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Abstract
Although Large Audio-Language Models
(LALMs) have exhibited outstanding perfor-
mance in auditory understanding, their perfor-
mance in affective computing scenarios, partic-
ularly in emotion recognition, reasoning, and
subtle sentiment differentiation, remains sub-
optimal. Recent advances in Reinforcement
Learning (RL) have shown promise in improv-
ing LALMs’ reasoning abilities. However, two
critical challenges hinder the direct application
of RL techniques to Speech Emotion Recog-
nition (SER) tasks: (1) convergence instabil-
ity caused by ambiguous emotional boundaries
and (2) limited reasoning ability when using
relatively small models (e.g., 7B-parameter ar-
chitectures). To overcome these limitations,
we introduce EMO-RL, a novel framework in-
corporating reinforcement learning with two
key innovations: Emotion Similarity-Weighted
Reward (ESWR) and Explicit Structured Rea-
soning (ESR). Built upon pretrained LALMs,
our method employs group-relative policy op-
timization with emotion constraints. Com-
prehensive experiments demonstrate that our
EMO-RL training strategies can significantly
enhance the emotional reasoning capabilities
of LALMs, attaining state-of-the-art results on
both the MELD and IEMOCAP datasets, and
cross-dataset experiments prove the strong su-
periority of generalization.

1 Introduction

Speech Emotion Recognition (SER) is a signif-
icant research direction in the field of affective
computing, aiming to map speech signals to corre-
sponding emotional labels through computational
analysis. It plays an important role in various appli-
cations, including intelligent customer service (Li
and Lin, 2021), mental health assessment (Mada-
nian et al., 2022), and human-computer interac-
tion (Alsabhan, 2023).
† These authors contributed equally to this work.
* Corresponding author: jzwang@188.com.
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Figure 1: The key ideas of our proposed Emo-RL. Com-
pared with the standard RL, Emo-RL exploited emotion
similarity-weighted reward and the explicit structured
reasoning to improve the emotion recognition perfor-
mance of LALM.

In SER task, prior studies predominantly rely on
pre-trained speech models or perform fine-tuning
on affective corpora to derive emotional represen-
tations, then train a classification head to imple-
ment emotion classification (Li et al., 2023b; Chen
et al., 2023). However, the emotional representa-
tions extracted by these models can only capture
the acoustic expressions of emotions, but lack a col-
laborative analysis of text semantics. These models
have very limited generalization capability and lack
explainability.

With the development of multi-modal large mod-
els, many powerful Large Audio-Language Mod-
els (LALMs) have emerged (Kong et al., 2024),
among which Qwen2-Audio (Chu et al., 2024) is a
representative example. It can follow user instruc-
tions to perform many downstream tasks, such as
speech recognition, transcription, sound classifica-
tion, and more. Although Qwen2-Audio demon-
strates strong speech understanding capabilities, its
performance on SER tasks remains limited. This
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limitation stems from its tendency to rely on shal-
low associations rather than multi-step reasoning
that integrates textual semantics and auditory fea-
tures across modalities, resulting in its limited ac-
curacy and generalization on SER. Speech emo-
tion recognition inherently constitutes a cognitive
reasoning process that necessitates comprehensive
analysis from multiple perspectives through step-
by-step reasoning. When humans recognize emo-
tions in speech, they often understand the specific
content and keywords of speech and integrate this
understanding based on acoustic features (such as
pitch, voice quality, speech rate). For example,
when someone says "fed up" with rapid speech,
high volume, and sharp intonation, anger can be
inferred.

These reasoning steps are beyond the capability
of traditional audio feature extraction and classifi-
cation head frameworks. Extensive research has
shown that reinforcement learning can enhance the
reasoning capabilities of LLM (Guo et al., 2025;
Team et al., 2025). The effective deployment of re-
inforcement learning (RL) in SER encounters two
fundamental limitations: convergence reliability is-
sues primarily arising from ill-defined inter-class af-
fective boundaries that induce gradient conflict dur-
ing policy updates, compounded by insufficient af-
fective reasoning capacity in under-parameterized
architectures (e.g., 7B-parameter configurations).

To address these challenges, we adopt a psy-
chological perspective by transforming the original
right/wrong classification problem into a regression
problem that accommodates varying degrees of cor-
rectness and error, through the introduction of an
emotion-state-transition matrix (As illustrated in
Figure 1). We implement an Emotion Similarity-
Weighted Reward (ESWR) mechanism that pro-
gressively guides the policy model from simpler
to more complex tasks. This approach initially
teaches the model to distinguish between basic pos-
itive and negative emotions before advancing to
finer-grained emotional distinctions. To further
enhance the model’s emotional reasoning capabili-
ties, we incorporate Explicit Structured Reasoning
(ESR) strategies during RL training. These strate-
gies provide the model with guiding clues to help
it more effectively differentiate between emotions,
thereby improving its overall reasoning ability in
SER tasks.

Based on the ESWR and ESR, we exploited
our emotion-rule-based RL method to fine-tune
the LALM, and the contributions of this paper are

summarized as follows:

• We propose a SER pipeline via RL fine-tuning
of a large audio and language model.

• We introduce Emotion-rule based RL to improve
the emotion recognition ability of LALM, lever-
aging emotion similarity-weighted rewards and
explicit structured reasoning strategies.

• Extensive experiments demonstrate that the pro-
posed approach exhibits strong generalizability
and achieves state-of-the-art performance.

2 Related Works

2.1 Generalized Speech Emotion Recognition

For SER, traditional approaches have focused
on designing novel network architectures (Zou
et al., 2022; Li et al., 2023b) based on clas-
sical neural networks. With the advancement
of self-supervised learning, researchers have in-
creasingly utilized pre-trained audio models like
WavLM (Chen et al., 2022), Emotion2vec (Ma
et al., 2024b), HuBERT (Hsu et al., 2021), and
Whisper (Radford et al., 2023) to extract speech fea-
tures or fine-tune these models on speech emotion
datasets to obtain emotion-specific features (Morais
et al., 2022; Chen and Rudnicky, 2023). Subse-
quently, a linear classification head is trained to
perform emotion classification. These models have
significantly enhanced speech emotion perception
capabilities (Li et al., 2023a). For instance, the
Vesper model (Chen et al., 2024), obtained by dis-
tilling the WavLM-large model with emotion data,
has achieved promising results in SER tasks. How-
ever, the generalization capabilities of these models
remain limited, and they lack collaborative analysis
of text semantics and explainability.

2.2 Large Audio-Language Models

Recent progress in multimodal large-scale lan-
guage modeling has led to the emergence of nu-
merous LALMs, such as Audio Flamingo (Kong
et al., 2024), Qwen2-Audio (Chu et al., 2024),and
SALMONN (Tang et al., 2023), which have demon-
strated strong audio understanding capabilities,
with Qwen2-Audio even outperforming previous
methods across the vast majority of audio-focused
evaluation benchmark. These models typically
comprise three main components: an Audio En-
coder, a Large Language Model, and a modality
connector that bridges them. These models are
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capable of directly processing cross-modal inputs,
including audio (such as speech, environmental
sounds, and music) and text prompts, and can gen-
erate the corresponding textual output. They are
able to follow user instructions to perform a variety
of downstream tasks, such as transcription, SER,
and sound classification (Wang et al., 2025; Wa-
heed et al., 2024). However, current LALM train-
ing mainly focuses on perception and basic QA
tasks, lacking explicit multi-step reasoning. Thus,
the potential of LALMs like Qwen2-Audio in com-
plex audio reasoning tasks such as SER remains
untapped. Enhancing their reasoning abilities in
these advanced tasks is crucial.

2.3 Reinforcement Learning and Reasoning

Reinforcement learning (RL) plays a crucial role
in advancing the reasoning abilities of LLMs and
MLLMs. RLHF employs proximal policy opti-
mization (PPO)(Schulman et al., 2017) alongside
a trained reward mechanism to align LLMs with
human preferences. Direct Preference Optimiza-
tion (DPO)(Rafailov et al., 2023) bypasses reward
modeling by learning from preference data di-
rectly, whereas Rejection Sampling Fine-tuning
(RFT)(Yuan et al., 2023) strengthens reasoning
through curated self-produced reasoning chains.
Group Relative Policy Optimization (GRPO)(Shao,
2024) refines PPO by eliminating the critic compo-
nent and utilizing group-level baseline averaging
for advantage computation, achieving enhanced
LLM reasoning with reduced computational over-
head. The Hybrid GRPO variant (Sane, 2025)
integrates GRPO’s sampling mechanism with a
trained value estimator, improving training sta-
bility and data utilization efficiency. Contempo-
rary research demonstrates that Chain-of-Thought
(COT) combined with RL substantially elevates
LALM reasoning capabilities. Audio-CoT (Ma
et al., 2025) pioneered COT integration in LALMs,
though gains were modest without model parame-
ter optimization. Audio-Reasoner (Xie et al., 2025)
developed CoTA, an extensive synthetic corpus
containing millions of question-answer instances
with detailed reasoning trajectories, markedly ad-
vancing extended-context reasoning abilities. Xi-
aomi’s implementation utilized GRPO optimiza-
tion on the Qwen2-Audio-7B architecture for audio
question-answering applications (Li et al., 2025),
achieving notable improvements in reasoning pre-
cision. SARI (Wen et al., 2025) additionally com-
bines systematic reasoning frameworks with pro-

gressive reinforcement training curricula, establish-
ing new benchmarks on MMAU and MMSU eval-
uations. Reward-based optimization frameworks
have proven effective in boosting reasoning pre-
cision, demonstrating that reinforcement-driven
strategies can maximize learning efficiency from
constrained training datasets. Nevertheless, ex-
isting RL methodologies remain overly broad for
specialized speech emotion applications. Conse-
quently, developing emotion-rule-guided reinforce-
ment strategies specifically tailored for SER tasks
becomes essential.

3 Methodology

3.1 Problem Definition
We use emotional audio question answering in

Qwen2-Audio-7B-Instruct to implement SER. SER
process through LALMs constitutes a parametric
mapping process where: given a speech signal x
and structured textual query Q containing multiple-
choice options, their temporal-contextual concate-
nation forms the input prompt p = [x;Q]. The
LALM, πθ, then generates emotion prediction ŷ
through cross-modal understanding, formally ex-
pressed as:

πθ(x;Q) → a → ŷ, (1)

where S is a speech audio with a sampling rate of
16kHz, Q is the textual question prompt, and a is
the generated response of LALM, including think-
ing and reasoning contents and the final selected
answer, and ŷ denotes the predicted emotion label.

This study aim to address two core challenges
in SER through LALMs: (1) Enhancing the pre-
dictive accuracy of fθ via reinforcement learning
using the training dataset D = {(xi, yi)}Ni , where
the N means the sample number. (2) Discovering
optimal prompt formulations Q to improve the in-
ference performance. Considering the parameter
space of is infinite, we defined three experimen-
tally validated designs as the Q space, Q, including
implicit reasoning QIR, explicit unstructured rea-
soning QEUR, explicit structured reasoning QESR.
Therefore, the target of this study could be defined
as:

θ,Q = arg max
θ,Q∈Q

(R(πθ(X;Q), Y )), (2)

where the R denotes the reward function.
In detail, we explore three reasoning strategies

in EMO-RL training to evaluate the impact of rea-
soning patterns. We detail three patterns below:
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Figure 2: The overview of the Emo-RL for LALM to improve the generalized speech emotion recognition. Building
on GRPO, we enhance emotion recognition via two improvements. First, we create an emotion-state-transition
matrix from Plutchik’s wheel of emotions (Plutchik, 1982), allowing the policy model to receive rewards for
predicting similar emotions. Second, we introduce explicit structured reasoning to directly input human emotion
recognition priors into the model.

• Implicit Reasoning, QIR: The foundational con-
figuration involves training the system to di-
rectly produce conclusive responses, bypassing
any obligation to articulate underlying cognitive
mechanisms or intermediate analytical steps.

• Explicit Unstructured Reasoning, QEUR: This
approach facilitates organic and unconstrained
thought expression by employing prompting
techniques that eschew rigid organizational tem-
plates or prescribed divisions. While permitting
flexible formulation, the framework necessitates
generation of logically consistent interpretations
culminating in unambiguous determinations.

• Explicit Structured Reasoning, QESR: The
methodology enforces systematic generation of
transparently organized cognitive pathways. Im-
plementation requires adherence to a bifurcated
analytical framework encompassing textual di-
mensions (verbatim transcriptions, pivotal termi-
nology) and prosodic characteristics (intonation

patterns, temporal cadence, acoustic intensity,
vocal texture). Through synthesis of these dual
information streams, the system derives its con-
clusive assessment.

3.2 Emotion-rule based RL framework
We built our Emo-RL based on the GRPO frame-

work for its efficiency and scalability. Unlike proxi-
mal policy optimization, which requires a computa-
tionally expensive value network, GRPO calculates
relative advantages by comparing rewards within a
group of sampled actions, reducing computational
overhead and simplifying optimization. This makes
GRPO particularly suitable for speech reasoning
tasks. Similar to GRPO, the Emo-RL also has three
main steps, sampling action groups, reward eval-
uation, and updating policy network with relative
advantage and KL divergence (As shown in Fig-
ure 2).

Sampling Action Groups For each input state
s = (x,Q) , where x is the speech encoding of
the input audio and Q the textual encoding of the
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question, GRPO samples a group of actions (the
generated response of LALM), {a1, a2, . . . , aG},
from the current policy πθ. The sampling process
is:

ai ∼ πθ(a | x,Q), for i = 1, 2, . . . , G. (3)

This strategy ensures diverse responses, promoting
exploration and preventing premature convergence.

Reward Evaluation. In our reinforcement learn-
ing framework, each sampled action ai is assigned
a reward R(ai) based on verifiable criteria, result-
ing in a reward set {r1, r2, . . . , rG}. For emotional
speech reasoning tasks, the reward function R(ai)
combines two components: the reasoning format
reward Rformat(ai) and emotion accuracy reward
Racc(ai). The format reward ensures that the re-
sponses adhere to a structured format, thereby guid-
ing the reasoning strategy of the policy network,
πθ. The accuracy reward evaluates the correctness
of the action ai, providing feedback to πθ on the
extent to which the answer aligns with the correct
response. The overall reward function is:

R(ai) = Rformat(ai) +Racc(ai). (4)

Updating Policy Network with Relative Ad-
vantage and KL divergence. The πθ is opti-
mized by the Relative Advantage of rewards and
KL divergence between πθ and reference model
πref . Firstly, policy Rewards are normalized within
the sampled group to compute relative advantages
{A1, A2, . . . , AG}, defined as:

Ai =
ri −mean{r1, r2, . . . , rG}

std{r1, r2, . . . , rG}
. (5)

Based on these advantages, the policy is updated
to reinforce actions with positive advantages and
reduce the probability of less effective ones. To
ensure stable RL learning, πθ updates are further
constrained by minimizing the KL divergence be-
tween the updated and reference models.

3.3 Rewards Mechanism Design
The EMO-RL framework implements dual

reward mechanisms synergistically combining
structural compliance enforcement and affective
alignment optimization. Specifically, domain-
specific response schemata are enforced through
regular-expression pattern matching that vali-
dates three distinct reasoning pattern compli-
ance rates (QIR, QEUR, QESR), systematically en-
hancing explainability via cognitive transparency

in decision pathways. Complementarily, the
emotion similarity-weighted reward employs
an emotion-state-transition matrix constructed
through Plutchik’s wheel of emotions (Plutchik,
1982), generating dense reward signals that pre-
cisely guide policy gradients through convex opti-
mization landscapes.

3.3.1 Reasoning Format Reward
This component ensures adherence to specific re-

sponse formats across different reasoning strategies
by implementing tailored format reward. We define
three distinct reasoning format functions, including
Implicit Reasoning (IR), Explicit Unstructured Rea-
soning (EUR), and Explicit Structured Reasoning
(ESR), each requiring different format constraints.

For IR, which targets only answer generation,
the reward is granted only when the final answer is
both correct and correctly delimited by <answer>
tags, as shown in Figure 2. For EUR, which re-
quire explicit reasoning display, the format reward
is granted when the response contains reasoning
within <think> tags and the final answer within
<answer> tags. ESR is similar to EUR, but with
four additional format constraint tags.

The format reward function of ESR is as follows,
and all format reward follow this rule. Each for-
mat reward function employs binary scoring based
on regex pattern matching, where strict adherence
to the specified format yields a reward score of 1,
while any deviation results in a score of 0. This
ensures consistent formatting across different rea-
soning strategies while maintaining the flexibility
to accommodate strategy-specific requirements.

RESR =

{
1, if the format matches QESR

0, otherwise.
(6)

3.3.2 Emotion Accuracy Reward
The conventional approach uses binary classifi-

cation rewards (BCR), allocating a score of 1 to
fully accurate responses and 0 to all others. How-
ever, this has limitations when applied to emotions,
as it ignores the relationships between different
emotion types. Emotions are inherently continu-
ous and complex. Drawing from psychological
emotion dimension theories (Plutchik, 1982) and
other psychological knowledge, we comprehen-
sively consider emotion valence (the positive or
negative of emotions) and arousal (the intensity
or activation level of emotions). We have meticu-
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lously designed an emotion-state-transition matrix
S ∈ RC×C (C denote emotion categories) as:

Si,j =
{ 1

2
, if yi or yi=‘neutral’

1
2
(cos (Pl (yi, yj)) + 1) , otherwise

(7)
Here, the yi and yj denotes two emotion types,

and Pl(·, ·) means the angles from each other on
the Plutchik’s wheel of emotions. Based on the S,
we have the Emotion Similarity-Weighted Reward
function, formulated as:

RESWR =





1 S(ŷ, y) = 1

α · S(ŷ, y) S(ŷ, y) > γ

0 S(ŷ, y) <= γ

(8)

where α is the partial matching coefficient, dynami-
cally adjusting from 1 to 0 during training, and γ is
the threshold of the contradictory emotion, which
was set as 0.7 in this paper.

4 Experiment

4.1 Dataset

We evaluated model capabilities and general-
ization in speech emotion recognition (SER) us-
ing four datasets: MELD (Poria et al., 2019)
(13 708 utterances from Friends, 7 emotions),
IEMOCAP (Busso et al., 2008) (5,531 utterances
from conversations, 4 emotions), RAVDESS (Liv-
ingstone and Russo, 2018) (4 800 audio-video
recordings of speech and song, 8 emotions), and
SAVEE (Jackson and Haq, 2014) (480 samples, 7
emotions).

4.2 Implementation Details

We use Qwen2-Audio-7B-instruct as the foun-
dational backbone model for our experiments. The
RL models are trained using eight NVIDIA RTX
A6000 GPUs, each processing a per-device batch-
size of 1 with gradient accumulation over 2 steps.
Training proceeds for 300 optimisation steps under
a learning rate of 1× 10−6 and a softmax tempera-
ture of 1.0. Each reinforcement learning optimiza-
tion step generates 6 responses per sample. SFT
models are optimized with AdamW at a learning
rate of 1×10−5 for five complete epochs. The opti-
mal iteration results are selected for final analysis.

4.3 Baselines and Metrics

We benchmark the proposed approach against
state-of-the-art methods, which we group into

three distinct categories: W/o-LALM, LALM,
and LALM-FT. W/o-LALM and LALM-FT refer
to models post-trained on the MELD training set,
while LALM involves zero-shot inference using
prompt strategies without task-specific fine-tuning.

• W/o-LALM: We selected four advanced self-
supervised pre-trained audio models: Hu-
BERT large (Hsu et al., 2021), data2vec 2.0
large (Baevski et al., 2023), WavLM large (Chen
et al., 2022), Whisper large v3 (Radford et al.,
2023) and Emotion2vec (Ma et al., 2024b). Fea-
tures from the last Transformer layer of these
frozen pre-trained models were extracted to train
the downstream linear layers with a hidden di-
mension of 256.

• LALM: We directly use Qwen2-Audio (Chu
et al., 2024) for SER tasks without additional
training or fine-tuning, employing two prompt
patterns: direct inference and chain-of-thought
inference.

• LALM-FT: We further trained Qwen2-Audio.
To evaluate different training methods, we com-
pare models trained with supervised fine-tuning
(SFT), GRPO (Shao, 2024), and EMO-RL. Addi-
tionally, we assess the impact of different reason-
ing strategies in EMO-RL: implicit reasoning,
unstructured explicit reasoning, and structured
explicit reasoning.

In our evaluation, we utilize three key metrics:
Unweighted Accuracy (UA), Weighted Accuracy
(WA), and Macro F1 Score (F1), to assess the per-
formance of the SER task. WA reflects the overall
accuracy of the model across all emotion classes.
UA measures the average accuracy by consider-
ing each emotion class equally, regardless of its
frequency in the dataset. The macro-F1 score, har-
monic mean of precision and recall, furnishes a
balanced and class-agnostic gauge of model effi-
cacy, particularly in scenarios where there is an
imbalance in the distribution of emotion classes.

5 Results

5.1 Main Performance
As shown in Table 1, the results demonstrate

the effectiveness of COT in LALM, our proposed
ESWR, and ESR. Effectiveness of COT in LALM:
Using CoT prompts significantly enhances the zero-
shot SER performance of LALMs. In fact, CoT
enables Qwen2-Audio to approach the performance
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Table 1: The comparison of the main performance metrics for various methods on the MELD and IEMOCAP datasets. Results
for W/o-LALM methods are cited from the Emobox benchmark (Ma et al., 2024a) and (Ma et al., 2024b). The bold font
indicates the best results among all models. The baseline here denotes the GRPO+IR, and the SOTA means the best results
among W/o-LALM methods.

Model Type Model Method MELD IEMOCAP

UA(%) WA(%) F1(%) UA(%) WA(%) F1(%)

W/o-LALM

HuBERT large (Hsu et al., 2021) Classification Head 24.13 46.37 24.99 67.42 66.69 67.24
WavLM large (Chen et al., 2022) Classification Head 28.18 49.31 29.11 69.47 69.07 69.29
data2vec 2.0 large (Baevski et al., 2023) Classification Head 26.33 47.72 27.35 57.30 56.23 56.70
Whisper large V3 (Radford et al., 2023) Classification Head 31.54 51.89 32.95 73.54 72.86 73.11
Emotion2vec+ large (Ma et al., 2024b) Classification Head 28.03 51.88 / 70.70 67.30 /

LALM Qwen2-Audio (Chu et al., 2024) Direct Inference 18.96 39.83 19.84 53.76 51.52 47.68
CoT Inference 26.89 50.57 28.05 64.33 60.37 61.61

LALM-FT Qwen2-Audio (Chu et al., 2024))

SFT + IR 33.26 57.39 35.77 85.70 83.87 84.53
BCR + IR 31.60 55.41 33.22 81.74 80.00 80.71
BCR + EUR 34.87 59.63 36.46 83.34 82.56 82.88
BCR + ESR 34.43 60.78 36.28 84.74 83.96 84.26
ESWR + IR 36.23 63.85 38.57 84.12 83.90 83.11
ESWR + EUR 37.81 66.17 39.19 85.97 84.85 85.50
ESWR + ESR 39.46 69.56 41.87 87.42 87.28 87.40

/ Comparasion Ours VS SOTA ↑25.1 ↑34.0 ↑27.1 ↑18.9 ↑19.8 ↑19.6
Ours VS Baseline ↑24.9 ↑25.5 ↑26.0 ↑6.95 ↑10.9 ↑10.8

of the best W/o-LALM pre-trained audio models
without any task-specific post-training. Effective-
ness of ESWR: When training and testing on the
same dataset, the direct use of GRPO achieves sim-
ilar accuracy to SFT. This may be due to the MELD
dataset containing considerable noise, resulting in
the model’s lower ability to recognize correct emo-
tions. This leads to GRPO’s binary rewards being
too sparse, with 60% of accuracy rewards being 0,
making it difficult for the model’s update policy to
stabilize. However, ESWR provides more dense
and psychologically grounded reward signals, im-
proving the model’s emotional reasoning capability
by consistently guiding it toward the correct emo-
tional direction.

The effectiveness of ESR training strategies.
Besides the ESWR method, compared to models
trained with IR, models trained with EUR and ESR
can both enhance emotional reasoning capabili-
ties, improving accuracy on the MELD and IEMO-
CAP test sets. Moreover, models with structured
thinking capabilities achieve superior accuracy rel-
ative to models lacking structured reasoning mech-
anisms, indicating that structured reasoning helps
models avoid errors. Through the above experi-
ments, we have demonstrated that using the EMO-
RL algorithm can significantly enhance the emo-
tional reasoning capabilities of LALMs, achieving
SOTA performance in SER tasks. Additionally, we
found that our method yields greater improvements
on datasets with more complex emotion labels, for

Table 2: Weighted Accuracy (WA, %) across RAVDESS,
SAVEE, and IEMOCAP Datasets. The model was trained
on the MELD training dataset. The baseline here denotes the
SFT+IR.

Model RAVDESS SAVEE IEMOCAP

W/o-LALM Baselines
HuBERT large 25.02 31.54 44.60
WavLM large 33.90 34.10 48.59
data2vec 2.0 large 34.21 37.79 47.43
Whisper large v3 40.68 42.18 46.14

LALM-FT (Qwen2-Audio (Chu et al., 2024))
SFT+ IR 59.83 71.52 82.74
BCR + IR 62.07 72.38 82.66
ESWR + IR 66.21 74.69 83.05
ESWR + EUR 70.43 78.57 86.11
ESWR + ESR 73.99 80.83 87.86

Ours VS Baseline ↑23.67 ↑13.02 ↑6.19

example, the improvement of MELD, compared to
IEMOCAP.

5.2 Generalizability

In practical scenarios, a model’s ability to gener-
alize emotion recognition to unseen individuals and
unknown recording conditions is of paramount im-
portance. To evaluate this capability, cross-dataset
zero-shot testing offers an effective means of as-
sessing a model’s generalization in emotion recog-
nition. We meticulously selected three diverse
datasets: IEMOCAP, RAVDESS, and SAVEE.
These datasets encompass a variety of sources, ac-
cents, and recording environments, enabling a com-
prehensive evaluation of the model’s generalization

18750



Table 3: Performance of quantitative ablation of the reward
mechanism alone on MELD dataset. The model was trained
based on Qwen2-Audio

Method UA(%) WA(%) F1(%)

GRPO+IR 18.22 38.32 18.96
GRPO+EUR 25.55 49.12 26.36
GRPO+ESR 29.19 53.53 30.61
GRPO+BCR 33.62 55.42 35.57
GRPO+ESWR 35.02 62.93 37.73

and robustness across real-world scenarios.
As shown in Table 2, the results of cross-datasets

evaluation demonstrate that (1) Reinforcement
learning methods, including GRPO and ESWR,
demonstrate superior generalization capabilities
compared to SFT methods. Notably, ESWR ex-
hibits better generalization than GRPO. Addition-
ally, (2) Explicit Reasoning strategies show en-
hanced generalization over Implicit Reasoning, and
Structured Reasoning strategies outperform their
unstructured counterparts. In conclusion, the com-
bination of ESWR and ESR surpasses all base-
line and alternative training methods, achieving the
highest performance in emotional reasoning gener-
alization.

5.3 Ablation

To explore the quantitative ablation of the ef-
fects of the reward mechanism alone. As shown in
Table 3, we have supplemented the relevant quanti-
tative ablation experiments on MELD dataset. For
the methods in the first three rows, we only used the
corresponding format reward without the accuracy
reward. For the last two rows, we only used the
corresponding accuracy reward without the format
reward. These results demonstrate the efficiency of
our proposed ESWR and ESR methods for speech
emotion recognition.

5.4 Case Study

In Figure 3, we show a case study that demon-
strates the response results when testing the same
speech sample after training with different meth-
ods. Models trained with IR seem to have lost
many other abilities, such as not trying to think and
reasoning, even though I asked them to do so.

Models trained with EUR can generate flexible
reasoning based on different speech inputs. They
often analyze emotions primarily through acoustic
features such as pitch, rhythm, and speed. While
this approach is effective for simpler cases, it faces
challenges with more complex scenarios due to the

Question

Response

Input audio

What is the emotion of the speaker in the 

audio? After thinking and reasoning, choose 

the final answer from the following options: 

[‘neutral’, ‘happy’, ‘sad’, ‘angry’].

Question prompt

+

Implicit Reasoning (IR)

Explicit Structured Reasoning (ESR)

Groundtruth: happy

Explicit Unstructured Reasoning (EUR)

<answer>   neutral   </answer>

<think>

 </think>
      <answer>   angry   </answer>

Based on the tone and rhythm of the voice, one can sense a certain 
impatience in the speaker's emotion. "is emotion manifests in the 
speech as slightly faster pace, somewhat sharp intonation, and 
certain words being pronounced less clearly. From the sounds they 
emit, it can be inferred that they might be experiencing some inner 
struggle and emotional conflict. "erefore, I would describe this 
scenario as “angry.”

<think>

 

</think>
      <answer>  happy  </answer>

<content>

 

</content>
<acoustics>

</acoustics>
<summary>

</summary>

"e content of this speech is “let’s enjoy that party” and “don't 
forget to blow trumpets when the cake comes.” From the content, 
it’s evident that the speaker is attending a party and looking 
forward to cake and trumpets.

Based on the voice’s tone and rhythm, one can perceive that the 
speaker has a higher pitch, faster pace, and louder volume, which 
are vocal characteristics typical of excitement or happiness.

!ese all indicate that the speaker is enjoying the party and feeling 
happy. "is positive and confident emotion is likely an expression 
of happiness. "erefore, the corresponding emotion is likely 
“happy”. 

Figure 3: An example of the reasoning results of IR,
EUR, and ESR

omission of critical semantic emotional details.
In contrast, models trained with ESR explicitly

document the speaker’s key content and acoustic
features, followed by a comprehensive analysis
of both semantic and auditory information. This
structured approach reduces the likelihood of over-
looking key details, thereby enhancing the model’s
emotional reasoning capabilities.

6 Conclusion

This paper introduces EMO-RL, a reinforcement
learning framework that improves the emotional-
reasoning capacity of large audio–language models
for speech-emotion recognition. By incorporating
emotion similarity-weighted reward, which inte-
grates psychological prior knowledge into RL, and
Explicit Structured Reasoning into our framework,
EMO-RL effectively overcomes the challenges of
convergence instability and limited reasoning abil-
ity in speech emotion recognition tasks. Compre-
hensive experiments demonstrate that EMO-RL
not only improves the emotional reasoning capa-
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bilities of LALMs on the MELD and IEMOCAP
datasets (compared with SOTA, achieving an UA
improvement of 25.1% and 18.9%, respectively),
but also shows excellent generalization across dif-
ferent datasets. This work signifies a step forward
in applying reinforcement learning and large audio-
language models to speech emotion recognition,
paving the way for future speech affective comput-
ing research. Moreover, EMO-RL shows potential
for enhancing multi-modal LLMs’ emotion percep-
tion, bringing us closer to building truly emotional
LLMs.

7 Limitation

Our proposed method has certain limitations
that warrant attention. Firstly, while our EMO-RL
framework is designed to be versatile and appli-
cable across a variety of multi-modal scenarios,
including video, audio, and text, our current ex-
perimental scope has been limited to the speech
modality alone. We have not yet incorporated vi-
sual elements such as images or videos into our
experimental design. This restriction means that
the full potential of our framework in multi-modal
contexts remains unexplored. Secondly, although
exploiting the LALMs for SER tasks has delivered
promising results, it has also introduced challenges
related to computational complexity and inference
efficiency. The inference efficiency of our approach
is comparatively lower than that of previous meth-
ods, which might affect its practicality for real-time
applications. In the future, we will try to solve the
above limitations.

8 Ethical Considerations

The deployment of SER systems raises sig-
nificant ethical concerns that build upon estab-
lished frameworks for sentiment and emotion anal-
ysis. Privacy and consent represent primary issues,
as SER extracts sensitive psychological informa-
tion from vocal patterns often without users’ ex-
plicit awareness, unlike voluntary text-based sen-
timent analysis. Additionally, SER systems ex-
hibit systematic biases across demographic groups
and may misinterpret cultural differences in emo-
tional expression, with training datasets often lack-
ing diverse representation—problems shared with
broader emotion analysis research. The "black
box" nature of deep learning-based systems also
raises accountability concerns when informing de-
cisions affecting individuals’ lives. These consider-

ations highlight the need for robust consent frame-
works, diverse datasets, and ethical guidelines spe-
cific to speech emotion recognition that address the
unique challenges of speech emotion detection.
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