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Abstract

While Large Language Models (LLMs) excel
at temporal reasoning tasks like event ordering
and duration estimation, their ability to per-
ceive the actual passage of time remains unex-
plored. We investigate whether LLMs perceive
the passage of time and adapt their decision-
making accordingly through three complemen-
tary experiments. First, we introduce the Token-
Time Hypothesis, positing that LLMs can map
discrete token counts to continuous wall-clock
time, and validate this through a dialogue du-
ration judgment task. Second, we demonstrate
that LLMs could use this awareness to adapt
their response length while maintaining accu-
racy when users express urgency in question an-
swering tasks. Finally, we develop BombRush,
an interactive navigation challenge that exam-
ines how LLMs modify behavior under progres-
sive time pressure in dynamic environments.
Our findings indicate that LLMs possess cer-
tain awareness of time passage, enabling them
to bridge discrete linguistic tokens and con-
tinuous physical time, though this capability
varies with model size and reasoning abilities.
This work establishes a theoretical foundation
for enhancing temporal awareness in LLMs for
time-sensitive applications.1

1 Introduction

Current LLMs are predominantly employed for
time-insensitive tasks such as question answering
(QA) (Hendrycks et al., 2021; Rein et al., 2023),
summarization (Zhang et al., 2023), and transla-
tion (Xu et al., 2024). Although both user input
and LLM generation inherently consume time, real-
world temporal factors typically do not significantly
influence these tasks’ outcomes. For instance, nei-
ther the duration taken by a user to formulate a
question nor the LLM’s response latency substan-
tially alters the correctness of the final output.

1Dataset and code are available at https://github.com/
yuriak/LLMTimePerception
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Figure 1: Overview of our work. We propose the Token-
Time Hypothesis connecting discrete tokens to contin-
uous time, then validate it through three experiments
examining time-mapping capabilities, temporal empa-
thy in static tasks, and adaptive decision-making under
dynamic tasks.

However, numerous time-sensitive tasks exist in
real-world scenarios, including simultaneous trans-
lation (Wang et al., 2024b,a), autonomous driv-
ing (Yang et al., 2024b), real-time dialogue (Défos-
sez et al., 2024), and robotic control (Driess et al.,
2023). In these contexts, environmental conditions
continually evolve over time, resulting in input data
variability and task dynamics heavily dependent on
temporal progression. Moreover, the time taken
by a model to generate responses can critically im-
pact task outcomes. Hence, temporal progression
becomes a decisive factor in these scenarios. This
raises a fundamental question: Are LLMs capable
of perceiving and interpreting the passage of time?
Specifically, can LLMs recognize their temporal
context and adapt their behavior accordingly?

To date, extensive research has focused on
LLMs’ reasoning capabilities in time-related tasks,
such as event ordering (Zhou et al., 2021; Tan et al.,
2023; Ding and Wang, 2025), temporal expres-
sion parsing (Chen et al., 2021; Zhang and Choi,
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2021; Zhou et al., 2019), and duration computa-
tion (Wang and Zhao, 2024; Jia et al., 2018; Shang
et al., 2022; Mavromatis et al., 2021). These stud-
ies evaluate models’ ability to perform temporal
reasoning but do not address whether models
possess any awareness of the passage of time
itself within our physical world.

In this paper, we bridge this gap by investigat-
ing whether and how LLMs perceive the passage
of time and adapt their behavior accordingly. We
first analyze the mechanisms through which LLMs
might understand time and propose the Token-
Time Hypothesis: LLMs can establish connec-
tions between text length and real-world temporal
progression. Through three complementary exper-
iments, we systematically explore the nature and
boundaries of this capability.

Our investigation begins with a Dialogue Dura-
tion Judgment task that validates the Token-Time
Hypothesis by examining whether LLMs can ac-
curately determine which conversation took longer
based on different temporal cues. We find that mod-
els can indeed associate token count with elapsed
time, though their ability to reconcile conflicting
cues depends significantly on their reasoning capa-
bilities. Building on these insights, we then explore
how this temporal awareness manifests in practical
scenarios through an Urgency-Aware QA experi-
ment, which reveals that models strategically re-
duce response length when users express time con-
straints while preserving answer quality, demon-
strating a form of "temporal empathy." Finally, our
BombRush experiment extends this investigation
to dynamic, interactive environments, showing how
models adjust their reasoning depth and decision-
making strategies under progressively increasing
time pressure.

This work makes several key contributions to
our understanding of language model capabilities:
(1) We present the first comprehensive study inves-
tigating LLMs’ perception of temporal progression.
(2) We establish the Token-Time Hypothesis as
a theoretical framework explaining how discrete
linguistic tokens might be mapped to continuous
temporal experience. (3) We design three novel
experimental paradigms to evaluate how time pas-
sage perception influences LLM behavior across
diverse scenarios. (4) We provide empirical evi-
dence that LLMs possess certain temporal passage
awareness, though varying across model scales and
genres. These findings have important implications
for deploying LLMs in time-sensitive applications

and provide a foundation for future research on
enhancing temporal awareness in language models.

2 Related Work

Temporal Understanding and Reasoning
Temporal understanding involves identifying the

time scope (e.g., start and end time) of events
in text, which often requires commonsense infer-
ence—for example, interpreting “during the Sec-
ond World War” as referring to the period from
1939 to 1945. Temporal reasoning, in contrast,
refers to deducing the temporal relationship (e.g.,
before, after, between) between events or between
the query and text (Chen et al., 2021).

Recent studies have investigated whether LLMs
possess basic temporal commonsense. Jain et al.
(2023) benchmark LLMs across multiple datasets
and prompting strategies, revealing limited and
inconsistent performance across tasks like event
ordering and duration reasoning. Zhang et al.
(2024) propose TIMEARENA, a simulated envi-
ronment to test LLMs under temporal constraints,
showing that models struggle with effective time-
sensitive planning. Thukral et al. (2021) evalu-
ate models on NLI tasks involving temporal ex-
pressions and find weaknesses in understanding
time-related comparisons. Corresponding bench-
mark datasets in this area include TimeDial (Qin
et al., 2021), TNLI (Hosokawa et al., 2023), and
MC-TACO (Zhou et al., 2019), which focus on
evaluating temporal inference, commonsense align-
ment, and fine-grained question answering involv-
ing time-related knowledge.

In parallel, several studies aim to enhance tempo-
ral understanding by introducing time-aware train-
ing strategies. Kimura et al. (2022) use multi-step
fine-tuning and masked temporal indicators to im-
prove commonsense inference across time-related
tasks. TSM (Cole et al., 2023) propose Temporal
Span Masking, targeting time expressions during
pretraining to strengthen temporal representations.
BiTimeBERT (Wang et al., 2023) incorporates bi-
temporal signals from news corpora to build time-
sensitive language models.

Time Sensitive Question Answering
A closely related line of work focuses on Time-

Sensitive Question Answering (TSQA), which
refers to answering questions where the re-
sponse depends critically on a specific time ref-
erence—changing the time expression leads to
a different answer (Chen et al., 2021). Solving
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TSQA tasks requires both temporal reasoning and
commonsense understanding to interpret and align
facts within a temporal context. Commonly used
datasets in this domain include TempReason (Tan
et al., 2023), TimeQA (Chen et al., 2021), Situat-
edQA (Zhang and Choi, 2021).

To improve TSQA performance, prior work has
explored methods for enhancing temporal sensitiv-
ity through training or model augmentation. Yang
et al. (2024a) introduce a framework that combines
temporal-aware embeddings with contrastive rein-
forcement learning to help models better align facts
with time-conditioned queries. Similarly, Su et al.
(2023b) incorporate temporal graphs into Trans-
former architectures, allowing the model to reason
more effectively over event-time structures.

These prior efforts have made significant
progress in improving temporal reasoning, repre-
sentation, and sensitivity in language models. How-
ever, to the best of our knowledge, no existing
work has examined whether LLMs possess any
awareness of the passage of time itself within
our physical world. Unlike traditional temporal
QA or reasoning tasks, this question shifts focus
from reasoning about time to perceiving time as an
experiential dimension—raising new challenges at
the intersection of cognitive modeling and LLM
behavior analysis.

3 LLM’s Sense of Time

Time perception (chronoception) in psychology
refers to the subjective experience of time: how
individuals sense durations and intervals be-
tween events, distinct from objective chronolog-
ical time (Di Lernia et al., 2018; Eagleman, 2008;
Wittmann, 2009).

Building on this concept, we investigate whether
similar mechanisms exist in AI systems. Autore-
gressive decoder-only language models process
text by decomposing sequences into conditional
probability distributions that preserve temporal or-
dering (Brown et al., 2020). This creates a natural
alignment between token positions and chronologi-
cal progression: earlier tokens precede later ones,
mirroring how events unfold in human experience.
Moreover, token quantity roughly corresponds to
communication time in human interaction. While
humans intuitively incorporate temporal dimen-
sions in communication, a fundamental question
emerges: do LLMs possess an analogous sense
of time that influences their comprehension and

generation?

3.1 Time Perception Mechanisms in LLMs

To systematically investigate potential temporal
awareness in language models, we focus on the
most representative scenario, i.e. multi-turn dia-
logue, where time perception becomes particularly
relevant. Conversations provide an ideal context
due to their inherent chronological structure, par-
ticipants exchange messages sequentially, creating
a natural temporal flow that allows us to examine
how LLMs perceive and process time-related infor-
mation.

Within this interactive framework, an LLM’s op-
erational cycle can be abstracted into two states:
Standby State (awaiting input without computa-
tion) and Active State (processing input through
generation completion). During standby, the model
exists in temporal isolation, with time perception
potentially manifesting only in two scenarios:

1. During Encoding of User Input: When ac-
tivated by new input, the model encodes this
text, potentially extracting temporal informa-
tion from either the number of input tokens or
explicit time markers within the input. This
mechanism allows the model to infer time that
elapsed during its standby period.

2. During Autoregressive Generation: While
generating text, the model cannot incorporate
new external input, but theoretically could es-
timate passing wall-clock time if it possesses
awareness of its own generation speed and the
relationship between the number of generated
tokens and time elapsed.

3.2 The Token-Time Hypothesis

These observations lead us to formulate the Token-
Time Hypothesis, which proposes that: LLMs treat
tokens as discrete temporal units, inferring the pas-
sage of real-world time from the length and se-
quencing of textual events within the token space.
This hypothesis establishes two distinct temporal
measurement systems: Token-Time, the discrete,
abstract temporal metric based on token counts,
and Wall-Clock-Time, the continuous, physical
temporal metric in the real world. Under this frame-
work, studying an LLM’s temporal awareness fun-
damentally involves understanding how the model
perceives and utilizes the mapping relationship be-
tween these two temporal domains. This mapping
capability, if present, would be crucial for LLMs
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Figure 2: Illustration of the relationship between Token Time and Wall-Clock-Time across LLM’s operational
cycles. This figure compares the Wall-Clock timeline (Twall) and the model’s Token timeline (Ttoken). The LLM
alternates between a Standby State (waiting for user input) and an Activate State (generating responses). While
the LLM can observe the number of input tokens, it cannot infer how long the user spent composing them, as input
speed is unobservable and variable. For example, in Case ① , the user typed slowly while thinking, yielding few
tokens over a long period. In Case ③ , the user quickly pasted a long passage, resulting in many tokens in a short
time. In contrast, during the generation phase, the LLM’s output token count provides a measurable passage of time,
assuming an ideally fixed generation speed (Vout), as shown in Case ② . This enables an estimation of elapsed
Wall-Clock Time based on the number of output tokens.

to function effectively in time-sensitive applica-
tions where understanding temporal progres-
sion impacts task performance. (More discus-
sions can be found in Section A.2.)

3.3 Mapping Between Token-Time and
Wall-Clock-Time

To formalize the relationship between these tempo-
ral domains, we define a mathematical framework
that quantifies this critical mapping:

Tm
wall = Tm

tok × Vm, m ∈ {in, out} (1)

where Vm represents the conversion rate between
domains for mode m (input or output), measured in
seconds per token (s/token). Specifically, the input
conversion rate Vin is calculated as the ratio of
Wall-Clock time spent on input preparation T in

wall

to the total token count of that input T in
tok. Similarly,

the output conversion rate Vout represents the ratio
of actual generation time T out

wall to the number of
tokens produced T out

tok .
In ideal conditions, when both Vin and Vout re-

main constant, the relationship Twall ∝ Ttok would
hold. However, real-world scenarios demand a
more nuanced consideration, particularly for Vin.
In multi-turn dialogues, various external factors (as
illustrated in Figure 2) cause Vin to fluctuate signif-
icantly, preventing a consistent T in

wall ∝ T in
tok rela-

tionship. Conversely, Vout remains relatively stable
(assuming negligible computational overhead from
increasing generation length), maintaining the pro-
portionality T out

wall ∝ T out
tok . To ensure experimental

rigor, we control for input variability and focus
primarily on LLMs’ understanding and utilization

You are given two conversations (A and B), each with a user prompt and
an LLM response. Assuming the same LLM with constant inference speed.
which response took the LLM longer to generate — A or B?

## Conversation A
User: How's the weather today?
LLM: It’s a sunny day.

## Conversation B
User: How's the weather today?
LLM: It’s a sunny day with mild temperatures. There
are clear skies and warm air, perfect for outdoors.

Figure 3: Prompt example for the Dialogue Duration
Judgment task. LLMs are given two user–LLM con-
versations and asked to judge which response took the
LLM longer to generate.

of time passage during the Activate State (output)
phase.

Specifically, to address our research questions,
we conducted three experiments. The first experi-
ment validates whether LLMs can comprehend the
T out
wall ∝ T out

tok mapping relationship. In the sub-
sequent two experiments, we investigate whether
LLMs with time passage perception capabilities
demonstrate behavior that strategically controls
T out
tok to influence T out

wall, thereby meeting the tem-
poral requirements of particular tasks.

4 Dialogue Duration Judgment

Our first experiment examines whether LLMs can
associate text length (Token-Time) with tempo-
ral duration (Wall-Clock-Time), and how this ca-
pability functions under various confounding fac-
tors. To systematically evaluate this, we designed a
dialogue duration judgment task using paired
samples from the chatbot_arena_conversations
dataset2 (Zheng et al., 2023). Each sample contains

2lmsys/chatbot_arena_conversations
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Setting Key Characteristics Purpose

S1 No explicit temporal cues provided Test inherent ability to infer temporal duration from Ttok

S1-Hint Textual hint: “Generation time is proportional to number of tokens” Evaluate if the model understands the hint: Ttok ∝ Twall

S1-Count Direct token counts provided for both dialogues Test ability to judge duration from explicit Ttok information

S2 Timestamps provided for input and response; consistent with text length Test prioritization of explicit Twall cues over implicit Ttok

S2-M Misleading timestamps: longer responses shown with shorter durations Evaluate ability to prioritize Twall over contradictory Ttok cues

S2-M+ Both misleading timestamps and accurate token counts provided
Determine which temporal domain (Ttok vs Twall)
models prioritize when directly conflicting

Table 1: Experimental settings for the Dialogue Duration Judgment task. Settings are divided into Token-Time cues
(S1, S1-Hint, S1-Count) and Wall-Clock-Time cues (S2, S2-M, S2-M+).

a user prompt with two responses (A or B) from dif-
ferent LLMs of substantially different lengths. We
selected 300 samples where both responses were
generated by high-quality models such as GPT-4 or
Claude, ensuring response quality would not neg-
atively affect LLMs’ decision-making. The tested
LLM must identify which dialogue is likely to re-
quire more time to complete, and provide justifica-
tion for its judgment (See Figure 3 for an example).

4.1 Experimental Setup

We systematically designed six controlled settings
by introducing different temporal cues that either
facilitate or impede the LLM’s judgment. These
settings are organized into two categories: Token-
Time cues and Wall-Clock-Time cues, each prob-
ing whether the model could correctly leverage
the corresponding temporal domain to make accu-
rate predictions. The detailed task prompts and
demonstration of settings are illustrated in Sec-
tion B.1, B.2 and Table 1.

Setting 1: Token-time Cues For this group of
settings, we progressively introduced more ex-
plicit cues to help the candidate LLM establish the
connection between Token-Time and Wall-Clock-
Time. To eliminate potential confounding factors,
we explicitly stated in the prompt that all responses
were generated by an identical model with constant
inference speed.

Setting 2: Wall-Clock-Time Cues In this group,
we introduced temporal logs containing explicit
Wall-Clock-Time timestamps for both dialogues to
test whether the LLM could effectively utilize these
direct temporal signals. We also manipulated these
timestamps in certain settings to create conflicting
cues, allowing us to observe how LLMs prioritize
different temporal indicators. These manipulations
simulate realistic scenarios where varying compu-
tational conditions might create discrepancies be-
tween text length and generation time.

Settings S1 S1-Hint S1-Count S2 S2-M S2-M+

SLM Llama-8B 79.7 83.0 99.4 76.8 47.7 16.3
Qwen-7B 66.8 71.2 92.7 80.9 26.8 12.9

LLM Llama-70B 91.3 93.2 99.9 93.5 74.0 40.1
Qwen-72B 83.8 84.5 99.9 96.6 82.5 48.8

LRM DLlama-70B 87.9 92.3 100.0 99.2 98.0 94.3
QwQ-32B 91.5 94.8 100.0 99.3 99.2 99.1

Table 2: Accuracy (%) of different model categories
on the Dialogue Duration Judgment task. Settings in-
clude Token-Time cues (S1: baseline, S1-Hint: with
hint, S1-Count: with token counts) and Wall-Clock-
Time cues (S2: consistent timestamps, S2-M: mislead-
ing timestamps, S2-M+: misleading timestamps with
token counts).

This experimental design probes how LLMs
negotiate between different temporal metrics and
whether they possess coherent mechanisms for tem-
poral perception.

Models and Evaluation We tested six models
divided into three categories: Small LMs (7-8B pa-
rameters): Qwen-2.5-7B3 (Team, 2024) and Llama-
3.1-8B4 (Grattafiori et al., 2024); Large LMs (70B+
parameters): Llama-3.3-70B5 and Qwen-2.5-72B6;
and Large Reasoning Models (LRMs with in-
ternalized inference time scaling capabilities):
DeepSeek-R1-Distill-Llama-70B7 (DeepSeek-AI,
2025) and QWQ-32B8 (Team, 2025). For each
model under each setting, we conducted 5 repli-
cations and reported the average accuracy as our
primary evaluation metric. To ensure statistical
rigor, we further conducted 20 replications for each
model-setting combination, with detailed signifi-
cance testing in Section B.3.

4.2 Results
Table 2 presents the accuracy of all models across
different experimental settings. We analyze per-
formance by model category and within settings,

3Qwen/Qwen2.5-7B-Instruct
4meta-llama/Llama-3.1-8B-Instruct
5meta-llama/Llama-3.3-70B-Instruct
6Qwen/Qwen2.5-72B-Instruct
7deepseek-ai/DeepSeek-R1-Distill-Llama-70B
8Qwen/QwQ-32B
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Figure 4: Attribution distribution and accuracy across
model classes and settings. Each bar shows the propor-
tion of attribution used, darker segments indicate the
percentage of correct answers within that attribution.
(See Section B.4 for detailed numerical results)

followed by attribution analysis to understand un-
derlying reasoning mechanisms.

Performance Across Model Categories We ob-
serve a clear progression in accuracy from SLMs
to LLMs to LRMs, aligning with expectations that
larger models and those with enhanced reasoning
capabilities demonstrate superior overall perfor-
mance, potentially including the ability to perceive
the passage of time that we are investigating.

Token-Time Settings (S1, S1-Hint, S1-Count)
In the baseline condition (S1), all models achieve
reasonably high accuracy without explicit cues, in-
dicating an inherent capability to associate text
length with temporal duration. As Token-time hints
become more explicit, accuracy increases across
all model categories, reaching near-perfect scores
in S1-Count where token counts are explicitly pro-
vided.

Wall-Clock-Time Settings (S2, S2-M, S2-M+)
Most models achieve higher accuracy with explicit
timestamps (S2) compared to the Token-time base-
line (S1), indicating that direct temporal cues en-
hance duration judgment beyond default token-
based heuristics.

The most revealing results emerge with mislead-
ing cues (S2-M and S2-M+). SLMs and LLMs
show dramatic performance degradation when to-
ken counts and timestamps provide contradictory

signals. In stark contrast, LRMs maintain remark-
ably high accuracy even under these challenging
conditions, with QwQ-32B achieving 99.1% accu-
racy in the most conflicting setting.

4.2.1 Attribution Analysis
To understand the underlying mechanisms of tem-
poral judgment, we classified models’ justifications
into three categories: "text length," "semantic," and
"time" using a Llama-3.3-70B classifier (see Fig-
ure 9 for the prompt). Figure 4 shows attribution
distributions and corresponding accuracy across
settings and model categories.

In the baseline setting (S1), all models primarily
use text length for attribution, though with consid-
erable reliance on semantic cues as well. Judg-
ments based on text length achieve substantially
higher accuracy than those based on semantic fea-
tures. As Token-time hints become more explicit,
models increasingly favor text length attributions
over semantic cues. For Wall-Clock-Time settings,
LLMs show greater aptitude than SLMs at lever-
aging timestamp information in S2. Interestingly,
LRMs occasionally incorporate multiple attribution
types, but mostly rely on timestamp cues. Under
misleading settings (S2-M), SLMs and LLMs main-
tain similar attribution patterns as in S2, but with
significantly reduced accuracy. In the most chal-
lenging setting (S2-M+), both SLMs and LLMs are
substantially misled, increasingly relying on text
length despite contradictory timestamp informa-
tion. Even when LLMs continue using timestamp
cues, their accuracy declines dramatically, indicat-
ing confusion when faced with conflicting temporal
signals. LRMs, however, remain largely resistant to
these misleading cues. We speculated more about
this phenomenon’s underlying mechanism in Sec-
tion A.3.2.

Key Takeaway

LLMs can perceive the passage of time by
connecting Token-Time with Wall-Clock-
Time, although this intriguing ability varies
with their underlying reasoning capabilities.

5 Urgency-Aware QA

Just as humans demonstrate emotional empathy by
resonating with others’ feelings (Manzoor et al.,
2024), interactive AI systems should exhibit what
we might call temporal empathy: the ability to rec-
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Model OpenbookQA GSM8K GPQA

Normal Urgent ∆% Normal Urgent ∆% Normal Urgent ∆%

Accuracy / # Tokens (GPT-4o Tokenizer)

SLM
Llama-8B 84.6 / 299 84.2 / 302 -0.4% / 0.9% 82.2 / 482 81.9 / 439 -0.4% / -8.9% 28.1 / 2,900 28.3 / 2,851 -1.7% / 0.7%
Qwen-7B 87.3 / 203 88.2 / 186 1.0% / -8.4% 88.8 / 271 88.6 / 258 -0.2% / -4.9% 33.9 / 598 34.3 / 551 1.2% / -7.8%

LLM
Llama-70B 96.6 / 289 96.4 / 259 -0.1% / -10.4% 93.2 / 242 93.1 / 226 -0.1% / -6.5% 49.0 / 808 49.3 / 754 0.6% / -6.7%
Qwen-72B 96.4 / 206 96.2 / 164 -0.2% / -20.7% 91.4 / 273 91.3 / 242 -0.1% / -11.4% 48.2 / 695 52.1 / 635 8.2% / -8.6%

LRM
DS-Llama-70B 95.8 / 784 95.9 / 683 0.1% / -12.9% 92.9 / 464 93.8 / 441 1.0% / -5.0% 33.8 / 5,106 38.0 / 5,065 12.2% / -0.8%
QwQ-32B 96.2 / 793 96.6 / 695 0.4% / -12.3% 96.2 / 759 96.6 / 655 0.4% / -13.7% 59.5 / 6,847 62.4 / 6,332 4.9% / -7.5%

Table 3: Urgent-Aware QA results on OpenbookQA, GSM8K, and GPQA benchmarks. We report the accuracy
under Normal and Urgent prompt conditions, along with relative changes (∆%). Token usage is measured using
the GPT-4o tokenizer to ensure cross-model comparability.

Please solve the following math
problem clearly and efficiently. 

Question:
If a pizza is cut into 8 slices and you
eat 3, how many slices are left?

Answer:
Start with 8 slices, you eat 3 slices,
so subtract 3 from 8. 
8 − 3 = 5. 5 slices are left.

Normal Mode
Please solve the following math
problem clearly and efficiently.

Question:
If a pizza is cut into 8 slices and you
eat 3, how many slices are left?

Please give me the answer quickly!!!

Answer:
8 - 3 = 5 slices.

Urgent Mode

35
Tokens

9
Tokens

Figure 5: An example of the Urgency-Aware QA task,
where the urgency expression is highlighted.

ognize and adapt to a user’s perception of time.
Building on our finding that LLMs can associate
Token-Time with Wall-Clock-Time, we now in-
vestigate their ability to respond appropriately to
user time constraints. This represents a practi-
cal application of time passage perception, where
models leverage their understanding of temporal
constraints to adapt their behavior. To examine
this temporal adaptation, we introduce an urgency-
aware QA task that uses static scenarios to observe
how models respond under time pressure. This ex-
periment specifically measures changes in response
length and accuracy when models are explicitly
prompted to answer quickly.

5.1 Experimental Setup

We selected three QA datasets of varying diffi-
culty levels: Openbook-QA (commonsense) (Mi-
haylov et al., 2018), GSM8k (mathematics) (Cobbe
et al., 2021), and GPQA-Diamond (scientific ques-
tions) (Rein et al., 2023), totaling 2,017 questions.
Each question was presented under two conditions:
a normal mode and an urgent mode. In normal
mode, we used a standard prompt asking the LLM
to provide step-by-step reasoning and the corre-
sponding answer. In urgent mode, we augmented
the prompt with an additional sentence randomly
sampled from a pool of urgency expressions (e.g.,
"I’m in a big hurry right now. Please give me the

answer quickly!!!").
Following the methodology of our previous ex-

periment, we tested six models across three cate-
gories (SLM, LLM, LRM), conducting 5 replica-
tions per model per setting to ensure reliability. We
evaluated performance primarily through accuracy
and assessed time efficiency through token count.
For cross-model comparability, we calculated to-
ken counts using both model-specific tokenizers
and a shared GPT-4o tokenizer (via tiktoken). Full
prompt templates and the urgency pool are pro-
vided in Appendix C.2.

5.2 Results

Table 3 presents model performance across three
datasets under normal and urgent conditions, show-
ing accuracy, token usage, and corresponding rel-
ative changes. Rather than focusing on absolute
metrics, we concentrate on the relative changes that
reveal models’ adaptation to urgency.

Token Usage Adaptation The most consistent
pattern across our experiments is the reduction in
token usage under urgent conditions. Nearly all
models demonstrate decreased token consumption
when prompted with urgency expressions, suggest-
ing an inherent ability to associate time pressure
with brevity. Qwen-72B exhibits the most consis-
tent token reduction across all datasets, potentially
indicating stronger temporal adaptation capabili-
ties. When comparing across datasets of increasing
difficulty, we observe that token reduction is more
pronounced in simpler tasks (OpenbookQA and
GSM8K averaging 10.6% and 8.4% reductions,
respectively) compared to the more challenging
GPQA (5.5% average reduction). This suggests
a deliberate balancing mechanism, i.e., models
recognize the need for brevity under time con-
straints but appropriately calibrate this reduc-
tion according to task complexity.
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Impact on Accuracy For the relatively easy
datasets (OpenbookQA and GSM8K), models
maintain nearly identical accuracy levels despite
using fewer tokens in urgent mode. This demon-
strates their capability to preserve reasoning quality
while responding to temporal constraints. Surpris-
ingly, on the challenging GPQA dataset, five of
six models showed accuracy improvements in ur-
gent mode, with particularly notable gains from
Qwen-72B (+8.2%) and both LRMs (DeepSeek-
Llama-70B: +12.2%, QwQ-32B: +4.9%). This
contradicts the conventional assumption that rea-
soning chain length positively correlates with ac-
curacy (Wei et al., 2023). We hypothesize that ur-
gency prompting may encourage models to select
more efficient reasoning trajectory, potentially re-
ducing opportunities for hallucination by avoiding
unnecessary exploratory reasoning. This finding
suggests a potential approach for mitigating the
overthinking problem in large reasoning models’
research (Sui et al., 2025). We also discussed the
potential semantic connection of “being quick" and
“being brief" in Section A.3.4.

Key Takeaway

LLMs demonstrate temporal empathy by
recognizing user time constraints and pro-
ducing more concise outputs without sac-
rificing performance, revealing sophisti-
cated balancing of brevity and thoroughness
based on task demands.

6 BombRush: Time-pressured
Navigation Tasks

Our third experiment examines LLMs in time-
sensitive dynamic tasks through BombRush, a grid-
world navigation challenge where temporal con-
straints progressively impact decision-making, ex-
tending our investigation from the static QA task
to sequential, interactive scenarios.

In BombRush, the LLM functions as an agent
navigating an N×N (N=8 in all experiments) grid-
world to locate a timed bomb before detonation.
The bomb is invisible on the map but emits sig-
nals indicating its distance and bearing to guide
the agent for navigation. The environment contains
visible walls that obstruct movement, requiring the
agent to plan routes wisely to avoid obstacles. Dur-
ing simulation, the agent receives an environment
state at each step (map representation, wall coordi-

nates, bomb signals and remaining time in seconds)
and responds with an action (moving one step in
one of four cardinal directions) accompanied by its
reasoning text, creating a continuous decision loop.

Crucially, we establish a direct mapping between
reasoning token usage (Token-Time) and simu-
lated elapsed time, rather than using real-world
time that would introduce variability across mod-
els. Through a predetermined output conversion
rate Vout, the bomb’s countdown directly correlates
with the model’s reasoning length (e.g., 500 tokens
consume 5 seconds). This design compels the LLM
to recognize that verbose reasoning consumes time,
requiring it to balance thoroughness with concise-
ness to maximize movement opportunities while
efficiently approaching the bomb.

6.1 Experimental Setup

We designed three progressive settings with increas-
ing complexity (see detailed comparison in Fig-
ure 7):

1. S1: Treasure Hunt: The bomb is replaced
with a treasure, and the time limit is removed.
This setting serves as the baseline to evaluate
the model’s fundamental spatial navigation
capabilities without temporal constraints.

2. S2: Bomb Rush: This setting serves as the
representative one where the bomb emits di-
rectional signals while counting down to deto-
nation.

3. S3: Bomb Rush Hard: The most challeng-
ing setting: the bomb moves randomly and no
longer emits continuous signals. The agent
must strategically choose between sacrificing
movement to detect the bomb’s current po-
sition or advancing based on outdated infor-
mation. This requires strategic balancing of
information gathering and movement under
time pressure.

For this task, we tested only the LLM and LRM
model groups, as we found that SLMs lacked the
basic spatial navigation capabilities necessary for
the test and therefore excluded them from the ex-
periments. For each model, we run 100 simula-
tions per setting and report results accordingly. All
prompts, hyperparameters, and variations of set-
tings are illustrated in Section D.

6.2 Results

Figure 6 shows the relationship between average
token usage per step and remaining time across
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Figure 6: Step-wise token usage and remaining time across three settings. For each model, the orange curve
indicates the average number of tokens generated per step, with shaded areas representing standard deviation. The
green line (where applicable) shows the average remaining time on that step. This figure illustrates how reasoning
token usage evolves over time under different settings.

settings. In Treasure Hunt (no time pressure), mod-
els maintain stable token usage. In contrast, during
Bomb Rush tasks, Llama and QwQ demonstrate de-
creasing token usage as time diminishes, with QwQ
showing particularly strong adaptation. Qwen-2.5-
70B exhibits minimal change due to its consistently
concise reasoning style, while Deepseek-distilled-
Llama shows a notable token reduction after the
first step in all settings, with larger decreases in
time-pressured scenarios. More analysis on metrics
such as task success rate can be found in Section D.

Key Takeaway

In dynamic environments under increasing
time pressure, models adapt behavior, pri-
marily by reducing reasoning verbosity to
conserve time. However, inconsistent adap-
tation patterns across models reveal varying
degrees of temporal awareness and its influ-
ence on decision-making.

7 Conclusion

We have investigated whether LLMs perceive and
adapt to time passage, a capability distinct from
temporal reasoning. Through the proposed Token-
Time Hypothesis and three complementary exper-
iments, we found that LLMs can, to some extent
aware of the correlation between token-time and
wall-clock time, indicating an emergent form of
temporal awareness. This awareness manifests
as strategic behavioral adaptations: e.g. response

length adjustment to match urgency or adaptive
decision-making under time pressure. Future re-
search might explore enhancing this capability
through specialized training, investigating how tem-
poral perception might address known limitations
like overthinking.

Limitations

While our work provides novel insights into LLMs’
time perception capabilities, several limitations
should be acknowledged. Our study primarily es-
tablishes the presence and variability of temporal
awareness in LLMs but does not provide specific
methods to enhance this capability, which is an
important next step for improving performance in
time-sensitive applications. Additionally, our ex-
periments examine text-only models within con-
trolled settings, whereas real-world applications
would face multimodal and variable computational
environments affecting the Token-Time to Wall-
Clock-Time relationship. In addition, our study pri-
marily tested open-source models, excluding com-
mercial models such as GPT-4o or Claude. More
powerful commercial models might lead to con-
clusions that differ from our current findings. Fi-
nally, while we observed substantial differences in
time perception capabilities across models, under-
standing the underlying mechanisms driving these
differences remains an area for future research.
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Appendix

A Discussion

Our investigation into LLMs’ perception of time
passage offers valuable insights into an understud-
ied dimension of language model capabilities. In
this section, we discuss broader implications of
our findings, potential applications of the Token-
Time framework, and deeper questions about the
underlying mechanisms.

A.1 The Necessity of Temporal Awareness in
Modern AI Systems

While extensive research has examined LLMs’ abil-
ity to reason about temporal concepts (Xiong et al.,
2024), understanding whether models can perceive
the passage of time itself represents a fundamental
shift in how we conceptualize AI capabilities. This
transition from static knowledge repositories to dy-
namic, temporally-aware systems marks a critical
step toward more human-like AI that can partici-
pate naturally in time-sensitive interactions.

The practical significance of temporal awareness
becomes increasingly apparent as LLMs transition
into interactive and real-time applications. Systems
without time perception may produce responses
that fail to adapt to temporal constraints, either gen-
erating excessive detail when brevity is needed or
responding too slowly in rapidly changing environ-
ments. This particularly affects conversational AI,
where appropriate timing directly impacts user en-
gagement. Moreover, temporal awareness becomes
even more critical for multimodal models incor-
porating vision and speech. Unlike text, which
users consume at their own pace, speech and video
unfold over fixed durations, requiring precise tem-
poral alignment. Multimodal systems must under-
stand not only content but also temporal dynamics
to function effectively.

Our research on LLMs’ time perception capabili-
ties lays groundwork for understanding and enhanc-
ing these critical temporal adaptation mechanisms.
By establishing a theoretical framework and empir-
ical evidence for how models perceive and respond
to time constraints, we provide a foundation for de-
veloping more temporally-aware AI systems across
modalities and applications.

A.2 The Connection Between Token-Time
Hypothesis to Real-World Tasks

The Token-Time Hypothesis provides a structured
approach for understanding and potentially enhanc-

ing LLMs’ performance in time-sensitive applica-
tions. For example, in simultaneous translation,
the conversion rate Vout could represent translation
speed, which must dynamically adjust to balance
comprehensiveness with latency based on source
speech rate. A model with stronger temporal aware-
ness might naturally make these adjustments, po-
tentially improving performance without explicit
engineering.

Similarly, in dialogue systems, understanding
the relationship between user input patterns Vin

and appropriate response generation Vout could en-
able more natural conversational dynamics. Con-
sider end-to-end speech systems that must adapt
not only their content but also their speaking rate
based on user comprehension signals. A system
detecting hesitation from the user might slow its
speech rate and simplify explanations, while main-
taining normal pace for users demonstrating quick
understanding, all requiring precise mapping be-
tween speech tokens and real-world time.

The BombRush experiment demonstrates how
token-based temporal adaptation applies to agent-
based systems operating under time constraints.
For instance, an autonomous vehicle navigating
complex traffic conditions might need to balance
thorough intersection analysis with quick decision-
making as a traffic light changes. Understanding
the model’s internal token-to-time mapping could
help engineers design systems that appropriately al-
locate computational resources based on available
response windows, trading off exhaustive reason-
ing for timely action when necessary.

A.3 Deeper Mechanisms of Temporal
Awareness in LLMs

While our experiments establish that LLMs ex-
hibit behaviors consistent with temporal aware-
ness, the underlying mechanisms remain largely
unexplored. A fundamental question concerns the
origin of this capability: Is time perception an
emergent property developed during pretrain-
ing on time-ordered text, a skill acquired during
post-training, or perhaps a byproduct of certain
architectural choices?

A.3.1 When and How is Temporal Awareness
Acquired?

It remains unclear at which stage of development
LLMs acquire temporal awareness capabilities.
Pretraining on vast text corpora containing tempo-
ral narratives and sequences might instill basic time
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perception. Alternatively, instruction tuning might
refine this ability by exposing models to explicit
temporal instructions. Models trained through re-
inforcement learning from human feedback might
further enhance temporal awareness if human eval-
uators implicitly favor responses with appropriate
temporal adaptation. Determining which training
stage contributes most significantly to this capabil-
ity would provide valuable insights for intentionally
developing more temporally-aware systems.

A.3.2 How Do Models Process Temporal
Information?

Another open question is how models internally
represent and process time-related concepts. Do
they treat time perception as knowledge retrieval,
logical reasoning, or mathematical calculation?
The varying performance patterns between LLMs
and LRMs on our dialogue duration task with con-
flicting cues suggest different internal mechanisms
might be at work. LRMs’ resistance to mislead-
ing timestamps hints at more sophisticated tempo-
ral reasoning capabilities, but further research is
needed to isolate the specific cognitive processes
involved in these judgments.

A.3.3 Architectural Influences
Model architecture likely plays a crucial role in
temporal awareness. Position encodings, partic-
ularly relative position methods like RoPE (Su
et al., 2023a; Peng et al., 2023), create an implicit
sense of sequence that could serve as a founda-
tion for temporal understanding. Different atten-
tion mechanisms may also impact temporal per-
ception—global attention might facilitate under-
standing relationships across distant tokens, while
sliding window approaches (Beltagy et al., 2020)
might emphasize local temporal coherence. Al-
ternative architectures like RNNs or state space
models (e.g., Mamba) (Gu and Dao, 2024) might
exhibit entirely different temporal perception capa-
bilities given their inherently sequential processing
nature.

A.3.4 Semantic Associations
Our second and third experiments both involve
time pressure/urgency, and consistently demon-
strate models shortening their reasoning lengths
in response. After observing this behavioral con-
sistency, we became curious about its underlying
causes. We hypothesize two possible explana-
tions: this behavior might result from semantic

proximity in the embedding space after training on
vast corpora, where terms like "quick" and "brief"
share high similarity, naturally triggering more con-
cise responses. Alternatively, it could stem from
a deeper understanding of the temporal relation-
ship between token generation and elapsed time,
representing a more sophisticated temporal aware-
ness. Determining which mechanism drives this
consistent behavior would require more rigorous
controlled experiments specifically designed to dis-
entangle these potential explanations. Such inves-
tigations could reveal whether models are merely
following learned semantic associations or demon-
strating genuine temporal perception capabilities.
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B Dialogue Duration Judgment Task
Details

B.1 Detailed Experimental Settings

A textual description of each experimental setting
is provided below, while Figure 8 offers a corre-
sponding visual representation of the task design.

1. S1 (Baseline): As the baseline setting, there
are no hints to encourage the LLM to build
any connection between token count with du-
ration; the LLM must solely rely on its in-
ternal awareness and understanding of time
passage.

2. S1-Hint (Token-Time Hint): A textual hint
is provided, explicitly stating that generation
time is proportional to the number of tokens.

3. S1-Count (Explicit Token Count): In this
setting, we directly provide the token count
for each dialogue (including both user prompt
and model response), making the Token-Time
cue completely explicit.

4. S2 (Consistent Timestamps Baseline):
Timestamps are provided to indicate start and
end times for both user input and LLM re-
sponse, with temporal intervals consistent
with text lengths. (Note that when insert-
ing timestamps, we independently sample the
starting time points for the two dialogues to
ensure they occur independently in different
temporal contexts, preventing LLMs from es-
tablishing misleading connections based on
the chronological relationship between the di-
alogues.)

5. S2-M (Misleading Timestamps): Times-
tamps are manipulated so the longer response
appears to take less time, creating a conflict
between temporal cues. LLMs should priori-
tize timestamps over text length.

6. S2-M+ (Misleading Timestamps + Token
Count): Both misleading timestamps and ac-
curate token counts are provided with contra-
dictory implications, forcing models to choose
which temporal domain to prioritize.

B.2 Prompts

The prompt used in Dialogue Duration Judgment
Task is shown in Figure 10. The first three tasks (S1,

S1-Hint, S1-Count) are Token-time Cues, examin-
ing whether LLMs associate response length with
generation time. S1 presents two responses without
any hint; S1-Hint introduces an implicit hint that
generation time is proportional to the number of to-
kens; and S1-Count provides explicit token counts.
The latter three tasks (S2, S2-M, S2-M+) are Wall-
Clock-Time Cues, where prompts include times-
tamps marking input and output events. S2 presents
consistent timestamps aligned with actual response
lengths, while S2-M uses misleading timestamps
(i.e., the longer response appears faster). S2-M+
combines misleading timestamps with token count
annotations, allowing investigation into how LLMs
reconcile conflicting signals.

B.3 Statistical Significance Test
As shown in Table 4, the left block reports raw ac-
curacy on each task, while the middle block shows
relative accuracy change (∆%) between settings.
For example, S1-Hint/S1 measures whether mod-
els improve after being told that generation time is
proportional to token length.

The right block reports p-values from paired t-
tests, assessing the statistical significance of accu-
racy differences between selected task pairs (from
20 runs per setting per model), where alternative
hypothesis Ha is placed as the column title. Bold
red highlights denote non-significant differences
(p > 0.005). Overall, this table provides strong
evidence that LLMs exhibit consistent behavioral
shifts across conditions, validating the generality
of our findings.

B.4 Attribution Analysis
As shown in Table 5, we categorize the attributes
used for the LLM to make decision in the dialogue
duration judgment task into four types: (1) Text
Length: relying on the length of the response as a
proxy for generation time; (2) Semantic: inferring
response duration based on semantic content or
contextual complexity; (3) Time: explicitly using
provided timestamps or temporal expressions; (4)
Other: Using other factors. For each model and
task, we report: (1) Factor Usage (%) – the propor-
tion of examples attributed to each reasoning type
(summing to 100% per row), and (2) Factor-wise
Accuracy (%) – the accuracy within each group,
indicating how effective the Factor was. Since the
fraction of using other factors is extremely small
for all models, we merge this into the semantic in
our main results analysis.
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Model Accuracy Accuracy Relative Change (∆%) Statistical significance test (paired t-test)

S1 S1-Hint S1-Count S2 S2-M S2-M+ S1-Hint/S1 S1-Count/S1 S2/S1 S2-M/S2 S2-M+/S2 S1-Hint > S1? S1-Count > S1? S2 > S1? S2-M < S2? S2-M+ < S2?

SLM
Llama-3.1-8B 79.73 83.00 99.40 76.80 47.73 16.33 4.10% 24.67% -3.68% -37.85% -78.73% 0.0000 0.0000 1.0000 0.0000 0.0000
Qwen2.5-7B 66.80 71.20 92.67 80.93 26.80 12.87 6.59% 38.72% 21.16% -66.89% -84.10% 0.0000 0.0000 0.0000 0.0000 0.0000

LLM
Llama-3.3-70B 91.33 93.20 99.87 93.47 74.00 40.07 2.04% 9.34% 2.34% -20.83% -57.13% 0.0000 0.0000 0.0000 0.0000 0.0000
Qwen2.5-72B 83.80 84.53 99.93 96.60 82.53 48.80 0.88% 19.25% 15.27% -14.56% -49.48% 0.0004 0.0000 0.0000 0.0000 0.0000

LRM
DS-Llama-70B 87.93 92.27 100.00 99.20 98.00 94.27 4.93% 13.72% 12.81% -1.21% -4.97% 0.0000 0.0000 0.0000 0.0088 0.0000
QwQ-32B 91.53 94.80 100.00 99.33 99.20 99.07 3.57% 9.25% 8.52% -0.13% -0.27% 0.0000 0.0000 0.0000 0.1573 0.0010

Table 4: Accuracy results and statistical significance testing for the six preliminary tasks across different models
and settings.

Task Factors Text Length Semantic Time Other

Factor Usage
(%)

Factor-wise
Accuracy (%)

Factor Usage
(%)

Factor-wise
Accuracy (%)

Factor Usage
(%)

Factor-wise
Accuracy (%)

Factor Usage
(%)

Factor-wise
Accuracy (%)

S1
(Baseline)

Llama-3.1-8B 59.00% 81.92% 39.27% 77.76% 0.67% 90.00% 1.07% 25.00%
Qwen2.5-7B 53.47% 64.34% 44.00% 70.30% 1.60% 70.83% 0.93% 35.71%
Llama-3.3-70B 67.80% 95.28% 31.60% 82.91% 0.40% 83.33% 0.20% 100.00%
Qwen2.5-72B 58.40% 87.90% 41.27% 78.19% 0.33% 60.00% 0.00% 0.00%
DS-Llama-70B 73.53% 94.11% 25.80% 71.58% 0.67% 40.00% 0.00% 0.00%
QwQ-32B 66.73% 96.30% 33.27% 81.96% 0.00% 0.00% 0.00% 0.00%

S1-Hint
(Token-Time Hint)

Llama-3.1-8B 98.20% 83.77% 1.53% 43.48% 0.20% 33.33% 0.07% 0.00%
Qwen2.5-7B 94.47% 71.49% 5.07% 67.11% 0.07% 0.00% 0.40% 66.67%
Llama-3.3-70B 99.40% 93.43% 0.60% 55.56% 0.00% 0.00% 0.00% 0.00%
Qwen2.5-72B 99.33% 84.77% 0.67% 50.00% 0.00% 0.00% 0.00% 0.00%
DS-Llama-70B 99.93% 92.26% 0.07% 100.00% 0.00% 0.00% 0.00% 0.00%
QwQ-32B 99.73% 94.85% 0.27% 75.00% 0.00% 0.00% 0.00% 0.00%

S1-Count
(Explicit Token Count)

Llama-3.1-8B 100.00% 99.40% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Qwen2.5-7B 100.00% 92.67% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Llama-3.3-70B 99.93% 99.93% 0.07% 0.00% 0.00% 0.00% 0.00% 0.00%
Qwen2.5-72B 100.00% 99.93% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
DS-Llama-70B 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
QwQ-32B 100.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

S2
(Consistent Timestamps)

Llama-3.1-8B 0.27% 75.00% 0.60% 44.44% 98.80% 77.26% 0.33% 0.00%
Qwen2.5-7B 43.13% 81.61% 40.40% 83.17% 15.87% 76.05% 0.60% 11.11%
Llama-3.3-70B 0.60% 100.00% 0.20% 100.00% 99.20% 93.41% 0.00% 0.00%
Qwen2.5-72B 0.67% 80.00% 0.33% 80.00% 99.00% 96.77% 0.00% 0.00%
DS-Llama-70B 4.80% 100.00% 7.73% 100.00% 87.47% 99.09% 0.00% 0.00%
QwQ-32B 0.07% 100.00% 0.33% 100.00% 99.60% 99.33% 0.00% 0.00%

S2-M
(Misleading Timestamps)

Llama-3.1-8B 0.67% 20.00% 0.47% 57.14% 98.53% 48.04% 0.33% 0.00%
Qwen2.5-7B 45.47% 22.43% 40.60% 20.36% 13.53% 60.59% 0.40% 33.33%
Llama-3.3-70B 0.67% 0.00% 0.27% 25.00% 99.07% 74.63% 0.00% 0.00%
Qwen2.5-72B 0.73% 27.27% 0.53% 0.00% 98.73% 83.39% 0.00% 0.00%
DS-Llama-70B 0.40% 33.33% 1.13% 88.24% 98.47% 98.38% 0.00% 0.00%
QwQ-32B 0.00% 0.00% 0.07% 100.00% 99.93% 99.20% 0.00% 0.00%

S2-M+
(Misleading Timestamps
+ Token Count)

Llama-3.1-8B 35.40% 1.88% 0.00% 0.00% 64.60% 24.25% 0.00% 0.00%
Qwen2.5-7B 67.07% 10.44% 20.60% 9.71% 12.13% 31.87% 0.20% 0.00%
Llama-3.3-70B 6.27% 3.19% 0.60% 11.11% 93.07% 42.77% 0.07% 0.00%
Qwen2.5-72B 7.20% 2.78% 0.07% 0.00% 92.73% 52.41% 0.00% 0.00%
DS-Llama-70B 4.20% 3.17% 0.47% 71.43% 95.33% 98.39% 0.00% 0.00%
QwQ-32B 0.13% 0.00% 0.00% 0.00% 99.87% 99.20% 0.00% 0.00%

Table 5: Attribution Analysis of LLMs’ Temporal Reasoning Factors across Tasks.

C Urgency-Aware QA Task Details

C.1 Full Experimental results

As shown in Table 6, we report accuracy under both
Normal and Urgent conditions, along with the rel-
ative change (∆%). To quantify response length,
we report the number of output tokens using two
tokenization strategies: (1) GPT-4o Tokenizer, for
cross-model comparability, and (2) Model-Specific
Tokenizer, for intra-model comparisons between
normal and urgent modes. These statistics en-
able us to assess whether urgency prompts induce
shorter answers, and whether such changes affect
accuracy. Consistent trends can be found in both
tokenization strategies.

C.2 Prompts

The prompts and urgency pool used in Urgency-
Aware QA Task are shown in Figure 11.

D BombRush Task Details

D.1 Detailed Experimental Settings

In the Gridworld environment, we randomly gener-
ated walls to increase navigation difficulty for the
agent. The number of walls is determined by the
wall-density parameter, which we set to 0.15 across
all settings, resulting in 9 grid cells becoming walls
in the 8×8 map.

For step limits, we established a maximum of
20 steps for both the treasure hunt and bomb rush
tasks, as our preliminary testing confirmed all trea-
sure hunt simulations could be completed within 16
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Model OpenbookQA GSM8K GPQA

Normal Urgent ∆% Normal Urgent ∆% Normal Urgent ∆%

Accuracy

SLM
Llama-3.1-8B-Instruct 84.60 84.24 -0.43% 82.21 81.91 -0.37% 28.08 28.28 0.72%
Qwen2.5-7B-Instruct 87.28 88.16 1.01% 88.79 88.58 -0.24% 33.94 34.34 1.19%

LLM
Llama-3.3-70B-Instruct 96.56 96.44 -0.12% 93.16 93.06 -0.11% 48.99 49.29 0.62%
Qwen2.5-72B-Instruct 96.40 96.20 -0.21% 91.37 91.30 -0.08% 48.18 52.12 8.18%

LRM
DeepSeek-R1-Distill-Llama-70B 95.80 95.92 0.13% 92.87 93.75 0.95% 33.84 37.98 12.24%
QwQ-32B 96.20 96.60 0.42% 96.22 96.60 0.39% 59.49 62.42 4.92%

# Tokens (GPT4o-Tokenizer)

SLM
Llama-3.1-8B-Instruct 299.25 302.08 0.94% 482.47 439.45 -8.92% 2,900.20 2,851.18 -1.69%
Qwen2.5-7B-Instruct 202.72 185.72 -8.39% 270.94 257.65 -4.91% 597.55 550.93 -7.80%

LLM
Llama-3.3-70B-Instruct 288.98 258.93 -10.40% 242.04 226.40 -6.46% 807.94 753.75 -6.71%
Qwen2.5-72B-Instruct 206.49 163.70 -20.72% 273.46 242.39 -11.36% 694.70 634.76 -8.63%

LRM
DeepSeek-R1-Distill-Llama-70B 784.31 683.38 -12.87% 463.53 440.52 -4.96% 5,105.93 5,064.82 -0.81%
QwQ-32B 793.32 695.39 -12.34% 759.07 654.74 -13.74% 6,846.51 6,331.68 -7.52%

# Tokens (ModelSpecific-Tokenizer)

SLM
Llama-3.1-8B-Instruct 301.45 304.99 1.17% 485.00 442.47 -8.77% 2,903.69 2,855.42 -1.66%
Qwen2.5-7B-Instruct 205.15 188.27 -8.23% 289.76 276.63 -4.53% 612.51 564.98 -7.76%

LLM
Llama-3.3-70B-Instruct 290.63 260.75 -10.28% 242.04 226.51 -6.42% 809.07 755.11 -6.67%
Qwen2.5-72B-Instruct 207.50 164.71 -20.62% 291.59 260.21 -10.76% 712.37 652.22 -8.44%

LRM
DeepSeek-R1-Distill-Llama-70B 798.77 696.71 -12.78% 465.77 442.76 -4.94% 5,178.20 5,137.63 -0.78%
QwQ-32B 805.02 705.59 -12.35% 830.15 716.84 -13.65% 7,091.31 6,565.33 -7.42%

Table 6: Evaluation results for the Urgent QA task across three benchmark datasets.

steps. For the bomb rush hard setting, we increased
the maximum step count to 30 to accommodate the
additional challenges introduced by bomb move-
ment uncertainty and the requirement for explicit
detection actions.

The initial time budget was set at 300 seconds
for all time-constrained tasks. To ensure fair com-
parison between models with different verbosity
profiles, we calibrated separate token-to-time con-
version rates Vout for each model. We first estab-
lished a baseline by measuring each model’s aver-
age token consumption in the treasure hunt task.
This was multiplied by the maximum step count to
determine a total token budget. We then divided
the 300-second time allocation by this budget to
derive the conversion rate.

This calibration resulted in Vout for Llama-3.3-
70B to be 0.042, 0.166 for Qwen-2.5-72B, 0.017
for Deepseek-distilled-Llama3-70B and 0.005 for
QWQ-32B, meaning that it takes, e.g., Llama-3.3-
70B 0.042 seconds to generate 1 token. To en-
sure consistent measurement across models, we
standardized token counting using the GPT-4o tok-
enizer.

During each simulation, we maintained context
differently based on model type. For LLMs, all his-
torical text (including environment states and LLM
outputs) was cumulatively appended to the context,
consistent with multi-turn dialogue patterns. For

LRMs, due to their extensive reasoning requiring
substantial context window space, we appended
only the solution portions as their response actions
to the history. However, we confirmed that this ap-
proach preserved critical information since models
were required to explicitly state their reasoning for
each action in their outputs.

A detailed illustration and comparison of differ-
ent settings can be found in Figure 7.

D.2 Full Experimental results

D.2.1 Task Performance and Navigation
Metrics

As shown in Table 7, we report key statistics for
each model and setting: % Success, % Over Steps,
and % Time Out represent the three mutually ex-
clusive outcomes of each simulation (summing to
100%). # Steps denotes the average number of
navigation steps taken. Navigation Accuracy is
computed as the ratio between the optimal num-
ber of steps and the actual steps taken (only avail-
able when the target is static). Time Efficiency
reflects the percentage of remaining time preserved
when the agent reaches the target, indicating how
quickly the model completes the task. For Naviga-
tion Accuracy and Time Efficiency, we calculate
metrics using only successful simulations, as failed
attempts would introduce significant noise and fail
to reflect the true performance characteristics.
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Model Settings %
Success

%
Over Steps

%
Time Out # Steps # Tokens % Navigation

Accuracy↑
% Time

Efficiency ↑

Llama-3.3-70B
S1: Treasure Hunt 83 17 0 9.5 238 75.4 -
S2: Bomb Rush 89 11 0 9.3 287 77.0 58.8
S3: Bomb Rush Hard 73 3 24 15.1 260 - 40.3

Qwen2.5-72B
S1: Treasure Hunt 89 11 0 9.9 60 75.0 -
S2: Bomb Rush 85 15 0 9.7 64 74.1 62.9
S3: Bomb Rush Hard 66 4 30 16.7 68 - 38.7

DS-R1-Llama-70B
S1: Treasure Hunt 67 33 0 11.7 580 61.5 -
S2: Bomb Rush 78 16 6 10.3 673 70.2 53.2
S3: Bomb Rush Hard 74 2 24 15.9 660 - 34.6

QwQ-32B
S1: Treasure Hunt 97 3 0 7.8 2472 91.7 -
S2: Bomb Rush 96 0 4 7.5 2624 94.2 64.1
S3: Bomb Rush Hard 90 0 10 10.5 2646 - 49.0

Table 7: Evaluation results on the S1 Treasure Hunt, S2 Bomb Rush and S3 Bomb Rush Hard tasks.

Feature

S1: Treasure Hunt

S2: Bomb Rush

S3: Bomb Rush Hard

Moving Target Signal Source

Proactive

Passive

Time Pressure

Proactive

Figure 7: Each setting involves an LLM agent navigat-
ing toward a target under different temporal and per-
ceptual constraints. The left panel illustrates the Trea-
sure Hunt (S1) and Bomb Rush (S2) scenarios, where
the target remains stationary. The right panel shows
the Bomb Rush Hard (S3) scenario, where the target
moves during navigation. The bottom table compares
key properties of each task: whether the target moves,
whether the signal is emitted passively or requires active
detection, and the level of time pressure.

Success Rate Analysis Examining task success
rates, we observe significant performance varia-
tions across settings for both LLMs and DeepSeek,
while QwQ maintains relatively high success rates
across all configurations. Comparing S1 and S2
settings, Llama3 achieves a 6% improvement by re-
ducing overstep instances, while Qwen experiences
a decline in success due to increased oversteps. DS-
Llama shows notable improvement, though we ob-
serve some failure cases shifting to time-outs. Sim-
ilarly, QwQ’s primary failure mode in the bomb
rush setting is time-out. When comparing S2 and
S3, all models demonstrate consistent performance
degradation, directly corresponding to increased

Setting Llama 3 Qwen 2.5 D-Llama 3 QwQ

Bomb Rush
Time Urgency Mentions 64.29% 0.52% 88.21% 45.37%
TW Mapping Awareness 2.25% 0.00% 27.55% 7.31%

Bomb Rush Hard
Time Urgency Mentions 62.50% 0.21% 92.86% 91.04%
TW Mapping Awareness 8.87% 0.00% 44.25% 50.55%

Table 8: Percentage of reasoning contents containing
explicit references to time awareness in Bomb Rush
task. We analyze two dimensions of temporal reasoning
across models in the Bomb Rush and Bomb Rush Hard
settings. “Time Urgency Mentions” refers to outputs
that explicitly acknowledge time pressure (e.g., “Time
is limited!”). “TW Mapping Awareness” indicates in-
stances where the model demonstrates awareness of
the trade-off between token usage and wall time, e.g.,
expressing that generating shorter responses conserves
time. These results reflect whether such temporal con-
siderations are verbally expressed, rather than whether
the model internally reasons correctly about time.

task complexity, with time-out becoming the pre-
dominant failure mode.

Our analysis of navigation paths reveals that
step-limit failures generally stem from two plan-
ning deficiencies: ineffective obstacle avoidance
and signal misinterpretation. These issues often
lead to cyclical movement patterns in certain ar-
eas. This behavior appears particularly pronounced
when navigating around obstacles temporarily in-
creases the distance to the target, creating decision
conflicts for the models. Such situations reveal the
models’ limited ability to utilize historical move-
ment records, "forgetting" previously explored ar-
eas. Time-out failures, conversely, primarily result
from insufficient adaptation of reasoning verbosity
under time pressure.
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Navigation Precision and Efficiency For naviga-
tion accuracy, the first three models show changes
relatively consistent with their success rates. How-
ever, for models experiencing success rate declines,
navigation efficiency decreases are not proportion-
ally severe, some models even demonstrate im-
provements, such as QwQ. This aligns with our
findings from the Urgency-Aware Q&A experi-
ment, suggesting that models can maintain or even
enhance reasoning capabilities under time pressure.
Regarding Time Efficiency, all models show lower
efficiency in S3 compared to S2, which is expected
given the additional time required for detection
actions in the more complex setting.

Token Usage Patterns Regarding reasoning to-
ken usage, we found that all models use more to-
kens in S2 and S3 than in S1, indicating that in-
creased task complexity inevitably requires more
extensive reasoning. However, for Llama3 and
DS-Llama, token usage in S3 decreases compared
to S2, suggesting these models make additional
efforts to balance reasoning time under more ur-
gent time constraints, though still higher than S1
levels. Overall, the increased token count in S2
and S3 contrasts with our Urgency-Aware Q&A
findings. We attribute this to the fundamental dif-
ference in these tasks: time pressure in BombRush
becomes an integral component of task difficulty
itself, creating a dynamic challenge environment.
The higher average token count is therefore un-
derstandable given the increased cognitive load.
However, when examining token usage relative to
remaining time (as shown in Figure 6 of the main
paper), several models still demonstrate a clear pat-
tern of decreased token production as time pressure
intensifies, indicating a dynamic adaptation to tem-
poral constraints.

D.2.2 Explicit Time Awareness in Reasoning
Table 8 provides a deeper analysis of the models’
reasoning content during S2 and S3 experiments,
searching for explicit evidence of temporal aware-
ness. Following a methodology similar to our Dia-
logue Duration Judgment attribution analysis, we
used Llama-3.3-70B to extract and classify infor-
mation from reasoning outputs across all models.
We evaluated two specific dimensions of explicit
temporal awareness:

1. Time Urgency Mentions: Explicit acknowl-
edgment of time pressure (e.g., "Only 32 sec-
onds remaining, extremely urgent!")

2. Token-Wall-Clock Time Mapping Aware-
ness: Explicit reflection on the relationship
between reasoning length and time consump-
tion (e.g., "I need to be more concise in my
reasoning to save time")

These metrics provide valuable insight into how
models perceive ongoing time passage and dy-
namic time pressure during reasoning. The results
reveal significant variation across model architec-
tures. While Llama-3 frequently mentions time
urgency (64.29% in S2), it rarely demonstrates
explicit awareness of the token-time relationship
(2.25%). In stark contrast, LRMs, particularly DS-
Llama-3, show much higher rates of explicit token-
time relationship awareness (27.55% in S2, increas-
ing to 44.25% in S3). Notably, all models that ex-
press this awareness show a substantial increase
in the harder S3 setting, suggesting that decision-
making involving explicit time-related trade-offs
(move vs detect) more readily triggers reflection
on the connection between output length and time
consumption. Qwen-2.5 presents an interesting
outlier case, rarely mentioning time pressure or
token-time relationships despite maintaining good
performance. This suggests the possibility of im-
plicit temporal adaptation without explicit verbal-
ization, which could be a phenomenon worthy of
further investigation.

D.3 Prompts
System and user prompts are provided in (Fig-
ure 12, Figure 13, Figure 14 and Figure 15).
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You are given two conversations (A and B),
each with a user prompt and an LLM
response. Assuming the same LLM with
constant inference speed.

which response took the LLM longer to
generate — A or B?

S1 (Baseline) S1-Count (Explicit Token Count)

## Conversation A
User: How's the weather today?
LLM: It’s a sunny day.
## Conversation B
User: How's the weather today?
LLM: It’s a sunny day with mild
temperatures. There are clear skies and
warm air, perfect for outdoors.

## Conversation A
[24-01-30 12:41:10 - LLM output started]
User: How's the weather today?
[24-01-30 12:41:12 - LLM output completed]

[24-01-30 12:41:13 - LLM output started]
LLM: It’s a sunny day.
[24-01-30 12:41:15 - LLM output completed]
## Conversation B
[22-03-15 08:16:08 - LLM output started]
User: How's the weather today?
[22-03-15 08:16:10 - LLM output completed]

[22-03-15 08:16:11 - LLM output started]
LLM: It’s a sunny day with mild
temperatures. There are clear skies and
warm air, perfect for outdoors. 
[22-03-15 08:16:24 - LLM output completed]

S1-Hint (Token-Time Hint)

Setting 1: Token-time Cues

Setting 2: Real-time Cues

S2 (Consistent Timestamps Baseline) S2-M+ (Misleading Timestamps 
+ Token Count)

S2-M (Misleading Timestamps)

## Conversation A
User: How's the weather today?
LLM: It’s a sunny day.
## Conversation B
User: How's the weather today?
LLM: It’s a sunny day with mild
temperatures. There are clear skies and
warm air, perfect for outdoors.

You are given two conversations (A and B),
each with a user prompt and an LLM
response. Assuming the same LLM with
constant inference speed and generation
time is proportional to the number of tokens,

which response took the LLM longer to
generate — A or B?

You are given two conversations (A and B),
each with a user prompt and an LLM
response. Assuming the same LLM with
constant inference speed and generation
time is proportional to the number of tokens,

which response took the LLM longer to
generate — A or B?

You are given two conversations (A and B),
each with a user prompt, response,
timestamps (user typing start and end, LLM
response start and end), and token count.

Which response took the LLM longer to
generate — A or B?

You are given two conversations (A and B),
each with a user prompt, response,
and timestamps (user typing start and end,
LLM response start and end).

Which response took the LLM longer to
generate — A or B?

You are given two conversations (A and B),
each with a user prompt, response,
and timestamps (user typing start and end,
LLM response start and end).

Which response took the LLM longer to
generate — A or B?

## Conversation A
User: How's the weather today?
LLM: It’s a sunny day.
# Number of tokens: 5 token
## Conversation B
User: How's the weather today?
LLM: It’s a sunny day with mild
temperatures. There are clear skies and
warm air, perfect for outdoors.
# Number of tokens: 20 token

## Conversation A
[23-08-06 14:21:10 - LLM output started]
User: How's the weather today?
[23-08-06 14:21:12 - LLM output completed]

[23-08-06 14:21:13 - LLM output started]
LLM: It’s a sunny day.
[23-08-06 14:21:33 - LLM output completed]
## Conversation B
[24-05-12 07:42:10 - LLM output started]
User: How's the weather today?
[24-05-12 07:42:12 - LLM output completed]

[24-05-12 07:42:13 - LLM output started]
LLM: It’s a sunny day with mild
temperatures. There are clear skies and
warm air, perfect for outdoors. 
[24-05-12 07:42:18 - LLM output completed]

## Conversation A
[21-09-17 13:31:10 - LLM output started]
User: How's the weather today?
[21-09-17 13:31:12 - LLM output completed]

[21-09-17 13:31:13 - LLM output started]
LLM: It’s a sunny day. [5 Token]
[21-09-17 13:31:31 - LLM output completed]
## Conversation B
[22-01-24 19:23:10 - LLM output started]
User: How's the weather today?
[22-01-24 19:23:12 - LLM output completed]

[22-01-24 19:23:13 - LLM output started]
LLM: It’s a sunny day with mild
temperatures. There are clear skies and
warm air, perfect for outdoors.  [20Token]
[22-01-24 19:23:18 - LLM output completed]

Figure 8: Examples of our Dialogue Duration Judgment task settings. The top row shows Token-Time cue settings
(S1, S1-Hint, S1-Count) with progressively explicit token information. The bottom row shows Wall-Clock-Time cue
settings (S2, S2-M, S2-M+) with timestamp information that is either consistent with text length (S2) or deliberately
misleading (S2-M, S2-M+). This experimental design tests whether models can establish appropriate mappings
between different temporal domains when making duration judgments.
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You are a classification agent. Your task is to classify the reasoning provided by an LLM into one of the following four
categories, based on **how** the LLM determines which response took longer time to generate:

### Allowed categories (return only one of the category names):
- `time`
- `text_length`
- `semantic`
- `other`

### Classification Rules:

1. **`time`**:  
   The reason explicitly involves **timing information** — such as start time, end time, duration (e.g., “1 minute and 45
seconds”), timestamps, or calculations of elapsed time.  
   If the decision is made **primarily or solely based on these time-based values**, without switching judgment due to other
factors, classify it as `time`.

2. **`text_length`**:  
   The reason makes a judgment based on the **length of the text**, such as token count, number of words, number of sentences, or
how long the generated response is.  
   This includes explicitly mentioning phrases like “Response A is longer,” “has more tokens,” or “took more space to explain”,
etc.

3. **`semantic`**:  
   The reason does **not mention time or length difference** at all, but solely relies on **semantic or cognitive complexity** —
such as the depth of explanation, difficulty of the topic, use of logic or math, or other indicators of **conceptual effort**.

4. **`other`**:  
   Use this category if the reasoning doesn’t clearly match any of the above — for example, if the model relies on **irrelevant
metadata**, contradictory logic, unclear rationale, or vague comparison that doesn’t fit well into the previous categories.

Do **not** include any explanation or justification in your response.

Figure 9: Prompt used for attribution classification in the Dialogue Duration Judgment Task. The LLM is asked
to categorize response into one of four predefined attribution types—time, text length, semantic, or other—based
on how it determined which response took longer to generate. These categories align with the attribution analysis
definitions described in Section B.4.
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## Conversation A
Prompt: [LOG: {p1_start} - User input started] {prompt_1} [LOG: {p1_end} - User input completed]
Response: [LOG: {r1_start} - LLM output started] {reply_1} [LOG: {r1_end} - LLM output completed]
--------------------------------------------------------------------------------------------------
## Conversation B
Prompt: [LOG: {p2_start} - User input started] {prompt_2} [LOG: {p2_end} - User input completed]
Response: [LOG: {r2_start} - LLM output started] {reply_2} [LOG: {r2_end} - LLM output completed]
--------------------------------------------------------------------------------------------------
You are given two conversations between a user and an LLM. Each conversation consists of a prompt and a response.
The conversations are labeled as A and B. Except for the content of the conversations, all timestamps are also
provided, indicating when the user started typing, when the LLM started generating the response, and when the
response was completed.Based on these information, please answer the following question:
**Which response takes the LLM longer to generate? (A or B)*

S2 (Consistent Timestamps Baseline) / S2-M (Misleading Timestamps)

S2-M+ (Misleading Timestamps + Token Count)

## Conversation A
Prompt: [LOG: {p1_start} - User input started] {prompt_1} [LOG: {p1_end} - User input completed] 
Response: [LOG: {r1_start} - LLM output started] {reply_1} [LOG: {r1_end} - LLM output completed]
[LOG: {tlen_a} tokens consumed for the dialogue]
--------------------------------------------------------------------------------------------------
## Conversation B
Prompt: [LOG: {p2_start} - User input started] {prompt_2} [LOG: {p2_end} - User input completed]
Response: [LOG: {r2_start} - LLM output started] {reply_2} [LOG: {r2_end} - LLM output completed]
[LOG: {tlen_b} tokens consumed for the dialogue]
--------------------------------------------------------------------------------------------------
You are given two conversations between a user and an LLM. Each conversation consists of a prompt and a response.
The conversations are labeled as A and B. Except for the content of the conversations, all timestamps are also
provided, indicating when the user started typing, when the LLM started generating the response, and when the
response was completed. At the same time, the number of tokens consumed for each conversation is also
provided. Based on these information, please answer the following question:
**Which response takes the LLM longer to generate? (A or B)*

S1-Count (Explicit Token Count)

## Conversation A
Prompt: {prompt_1}; Response: {reply_1}
--------------------------------------------------------------------------------------------------
## Conversation B
Prompt: {prompt_2}; Response: {reply_2}
--------------------------------------------------------------------------------------------------
You are given two conversations between a user and an LLM. Each conversation consists of a prompt and a response.
The conversations are labeled as A and B. Based on these information, please answer the following question:
**Which response takes the LLM longer to generate? (A or B)**

Assuming that both responses are generated by the same LLM, the inference speed of the LLM is constant and identical
for both responses.

S1 (Baseline)

S1-Hint (Token-Time Hint)

## Conversation A
Prompt: {prompt_1}; Response: {reply_1}
--------------------------------------------------------------------------------------------------
## Conversation B
Prompt: {prompt_2}; Response: {reply_2}
--------------------------------------------------------------------------------------------------
You are given two conversations between a user and an LLM. Each conversation consists of a prompt and a response.
The conversations are labeled as A and B. Based on these information, please answer the following question:
**Which response takes the LLM longer to generate? (A or B)**

Assuming that both responses are generated by the same LLM, the inference speed of the LLM is constant and identical
for both responses, the time taken to complete a response is directly proportional to the number of tokens in the
response.

## Conversation A
Prompt: {prompt_1}; Response: {reply_1}; Number of tokens for the dialogue: {tlen_a}
--------------------------------------------------------------------------------------------------
## Conversation B
Prompt: {prompt_2}; Response: {reply_2}; Number of tokens for the dialogue: {tlen_b}
--------------------------------------------------------------------------------------------------
You are given two conversations between a user and an LLM. Each conversation consists of a prompt and a response.
The conversations are labeled as A and B. Based on these information, please answer the following question:
**Which response takes the LLM longer to generate? (A or B)**

Assuming that both responses are generated by the same LLM, the inference speed of the LLM is constant and identical
for both responses, the time taken to complete a response is directly proportional to the number of tokens in the
response.

Figure 10: Prompt templates for the six Dialogue Duration Judgment Tasks.
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1. I'm in a big hurry right now. Please give me the answer quickly!!!

2. Time is running out! I need your response immediately!!!

3. Can you please answer this as fast as possible? It's really urgent!!!

4. I need your help urgently! Every second counts right now!!!

5. This can't wait! I need your answer immediately!!!

6. Please hurry! This issue is blocking my progress!!!

7. I don't have much time! Please give me the answer right away!!!

8. It's critical that I get a response now! Please be quick!!!

9. I'm in a rush and need a quick answer to move forward!!!

10. I'm counting on your quick reply! It’s really urgent!!!

{urgent_words} Pool

You are a helpful assistant. Solve the following math problem efficiently and clearly. The last line of your response
should be a JSON object: {{"answer": "<NUMBER>"}} where NUMBER is the exact numeric answer to the question.
You can write down your step-by-step reasoning process before providing the answer, but please make sure to give the
final answer in the required format.

### Question
{Question}

Normal Mode Prompt

You are a helpful assistant. Solve the following math problem efficiently and clearly. The last line of your response
should be a JSON object: {{"answer": "<NUMBER>"}} where NUMBER is the exact numeric answer to the question.
You can write down your step-by-step reasoning process before providing the answer, but please make sure to give the
final answer in the required format.

### Question
{Question}

{urgent_words}

Urgent Mode Prompt

Figure 11: Prompt design for the Urgent QA task. The top panel shows the Normal Mode prompt, while the
middle panel shows the Urgent Mode prompt, which appends a randomly sampled urgency expression from the
predefined urgent_words pool (bottom panel). This setup allows us to investigate whether LLMs adjust their
response behavior under simulated time pressure.
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# Grid World Treasure-Hunt Task

You are an adventurer in a grid-world maze.  
Your mission: **locate and claim a hidden treasure chest** as efficiently as possible.

---

## 1. Environment and Coordinate System

- You are in a two-dimensional grid world with obstacles (walls).
- The grid uses a standard Cartesian coordinate system where [1,1] is the bottom-left corner.
- X-axis runs horizontally (left to right), Y-axis runs vertically (bottom to top).
- For example, in a X $\times$ Y grid:
  - Bottom-left corner is [1,1]
  - Bottom-right corner is [X,1]
  - Top-left corner is [1,Y]
  - Top-right corner is [X,Y]
- You will receive a map of the grid world represented as a 2D array.
- Each row in the array corresponds to a y-coordinate (bottom row = y:1, top row = y:Y).
- Each column corresponds to an x-coordinate (leftmost column = x:1, rightmost column = x:X).
- To convert between Cartesian coordinates [x,y] and the map array:
  - For example, position [7,6] refers to the 7th column from the left and the 6th row from the bottom

**Important Map Representation Notes:**

In the map representation:
- "X" represents your current position
- "#" represents walls (you cannot move through walls)
- "0" represents empty spaces where you can move
- The treasure is hidden somewhere in the grid (not shown on the map)

## 2. The Treasure Signal
- The treasure emits signals that help you locate it:
  - **Signal Direction**: you'll receive an angle pointing toward the treasure, consider you have a compass and the angle is the
direction of the treasure:
    - 0 or 360 degrees = NORTH (the treasure is at north of you, consider going north)
    - 90 degrees = EAST (the treasure is at east of you, consider going east)
    - 180 degrees = SOUTH (the treasure is at south of you, consider going south)
    - 270 degrees = WEST (the treasure is at west of you, consider going west)
  - **Signal Distance**: You will also receive an estimated distance from your current position to the treasure.
    - This is an Euclidean distance, so you can use it to estimate how far the treasure is from you.
- Each time you **move** you automatically receive an updated "signal" pointing toward the treasure.

## 3. Available Actions
You can perform four different actions:
- "north": Move one cell north (y + 1)
- "south": Move one cell south (y – 1)
- "east": Move one cell east (x + 1)
- "west": Move one cell west (x – 1)
*Attempting to cross a wall leaves you in place and reports `blocked_by_wall`.*

## 4. Mission Termination
The episode ends when either:
1. You step onto the treasure's cell (**success**), or
2. You exceed the maximum allowed number of steps (**failure**).

## 5. State Format (input to you each turn)
For each step, you will receive the environment state as a JSON object:
```json
{
  "last_action": "start" or "moved" or "blocked_by_wall",
  "current_location": [x, y],
  "signal_direction": angle_in_degrees,
  "signal_distance": euclidean_distance_in_cells
}
```

## 6. Response Format
You must respond with a JSON object containing your action and reasoning without any additional text or explanations:
```json
{
  "action": "north" | "south" | "east" | "west",
  "reasoning": "Brief step-by-step thought process"
}
```

## 7.Strategy Guidelines

1. Always return a valid JSON with the action and reasoning fields.
2. Use signal direction and distance to guide movement toward the treasure.
3. Plan paths that avoid walls and minimise detours.
4. Track how the distance shrinks to verify you're heading the right way.
5. Keep reasoning short but clear, concise plans speed up play.

Happy hunting! may your steps lead straight to the prize!

Figure 12: System prompt used in the Treasure Hunt setting (S1) of the Bomb Rush task.
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# Grid World Bomb Detection Task
You are a police in a grid world. Your mission: **locate and defuse a hidden bomb before it explodes**.
---
## 1. Environment and Coordinate System
- You are in a two-dimensional grid world with obstacles (walls).
- The grid uses a standard Cartesian coordinate system where [1,1] is the bottom-left corner.
- X-axis runs horizontally (left to right), Y-axis runs vertically (bottom to top).
- For example, in a X $\times$ Y grid:
  - Bottom-left corner is [1,1]
  - Bottom-right corner is [X,1]
  - Top-left corner is [1,Y]
  - Top-right corner is [X,Y]
- You will receive a map of the grid world represented as a 2D array.
- Each row in the array corresponds to a y-coordinate (bottom row = y:1, top row = y:Y).
- Each column corresponds to an x-coordinate (leftmost column = x:1, rightmost column = x:X).
- To convert between Cartesian coordinates [x,y] and the map array:

**Important Map Representation Notes:**
In the map representation:
- "X" represents your current position
- "#" represents walls (you cannot move through walls)
- "0" represents empty spaces where you can move
- The bomb is hidden somewhere in the grid (not shown on the map)

## 2. The Bomb Signal
- The bomb emits signals that help you locate it:
  - **Signal Direction**: you'll receive an angle pointing toward the bomb, consider you have a compass and the angle is the
direction of the bomb:
    - 0 or 360 degrees = NORTH (the bomb is at north of you, consider going north)
    - 90 degrees = EAST (the bomb is at east of you, consider going east)
    - 180 degrees = SOUTH (the bomb is at south of you, consider going south)
    - 270 degrees = WEST (the bomb is at west of you, consider going west)
  - **Signal Distance**: You will also receive an estimated distance from your current position to the bomb.
    - This is an Euclidean distance, so you can use it to estimate how far the bomb is from you.
- Each time you **move** you automatically receive an updated "signal" pointing toward the bomb.
- The bomb is a time bomb, and it will explode after a certain amount of time. You need to reach the bomb before it explodes.
  - The value of **remaining time** (in seconds) will be provided at each step.

## 3. Available Actions
You can perform four different actions:
- "north": Move one cell north (y + 1)
- "south": Move one cell south (y – 1)
- "east": Move one cell east (x + 1)
- "west": Move one cell west (x – 1)
*Attempting to cross a wall leaves you in place and reports `blocked_by_wall`.*

## 4. Time Management
**Time is Continuously Ticking — Use It Wisely**:
**In this task, time flows continuously, and every action—including your reasoning—consumes it.**
This includes:
- Movement, even if you are blocked by a wall, it also consumes time.
- Your thought process: the longer and more detailed your reasoning, the more time you lose, lengthy and detailed analysis will
consume valuable time.
To succeed, you must:
- **Balance planning with speed** — avoid overthinking when time is limited.
- **Adapt to urgency** — simplify your decisions as the situation becomes more critical.
- **Stay aware of time already spent** — use past states and actions to estimate how much time remains before the bomb explodes.
Think smart. Act fast.

## 5. Mission Termination
......

## 6. State Format (input to you each turn)
For each step, you will receive the environment state as a JSON object:
```json
{
  "last_action": "start" or "moved" or "blocked_by_wall",
  "current_location": [x, y],
  "signal_direction": angle_in_degrees,
  "signal_distance": euclidean_distance_in_cells,
  "remaining_time": time_in_seconds,
  "last_reasoning_time_consumed": time_in_seconds  // Time consumed in the last reasoning
}
```

## 7. Response Format
......

## 8. Strategy Guidelines
- **Pay attention to the remaining time.**
- Track the time passing based on previous states and actions.
......

Remember, lives are at stake! Your mission is to find the bomb as quickly as possible.

Figure 13: System prompt used in the Bomb Rush setting (S2).
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# Grid World Bomb Detection Task

You are a police in a grid world.
Your mission: **locate and defuse a hidden bomb before it explodes**.
This is a challenging task because the bomb is moving!

---

....Same with the baseline setting

## 2. The Moving Bomb and Signal System

- The bomb is moving throughout the grid world and will never pass through walls.
- The bomb moves slower than you, but you need to track it with periodic detection ("detect" action).
- The bomb emits signals that help you locate it:
  - **Signal Direction**: When you perform a "detect" action, you'll receive an angle pointing toward the bomb, consider you have
a compass and the angle is the direction of the bomb:
    - 0 or 360 degrees = NORTH (the bomb is at north of you, consider going north)
    - 90 degrees = EAST (the bomb is at east of you, consider going east)
    - 180 degrees = SOUTH (the bomb is at south of you, consider going south)
    - 270 degrees = WEST (the bomb is at west of you, consider going west)
  - **Signal Distance**: You will also receive an estimated distance from your current position to the bomb.
    - This is an Euclidean distance, so you can use it to estimate how far the bomb is from you.
- **Important**: You only receive updated directional and distance information when you perform a "detect" action. 
  - When you move, the directional and distance information is not automatically updated.
- The bomb is a time bomb, and it will explode after a certain amount of time. You need to reach the bomb before it explodes.
  - The value of **remaining time** (in seconds) will be provided at each step without the need to perform a "detect" action.

## 3. Available Actions
You can perform five different actions:
- "north": Move one cell north (y + 1)
- "south": Move one cell south (y – 1)
- "east": Move one cell east (x + 1)
- "west": Move one cell west (x – 1)
- "detect": Stay in place and receive updated information about the bomb's current location

## 4. Time Management
**Time is Continuously Ticking — Use It Wisely**:
**In this task, time flows continuously, and every action—including your reasoning—consumes it.**
This includes:
- Movement, even if you are blocked by a wall, it also consumes time.
- Detection, which consumes time but provides updated information about the bomb's location.
- Your thought process: the longer and more detailed your reasoning, the more time you lose, lengthy and detailed analysis will
consume valuable time.
To succeed, you must:
- **Balance planning with speed** — avoid overthinking when time is limited.
- **Balance movement with detection** — you need updated info, but too many detections waste time.
- **Adapt to urgency** — simplify your decisions as the situation becomes more critical.
- **Stay aware of time already spent** — use past states and actions to estimate how much time remains before the bomb explodes.
Think smart. Act fast.

## 5. Mission Termination
The mission ends when either:
- You successfully locate the bomb (**success**)
- The bomb explodes before you reach it (failure)
- You exceed the maximum allowed number of steps (**failure**)

## 6. State Format (input to you each turn)
For each step, you will receive the environment state as a JSON object:
```json
{
  "last_action": "start" or "moved" or "blocked_by_wall" or "detected",
  "current_location": [x, y],
  "signal_direction": angle_in_degrees,  // Only present after a "detect" action or at the start
  "signal_distance": euclidean_distance_in_cells,  // Only present after a "detect" action or at the start
  "last_detected_signal_direction": angle_in_degrees,  // Present when you have previously detected but not performed a new
detection
  "last_detected_signal_distance": euclidean_distance_in_cells,  // Present when you have previously detected but not performed a
new detection
  "remaining_time": time_in_seconds,
  "last_reasoning_time_consumed": time_in_seconds  // Time consumed in the last reasoning
}
```

## 7. Response Format
You must respond with a JSON object containing your action and reasoning without any additional text or explanations:
```json
{
  "action": "north" | "south" | "east" | "west" | "detect",
  "reasoning": "Brief step-by-step thought process"
}
```

## 8. Strategy Guidelines

1. Always return a valid JSON with the action and reasoning fields.
2. Use signal direction and distance to guide movement toward the bomb.
3. **Balance movement with detection - you need updated info, but too many detections waste time.**
4. Plan paths that avoid walls and minimise detours.
5. Consider the bomb's movement when planning your path.
6. Track how the distance shrinks to verify you're heading the right way.
7. **Pay attention to the remaining time.**
8. Track the time passing based on previous states and actions.
9. Keep reasoning clear but concise, especially when time is limited.

Remember, lives are at stake! Your mission is to find the moving bomb as quickly as possible.

Figure 14: System prompt used in the Bomb Rush Hard (S3) setting where identical content are omitted for spacing
reason.
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## Map

[ # 0 0 0 0 0 0 # ] => Y=8
[ # # 0 0 0 0 0 0 ] => Y=7
[ 0 0 # 0 # 0 0 0 ] => Y=6
[ 0 0 0 0 0 0 0 0 ] => Y=5
[ 0 0 0 0 X 0 0 0 ] => Y=4
[ 0 # # 0 # 0 0 0 ] => Y=3
[ 0 0 0 0 0 0 0 0 ] => Y=2
[ 0 0 0 0 0 0 0 0 ] => Y=1
[ 1 2 3 4 5 6 7 8 ] => X-axis

Map Size: (8, 8)

## Wall Coordinates

[(1, 7), (1, 8), (2, 3), (2, 7), (3, 3), (3, 6), (5, 3), (5, 6), (8, 8)]

## Environment State

```json
{
    "last_action": "moved",
    "current_location": [5,4],
    "signal_direction": 296,
    "signal_distance": "2.24",
    "remaining_time": "126 seconds",
    "last_reasoning_time_consumed": "18 seconds"
}
```

Figure 15: User prompt template used in all Bomb Rush tasks. It provides the agent with the map layout, wall
locations, and current environment state in JSON format.
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