.
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Text Examples
Question: A robe takes 2 bolts of blue fiber and half that 
much white fiber.  How many bolts in total does it take? 
Answer: 3

Key Token Thinking Process
Fast Quiet-STaR 8-4
half <|startthought|>  1/2.<|endthought|>
fiber <|startthought|> 1 bolt. How<|endthought|>
Answer: <|startthought|> 2 + 1<|endthought|>
Quiet-STaR 8-4
half <|startthought|> 1  1<|endthought|> 
fiber <|startthought|> 1 1/<|endthought|>
Answer: <|startthought|>  Q: The<|endthought|>

Figure 6: Examples of the text and its thought process
at key tokens.

5 Conclusion

In this paper, we proposed Fast Quiet-STaR, an
efficient extension of the Quiet-STaR reasoning
paradigm that maintains the core benefits of fine-
grained token-level reasoning while significantly
reducing inference overhead. By leveraging a cur-
riculum learning-based training strategy that pro-
gressively reduces the number of thought tokens,
Fast Quiet-STaR enables models to develop com-
pact yet effective reasoning abilities. Furthermore,
through reinforcement learning-based fine-tuning,
we extend this paradigm to the standard Next Token
Prediction setting, eliminating the need for explicit
thought-token generation during inference. Experi-
ments on Mistral 7B and Qwen2.5 7B across four
benchmark datasets show that Fast Quiet-STaR
achieves substantial gains over Quiet-STaR under
the same number of thought tokens, and Fast Quiet-
STaR NTP outperforms the pre-trained model and
performs on par with Quiet-STaR. These results
highlight Fast Quiet-STaR as a practical solution
for enhancing reasoning capabilities in LLMs.

Limitations

Despite the notable improvements in inference ef-
ficiency and performance achieved by Fast Quiet-
STaR, several limitations remain. First, the evalua-
tion in this study primarily focuses on mathemat-
ical and logical reasoning tasks, leaving its gen-
eralization capability to other domains yet to be
thoroughly validated. Second, this method is only
for the Quiet-STaR reasoning method.
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A Implementation details

Our experimental settings are consistent with Quiet-
STaR (Zelikman et al., 2024). Specifically, we em-
ploy the AdamW optimizer with a warm-up step
count of 20, a weight decay of 0.001, and a batch
size of 8. For Quiet-STaR, we train for 100 steps,
and for Fast Quiet-STaR, we select the last check-
point in the previous stage for initialization and
train for 50 steps for each stage. The learning
rates are adjusted slightly depending on the model:
we use a learning rate of 1e-6 for Mistral (Jiang
et al., 2023) and 8e-6 for Qwen2.5 (Qwen et al.,
2025). During training, we perform sampling with
a temperature of T=1. For evaluation, we adopt
greedy decoding to ensure deterministic outputs.
All training experiments are conducted on eight
H800 GPUs. For measuring the Time to First To-
ken (TTFT), we utilize a single H800 GPU and
fix the context length to 256. TTFT is defined as
the elapsed time between the moment the model
receives the full input sequence and the generation
of the first token.

We report the version numbers of used packages
in Table 5.

Package Version Package Version

PyTorch 2.1.0 transformers 4.46.0
deepspeed 0.10.0 tokenizers 0.13.3
datasets 2.14.3

Table 5: Versions of used packages.

B License for Scientific Artifacts

The Open web math (Paster et al., 2023) is licensed
under ODC-By 1.0 License1. The Mistral model
(Jiang et al., 2023) and Qwen2.5 model (Qwen
et al., 2025) is licensed under Apache License 2.0
license2. The evaluation datasets (Cobbe et al.,
2021; Talmor et al., 2018; Sap et al., 2019; Bisk
et al., 2020) are subject to the MIT license3. All
usages of scientific artifacts in this paper obey the
corresponding licenses.

1https://spdx.org/licenses/ODC-By-1.0.html
2https://choosealicense.com/licenses/apache-2.0/
3https://choosealicense.com/licenses/mit/
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