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Abstract

Temporal knowledge graph (TKG) reasoning,
a central task in temporal knowledge represen-
tation, focuses on predicting future facts by
leveraging historical temporal contexts. How-
ever, current approaches face two major chal-
lenges: limited generalization to unseen facts
and insufficient interpretability of reasoning
processes. To address these challenges, this
paper proposes the Denoising Logic-based
Temporal Knowledge Graph (DLTKG) frame-
work, which employs a denoising diffusion pro-
cess to complete reasoning tasks by introduc-
ing a noise source and a historical condition-
guiding mechanism. Specifically, DLTKG con-
structs fuzzy entity representations by treat-
ing historical facts as noise sources, thereby
enhancing the semantic associations between
entities and the generalization ability for un-
seen facts. Additionally, the condition-based
guidance mechanism, rooted in the relationship
evolutionary paths, is designed to improve the
interpretability of the reasoning process. Fur-
thermore, we introduce a fine-tuning strategy
that optimizes the denoising process by leverag-
ing shortest path information between the head
entity and candidate entities. Experimental re-
sults on three benchmark datasets demonstrate
that DLTKG outperforms state-of-the-art meth-
ods across multiple evaluation metrics1.

1 Introduction

The temporal knowledge graph (TKG) (Gottschalk
and Elena, 2018; Zhao, 2021; Zhang et al., 2024a)
is a dynamic multirelational graph structure repre-
sented in the form of quadruples (s, r, o, t), where s
denotes the subject (i.e., head entity), r denotes the
relation, o denotes the object (i.e., tail entity), and
t denotes the timestamp. The reasoning tasks of
TKGs are primarily divided into interpolation and
extrapolation (Jin et al., 2020). The interpolation

1Code: https://github.com/NEU-IDKE/DLTKG
∗ Corresponding author.
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Figure 1: (a) The thought process involved in making
predictions. (b) An example of reasoning used to answer
the query in (a).

task (Xu et al., 2020; Xiong et al., 2024) involves
inferring missing facts within a known time inter-
val, while the extrapolation task (Xu et al., 2020;
Sun et al., 2021; Liu et al., 2022) focuses on predict-
ing future events. This study specifically addresses
the extrapolation task of TKGs, as it can forecast
future events and provide forward-looking insights
for decision-making, offering substantial practical
value in areas such as event prediction (Deng et al.,
2020), risk prediction (Jhee et al., 2025), and trend
analysis (Choudhury et al., 2020).

Recent studies (Hahamy et al., 2023; Kolibius
et al., 2025) suggest that during narrative compre-
hension, humans activate neural representations
of relevant historical events at event boundaries,
facilitated by the hippocampus and default mode
network. This enables memory integration and
knowledge structure updates across time scales.
As shown in Figure 1(a), humans follow a three-
step process in prediction tasks: recalling histor-
ical events, filtering potential answers, and com-
bining personal experience to form a prediction.
Figure 1(b) illustrates TKG extrapolation, where
the task is to predict whom Obama visited on
December 29, 2014. The process begins with
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recalling events related to "Make_a_visit" and
"Barack_Obama", filtering outcomes like Malaysia,
China, Poland, and concluding that Obama visited
Malaysia.

TKG reasoning has seen notable progress in re-
cent years (Trivedi et al., 2017; Wang et al., 2023;
Chen and Chen, 2024), as will be discussed in
Section 2. Motivated by the success of diffusion
techniques in sequence-to-sequence tasks (Gong
et al., 2023), DiffuTKG (Cai et al., 2024) intro-
duces diffusion methods to TKG reasoning, achiev-
ing competitive results. However, existing diffu-
sion models (Cai et al., 2024) lack interpretability,
as random noise and denoising are disconnected
from the target entities. To address this, we propose
a noise-adding and denoising method based on his-
torical evolutionary paths (HEPs), leveraging past
entities to generate fuzzy entities, i.e., the memory
fusion process. Denoising these fuzzy entities en-
hances the interpretability and generalization of the
reasoning process.

Specifically, we propose three innovative strate-
gies: (1) Sequence Learning Strategy: This mod-
ule extracts the HEPs of each relationship and uti-
lizes them as denoising conditional guiding infor-
mation. This design enables DLTKG to perform
efficient logical reasoning based on HEPs. (2) En-
tity Fusion Strategy: This strategy merges entities
that have appeared in HEPs as memory informa-
tion to obtain noisy fuzzy entities. Given the strong
semantic and structural correlations between histor-
ical and target entities, key information about the
target entity may be implicitly embedded within
the historical entities. Consequently, generating
noise through the fusion of historical entities is
more justifiable. (3) Fine-tuning Strategy: After
the initial round of denoising, candidate entities are
ranked from high to low based on their scores, and
the top k entities are selected. The shortest paths
between the query head entity and the top k candi-
date entities are then obtained, and these shortest
paths are used as guiding information for further
denoising. Empirical research on three benchmark
datasets validates the effectiveness of DLTKG.

The main contributions are as follows:

• To the best of our knowledge, DLTKG is the
first model to apply memory fusion strategy
to diffusion-based temporal knowledge graph
reasoning, aiming to enhance the logical in-
terpretability of the model through the noise-
adding and denoising process.

• We propose a fuzzy entity noise addition strat-
egy and introduce a historical condition guid-
ance mechanism, aiming to enhance the cor-
relation between historical events and thereby
delve deeper into the potential information
between entities and relationships.

• We propose a fine-tuning strategy that utilizes
shortest path information between the head
entity and candidate entities to optimize the
denoising process, further enhancing the rele-
vance between the query and historical knowl-
edge.

• DLTKG significantly surpasses the existing
diffusion-based models on three representa-
tive TKGR datasets, including ICEWS14,
ICEWS05-15, YAGO, and achieves compet-
itive performance with the other state-of-the-
art baselines.

2 Related Work

2.1 Temporal Knowledge Graph Reasoning

Existing TKG extrapolation methods can
be broadly categorized into four types: (1)
Embedding-based models dynamically model
temporal evolutionary patterns of entities and
relationships using low-dimensional vectors,
inferring missing facts through the similarity of
historical embeddings. Representative models
include CyGNet (Zhu et al., 2021), HIP (He
et al., 2021), among others. (2) Graph neural
network-based models focus on uncovering
structural evolution in temporal knowledge graphs,
predicting dynamic associations by aggregating
neighborhood information through message pass-
ing, e.g., xERTE (Han et al., 2020) and SRPL (Li
et al., 2024). (3) Rule-based models focus on
inductively deriving interpretable logical rules
from historical facts. TLogic (Liu et al., 2022)
extracts interpretable temporal logic rules through
temporal random walks. TempValid (Huang
et al., 2024) models the temporal validity of
rule confidence and designs learnable temporal
functions. (4) Language model-based models
treat entities and relationships as semantic symbols,
using generative models to predict knowledge
completion, such as CoH (Xia et al., 2024) and
GenTKG (Liao et al., 2024).
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Figure 2: Overview of DLTKG structure. DLTKG mainly consists of five parts: (1) Data Processing, which is used
to obtain the historical evolutionary paths (HEPs) of relationships; (2) Sequence Learning Module, which captures
historical evolutionary information; (3) Entity Fusion Module, which generates fuzzy entity representations from
noise sources; (4) Denoising Module, which cleans fuzzy entities using the HEPs; (5) Fine-tuning Module, which
further optimizes the denoising process. The core components are (2), (3), and (5).

2.2 Diffusion Model

Diffusion models are a type of generative model
that learn data distributions by gradually adding
and removing noise, and they are commonly used
for high-quality image and audio generation. Cur-
rently, some research has explored text diffusion
models in discrete state spaces (Li et al., 2022a;
Reid et al., 2023; Gong et al., 2023).

DiffuTKG (Cai et al., 2024) is the first model to
introduce diffusion methods into TKG reasoning
tasks, by introducing random noise to target entities
and reconstructing the entities from it.

Unlike DiffuTKG, our approach: (1) constructs
entity-related noise sources that are not random;
(2) utilizes logical reasoning information about re-
lationship evolution as conditional guidance for
the denoising process. DLTKG enables collabora-
tive modeling of semantic correlation and temporal
dependence, leading to more accurate predictions.

3 Problem Formulation

A Temporal Knowledge Graph G =
(E ,R, T ,Q) (Gu et al., 2022) is a directed
multirelational graph where there are times-
tamped edges between entities, with E ,
R, and T representing the sets of enti-
ties, relations, and timestamps, respectively.
Q = {(es, r, eo, t) | es, eo ∈ E , r ∈ R, t ∈ T } is

a set of quadruples in G. The TKG is viewed as a
series of snapshots arranged in ascending order of
timestamps, denoted as G =

{
G1,G2, . . . ,G|T |

}
.

The problem addressed in this paper is Tempo-
ral Knowledge Graph Reasoning (TKGR) through
extrapolation, which is formalized as link predic-
tion aimed at inferring future quadruples. For-
mally, for a quadruple query (sq, rq, ?, tq), the
goal of extrapolated TKGR is to predict the miss-
ing entity oq, given the historical graph sequence{
G1,G2, . . . ,Gtq−1

}
prior to the prediction time tq.

4 Method

The DLTKG framework (Figure 2) consists of sev-
eral key components: (1) Sequence learning, which
helps denoise by extracting relationship evolution-
ary patterns as conditional information; (2) Entity
fusion strategy, which integrates historical infor-
mation related to the target entity to obtain a fuzzy
entity, modeling the potential uncertainty between
entities; (3) Fine-tuning strategy, which uses the
top k candidate entities and the query head entity
sq to calculate shortest paths, providing conditional
information for further training.

4.1 Sequence Learning

We frame the link prediction task as a sequence pre-
diction problem, focusing on exploring historical
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evolutionary paths (HEPs) of relationships. Sec-
tion 4.1.1 derives all possible HEPs using temporal
walks. Section 4.1.2 constructs a path encoding
representation. Section 4.1.3 filters the most rel-
evant HEPs to the query relationship rq using a
relevance discrimination function.

4.1.1 Historical Evolution of Relationship
Exploration

We extract temporal walks from the TKG G as
follows: For a HEP of length ℓ, we sample a non-
increasing random walk sequence of length ℓ+ 1,
where the additional step corresponds to query-
ing events for relation rq. The walk starts by ran-
domly sampling an edge (e1, rq, eℓ+1, tℓ+1), then
iteratively sampling adjacent edges until it reaches
length ℓ+ 1. In the final step, if an edge links back
to the first entity e1, we sample it; otherwise, we
proceed to the next path.

For sampling steps s ∈ {2, 3, . . . , ℓ+ 1}, let
(es, r, eo, t) represent the edge sampled previously,
and Ne (s, eo, t) denote the set of feasible edges
for the next transition. To satisfy the temporal
constraints, we define Ne (s, eo, t) :=





{(
el+3−s, r, el+2−s, t̂

)
|
(
el+3−s, r, el+2−s, t̂

)
∈ G̃, t̂ < t

}

if s = 2,{(
el+3−s, r, el+2−s, t̂

)
|
(
el+3−s, r, el+2−s, t̂

)
∈ G̃, t̂ ≤ t

}

if s ∈ {3, . . . , ℓ+ 1},
(1)

where G̃ := G \
{(

eo, r
−1, es, t

)}
excludes the

inverse edges to avoid redundant rules. Remove
the edges sampled in the first step, then arrange
the remaining random walk sequence of length ℓ in
reverse chronological order. This results in a HEP
of rq denoted as pℓ

rq :

((e1,r
−1, e2, t1), ..., (eℓ, r

−1, eℓ+1, tℓ))

with tℓ > tℓ−1... > t1. (2)

For each relation r ∈ R, we draw n ∈ N =
{1, . . . , N} time walks from a pre-specified set of
lengths L. The setWℓ

r denotes all evolving paths
of length ℓ that are headed by relation r. All HEPs
of relation r are contained in Wr :=

⋃
ℓ∈LWℓ

r

and the complete set of learned HEPs is W :=⋃
r∈RWr.

4.1.2 Sequence Prediction
Let G0:tq−1 be the historical TKG snapshot, and
qt = (sq, rq, ?, tq) be the query quadruple. In-
spired by DiffuTKG (Cai et al., 2024), we reshape
the task into a sequence prediction problem. The

difference is that we predict the missing entities
in qt by observing the historical evolutionary pat-
terns.

First, we extract the HEPs P =
{P0, . . . ,Pi, . . . ,Pn−1} of the query rela-
tion rq from W , where each path contains at
least one query subject sq, and the length of
each path is ℓ. Each path is represented as
Pi = {(e0, r0, e1, t0) , ..., (eℓ−1, rℓ−1, eℓ, tℓ−1)}.
Additionally, let Pi =

{
Sie,Sir,Sit

}
, where

Sie = {e0, ..., eℓ} represents the sequence of
entities in the HEP pi, Sir = {r0, ..., rℓ−1}
represents the sequence of relations in the HEP,
and Sit = {t0, ..., tℓ−1} represents the sequence of
timestamps in the HEP.

Next, we obtain the representations of entities,
relations, and time in each HEP as follows:

e =
ℓ∑

n=0

E(en), t =
ℓ−1∑

k=0

T(tk), r =
ℓ−1∑

j=0

R(rj),

(3)

where E ∈ R|E|×d, R ∈ R2|R|×d, T ∈ R|T |×d,
e, r, t ∈ Rd, d represents the size of the hidden
dimension. We combine entity, relationship, and
timestamp embeddings along the HEPs to obtain
the final evolutionary embeddings, as follows:

pi = e+ r+ t. (4)

The embedded representation of HEPs is de-
noted as P = [p0; ...;pn−1], where P ∈ Rn×d,
[; ] represents the concatenation operation.

4.1.3 Path Selection
We use the path relevance discrimination function
Ψ(·) to filter the HEPs most relevant to the query.
Given the query relation rq, we obtain the embed-
ded representation of HEPs, i.e. P, and we apply
the path relevance discrimination function:

Ψ(P, rq) = ∥P ◦E (rq)∥2 > λ, (5)

where ◦ denotes the Hadamard product operation,
λ represents the adaptive threshold. The path em-
beddings that satisfy Ψ(P, rq) = True form the
condition-guided set P̃, and the corresponding set
of HEPs is P̃ .

4.2 Entity Fusion Strategy
After obtaining the HEPs related to the query rela-
tionship rq and the query subject sq, we extract the
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relevant candidate entities from the HEPs P̃ . The
extracted entities are distinct and are represented
as the set C:

C = S0e ∪ S1e ∪ · · · ∪ S
|P̃|
e . (6)

Based on the Historical Recurrence Hypothe-
sis (Trompf, 1979), we propose a fuzzy entity con-
struction method based on maximum entropy fu-
sion: by using an aggregation function Φ (·) to per-
form information fusion on the entity set C. Fuzzy
entities are derived from the fusion of historical
entity information related to the target entity. We
need to identify historically related entities among
the relevant HEPs (historical evolutionary paths),
but we do not know which one aligns best with
the target entity. Therefore, we aim to obtain a
fuzzy representation that neither favors any spe-
cific historical entity nor neglects to encompass all
the information they provide. The specific process
is as follows:

Φ ({ei}) =argmin
ê1

(

|C|∑

i=0

ωiDKL (f (ei) ∥ f (ê1))

+λL (ê1)) , (7)

f (ei) =softmax (Wei + b) , (8)

wi =exp (−γ (tq − ti)) , (9)

where DKL represents the KL divergence, ei,
ê1 ∈ Rd denote the historical candidate entity em-
beddings and the fuzzy entity embeddings, respec-
tively. The function f (·) is a probability mapping
function, wi is the time decay weight, and γ con-
trols the decay rate. The variable ti indicates the
timestamp corresponding to the entity ei, while
L (·) is the L2 regularization term. W, b, and λ are
learnable parameters.

4.3 Auxiliary Denoising Strategy
During the denoising phase, DLTKG cleans the
fuzzy entity ê1 to obtain the target entity êq, us-
ing historical information as a condition. This ap-
proach relieves the need for additional classifier
training. Following DiffusEQ (Gong et al., 2023),
we use a Transformer architecture to model fθ,
where historical information is inherently consid-
ered during the cleaning process. The denoising
process is as follows:

êq =Transformer(ẽ), (10)

ẽ = [P̃; ê1] + E(sq) + R(rq) + T(tq), (11)

where êq ∈ R|E|. We introduce the query subject
sq, the query relation rq, and the query time tq
to strengthen the connection between the query
problem and the target entity.

4.4 Fine-tuning Strategy
To enhance the ability of the model to recog-
nize low-discriminative entities, we employ a fine-
tuning strategy. After the initial denoising, we se-
lect top k candidate entities based on their scores
for further fine-tuning. Building on the query rela-
tion evolutionary path features used in the initial
training, this phase further strengthens the semantic
association between the query head entity and the
target entity. Specifically, we introduce the multi-
hop shortest paths between the head entity and each
candidate entity as auxiliary guiding information.
This process is described as follows:

p∗
sq→ek

=
∑

x∈path(sq ,ek)





E (x) if x ∈ E ,
R (x) if x ∈ R,
T (x) if x ∈ T ,

(12)
P̃∗ = [p∗

0;p
∗
1; . . . ;p

∗
m−1], (13)

where x represents the entity, relationship, or times-
tamp within the path, m represents the total number
of shortest paths, path (sq, ek) refers to the shortest
path between the head and tail entity. To maintain
consistency in the noise injection strategy, we per-
form feature fusion on the set of entities involved in
the shortest paths, constructing a fuzzy entity repre-
sentation denoted as ê2. Then, perform denoising
according to the method in Section 4.3:

o =Transformer(e∗), (14)

e∗ = [P̃∗; ê2]+E(sq) +R(rq) +T(tq). (15)

4.5 Train and Inference
We will perform a dot product operation between
the predicted entities o and the embedding matrix
E to obtain the distance between the vectors. A
shorter distance indicates a higher predicted proba-
bility for that entity. The calculation process is as
follows:

y = Softmax
(
o · (E)T

)
, (16)

Lrecon = −
∑

i∈{1,2,...,|E|}
gilog(yi), (17)

where "·" denotes the inner product operation, (·)T
denotes the matrix transpose operation, gi denotes
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Ntrain Nvalid Ntest Nent Nrel Ntime Interval

ICEWS14 74845 8514 7371 7128 230 365 24 hours
ICEWS05-15 368868 46302 46159 10488 251 4017 24 hours
YAGO 161540 19523 20026 10623 10 188 1 year

Table 1: Statistics of the datasets.

the One-Hot Encoding of the i-th real object entity,
and yi is the predicted probability of the entity.

Additionally, we employ a regularization method
based on uncertainty perception, as detailed in Cai
et al. (2024), which dynamically adjusts the regu-
larization strength according to the prediction con-
fidence and applies stronger constraints to high-
uncertainty predictions.

Score (y,F01) =f (σ (f (y ⊗ F01))) , (18)

Luncertainty =Eu∽Pseen[
−log exp−Score(u,F01)/τ

1 + exp−Score(u,F01)/τ

]

+Ev∽Punseen[
−log 1

1 + exp−Score(v,F01)/τ

]
,

(19)

where Score(y,F01) ∈ R1×2 denotes the confi-
dence score. f (·) represents the fully connected
layer, and σ denotes the ReLU activation function.
The binary vector F01 ∈ R1×d denotes the occur-
rence of the fact before the timestamp t, where
0 means it has not occurred and 1 means it has
occurred. τ is the temperature coefficient.

The overall training loss is:

L = Lrecon + Luncertainty. (20)

5 Experiments

5.1 Experimental Setup

Datasets We evaluate DLTKG on three widely
used datasets: ICEWS14 (García-Durán et al.,
2018), ICEWS05-15 (García-Durán et al., 2018),
and YAGO (Mahdisoltani et al., 2013). ICEWS14
and ICEWS05-15 are derived from the Integrated
Crisis Early Warning System (ICEWS) (Boschee
et al., 2015), which records political events that oc-
curred in 2014 and from 2005 to 2015, respectively.
YAGO (Mahdisoltani et al., 2013) is a knowledge
base that includes temporal information. The statis-
tics of these datasets are shown in Table 1.

Evaluation Metrics During testing, we per-
form experiments under time-aware filtering set-
tings (Dong et al., 2023; Zhang et al., 2023) to filter
out other correct entities. To evaluate model perfor-
mance, we adopt standard evaluation metrics from
the field, including Mean Reciprocal Rank (MRR),
Hits@1, Hits@3, and Hits@10, where higher met-
ric values indicate better performance.

Baseline Methods We compare the performance
of our model with five categories of state-of-
the-art models. The embedding-based models
include CyGNet (Zhu et al., 2021), HIP Net-
work (He et al., 2021). The graph neural network-
based models include RE-NET (Jin et al., 2020),
xERTE (Han et al., 2020), REGCN (Li et al.,
2021), ODE (Han et al., 2021), HiSMatch (Li
et al., 2022b), RETIA (Liu et al., 2023), SRPL (Li
et al., 2024). The rule-based models include
TLogic (Liu et al., 2022), TR-Rules (Li et al.,
2023), TempValid (Huang et al., 2024), ON-
SEP (Yu et al., 2024). The language model-
based methods include ChapTER (Peng et al.,
2024), STORE (Zhang et al., 2024b), CoH (Xia
et al., 2024), LLM-DA (Wang et al., 2024), Gen-
TKG (Liao et al., 2024). The diffusion-based
model DiffuTKG (Cai et al., 2024) is the first
model to introduce diffusion into TKG reasoning
tasks.

We provide the implementation details of
DLTKG in Appendix A and introduce each base-
line model in detail in Appendix F.

5.2 Main Results

The comparative performance of various baseline
models on the link prediction task is detailed in
Table 2. DLTKG consistently outperforms the
main diffusion-based baseline DiffuTKG across all
datasets, with improvements of 19.00%, 16.60%,
21.52% and 23.76% in MRR, Hits@1, Hits@3,
and Hits@10, respectively, on ICEWS14. This
demonstrates the effectiveness of denoising train-
ing guided by the HEPs of relationships in TKGR.

Compared to embedding-based and language
model-based methods, our model DLTKG outper-
forms nearly all baselines, with an average MRR
improvement of 20.38% on ICEWS14. Further-
more, it surpasses the LLM-based models STORE,
CoH, and LLM-DA across all metrics, indicating
that DLTKG is more effective at capturing abstract
semantic relationships in TKGs.

When compared to rule-based models and graph
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Method
ICEWS14 ICEWS05-15 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

CyGNet† (Zhu et al., 2021) 39.86 30.11 44.02 58.10 40.42 29.44 46.06 61.60 68.98 58.97 76.80 86.98
HIP Network (He et al., 2021) 50.57 45.73 54.28 61.65 - - - - 67.55 66.32 68.49 70.37

RE-NET† (Jin et al., 2020) 38.48 28.52 42.85 58.10 44.56 34.16 50.06 64.51 66.93 58.59 71.48 86.84
xERTE (Han et al., 2020) 40.79 32.70 45.67 57.30 46.62 37.84 52.31 63.92 53.62 48.53 58.42 60.53
REGCN† (Li et al., 2021) 42.48 31.90 47.73 62.85 48.10 37.48 53.92 68.56 82.30 78.83 84.27 88.58
ODE (Han et al., 2021) 26.25 17.30 29.07 44.18 42.86 32.72 48.14 62.34 62.50 58.77 64.73 68.63
HiSMatch (Li et al., 2022b) 46.42 35.91 51.63 66.84 52.85 42.01 59.05 73.28 - - - -
RETIA (Liu et al., 2023) 45.29 34.60 50.88 66.06 52.17 40.21 59.42 73.98 - - - -
SRPL (Li et al., 2024) 56.19 50.12 59.02 67.43 - - - - - - - -

TLogic (Liu et al., 2022) 42.53 33.20 47.61 60.29 46.94 36.16 53.24 67.21 78.76 74.31 83.38 83.72
TR-Rules∗ (Li et al., 2023) 43.32 33.96 48.55 61.17 45.91 36.22 51.60 65.57 - - - -
TempValid (Huang et al., 2024) 45.78 35.50 51.34 65.06 50.31 39.46 56.71 70.55 79.72 74.64 84.78 85.73
ONSEP (Yu et al., 2024) - 33.20 46.50 57.70 - 39.00 55.10 66.80 - - - -

ChapTER (Peng et al., 2024) 33.80 - 38.00 52.70 33.10 - 36.90 52.50 - - - -
STORE (Zhang et al., 2024b) 48.77 36.53 55.58 71.91 49.74 38.52 55.91 71.14 64.65 51.94 71.50 83.10
CoH (Xia et al., 2024) 43.94 33.07 49.64 64.90 49.71 38.01 56.40 71.25 - - - -
LLM-DA (Wang et al., 2024) 47.10 36.90 52.60 67.10 52.10 41.60 58.60 72.80 - - - -
GenTKG (Liao et al., 2024) - 36.85 47.95 53.50 - - - - - 79.15 83.00 84.25

DiffuTKG∗ (Cai et al., 2024) 45.39 35.88 50.12 63.56 50.74 39.73 55.51 73.17 80.98 74.25 85.63 89.41

DLTKG(Ours) 64.39 52.48 71.64 87.32 53.79 42.05 59.43 76.35 81.46 75.09 86.57 90.74

APG 8.20 2.36 12.62 15.41 0.94 0.04 0.01 2.37 -0.84 -4.06 0.94 1.33
RPG(%) 14.59 4.71 21.38 21.43 1.78 0.10 0.02 3.20 -1.02 -5.13 1.10 1.49

Table 2: Performance (%) comparison on temporal link prediction on three event-based TKG datasets (ICEWS14,
ICEWS05-15, and YAGO). APG and RPG represent the absolute and relative performance gains of our model over
the best-performing baselines, calculated as APG = Rours − Rbaseline and RPG = (Rours − Rbaseline) /Rbaseline,
where Rours and Rbaseline denote the results of our model and best-performing baselines, respectively. Best results
are in bold, and the second best are underlined. The results marked with † are from Huang et al. (2024), marked
with ∗ are from our reimplementation with default settings, and other results are retrieved from the original papers.

α (e) α (r) |P|
ICEWS14 48.5 90.22 13189
ICEWS05-15 57.96 92.03 28005
YAGO 35.09 55.00 1172

Table 3: Statistical data on three datasets. α (e) repre-
sents the percentage (%) of the target entity appearing
historically in the test set. α (r) represents the propor-
tion (%) of relationships with HEPs. |P| represents the
total number of HEPs for each dataset.

neural network-based models, DLTKG signifi-
cantly outperforms the second-best models on
ICEWS14 and ICEWS05-15, with MRR improve-
ment of 8.20% and 0.94%, respectively. Notably,
DLTKG shows a more substantial performance
gain on the ICEWS14 than on the ICEWS05-15
and YAGO. We attribute the primary reason to
the differing proportions of entities, relations, and
HEPs across the datasets, as shown in Table 3. The
occurrence rate of target entities in the ICEWS14
is relatively low, leading to a greater distinction
between fuzzy and target entities. By fusing his-

Method
ICEWS14 YAGO

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

DLTKG w/o fe 64.02 52.10 71.45 86.64 80.56 73.98 85.23 89.45
DLTKG w/o rh 63.97 52.12 71.31 86.50 80.93 74.82 85.02 90.23
DLTKG w/o ft 63.28 51.33 70.35 86.45 80.31 74.18 83.45 89.13

DLTKG 64.39 52.48 71.64 87.32 81.46 75.09 86.57 90.74

Table 4: Results (%) of the ablation studies on
ICEWS14 and YAGO.

torical information to obtain fuzzy entity represen-
tations, DLTKG effectively reconstructs the target
entities. In the ICEWS05-15, the abundance of
high-quality facts at each timestamp complicates
the ability of DLTKG to distinguish target entities
from fuzzy ones. In the YAGO, only 55% of rela-
tionships have HEPs, resulting in fewer effective
information for DLTKG. Experiments demonstrate
the effectiveness of denoising fuzzy entities using
HEPs and further enhance model accuracy through
fine-tuning.

5.3 Ablation Study
To validate the effectiveness of various modules
in DLTKG, we conduct ablation experiments on
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Noise Sources MRR H@1 H@3 H@10

Random noise 64.02 52.10 71.45 86.64
Random entities 63.82 51.80 71.29 86.88
Relevant entities (Ours) 64.15 52.20 71.50 87.09

Table 5: Comparison results of denoising different noise
sources on ICEWS14.

ICEWS14 and YAGO. (1) "w/o fe" indicates that
we do not use fuzzy entities, but instead directly
add random noise to the target entities. (2) "w/o
rh" means that we remove the HEPs of relation-
ships and do not use guiding information. (3) "w/o
ft" indicates that we do not use the fine-tuning
strategy, but directly use the results from the initial
training.

As shown in Table 4, we have the following
observations: (1) Removing the entity fusion and
HEPs leads to a decrease in all metrics. This indi-
cates that treating related entities as noise sources
and using evolutionary history for denoising can
effectively capture the underlying patterns between
events. (2) After removing the fine-tuning mod-
ule, the MRR decreases by 1.11% and 1.15% for
ICEWS14 and YAGO, confirming the effectiveness
of the fine-tuning structure.

5.4 Analysis of Different Noise Sources
We believe future event prediction is strongly cor-
related with historical data. The process of de-
noising noise sources (entities) can be viewed as
a search process for historical data. Table 5 com-
pares results with random noise, fuzzy entities with
random fusion, and fuzzy entities with historically
relevant fusion. The model performs worse with
random entities as noise sources than with random
noise, as random entities interfere with the model’s
judgment. Additionally, correct entity information
yields significantly better results than both incor-
rect and absent entity information.

5.5 Generalization Analysis
To validate the generalization of our proposed
strategies in DLTKG, we conduct a comparative
analysis with DiffuTKG (Cai et al., 2024) on the
ICEWS14 dataset. Figure 3 shows that incorpo-
rating the entity fusion (fe), historical evolution
(rh), and fine-tuning (ft) modules results in signifi-
cant improvements in MRR, Hits@1, and Hits@10,
with MRR increasing by 15.62%, 14.61%, and
15.40%, respectively. These results demonstrate
the effectiveness of each strategy: entity fusion

Figure 3: Generalization results on ICEWS14: Dif-
fuTKG (Cai et al., 2024) is enhanced by our different
strategy combinations.

Figure 4: Performance of different parameters on the
ICEWS14 dataset.

captures the relationships between entities, the his-
torical evolution module models the trends of event
development, and fine-tuning enhances reasoning
performance.

5.6 Parameter Analysis and Case Study

We run our model with different important hyper-
parameters (i.e., k, ℓ, and n) to explore the weight
impacts. From the Figure 4, it can be observed that
different parameters have a certain impact on model
performance. The detailed results are reported in
Appendix B.

To facilitate the understanding of the modeling
mechanism of DLTKG, we provide several case
studies in Appendix C.

6 Conclusion

In this paper, we present DLTKG, a temporal
knowledge graph reasoning model based on a de-
noising diffusion process for future fact prediction.
We introduce an entity fusion strategy that aggre-
gates past entities into fuzzy representations, recon-
structed by a conditional denoising decoder. The
fine-tuning phase further refines the model by incor-
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porating the shortest paths between query head en-
tity and candidate entities as additional conditions.
Empirical results on benchmark datasets demon-
strate that DLTKG outperforms existing methods,
offering superior accuracy and generalization in
temporal reasoning tasks.

Limitations

We demonstrate the effectiveness and generalizabil-
ity of our DLTKG method through evaluations on
multiple benchmarks. Nevertheless, DLTKG may
still exhibit several limitations. On one hand, it
uses a simple linear fusion method for generating
fuzzy entities, and future work could explore more
advanced strategies like weighted fusion. On the
other hand, the one-step noise addition approach
may be improved by investigating stepwise tech-
niques to better capture entity uncertainties. Mean-
while, in the fine-tuning strategy, we need to search
for the shortest path in the entire graph, which may
bring some computational overhead for large-scale
graphs.
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A Implementation Details

We compute the mean reciprocal rank (MRR) and
hits@i for i ∈ {1, 3, 10}. For a rank x ∈ N, the
reciprocal rank is defined as 1

x , and the MRR is the
average of all reciprocal ranks of the correct query
answers across all queries. The metric Hits@i indi-
cates the proportion of queries for which the correct
entity appears under the top i candidates.

We use the AdamW optimizer with a learning
rate set to 0.001. The number of training epochs

Figure 5: The impact of different parameters on all
evaluation metrics. The pink blocks, blue blocks, and
green blocks represent the changes in the indicators of
HEPs length, the number of HEPs, and the number of
candidate entities, respectively.

is set to 100, and if there is no improvement in
the MRR on the validation set for 20 consecutive
epochs, training will be terminated early. Addition-
ally, the length of HEP is set to 3, the number of
HEPs is set to 16, the number of candidate entities
k in the fine-tuning module is set to 15, the total
number of shortest paths is set to 128, and the num-
ber of random walk steps is set to 200. The hidden
layer dimension size d for entities, relationships,
and timestamps is fixed at 200 across all datasets.

B Parameter Sensitivity Analysis

Figure 4 in Section 5.6 and Figure 5 show the im-
pact of different parameters on model performance.
Overall, the influence of these parameters on model
performance is relatively minimal.

For different lengths of HEPs, both shorter and
longer values tend to degrade performance. This
is attributed to the limited number of instances for
shorter or longer HEPs in the ICEWS14. Specifi-
cally, when ℓ = 1, the performance surpasses that
of ℓ = 2, as there are 2.5 times more HEPs for
ℓ = 1. Moreover, the number of historical iter-
ations, denoted as n, also plays a crucial role in
model performance. Excessive iterations introduce
redundancy, which negatively impacts accuracy.
As such, we set n = 16 for optimal performance.
Figure 4(a) presents the Hits@ metric results for
ICEWS14 under optimal conditions, where the per-
formance stabilizes within the range of [10, 30].
Consequently, we investigate the influence of dif-
ferent k values on model performance within this
interval. As observed, when k exceeds 15, perfor-
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mance begins to decline, likely due to the excessive
number of candidate entities, which may hinder
the ability of model to make accurate predictions.
Therefore, k = 15 is determined to be the optimal
choice.

C Case Study

We present two queries in Table 6. For Query 1,
as described in Section 4.1, we initially retrieve n
HEPs related to Use conventional military force, all
of which involve Government (Nigeria). The top
three predicted entities all appeared in the historical
data. We then fine-tune the model, leading to the
final prediction of Boko Haram.

For Query 2, we utilize r = 3 HEPs. The combi-
nation of HEP guidance and the associations with
historically relevant entities enables the model to
effectively predict the target entity.

By incorporating the HEP conditional guidance
mechanism, model effectively accounts for the in-
fluence of these conditions when denoising. The
fuzzy entities, which contain historical information
relevant to the target entity, are refined with the help
of HEPs, thereby enhancing the interpretability of
model.

D Sensitivity to Historical Relationship
Density

To investigate whether our method is sensitive
to the density of historical relational data, we
conducted experiments on relations in the YAGO
dataset that possess historical evolutionary paths
(HEPs) at a selection rate of 35%. As shown in Ta-
ble 7, the results demonstrate the effect of varying
densities of historical relational data on model per-
formance. The findings indicate that performance
does not drop sharply even with fewer HEPs, sug-
gesting that the model is not overly sensitive to the
sparsity of historical data.

E Discussion on Whether to Use tq in
Auxiliary Denoising Strategy

For the unseen time tq, we use randomly initialized
embeddings as noise added to the model during the
inference process to encourage the model to focus
on the time dimension. As shown in Table 8, we
compared the results without adding the random
embedding of the query time tq, and the results on
the ICEWS14 dataset indicate that the performance
is hardly affected.

F Baselines

The comparison of TKG reasoning models with
our work is presented as follows:

CyGNet (Zhu et al., 2021) introduces time-
aware replication generation, combining new facts
with repeated pattern recognition to improve pre-
diction accuracy.

HIP Network (He et al., 2021) integrates tem-
poral, structure and repetitive patterns, dynami-
cally updates relationships, and optimizes multi-
dimensional score prediction.

RE-NET (Jin et al., 2020) combines event en-
coding and neighbor aggregation using an autore-
gressive architecture to sequentially reason about
future facts.

xERTE (Han et al., 2020) is based on query
subgraphs and integrates temporal attention and
reverse update, taking into account both accuracy
and interpretability.

REGCN (Li et al., 2021) combines relation-
aware convolution with gated recurrence to dy-
namically model entity relations and fuse static
attributes.

ODE (Han et al., 2021) extends multi-relation
graph convolution to continuous time, integrates
temporal structures, and models the dynamic for-
mation and resolution of relationships.

HiSMatch (Li et al., 2022b) regards temporal
knowledge graph reasoning as structural matching,
integrating dual encoders with entity prior informa-
tion.

RETIA (Liu et al., 2023) addresses the issues
of relationship modeling and overfitting through
dual hyper-relation subgraphs and dual interaction
modules.

SRPL (Li et al., 2024) combines dependency-
aware sequences with time intervals to guide repet-
itive pattern learning and to capture both temporal
proximity dependencies and irregular intervals.

TLogic (Liu et al., 2022) extracts logical rules
based on temporal random walks, taking into ac-
count both temporal consistency and inductiveness,
and supports rule migration and cross-set predic-
tion.

TR-Rules (Li et al., 2023) improves confidence
accuracy and introduces non-circular rules to en-
hance rule diversity , as well as model interpretabil-
ity and predictive capability.

TempValid (Huang et al., 2024) dynamically
models rule confidence based on time functions
and combines adversarial and time-aware negative
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Query1 (Government (Nigeria), Use conventionalmilitary force, ?, 2014− 12− 02) Answer Boko Haram

p1 : BokoHaram
Threaten−−−−−−−−→

2014−05−19
Government (Nigeria)

Appeal to engage in or acceptmediation←−−−−−−−−−−−−−−−−−−−−−−−−
2014−05−22

Education (Nigeria)

p2 : BokoHaram
Make statement−−−−−−−−−−→
2014−05−21

Government (Nigeria)
Express intent to cooperate←−−−−−−−−−−−−−−−−−

2014−06−02
Citizen (Nigeria)

...
HEP

pn : Government (Nigeria)
Use conventionalmilitary force−−−−−−−−−−−−−−−−−−−−→

2014−08−18
BokoHaram

Engage innegotiation←−−−−−−−−−−−−−
2014−09−04

StephenDavis

Entity fusion
[
BokoHaram;StephenDavis;Citizen (Nigeria);Education (Nigeria);Government (Nigeria); . . . ;Muslim(Nigeria)

]

Initial prediction 1.StephenDavis; 2.BokoHaram; 3.Citizen (Nigeria); 4.T errorist Leader (BokoHaram); 5.ArmedRebel (Nigeria)

Shortest paths

Predicted results 1.BokoHaram; 2.StephenDavis; 3.Citizen (Nigeria); 4.T errorist Leader (BokoHaram); 5.Militant (Nigeria)

Query2 (Citizen (Nigeria),Make an appeal or request, ?, 2014− 12− 02) Answer Government (Nigeria)

p1 : KashimShettima
Make statement−−−−−−−−−−→
2014−05−23

Head of Government (Nigeria)
Praise or endorse−−−−−−−−−−−→

2014−09−30
Government (Nigeria)

Make an appeal or request←−−−−−−−−−−−−−−−−
2014−09−30

Head of Government (Nigeria)

p2 : Citizen (Nigeria)
Investigate←−−−−−−−−
2014−08−04

Court Judge (Nigeria)
Praise or endorse−−−−−−−−−−−→

2014−08−11
Ministry (Nigeria)

Make statement−−−−−−−−−−→
2014−08−11

Court Judge (Nigeria)

...

pn : Citizen (Nigeria)
Make an appeal or request−−−−−−−−−−−−−−−−→

2014−09−22
Government (Nigeria)

Engage innegotiation−−−−−−−−−−−−−→
2014−09−23

BokoHaram

HEP

Make statement←−−−−−−−−−−
2014−09−24

Government (Nigeria)

Entity fusion [Citizen (Nigeria);BokoHaram;Ministry (Nigeria);Head of Government (Nigeria); ...;Court Judge (Nigeria)]

Initial prediction 1.BokoHaram; 2.Ministry (Nigeria); 3.Head of Government (Nigeria); 4.Government (Nigeria); 5.Court Judge (Nigeria);

Shortest paths

Predicted results 1.Government (Nigeria); 2.BokoHaram; 3.Ministry (Nigeria); 4.Head of Government (Nigeria); 5.Court Judge (Nigeria)

Table 6: Two case studies. We report the prediction results of DLTKG. The green font indicates the correct answers,
while the orange font represents entities that appear in HEP.

sampling to improve learning efficiency.
ONSEP (Yu et al., 2024) integrates dynamic

causal rule mining and dual history enhanced gen-
eration.

ChapTER (Peng et al., 2024) integrates con-
trastive learning and prefix tuning, and uses virtual
time prefixes to achieve low-parameter fine-tuning

and multi-scenario adaptation.
STORE (Zhang et al., 2024b) combines time-

aware semantic sampling and virtual tokens, using
multi-head attention to jointly optimize both se-
mantic and topological representations of temporal
knowledge graphs.

CoH (Xia et al., 2024) leverages higher-order
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proportion MRR H@1

35% 80.82 74.39
55% (Ours) 81.46 75.09

Table 7: The impact of different historical relationship
density data (55%, 35%) in the YAGO dataset on model
performance.

MRR H@1

DLTKG w/o tq 64.35 52.32
DLTKG (Ours) 64.39 52.48

Table 8: The impact of randomly initialized embeddings
on the model performance for unseen time tq on the
ICEWS14 dataset.

historical information to enhance temporal reason-
ing capabilities in large language models.

LLM-DA (Wang et al., 2024) utilizes large lan-
guage models to extract temporal rules, enabling
dynamic adaptation to ever-changing knowledge.

GenTKG (Liao et al., 2024) integrates tempo-
ral logic rule retrieval and few-shot instruction
fine-tuning, connecting temporal knowledge graphs
with large language models.

DiffuTKG (Cai et al., 2024) frames temporal
knowledge graph reasoning as a denoising pro-
cess for future fact sequences. It restores target
facts using conditional sequence encoding and a
Transformer-based denoiser, while applying uncer-
tainty regularization to reduce prediction bias and
handle rare or unseen facts.
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