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Abstract

Large-scale reinforcement learning (RL) meth-
ods have proven highly effective in enhanc-
ing the reasoning abilities of large language
models (LLMs), particularly for tasks with
verifiable solutions such as mathematics and
coding. However, applying this idea to ma-
chine translation (MT), where outputs are flex-
ibly formatted and difficult to automatically
evaluate with explicit rules, remains underex-
plored. In this work, we introduce MT-R1-
Zero, the first open-source adaptation of the
R1-Zero RL framework for MT without su-
pervised fine-tuning or cold-start. We pro-
pose a rule-metric mixed reward mechanism to
guide LLMs towards improved translation qual-
ity via emergent reasoning. On the WMT 24
English-Chinese benchmark, our MT-R1-Zero-
3B-Mix achieves competitive performance, sur-
passing Towerlnstruct-7B-v0.2 by an average
of 1.26 points. Meanwhile, our MT-R1-Zero-
7B-Mix attains a high average score of 62.25
across all metrics, placing it on par with ad-
vanced proprietary models such as GPT-4o
and Claude-3.5-Sonnet, while the MT-R1-Zero-
7B-Sem variant achieves state-of-the-art scores
on semantic metrics. Moreover, our work ex-
hibits strong generalization capabilities on out-
of-distribution MT tasks, robustly supporting
multilingual and low-resource settings. Exten-
sive analysis of model behavior across different
initializations and reward metrics offers pio-
neering insight into the critical role of reward
design, LLM adaptability, training dynamics,
and emergent reasoning patterns within the R1-
Zero paradigm for MT. Our code is available at
https://github.com/fzp0424/MT-R1-Zero.

1 Introduction

Large-scale Reinforcement Learning (RL) has em-
powered Large Language Models (LLMs) with
strong reasoning capabilities (OpenAl, 2024; Team,
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Figure 1: Performance comparison of contemporary
LLM-based translation systems on the WMT 24 EN-
ZH test set, plotted by average score across BLEU,
COMETKiwi, and XCOMET versus model size.

2025a,b), demonstrating significant success in
tasks such as mathematical reasoning or coding in
which answers can be clearly verified. In particu-
lar, DeepSeek-R1-Zero (DeepSeek-Al et al., 2025)
introduced a pure rule-based RL approach that di-
rectly fosters emergent reasoning ability without re-
quirements on structured Chain-of-Thought (CoT)
data (Huang et al., 2025; Cui et al., 2025) or so-
phisticated techniques such as Monte Carlo Tree
Search (MCTS) (Silver et al., 2016; Zhao et al.,
2024; Luo et al., 2024; Guan et al., 2025). How-
ever, the applicability of these methods to machine
translation (MT) remains challenging and underex-
plored, as MT outputs are flexibly generated and
hard to evaluate automatically with explicit rules.

Recent work has launched attempts to empower
LLMs for MT with reasoning capabilities (Chen
et al., 2025; Liu et al., 2025). Early studies in-
vestigate explicit reasoning methods for improved
translation, such as finetuning with CoT (Wang
et al., 2024a) or MCTS (Zhao et al., 2024) , where
advanced multi-step pipelines with self-correction
or long-thought agentic mechanisms are further ex-

18685

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 18685-18702
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/fzp0424/MT-R1-Zero

plored (Feng et al., 2024b; Wang et al., 2024b,a).
Another line of work leverages RL to empower
LLMs for MT through process reward models or
supervised finetuning (SFT) with manually anno-
tated CoT data (Feng et al., 2025; He et al., 2025).
However, these methods often depend on manu-
ally designed or synthetically generated structured
CoT data, rely on complex search algorithms, or
require explicit multi-stage prompting, leaving the
potential of pure RL-based approaches largely un-
explored. Furthermore, the performance reported
in these studies often lags behind state-of-the-art
(SoTA) open-source or proprietary models.

Developing pure RL methods to directly enhance
the reasoning ability of LLMs for better translation
requires answering three key questions: 1) Feasibil-
ity: How to design R1-Zero-like RL pipelines with
effective reward signals to directly solve MT tasks
without binary rule-based rewards; 2) Reasoning
capability: Could pure RL training cultivate emer-
gent reasoning abilities and induce models to gen-
erate explicit thinking patterns for MT, such as
multi-step CoT or verification/reflection; 3) Gen-
eralizability: Could the training paradigm general-
ize across different models (e.g., pre-trained base
models, instruction-tuned models, or models pre-
trained on translation data) or diverse downstream
settings (e.g., out-of-distribution, multilingual or
low-resource scenarios).

In this work, we introduce MT-R1-Zero, the
first open-source implementation that extends the
R1-Zero-like RL training paradigm to MT. We pro-
pose a rule-metric mixed reward mechanism that
adapts the original rule-based reward concept to
effectively guide training in MT scenarios. We
explore different rewards optimizing over lexical
(Lex), semantic (Sem), and Lex-Sem mixed (Mix)
objectives to guide LLMs towards improved trans-
lation quality via emergent reasoning. Our exper-
iments demonstrate the efficacy of this approach:
as RL training progresses, our MT-R1-Zero-3B-
Mix achieves competitive performance, surpass-
ing TowerlInstruct-7B-v0.2 by an average of 1.26
points across all metrics (BLEU, COMETKiwi,
XCOMET) on the WMT 24 English-Chinese (EN-
ZH) benchmark. Meanwhile, our MT-R1-Zero-7B-
Mix surpasses LLaMA-3.1-70B by an average of
1.24 points and Qwen2.5-72B by 0.48 points, even
on par with top proprietary models such as GPT-
40 and Claude-3.5-Sonnet. The MT-R1-Zero fur-
ther demonstrates promising generalizability across
multilingual and low-resource settings.

Extensive experiments further provide key find-
ings and insight into the adaptation of R1-Zero
paradigm to MT. First, we empirically demonstrate
that the choice of metric reward plays a pivotal role
in steering RL optimization and translation style
(semantic or lexical) (Finding 1). Further analysis
reveals that MT-R1-Zero induces diverse emergent
reasoning patterns, including dynamic language-of-
thought transition during translation (Finding 2).
We also identify distinct RL adaptability of differ-
ent LLMs (Finding 3). Ablation studies suggest
that pure RL process alone can lead to substantial
translation improvements, independent of thinking
verbosity. Our core contributions are as follows:

* We present the first open-source implementa-
tion of the DeepSeek-R1-Zero paradigm for MT,
achieving superior performance across in-domain
and out-of-distribution MT tasks.

* Our analysis reveals key findings and recipes for
effective R1-Zero adaptation to MT, including
reward metric selection, emergent reasoning pat-
terns, training dynamics and LLM adaptability.

» Extensive experiments and ablations show that
pure RL serves as the primary driver of MT im-
provements, with minimal dependence on forced
reasoning or output length, highlighting the sig-
nificant potential of RL for diverse translation
applications and broader language tasks.

2 Related Work

LLM Reasoning with Post-training. Recent re-
search indicates that scaling test-time computation
can significantly enhance the ability of LLMs to
tackle complex reasoning tasks (OpenAl, 2024;
Zeng et al., 2024; Xiang et al., 2025). Many ap-
proaches rely on sophisticated techniques such as
step-level process reward models (PRMs) that pro-
vide granular feedback (Lightman et al., 2024;
Yuan et al., 2024; Snell et al., 2024) or MCTS
to explore potential reasoning paths (Feng et al.,
2023; Qi et al., 2024; Guan et al., 2025). A re-
cent alternative, DeepSeek-R1-Zero (DeepSeek-Al
et al., 2025), demonstrated that large-scale pure RL,
guided only by formatting rules and correctness
of final predictions (rule-based reward), can moti-
vate LLMs to develop self-emergent reasoning pro-
cesses for complex reasoning tasks.This paradigm
has been successfully replicated and extended to
mathematical, logical, and visual reasoning (Hu
et al., 2025; Face, 2025; Xie et al., 2025; Huang
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et al., 2025). Despite its potential, the application
of the R1-Zero RL paradigm to challenging gener-
ation tasks like MT, in which the accuracy/quality
of outputs is not rule-based and difficult to validate
automatically, remains an open question.

LLM Reasoning for MT. Leveraging reasoning to
improve MT has garnered increasing attention, as
explored by Chen et al. (2025); Liu et al. (2025).
Previous work have designed multi-step processes
for MT, e.g., Feng et al. (2024b) introduced an API-
based self-correcting framework, and Wang et al.
(2024b) employed multi-task training followed by
a multistage inference phase. Wang et al. (2024a)
integrated a similar procedure into inference-time
CoT, using a multi-agent mechanism to synthe-
size long CoT prompts for English-Chinese lit-
erary translation. Efforts have also focused on
reward modeling for MT reasoning. Feng et al.
(2025) constructed implicit process reward mod-
els for translation and explored their effectiveness
when combined with test-time search. Recent study
further evaluated explicit reasoning for MT using
CoT fine-tuning and MCTS to expand test-time
computation (Zhao et al., 2024). He et al. (2025)
demonstrated that models can acquire reasoning-
based translation capabilities through multi-stage
training with manually constructed CoT templates.

3 Method

In this section, we present our method that trains
a translation model with pure RL using a hybrid
reward system. Unlike tasks with fixed correct an-
swers, translation allows for multiple valid outputs,
making the evaluation more complicated. In this
work, we introduce a rule-metric mixed reward that
integrates reasoning format checking with multi-
ple translation quality assessment metrics, which
is used within the Group Relative Policy Optimiza-
tion (GRPO) (Shao et al., 2024) algorithm to en-
sure stable and efficient RL training.

3.1 Rule-Metric Mixed Reward

The reward signal r is crucial in RL. DeepSeek-R1-
Zero (DeepSeek-Al et al., 2025) employs simple
rule-based rewards that check whether the answer
is correct and whether the response follows a spe-
cific format. This works well for tasks with fixed
format correct answers such as math or coding.
However, there is often no single "correct” output
for MT, impeding the design of rule-based rewards.
Fortunately, the MT community has developed

many evaluation metrics to measure translation
quality. Recent advancements in automated MT
evaluation metrics have shown promise in align-
ing automated assessments with human translation
quality judgments (Freitag et al., 2023). Thus, we
design a rule-metric mixed reward, which consists
of two parts: a Format Reward that checks output
structure, and a Metric Reward that evaluates trans-
lation quality. We use a structured prompt template
similar to that in DeepSeek-R1-Zero:

Template for MT-R1-Zero

A conversation between User and Assis-
tant. The User asks for a translation from
{src_language} to {tgt_language}, and the
Assistant solves it. The Assistant first thinks
about the reasoning process in the mind
and then provides the user with the final
translation. The reasoning process and fi-
nal translation are enclosed within <think>
</think> and <translate> </translate> tags,
respectively, i.e., <think> reasoning process
here </think><translate> final translation
here </translate>.

User:{src_text}

Assistant:

\

Here, src_language and tgt_language indicate
the source and target languages, and src_text de-
notes the source text requiring translation.

Format Reward: We use regular expression ex-
traction to enforce a structured response format.
The model is required to place reasoning pro-
cess within <think></think> tags and provide
the translation inside <translate></translate>.
The format reward score (.S format) is computed as:

L,
Sformat = {

if format is correct

-1, if format is incorrect

Metric Reward: In the NMT era, works often
used string-level metrics like BLEU directly as a
reward signal to fine-tune encoder-decoder models
(Wu et al., 2018; Choshen et al., 2020; Kiegeland
and Kreutzer, 2021). We use automatic evalua-
tion metrics to calculate a translation quality score
Smetric- We explore three approaches:

1. N-gram Lexical Matching Reward (Reward-
Lex): Metrics such as BLEU (Papineni et al.,
2002) or chrF (Popovié, 2015) evaluate trans-
lation quality by measuring the difference (pri-
marily lexical overlap) between the translation
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and the human-written reference. In our experi-
ments, we calculate BLEU via sacrebleu!.

2. Semantic and Contextual Reward (Reward-
Sem):Learning-based metrics like COMET (Rei
et al.,, 2020) and COMETKiwi (Rei et al.,
2022) are trained on human judgments (e.g.,
MQM quality assessments (Freitag et al., 2021)).
These metrics can recognize good translations
even if the wording differs from the reference,
as long as the meaning is preserved. We use
the COMETKiwi-23-XL, which was used in the
WMT 24 (Kocmi et al., 2024) and only needs
the source sentence and the model’s translation.

3. Lexical and Semantic Mixed Reward
(Reward-Mix): To capture both lexical fidelity
and semantic adequacy, we use a hybrid
reward (Reward-Mix) that adds together Lexical
Matching Reward (Reward-Lex) and Semantic
and Contextual Reward (Reward-Sem). Beyond
simple mixing, we also explore in-group score
normalization strategies before addition in
Appendix B.

Accordingly, the computation of Sy, ¢sric depends
on the selected reward configuration:

B(trans, ref), if Reward-Lex
Smetric = < CK(src, trans), if Reward-Sem
B(trans, ref) + CK(src, trans), if Reward-Mix

where B denotes normalized BLEU score, CK de-
notes the COMETKiwi score, trans is the gener-
ated translation, ref is the reference translation,
and src is the source text.

Rule-Metric Mixed Reward: The final reward r
combines both the format reward (.S ¢;mq¢) and the
metric reward (Sy,etric). Formally, it is calculated
using the following rule:

r—= {Sformat -2, if Sfm“mat =—1

Sformat + Smetrica if Sformat =1

where Sy,etric 18 calculated only if the response
format is correct Sforma: = 1. Then the final re-
ward becomes 7 = 1 + Sp,etric. Unlike traditional
rule-based rewards that give a fixed score for cor-
rect outputs, our approach uses a continuous metric
score. This means the reward can vary within the
[1,2] or [1, 3] range, depending on translation qual-
ity. As a result, the model receives more detailed
feedback and can learn to improve even small dif-
ferences in translation quality.

"https://github.com/mjpost/sacrebleu

3.2 RL Algorithm

We use the GRPO algorithm (Shao et al., 2024)
to train the translation model with our rule-metric
mixed reward. In each training step, for a given
query ¢, we sample a group of candidate out-
puts {01,092, -+ ,0¢c} from the policy model 7y, ,.
A=" SE‘E(?{I;E{:;TQTG;)G D is the computed advan-
tage using the group rule-metric mixed rewards
{r1,7r2,- -+ ,rg}. GRPO then maximizes the fol-
lowing objective function to optimize 7g:

Jarro(8) =

Eq~P<cz) {0i}E., ~m,,4(Ola)
T 0; ’ q

E mi Aiv
G <7r901d (OZ ’ q)

y e(Oz' | q)
¢ lp( 00 (01 | 4)]

1—c¢, 1+€)Ai)

- BDKL<779 H Wref)] )

(D

where € and (3 are hyperparameters controlling the
PPO clipping threshold and the weight of the Kull-
back-Leibler (KL) divergence penalty (Schulman
et al., 2017; Shao et al., 2024), respectively.

4 Experiments

4.1 Experimental Setup

Dataset and Benchmarks. Our experiments pri-
marily focus on English (EN) and Chinese (ZH).
Following Xu et al. (2023) and Feng et al. (2024a),
we sourced EN=ZH parallel examples from WMT
2017-2020, totaling 13,130 pairs. For in-domain
evaluation, we use WMT 24 (EN-ZH) and WMT
23 (ZH-EN). Out-of-distribution (OOD) general-
ization is assessed on benchmarks covering: (1) un-
seen language pairs from WMT: English-Japanese
(EN-JA, WMT 2024) and German-English (DE-
EN, WMT 2023 Document-level); and (2) unseen
language pair from a distinct dataset: German-
Chinese (DE-ZH, Flores-200 (Costa-jussa et al.,
2022)). Detailed statistics are in Appendix F.

Baselines. Our primary baselines encompass
leading proprietary models, namely Claude-3.5-
Sonnet (Anthropic, 2024), GPT-40 (OpenAl, 2023),
and Gemini-1.5-Pro (Team et al., 2024), along-
side advanced open-source models such as the
Qwen2.5 series (Yang et al., 2024), LLaMA-3.1
series (Grattafiori et al., 2024), advanced multilin-
gual models Aya series (Aryabumi et al., 2024),
and translation-specific Tower family (Alves et al.,
2024). More evaluation details are in Appendix E.
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M ZH-EN EN-ZH
ODEL
BLEU COMETKiwi XCOMET Avg. BLEU COMETKiwi XCOMET Avg.
Closed
Claude-3.5-Sonnet (2024/10) 22.55 71.69 87.32 60.52 38.63 70.39 78.24 62.42
GPT-40 (2024/08) 22.57 71.63 87.22 60.47 41.13 69.01 75.43 61.86
Gemini-1.5-Pro (2025/03) 18.34 69.23 85.55 57.71 39.82 67.47 76.26 61.18
Open
LLaMA-3.1-70B-Instruct 25.19 70.43 86.21 60.61 39.82 68.05 75.17 61.01
Qwen2.5-72B-Instruct 21.96 70.95 87.07 59.99 39.29 69.04 76.97 61.77
Qwen2.5-32B-Instruct 20.54 69.35 85.47 58.45 36.36 68.43 74.90 59.90
Towerlnstruct-13B-v0.1 24.72 70.17 85.69 60.19 37.06 66.22 73.13 58.80
TowerlInstruct-7B-v0.2 23.32 69.99 84.93 59.41 34.93 64.04 70.67 56.55
Aya-23-35B 21.99 68.68 84.32 58.33 36.33 64.40 72.10 57.61
Aya-23-8B 19.13 66.74 82.89 56.25 33.28 63.11 70.78 55.72
Ours
Qwen2.5-3B-Base 14.26 64.86 76.76 51.96 15.90 52.05 67.13 45.03
MT-R1-Zero-3B-Lex 21.53 66.33 81.69 56.52 33.70 60.58 65.67 53.32
MT-R1-Zero-3B-Sem 18.41 70.33 85.98 58.24 24.32 69.75 76.92 57.00
MT-R1-Zero-3B-Mix 22.54 68.84 84.08 58.49 36.27 65.05 72.10 57.81
‘Qwen2.5-7B-Base 1823 6827 8499 5716 3114 ¢ 6338 69.83 5478
MT-R1-Zero-7B-Lex 23.56 65.35 82.12 57.01 40.11 64.57 70.21 58.30
MT-R1-Zero-7B-Sem 16.62 71.66 86.07 58.12 23.07 72.07 79.37 58.17
MT-R1-Zero-7B-Mix 23.98 70.81 86.17 60.32 40.97 69.43 76.36 62.25

Table 1: Performance comparison on in-domain translation directions (EN-ZH, ZH-EN) using BLEU, COMETKiwi,
and XCOMET metrics, with average metric scores (Avg.). MT-R1-Zero variants (-Lex, -Sem, -Mix) are compared
against closed and open baselines, which are further categorized by accessibility and specialization. The -Mix
variant often achieves the best balance, while -Sem reaches peak semantic scores. Bold and underline denote the
best and the second best score for each column respectively.

Evaluation Metrics. We assess translation qual-
ity using a suite of complementary metrics, in-
cluding the lexical metric BLEU (Post, 2018), the
reference-free learning-based metric COMETKiwi-
23-XL (Rei et al., 2022), and a SoTA, reference-
based learning metric XCOMET-XL (Guerreiro
et al., 2024) that was not directly used as an op-
timization target. To provide an even more holis-
tic view, we also report scores from MetricX-23-
XL (Juraska et al., 2023), another high-performing
reference-based metric from a distinct framework,
and chrF++ (Popovi¢, 2015), which integrates
character-level and word-level matching.

Training Details. Our implementation is based on
verl?>. We selected Qwen2.5-base series (3B and
7B parameter variants) as starting models for MT-
R1-Zero training. More details are in Appendix G.

4.2 Main Results

In-Domain Performance. As detailed in Ta-
ble 1 and Table 7, MT-R1-Zero models demon-
strate substantial gains over their base versions
and achieve competitive performance against ex-
isting SOTA benchmarks. For EN-ZH, MT-R1-
Zero-7B-Mix surpasses advanced models like
GPT-40 and Qwen2.5-72B on average scores.
The MT-R1-Zero-7B-Sem variant particularly ex-

Zhttps://github.com/volcengine/verl

cels in semantic-level evaluations (COMETKiwi,
XCOMET), outperforming strong proprietary mod-
els. This strength is further supported by a strong
MetricX-23 score of 2.42, notably better than
GPT-40 (3.29) and Qwen2.5-72B (3.08). On ZH-
EN, MT-R1-Zero-7B-Mix remains highly competi-
tive. MT-R1-Zero-7B-Sem achieves COMETKiwi
scores comparable to leading closed models and
surpasses strong open-source counterparts. Fur-
thermore, the MT-R1-Zero-3B-Sem delivers im-
pressive performance for its scale. It scores 69.75
COMETKiwi on EN-ZH, which is approximately
1.7 points higher than the much larger LLaMA-3.1-
70B and over 0.7 points above Qwen2.5-72B.

OUT-OF-DISTRIBUTION

MODEL

EN-JA DE-EN (Doc) DE-ZH Avg.
Qwen2.5-72B-Instruct 76.86 89.51 88.42 8493
LLaMA3.1-70B-Instruct ~ 75.67 88.72 87.42  83.94
Qwen2.5-7B-Instruct 63.74 87.45 84.43  78.54
LLaMA-3.1-8B-Instruct ~ 64.50 86.84 8223  77.86
Towerlnstruct-7B-v0.2 56.73 89.47 8428  76.83
Aya-23-8B 72.23 87.97 83.84 8135
MT-R1-Zero-7B-Lex 60.65 85.25 83.86  76.59
MT-R1-Zero-7B-Sem 71.95 87.68 87.66 8243
MT-R1-Zero-7B-Mix 68.49 88.69 88.69 81.96

Table 2: Out-of-distribution performance comparison
evaluated by the XCOMET metric.

Out-of-Distribution Performance. Our models
also demonstrate robust generalization across dif-
ferent OOD scenarios, which encompass unseen
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Figure 2: Progression of translation quality metrics using Reward-Lex, Reward-Sem, and Reward-Mix.

Source (EN):Let's give it
another hour or two to
see what it does(n't).

Reference (ZH):BE—mMM
By, EE&E (F&8) M4,

'—[ Qwen2.5-7B-Base ]—

<think>

I will translate the given
sentence from English to
Chinese. The sentence is
"Let's give it another hour
or two to see what it
does(n't)." I will break
down the sentence into
smaller parts and translate
each part individually.
</think>

<translate>
ILERAIBEE— M EIEEFE AN
BECaMHA (FMH2) .
</translate>

[BLEU: 15.33]

[COMETKiwi: 63.27]

1200

1600 400 800
Training Steps

1200

1608s 400 800 1200
Training Steps

1600

—| Reward-Lex i

<think>

In this task, we are asked to
translate a passage from English
to Chinese. To accomplish this, I
will perform the following steps:
1. Understand the sentence in
English.

2. Create a sentence structure if
not clear.

3. Perform a quick check for
technical terms and ensure their
accuracy.

4. Start the translation process.
5. Perform a quick review of the
translation to maintain the
meaning of the source sentence.
6. Make sure the sentence is
grammatically correct.

7. Deliver the final Chinese
translation to the user.

</think>

<translate>
ILEBET-HmME, FFE (F) it
/%

4.

</translate>

[BLEU: 53.87]

[COMETKiwi: 44.93]

<think>

RAERE ISR A User:Let's give it
another hour or two to see what it
does(n't) . "EBFMAPN. MAPAFR: “iLIH1IB%
—NMNEHENNE, BEER (7R) M4, "EXF
IFERRIA B doesn’ t " Fern—FHEIEENE, RItHATEET =
K4, BEENARRE: BIIBS—MNEEEMN
EJ BECSMUMA (FETR2MAA) 1B,

think>

{ Reward-Sem

<translate>

“iIBRIBE—NMDEHFFEDMNE, FBEESMIZ (FHE
Fata) . »

</translate>

[BLEU: 25.57]

[COMETKiwi: 72.16]

Reward-Mix ]—
<think>
FRERIGFEL A F“Let ‘s give it another hour or
two to see what it (doesn’t) do.”ENEmEF3Z,
BRIEDFPRE MAREOERSENEMRAVERE, FRRRS

BFENaHEIRR.
</think>
<translate>

BilBEE—MIEEIFE DIE, FEE () B4,
</translate>

[BLEU: 35.89]
[COMETKiwi: 47.65]

Figure 3: Qualitative examples illustrates the effect of different reward functions (Reward-Lex, Reward-Sem,
Reward-Mix) on EN-ZH translation, where the stylistic differences are driven by reward optimization (Finding 1).

WMT language pairs (EN-JA, DE-EN) and the dis-
tinct Flores-200 DE-ZH dataset. XCOMET scores
presented in Table 2 highlight this: MT-R1-Zero-
7B-Sem excels, achieving an average XCOMET
score of 82.43 across these tasks, which is 3.89
points higher than Qwen2.5-7B-Instruct. While
our 7B variants do not consistently surpass much
larger strong baselines, they significantly outper-
form other evaluated same-size baselines by a con-
siderable margin, an outperformance that extends
to defeating same-size multilingual and translation-
specific baselines (such as TowerlInstruct-7B-v0.2
and Aya-23-8B). These OOD results suggest that
the quality improvements in MT-R1-Zero can effec-
tively transfer to unseen language pairs and bench-
marks. More results are provided in Appendix I.

5 Key Findings and Insight

5.1 Impact of Reward Metric Selection

As detailed in Section 3.1, we explore three metric
rewards: Reward-Lex, Reward-Sem, and Reward-

Mix. Our results demonstrate that the choice among
these significantly affects the learning target and

Finding 1: Reward metric selection criti-
cally shapes optimization targets and trans-
lation style.

final model outputs, as stated in Finding 1.

Figure 2 presents the training dynamics with dif-
ferent rewards. Training with Reward-Lex max-
imizes BLEU scores, often at the expense of
semantic scores, while Reward-Sem maximizes
COMETKiwi, leading to a decline in BLEU. Train-
ing with Reward-Mix improves both metrics. Inde-
pendent evaluation with XCOMET further supports
this finding, showing consistent improvements for
Sem and Mix variants while fluctuating for Lex.
This finding aligns with the insight from Chen
et al. (2025), suggesting that lexical and seman-
tic assessments are complementary, particularly for
reasoning-oriented LLMs, and combining them can
offer a more comprehensive evaluation signal.
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#TeaganAir #PA28 #Pilot
#FlightSchool
Assistant: <think> I will
translate the given English
sentence into Japanese. The
sentence is "A few more sensors
in general would be nice I
guess." I will break down the
sentence into its main

User:#PilotTraining #Flying

Assistant: <think> I will translate
the given text from English to
Chinese. The text contains hashtags
and mentions of a pilot training
program, flying, a company called

N/ DE-ZH

User:Heutzutage schreiben Menschen Nachrichten auf
Computerbildschirmen, ohne je in die N&he eines
Anspitzers kommen zu miissen.

Assistant: <think> To translate the given German
sentence into Chinese, I will first break down the
sentence into its main components and then find the
appropriate Chinese equivalents for each component.
The main components are: "Heutzutage" (today),

Step 0

components and find the
appropriate Japanese words and

Teagan Air, a specific aircraft
model (PA28), and a pilot. I will
translate each part of the text

"schreiben" (write), "Menschen" (people),
"Nachrichten" (messages), "auf Computerbildschirmen"
(on computer screens), "ohne je" (without ever), "in

phrases for each part. </think>
<translate> —fgI=, PLEZHE
P—nHIERNERBVET,
k</translate>

accordingly. </think>

2= #PA28 #TKITR #KITHIR
C/translate>

J

<translate> # KfTRIF #7647 #Z4RM

die Nihe" (near), "eines Anspitzers" (a pencil), and
"kommen zu milssen" (to have to come). </think>
<translate> I, AJRILMERRFR LSE, MARELA
\%, </translate> )

J

YA

( ;
User:A few more sensors in

general would be nice I guess. [|#PA28 #Pilot #FlightSchool

Assistant: <think> EF1—4—

User:#PilotTraining #Flying #TeaganAir

Assistant: <think> BIEBEUTISIXERIER

i, [User: &, —fRIcE Y —4¢ || XF“#PilotTraining #Flying #TeaganAir || Assistant: <think> BRIEBEMMASKERENE
8 DULBREBULWES] ELS5KEED || #PA28 #Pilot #FLlightSchool”BHERHIN. || “Heutzutage schreiben Menschen Nachrichten auf
O | XEBRLTELWEEEhELE, XFHEEASMFE, REARETIEEREAIIRE || Computerbildschirmen, ohne je in die Nihe eines
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User:Heutzutage schreiben Menschen Nachrichten
auf Computerbildschirmen, ohne je in die N&he
eines Anspitzers kommen zu miissen.

Figure 4: Examples illustrating language-of-thought phenomenon, i.e., transition of the internal reasoning language
in MT-R1-Zero models. The reasoning language transits from English at Step O to target language at Step 1600,
indicated by bold text across various OOD test pairs (Finding 2).
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Figure 5: Comparison of training dynamics for different model families (Qwen2.5, LLaMA-3.1, Tower) undergoing
MT-R1-Zero RL training, highlighting differences in adaptability (Finding 3).

Qualitatively (Figure 3), this optimization align-
ment manifests as distinct translation styles.
Reward-Lex encourages literal focused translations,
potentially sacrificing nuance. Reward-Sem fos-
ters translations that prioritize semantic faithful-
ness, even if lexically divergent from references. In
contrast, the mixed reward yields balanced trans-
lations. This demonstrates that the metric reward
fundamentally dictates the nature of the translation
quality learned (e.g., semantic v.s. lexical). There-
fore, careful metric selection and deliberate fusion
are essential for tailoring RL-based MT refinement
towards specific and desired translations.

Moreover, a closer inspection of Figure 2 reveals
that the BLEU progression for Reward-Mix closely
mirrors that of Reward-Lex, suggesting the unnor-
malized reward signal may be disproportionately
influenced, or even dominated, by the more volatile
BLEU metric score. This observation motivated

our deeper investigation into reward normalization
strategies (see Appendix B) to ensure a more bal-
anced contribution from each component.

5.2 Emergence and Evolution of Translation
Thinking Patterns

As R1-Zero-like training lacks a cold-start phase
with predefined reasoning patterns, the observed
thinking processes should be emergent and shaped

Finding 2: Diverse reasoning patterns
emerge, varying in style and complexity,
and moreover, the internal reasoning lan-
guage could dynamically transit to target
languages even for OOD settings.

\

by the RL objective.
Our framework incentivizes a variety of reason-
ing styles within the <think></think> tags (Fig-
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In-domain

Out-of-distribution

Model

ZH-EN EN-ZH

EN-JA DE-ZH DE-EN (Doc)

COMETKiwi XCOMET COMETKiwi XCOMET COMETKiwi XCOMET COMETKiwi XCOMET COMETKiwi XCOMET

Qwen2.5-7B (SFT) 69.29 84.80 67.25 74.29
Qwen2.5-7B (RL w/o thinking) 70.78 86.26 69.62 76.03
Qwen2.5-7B (RL w/ thinking) 70.81 86.17 69.43 76.36

67.77 65.39 67.01 86.17 67.44 86.74
68.68 68.77 67.84 86.67 68.31 88.30
69.27 68.49 70.25 89.25 68.74 88.69

Table 3: Performance comparison of different training paradigms: Supervised Fine-Tuning (SFT) vs. RL with
explicit thinking (RL w/ thinking) vs. RL without explicit thinking (RL w/o thinking). Results shown for in-domain
and out-of-distribution tasks support the finding that the RL process itself is the primary driver of gains.

ure 11). While some instances include explicit
"review/refine" steps, these generally appear as
pre-planned components rather than the conversa-
tional, iterative self-correction characteristic of the
"Aha moment" reported in mathematical reasoning
tasks (DeepSeek-Al et al., 2025; Hu et al., 2025).
This suggests that while MT-R1-Zero successfully
encourages thinking, the complexity and specific
nature of emergent reasoning are task-dependent.
Furthermore, we observe a striking and interest-
ing "'language-of-thought" (transition in the lan-
guage used for internal reasoning) phenomenon
during OOD testing (Figure 4). While base mod-
els often use English as default thinking language
based on template, MT-R1-Zero models progres-
sively transit to utilize the target language of the
translation task for their reasoning process within
the <think></think> block during training (see
bold Japanese or Chinese text in step 1600). This
dynamic adaptation of the internal "language of
thought”, conditioned on the task, emerges even
without direct supervision on reasoning language.

5.3 Training Dynamics of Different LLMs

The effectiveness and training behavior of MT-
R1-Zero are significantly influenced by the base
LLM architecture and its initial state (pre-trained
vs. instruction-tuned). We compare three distinct
model families: general (Qwen2.5 and LLaMA-3.1
series) and translation-specific (Tower family).

s ™)

Finding 3: LLM architectures exhibit dis-
tinct adaptability and effectiveness under
MT-R1-Zero, with Qwen showing the high-
est compatibility in format learning and
reasoning generation, while LLaMA and
Tower face more challenges and tend to-
wards "format hacking".

\. J

As shown in Figure 5, both the translation-
specific (Tower) and LLaMA-3.1 models exhibit
significantly slower adaptation to the required for-
mat compared to Qwen models, as evidenced by
their delayed format error reduction. Furthermore,

qualitative analysis (Figure 10) reveals that these
models often circumvent meaningful reasoning
by generating minimal or templated placeholder
content in the <think></think> tags, potentially
"hacking" the format reward. In contrast, Qwen2.5
models demonstrate stronger adaptability, consis-
tently producing coherent reasoning text within the
structured framework. This suggests that archi-
tectures like Qwen may possess inherent advan-
tages for integrating structured reasoning via RL,
a finding that aligns with prior work on cognitive
behaviors (Gandhi et al., 2025). However, even
Qwen2.5 models occasionally regress to simplis-
tic one-sentence outputs during reasoning tasks,
underscoring the instability of exploration in R1-
Zero-like training paradigms.

5.4 Disentangling RL and Explicit Thinking

To determine whether the explicit <think> step
or the underlying RL optimization is the primary
driver of performance gains, we conducted an ab-
lation study. We compared three paradigms: Su-
pervised Fine-Tuning (SFT), our standard MT-R1-
Zero-Mix (RL w/ thinking), and an RL variant with-
out the explicit <think> step (RL w/o thinking).

The results presented in Table 3 reveal a key
finding: both RL configurations achieve compara-
ble performance while substantially outperforming
the SFT baseline across both in-domain and OOD
settings. This demonstrates that the major perfor-
mance improvements in MT-R1-Zero are primarily
driven by the RL framework itself, rather than the
mere presence of an explicit reasoning step. This
core conclusion is further corroborated by similar
findings on the DRT literature translation bench-
mark (see Appendix J for the full analysis).

6 Conclusion

In this work, we introduced MT-R1-Zero, the first
successful adaptation of R1-Zero RL framework
to MT using a novel rule-metric mixed reward
mechanism that combines format enforcement with
quality metrics. Our MT-R1-Zero significantly im-
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proves translation quality, achieving leading results
on multiple benchmarks, i.e., our 3B models com-
pete with much larger open-source models, while
our 7B models are on par with advanced proprietary
models. The MT-R1-Zero also demonstrates strong
OOD generalization and multilingual applicability.
Through extensive experiments and analysis, we
highlight the significant impact of reward metric
choice for optimization, showcase distinct adapt-
ability across different LLMs, and reveal that per-
formance gains are principally from the RL process
itself rather than reasoning steps or verbosity, es-
tablishing R1-Zero as a viable and potent paradigm
for advancing MT. More broadly, our work high-
lights the great potential of RL for diverse language
processing tasks beyond translation.

Limitations

While MT-R1-Zero represents a significant ad-
vance, certain limitations remain. The emergent
reasoning observed, though diverse, did not achieve
the sophisticated iterative self-correction capabili-
ties demonstrated in mathematical reasoning tasks
using similar RL or R1-like methods. This dis-
crepancy may reflect fundamental differences in
task structure or indicate the need for specialized
design in translation tasks. One promising direc-
tion would be developing task-specific cold-start
datasets for SFT before RL optimization, though
this would deviate from the pure RL paradigm we
investigated here. Future work could focus on in-
ducing deeper reasoning structures specifically ben-
eficial for the MT task, investigating architectural
adapatability across a broader range of LLMs, and
developing more appropriate reward mechanisms.
Exploring applications to specialized domains (e.g.,
law and healthcare) and general language process-
ing tasks presents promising opportunities to ex-
tend this work.
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A Progression of Response Length and
Performance

By observing the training process, we provide sev-
eral insights into model adaptation and the emer-
gence of reasoning.

Finding 2 (Continued): Response length
initially declines rapidly and then gradually
increases as training progresses.

Figure 7 (Right) depicts the pattern in Finding
2 (Continued) alongside consistent COMETKiwi
improvements (Left). Qualitative analysis (Fig-
ure 8) reveals that this length trajectory reflects
evolving reasoning strategies. The initial decline
corresponds to the model mastering the required
format while transitioning from naive decomposi-
tion (Step 0) to more efficient, direct translations.
The subsequent increase aligns with the develop-
ment of richer semantic analysis and deeper contex-
tual reasoning within the <think></think> tags
(Step 1600).

B Analysis of Reward Normalization
Strategies

As noted in Section 5.1, naively mixing metrics
like BLEU and COMETKiwi can be problematic
due to their different scales and statistical prop-
erties. To investigate this, we experimented with
in-group normalization strategies. As shown in
Table 4, Z-score standardization yields the best
overall performance, improving semantic scores
while maintaining lexical fidelity.

Strategy BLEU XCOMET COMETKiwi
w/o Norm 20.75 86.51 70.83
Min-Max Norm  20.30 86.79 71.10
Z-score Norm 20.67 87.12 71.46

Table 4: Performance on ZH-EN at Step 1600 with
different reward normalization strategies.

To understand the underlying mechanism, we
analyzed the correlation between the raw metric
scores and the final reward signal across the train-
ing process (Table 5). Without normalization, the
reward’s ranking is almost entirely dominated by
BLEU’s ranking (Spearman correlation of 0.93).
This is likely due to BLEU’s high variance, where
small n-gram changes cause large score jumps. By
applying normalization, particularly Z-score, we
successfully decouple the final reward from being
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dominated by BLEU’s volatility. This creates a
more robust and balanced learning signal based on
relative in-group performance, directly addressing
the concerns of naive metric mixing.

Correlation  Metric vs. Reward ~ w/o Norm  Min-Max  Z-score
S BLEU-Reward 0.9295 0.1263  0.0886
pearman  cOMETK-Reward  0.7097 0.0661  0.1165

) l;e;rjog ~ " "BLEU-Reward ~~ ~ 0.6440 ~ ~ 0.2509 ~ 02657
s COMETK-Reward  0.8357 0.5487  0.6849

Table 5: Correlation analysis of raw metric scores vs.
the final reward signal over the training process.

C KL Penalty Constrains Response
Length but Not Quality Gains

We investigate the effectiveness of the KL term
in the GRPO objective (Equation 1) on response
length and translation quality, as it would regularize
the policy by discouraging large deviations from
the initial reference model. We conducted experi-
ments without the KL penalty (setting 3 = 0, Fig-
ure 6), and found that the average response length,
after an initial drop, began to fluctuate and trend
upward during training. This pattern is consistent
with R1-Zero-like results in mathematical tasks (Yu
et al., 2025; Yeo et al., 2025). Additional ablation
of the KL penalty with COMETKiwi reveals that
the improvement of translation quality appears to
be largely independent of the thinking verbosity.
Significant quality gains were achieved in early-
stage training (e.g., before Steps 400) before a sub-
stantial increase in response length, even in exper-
iments conducted without the KL penalty. This
suggests that performance improvements in the
MT-R1-Zero setup could not be attributed solely or
primarily to increasing reasoning verbosity.

D Multilingual and Low-Resource
Support

To evaluate the broader applicability of our frame-
work, we examine its effectiveness in multilingual
training scenarios and its potential benefits for low-
resource languages. We train multilingual MT-R1-
Zero models using the Germanic language data
split in the X-ALMA (Xu et al., 2024), augmented
with Chinese (see Table 9 for detailed data statis-
tics). We set the batch size to 16 and used COMET-
223 as the metric reward (Reward-Sem), consistent
with the evaluation protocols in X-ALMA. All mod-
els are trained for 1 epoch on 16 NVIDIA H800

3https://huggingface.co/Unbabel/wmt22-comet-da
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Figure 6: Effect of the KL divergence penalty on EN-
ZH COMETKiwi score and response length progression
for models trained with (w/ KL, 8 = 0.01) and without
(w/o KL, 8 = 0) the penalty. Experiments are con-
ducted three times with MT-R1-Zero-7B-Sem.

80G GPUs for about 12 hours. All other hyper-
parameters follow the configuration described in
Section 4.1. The training progress, measured by
COMET-22 for English-to-target directions, is de-
picted in Figure 9.

The learning curves demonstrate consistent im-
provement in translation quality across languages
spanning diverse resource levels, including those
typically considered low-resource (e.g., Icelandic
(IS) and Norwegian (NO)). The steady performance
improvement observed throughout training con-
firms that the MT-R1-Zero framework remains ef-
fective when applied in multilingual settings.

E Evaluation Details

When evaluating model performance on the test
set, we deployed open-source models locally using
frameworks like VLLM* or HuggingFace® imple-
mentations. Proprietary models were accessed via
their APIs®. We use the sampling decoding strat-
egy with a temperature of 0.2, and top_p set to
0.95. The maximum generation length was capped

*https://github.com/vllm-project/vlim

Shttps://huggingface.co/docs/transformers/
main_classes/text_generation

®The specific proprietary models accessed include
Anthropic’s claude-3-5-sonnet-20241022, OpenAl’s
gpt-40-2024-08-06, and Google’s gemini-1.5-pro.
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Figure 7: Training dynamics of MT-R1-Zero models (using Reward-Sem). Left: COMETKiwi score progression
for 3B and 7B models on EN-ZH and ZH-EN test sets. Right: Average response length changes over training steps,
exhibiting the classic decrease-then-increase pattern (Finding 2 Continued).

Reference (EN):The majority of individuals will feel guilty
after reading the in-depth description of the power.

p ! Step 0 !
User: ZTEBRIIEMLE, —RABELERRE.

Assistant: <think> To translate the given Chinese sentence into English, I will first break down the sentence into its
components and then find the appropriate English equivalents for each component. The sentence is: "ZEFTEEBAVFEMRE, —BRAE
BLERRE, "

ZF - This is a preposition that can be translated to "as for" or "regarding."

. BB& - This is a compound noun that means "electricity" or "power."

f9 - This is a possessive particle that indicates possession or relationship.

. JE4HRBE - This is a compound noun that means "detailed explanation" or "explanation in detail."

—f& - This is an adverb that means "generally" or "usually."

A - This is a noun that means "people" or "persons."

&%E - This is a verb phrase that means "looking at" or "seeing."

L8 - This is a compound noun that means "in one's heart" or "in one's mind."

. & - This is a modal verb that means "will" or "would."

10. K - This is a verb phrase that means "to feel faint" or "to feel dizzy."

Now, I will combine these components to form the English translation.</think><translate> As for the detailed explanation
of electricity, generally speaking, people will feel faint when they see it. </translate>

[COMETKiwi: 66.11]

Source (ZH):EFHERN¥MIRE, —RABBELESRE.

VWOIOUEWNR

Step 400

User: ETHEEBIFMRE, —RABELESKRE.

Assistant: <think> My task is to accurately translate
the Chinese text provided by the user into natural
and coherent English while preserving the original
meaning, tone, and nuances of the Chinese
sentence.</think><translate> As for the detailed
explanation of the battery, most people would feel
uneasy just by looking at it.</translate>

[COMETKiwi: 68.4u]

I Step 1600 I

User: EFEREBINFMRE, —RABELERRE.

Assistant: <think> I translated the Chinese text "User:ZEFTHEANFEM
WA, —MMABBEOERSKRE. " to English as "As for the detailed
explanation of the battery level, most people feel a bit uneasy when|
they see it." The original text quotes the user saying that when
people see the detailed information about the battery level, they
feel a bit uncomfortable or uncertain about it.</think><translate>
"As for the detailed explanation of the battery level, most people
feel a bit uneasy when they see it." </translate>

[COMETKiwi: 74.09]

Figure 8: Evolution of an MT-R1-Zero model’s reasoning process and translation output for the Chinese source

25

text "X &

°f ] fi £ AL T 20085 69 2 F & HL" at different training steps (0, 400, 1600), showcasing the shift from

decomposition to more semantic analysis (Finding 2 Continued).

Inference Prompt

F Data Statistics

Translate the following text from {src_language}

into {tgt_language}.
{src_language}:{src_text}
{tgt_language}:

This section provides further details on the datasets

Table 6: Prompt used for translation generation.
{src_language}:
source language; {src_text}: the source test sentence.

{tgt_language}: target language;

at 1024 tokens. We adopt the prompt showcas-
ing in Table 6 to sample the translation (applying
specific chat template when needed). For the multi-
lingual and translation-specific models, we utilize

the prompts in their official model cards.

used in our experiments. Table 8 outlines the statis-
tics for the data employed in our main EN=ZH
experiments. The training set for these experiments
consists of 13,130 EN—=ZH parallel sentence pairs,
obtained after filtering out sentences with fewer
than 30 characters. For model training, these exam-
ples were evenly divided between the two transla-
tion directions (6,565 pairs each for EN—ZH and
ZH—EN). Table 9 presents the statistics for the
multilingual experiments discussed in Section D.
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Figure 9: Training progression (COMET-22) for multilingual MT-R1-Zero models based on LLaMA-3.1-8B and
Qwen2.5-7B across multiple EN-XX test sets, demonstrating applicability in multilingual settings (Section D).

G RL Training Details

During training, we configure a batch size of 8 and
utilize 8 rollouts per prompt within the GRPO algo-
rithm. We employ a constant learning rate of Se-7
and set the sampling temperature to 1.0. The maxi-
mum generation length for responses is capped at
1024 tokens. We set the KL penalty coefficient 5
to 0, thereby removing the KL constraint against
the reference policy. This decision stems from our
empirical observation that the KL penalty tends to
restrict the model’s exploration of diverse response
lengths, which we will discuss further in Section C.
The PPO clipping range ¢ is set to 0.2. All models
are trained for 1 epoch on 4 NVIDIA H800 80G
GPUs for about 13 hours.

H Complementary Metric Scores for
Main Results

In addition to the primary metrics discussed in
Section 4.2 for in-domain tasks, Table 7 reports
complementary scores using MetricX-23-XL and
chrF++. These metrics provide further perspectives
on semantic quality (MetricX-23-XL) and lexical
fidelity (chrF++) for the EN=ZH evaluations, gen-
erally aligning with the strong performance trends
of our MT-R1-Zero models.

I OOD COMETKiwi and BLEU Scores

To supplement the OOD XCOMET results pre-
sented in Section 4.2, we provide COMETKiwi
and BLEU scores for the same OOD tasks here.

ZH-EN
ChrF++ (1) MetricX-23 ()  ChrF++ (1)  MetricX-23 (])

MODEL EN-ZH

Claude-3.5-Sonnet (2024/10)

50.37

Closed

2.01

34.51

2.91

GPT-40 (2024/08) 51.06 2.08 32.81 329
Gemini-1.5-Pro (2025/03) 45.58 221 35.04 3.26
LLaMA-3.1-70B-Instruct 51.43 2.32 35.85 3.40
Qwen2.5-72B-Instruct 52.17 221 39.27 3.08
Qwen2.5-32B-Instruct 50.15 2.46 37.47 3.31
TowerlInstruct-13B-v0.1 5115 2.49 34.17 3.58
TowerlInstruct-7B-v0.2 50.17 2.60 32.45 3.96
Aya-23-35B 47.98 2.83 33.33 3.86
Aya-23-8B 44.69 2.86 31.23 3.89
Ours
MT-R1-Zero-3B-Lex 47.88 333 31.74 4.94
MT-R1-Zero-3B-Sem 48.47 221 30.27 2.78
MT-R1-Zero-3B-Mix 49.43 2.78 33.12 3.83
MT-R1-Zero-7B-Lex 49.25 3.17 34.27 4.13
MT-R1-Zero-7B-Sem 48.37 2.12 30.57 242
MT-R1-Zero-7B-Mix 51.55 2.44 38.03 3.11

Table 7: ChrF++ and MetricX-23 scores for all mod-
els and translation directions (ZH-EN, EN-ZH). For
each column, bold marks the best and underline marks
the second best performance. (1): higher is better, (]):
lower is better. MT-R1-Zero rows are aligned with the
corresponding variants in Table 1.

Table 10 details the COMETKiwi results. Table 11
contains the BLEU scores. These additional scores
offer further perspectives on the generalization ca-
pabilities of our MT-R1-Zero models across the
evaluated OOD scenarios.

J Details in Disentangling RL and
Explicit Thinking

The ablation study discussed in Section 5.4 aimed
to determine whether the explicit <think> step or
the underlying RL optimization primarily drives
performance gains. We compared three training
paradigms: 1) Supervised Fine-Tuning (SFT),
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Train Test
EN-ZH ZH-EN EN-ZH ZH-EN EN-JA DE-EN DE-ZH
# of cases 6565 6565 997 1976 997 549 1012
Source WMT 17-20 WMT 24 WMT 23 WMT 24 WMT 23 Flores

Table 8: Data statistics for the training and test sets used in the main experiments (EN=ZH).

Parallel Data
Train (from EN) Train (to EN) Test (from EN) Test (to EN) Resource

Afrikaans (AF) 2994 341 1012 1012 Mid
Danish (DA) 2994 355 1012 1012 Mid
Dutch (NL) 2994 403 1012 1012 High
German (DE) 7015 885 1012 1012 High
Icelandic (IS) 4994 678 1012 1012 Low
Norwegian (NO) 2994 360 1012 1012 Low
Swedish (SV) 2994 339 1012 1012 High
Chinese (ZH) 6906 874 1012 1012 High
English (EN) - - - - -

Table 9: Parallel data statistics for languages used in multilingual experiments (Section D), detailing training/test

pairs and resource level classification.

OUT-OF-DISTRIBUTION

MODEL

EN-JA DE-EN (Doc) DE-ZH Avg.
Qwen2.5-72B-Instruct 73.25 69.13 69.89  70.76
LLaMA3.1-70B-Instruct ~ 71.84 69.28 68.67  69.93
Qwen2.5-7B-Instruct 64.79 67.20 67.82  66.60
LLaMA-3.1-8B-Instruct ~ 62.42 66.77 6428  64.49
Towerlnstruct-7B-v0.2 58.33 69.03 6545  64.27
Aya-23-8B 66.44 67.21 6340  65.68
MT-R1-Zero-7B-Lex 63.33 66.17 6432  64.61
MT-R1-Zero-7B-Sem 72.00 68.41 71.51  70.64
MT-R1-Zero-7B-Mix 69.27 68.74 7025  69.42

Table 10: Out-of-distribution performance comparison
using the COMETKiwi metric on EN-JA, DE-EN (Doc),
and DE-ZH. (Complements Table 2).

OUT-OF-DISTRIBUTION

MODEL

EN-JA DE-EN (Doc) DE-ZH Avg.
Qwen2.5-72B-Instruct 25.02 45.54 40.83  37.13
LLaMA3.1-70B-Instruct ~ 24.64 45.98 37.85 36.16
Qwen2.5-7B-Instruct 18.91 41.17 3525 31.78
LLaMA-3.1-8B-Instruct ~ 16.22 40.28 31.08  29.19
TowerInstruct-7B-v0.2 10.52 43.40 3474 29.55
Aya-23-8B 20.20 37.28 31.86  29.78
MT-R1-Zero-7B-Lex 14.94 40.01 37.00  30.65
MT-R1-Zero-7B-Sem 14.12 33.19 2283 2338
MT-R1-Zero-7B-Mix 20.27 43.17 3231 31.92

Table 11: Out-of-distribution performance comparison
using the BLEU metric on EN-JA, DE-EN (Doc), and
DE-ZH. (Complements Table 2).

serving as a non-RL baseline (further SFT train-
ing details can be found in Appendix D); 2) our
MT-R1-Zero-Mix (RL w/ thinking), which incor-
porates explicit <think>/<translate> prompting
and is trained with the Reward-Mix signal; and 3)
an RL w/o thinking variant, trained with the same
Reward-Mix RL optimization but without prompts
enforcing the <think> step.

DRT TEST SET

MODEL

BLEU COMETKIwI-22 XCOMET Avg.
Qwen2.5-7B-Instruct 24.17 69.66 61.84 51.89
Towerlnstruct-13B 22.71 70.55 62.77 52.01
DRT-7B 3551 71.77 68.40 58.56
DRT-14B 36.37 72.15 69.64 59.39
Qwen2.5-7B (SFT) 21.61 69.91 63.20 51.57
Qwen2.5-7B (RL w/o thinking) — 28.44 72.92 66.17 55.84
Qwen2.5-7B (RL w/ thinking) 28.42 73.20 66.64 56.09

Table 12: Performance comparison on the DRT lit-
erature translation dataset (Wang et al., 2024a) using
BLEU, COMETKiwi-22, and XCOMET metrics.

The main results from this ablation (Table 3)
indicate that both RL configurations ("RL w/ think-
ing" and "RL w/o thinking") achieve compara-
ble performance and substantially outperform SFT,
suggesting the RL framework itself is the main
driver of improvements. This core conclusion is
further corroborated by evaluations on the DRT lit-
erature translation benchmark (Wang et al., 2024a).
Table 12 consistently shows that both RL variants
perform similarly to each other and are significantly
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Reference (EN): It's encouraging to see, although | Qwen2.5-7B-Instruct I
there is some disappointment -

[ R l <im_startDuser ¥E&, BERR/NER<im_end >
Quwen2.5-7B-Base <im_startP>assistant <think> The user is asking to
User:{FE, (BEAS/INER translate the Chinese phrase "$¥&, BESA/NER" to

Assistant: <think> I translated the Chinese text English. Let's break down the phrase:
"User:1FE, BERA/INER" to English as "It looks

good, but there is a tiny bit of disappointment." - "§FE" means "it looks good" or "it is attractive."

The user is saying that the object or situation - "B" is a conjunction that means "but."

being discussed appears nice, but there is a - "BERRV/NER" means "there is a slight bit of regret" or
small aspect that they are not completely "there is a small sense of disappointment."

satisfied with.</think>

<translate> "It looks good, but there is a tiny Putting it all together, the phrase suggests that

bit of disappointment."</translate> something looks good, but there is a small element of

disappointment or regret. A possible translation could be:

"It looks good, but there's a tiny bit of disappointment."
———  LLaMA-3.1-8B-Base |——

User: | (BESAVINER To ensure the translation captures the nuance, we can
&, 85 INEfE refine it to: "It looks good, but there's a slight sense
of regret." </think><translate> "It looks good, but
there's a slight sense of regret." </translate>

Assistant: <think> reasoning to generate
translation </think><translate> "It’s beautiful,
but there are a few minor drawbacks." </translate>

—[ LLaMA-3.1-8B-Instruct ]— '-[ TowerBase-7B ]—- —[ TowerInstruct-7B ]—

< start_header_id>user<lend_header_id > User:iF&, BESS/N <im_start>user &, BERA/ERE
FE, BEERRINER 1B <im_end >
<eot_id P> <start_header_idP>assistant<lend_head Assistant: <think> <im_startD> assistant <think>{F
er_idP> ) . . Reasoning A, BEARNER

<think> "It's nice, but there's a little bit of </think><translate> </think><translate> It was

a disappointment." </’§h1nk> <translate> "It's Translation beautiful, but there was a small
nice, but there's a little bit of a </translate> disappointment:</translate>
disappointment." </translate>

Figure 10: Qualitative comparison of final outputs from different starting models trained with MT-R1-Zero for the
Chinese input "4F& 12 A & &8 | illustrating varying degrees of format adherence and reasoning generation,
including format hacking by some models (Finding 3).

better than SFT on this distinct literary domain.
This reinforces our main finding across different
benchmarks, underscoring that the RL optimization
process, rather than the mere structural prompting
for explicit thinking steps, is the key factor behind
the enhanced performance of MT-R1-Zero.

K SFT Training Details

For the Supervised Fine-Tuning (SFT) baseline
compared in the ablation study (Section 5.4), we
utilized LLaMA-Factory (Zheng et al., 2024). The
SFT process started from the same base model ar-
chitecture as the corresponding RL experiments
(e.g., Qwen2.5-7B) and was performed on the iden-
tical parallel translation dataset (13,130 examples
from WMT 2017-2020 after filtering, detailed in
Section 4.1). The model was fine-tuned on 8
NVIDIA H800 80G GPUs for 2 epochs using a
learning rate of 5e-6 and a batch size of 64, totaling
approximately 400 training steps.
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(User:"It's not that bad, right, I
Kayel?"

Assistant: <think>

When approaching the task of
translating the given English text
into Japanese, my primary goal is to
create a faithful and engaging
rendition that maintains the
structure, tone, and level of detail
of the original while ensuring it
reads smoothly and naturally in
Japanese. I will pay particular
attention to preserving the
conversational nature of the
exchange and the use of question
tags ("right, Kayel?"), as well as
the balance between the two
characters' statements.

In this case, I will consider the
following aspects:

1. Maintaining the conversational
tone: This involves using
appropriate phrasing, word order,
and intonation to convey the casual
nature of the conversation.

2. Translating question tags:
Japanese question tags are typically
formed differently from English, so
I will find an equivalent structure
that maintains the flow of the
conversation.

3. Preserving the balance between
the two characters' statements: I
will ensure that the translation
reflects the equal weight given to
both Kayel's response and the
speaker's initial statement in the
original text.

4. Adapting to Japanese sentence
structure: Japanese often places the
verb at the end of a sentence, so I
will adjust the word order
accordingly while maintaining the
overall meaning and rhythm of the
conversation.

</think>

<translate>

i & PRCE AN AY: N 0 g 0
\.</translate>

(User:178, {BESVNER IV
Assistant: <think>

The task at hand involves translating
a sentence of Chinese into English
while taking into consideration
several factors to ensure an effective
and appropriate translation. The
source text is: “¥¥E&, BERmVIVER. ”
Given the context in which this
sentence is being used, it is clear
that the speaker is expressing their
positive opinion of something they
have just seen or experienced, but
also acknowledging a minor flaw or
disappointment that slightly
diminishes their overall satisfaction.
With this in mind, it is important to
maintain the same level of nuance and
complexity in the translation to
effectively convey the same level of
emotional and intellectual engagement
expected in professional and polished
English communication. After careful
consideration of these factors and the
specific requirements of the
translation context, I have decided to
render the source text as follows: "It
looks good, but there's a tiny bit of
disappointment." This translation not
only accurately conveys the same level
of appreciation and critique as the
source text but also does so in a
professional and tactful manner that
respects the sensitivity and
complexity of the situation at hand.
</think>

<translate>

"It looks good, but there's a tiny bit
of disappointment." </translate>

\

J
N

J\

\(user: JtFrAtERES R BRI

HIERIR, TEXSH., A RHHENIIRENER
ZHE, ]E[
Assistant: <think>

When approaching the task of translating
the given Chinese text into English, my
primary goal is to create a faithful and
engaging rendition that maintains the
structure, tone, and level of detail of the
original Chinese. I will focus on
preserving the balance between providing
all relevant information and maintaining
readability, while also considering the
natural flow of the English language.
Additionally, I will pay attention to the
following aspects:

1. Structure: I will aim to maintain the
overall structure of the Chinese text,
including the use of paragraphs and
sentence order, to ensure that the English
translation remains coherent and easy to
follow.

2. Tone and voice: I will strive to capture
the tone and voice of the original text,
which appears to be informative and
objective, while also considering the
appropriate level of formality for the
target audience.

3. Terminology: I will use accurate and up-
to-date terminology related to the stock
exchange, financing, and trading
mechanisms, ensuring that all terms are
clear and easily understood by the English-
speaking audience.

4. Cultural and linguistic nuances: I will
pay attention to any cultural or linguistic
nuances present in the Chinese text and
find suitable ways to convey them in
English, where possible, without
compromising the clarity or readability of
the translation.

5. Number and date formats: I will convert
any numbers and date formats from the
Chinese system to the corresponding English
system, as necessary, to ensure that the
translation is both accurate and locally
appropriate.

6. Punctuation and formatting: I will use
standard English punctuation and formatting
conventions, while taking into account any
specific requirements or preferences for
the target audience or publication
platform.

By considering these aspects, I aim to
produce a high-quality English translation
that effectively communicates the content
and intent of the original Chinese text.
</think>

<translate>

"The launch of financing and margin trading
on the Beijing Stock Exchange is an
important step in advancing the development
of the exchange's market systems, improving
trading mechanisms, and enhancing the
secondary market's pricing capabilities."

| Ytranslate>

(User: MERBIRETRBMIER, REHFRIE,

Assistant: <think>

When approaching the task of translating
the given Chinese text into English, my
primary goal is to create a faithful and
engaging rendition that maintains the
structure, tone, and level of detail of
the original Chinese while ensuring it
reads smoothly and naturally in English. I
will focus on preserving the balance
between the two sentences, maintaining the
use of parallel structure where
appropriate, and accurately conveying the
nuances of the Chinese phrasing, including
the use of numbers and the comparative
nature of the information presented.
</think>

<translate>

"Canada also reported similar results,
although the numbers were lower."

</translate>

(User: to divide the 412.5 meters long, 12.9
meters wide, with a total weight of 15,000
tons of continuous beams into 96 sections.

Assistant: <think> To translate the given
English sentence into Chinese, I would
follow these steps to ensure accuracy,
fidelity to the original text, and
naturalness in the target language
(Chinese): m
1. Understand the context and meaning of
the original text: I would first read and
re-read the sentence to grasp its full
meaning, paying close attention to
technical terms, measurements, and the
overall structure of the information being
conveyed. This ensures a proper translation
that maintains the original message.

2. Identify key elements and vocabulary: I
would identify important numbers,
measurements, and specific terms that need
to be accurately translated, such as "412.5
meters," "12.9 meters," and "15,000 tons."
I would also note any technical terms
related to engineering or construction,
such as "continuous beams" and "sections."
3. Consider cultural and contextual
nuances: While this particular sentence
doesn't contain cultural references that
would require adaptation, I would generally
be aware of how to translate phrases or
expressions that might have different
connotations or usages in Chinese culture
compared to English.

4. Choose an appropriate translation
strategy: For this type of technical
information, I would likely use a
combination of literal translation and
necessary modifications to fit Chinese
syntax and readability. This might involve
reordering words or phrases to sound more
natural in Chinese while still maintaining
the original meaning.

5. Translate while considering the
audience: Since this translation is
presumably for a Chinese-speaking audience,
I would ensure that the translation aligns
with how Chinese speakers might express
similar ideas, using idiomatic expressions
and terminology that would be familiar to
them.

6. Account for register and tone: Depending
on the intended use of the translation
(e.g., technical manual, news report,
etc.), I would adjust the formality and
wording to match the appropriate register.
For a technical report, the language would
be more formal and precise.

7. Translate numbers and measurements: I
would carefully translate the numbers and
measurements given (412.5 meters, 12.9
meters, 15,000 tons) to their equivalent in
Chinese, ensuring that the units of
measurement are accurately reflected in the
translation (e.g., using ">K" for meters
and "IE" for tons).

8. Ensure coherence and flow in the
translation: After translating each part of
the sentence, I would review and refine the
translation to ensure that it flows
naturally in Chinese, making any necessary
adjustments to grammar, syntax, and
phrasing to create a smooth and coherent
translation.

9. Review and make final adjustments:
Finally, I would review the entire
translated sentence for accuracy, fluency,
and naturalness in Chinese. I would make
any necessary adjustments to improve the
translation, checking again against the
original text to ensure that all
information is preserved and that there are
no errors or misunderstandings.

By following these steps, I can provide a
translation that is accurate, faithful to
the original text, and reads naturally in
Chinese.

</think><translate>§&E<u12. 5K, 2812.9%,

S E15000MANESRRIMI6TI. </translate>

Figure 11: Qualitative examples (I-V) showcasing the diverse thinking patterns generated by MT-R1-Zero models
(Finding 2). In particular, we observe patterns ranging from structured multi-step decomposition (Types I-III) to
more colloquial processing (Types IV-V).
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