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Abstract

Full fine-tuning of large language models for
alignment and task adaptation has become pro-
hibitively expensive as models have grown in
size. Parameter-Efficient Fine-Tuning (PEFT)
methods aim at significantly reducing the com-
putational and memory resources needed for
fine-tuning these models by only training on
a small number of parameters instead of all
model parameters. Currently, the most popu-
lar PEFT method is the Low-Rank Adaptation
(LoRA), which freezes the parameters of the
model and introduces a small set of trainable
parameters in the form of low-rank matrices.
We propose simply reducing the number of
trainable parameters by randomly selecting a
small proportion of the model parameters to
train on, while fixing all other parameters, with-
out any additional prior assumptions such as
low-rank structures. In this paper, we compare
the efficiency and performance of our proposed
approach to other PEFT methods as well as
full parameter fine-tuning. We find our method
to be competitive with LoRA when using a
similar number of trainable parameters. Our
findings suggest that what truly matters for a
PEFT technique to perform well is not neces-
sarily the specific adapter structure, but rather
the number of trainable parameters being used.

1 Introduction

It has become common practice to train application-
ready language models in two phases (Radford
et al., 2018; Kenton and Toutanova, 2019): first,
the model is pre-trained on a very large and gen-
eral corpus of (unlabeled) text; then further trained
(or fine-tuned) on a smaller specific set of exam-
ples demonstrating the intended behavior for a
particular application, such as instruction follow-
ing (Ouyang et al., 2022).

Overall, supervised fine-tuning (SFT) requires
less computational resources than pre-training (PT)
due to the significantly smaller size of the train-
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Figure 1: The proposed SpaRTA method which ran-
domly chooses a small subset of parameters from 6pr,
stores the indices of the selected parameters in ¢ and
updates the model via adapter A .

ing set as well as the typical use of early stop-
ping to deal with overfitting. This means orders-of-
magnitude less gradient computations and parame-
ter updates are needed during SFT compared to PT.
However, a major drawback is that memory require-
ments remain the same, unless a parameter-efficient
fine-tuning (PEFT) technique is used. The main
memory bottleneck during training is the number
of trainable parameters, since additional memory
must be allocated for their gradients and other per-
parameter statistics needed by the optimizer. The
idea behind PEFT (Lialin et al., 2023) is to signifi-
cantly reduce the number of trainable parameters
during fine-tuning while maintaining performance.

Low Rank Adaptation (LoRA), first introduced
by Hu et al. (2022), currently remains the most
popular PEFT technique. LoRA freezes all the pre-
trained model parameters fpt and introduces train-
able low-rank matrices (e.g., B, A) to represent the
changes (A = BA) needed for adapting the model
to a new task. The adapted model parameters are
given by fpr + A. Memory and computational ef-
ficiency are achieved by optimizing only over the
parameters of these newly added, but significantly
smaller, matrices.
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The success of LoRA begs one to ask what proper-
ties make this method perform well. Is the low-rank
structure critical, i.e., does A need to be low-rank?
Is it sufficient to constrain A to be low dimen-
sional? A main goal of this paper is to investigate
these questions. An abundance of research is going
into new methods for structured A (see Section 3
below) and novel directions into unstructured meth-
ods for fine-tuning could open avenues in areas
such as model merging (Wortsman et al., 2022;
Matena and Raffel, 2022) or pluralistic alignment
(Feng et al., 2024).

In this work, we propose a different approach
where A is not factorized into low rank matrices
but rather chosen to be a random subset of the
model parameters. This Sparse Random parameTer
Adaptation (SpaRTA) method imposes a sparsity
constraint on the adapter that can be easily con-
trolled. By changing the desired sparsity, one can
change the number of adaptation parameters. Re-
gardless of how the selected parameters are sam-
pled from the model parameters, subsequent up-
dates only affect these parameters. This sparsity
constraint and randomness of selected parameters
is in contrast to techniques such as LoRA that ef-
fectively affect all parameters in fpt. See Figure 1
for an illustration of the method. Generally, one
samples m parameters from the pre-trained model
Opr, stores their indices in ¢, and uses adapter A
to fine-tune Opr.

To investigate the performance of SpaRTA, we
build adapters with different sparsity levels and
evaluate them on a wide range of natural language
understanding benchmarks. SpaRTA is compared to
other PEFT approaches including LoRA and DoRA
(Liu et al., 2024), and found to be quite competitive
compared to these methods given that it only modi-
fies a small sparse number of model parameters.

2 Motivation

Yu et al. (2024) look at the differences between
a language model’s parameters before and after
fine-tuning, and demonstrate empirically that it is
possible to randomly drop (i.e., set to zero) up to
99% of these parameter changes, represented by A,
without significantly affecting model performance.

This motivates our approach, SpaRTA, which pro-
duces a performant fine-tuned model by directly
adapting only a small percentage of the pre-trained
model parameters. SpaRTA randomly selects the
(scalar) parameters to train and freezes the remain-

ing parameters (i.e., setting the corresponding A
values to zero). This A-sparsity also helps in reduc-
ing overfitting, as pre-trained models typically have
more than enough capacity to learn the often lim-
ited amount of (labeled) data used for fine-tuning.
There is no guarantee of A-sparsity in LoRA, but
this is a desired property since it reduces parame-
ter interference (Yadav et al., 2023) when merging
fine-tuned models.

SpaRTA, like LoRA, reduces the number of gradi-
ent computations during training (when compared
with full fine-tuning), and ultimately has the same
inference cost as the original model (after merging
back the sparse A into the model). For an adap-
tation technique, having lower memory and com-
putation needs during training as well as identical
inference time to the original model are all quite de-
sirable properties. SpaRTA has all these properties
plus the unique added benefit of producing only
sparse changes in a small number of the parame-
ters of the original model that can be beneficial for
merging multiple SpaRTA adapters.

2.1 Is Low-Rank Adaption Necessary?

In Appendix A, we show that the changes (i.e., A)
in weight matrix during full parameter fine-tuning
are, in fact, not generally low-rank for capable
models such as gemma-2b-it and mistral-7b-it.
This indicates that LoRA works, not particularly be-
cause of its low-rank constraint, but rather due to
the reduction in model capacity achieved by LoRA
when fine-tuning on limited training data, as it is
typically done in task adaption. Such insight also
hints that any constraint reducing the capacity of
the original model could perform competitively,
motivating our approach which selects a small num-
ber of parameters from the original model to be
updated during training.

3 Related Work

The last few years has seen many advances in
PEFT methods. Perhaps the most well-known and
used method in practice is LoRA (Hu et al., 2022),
which has spurred many variants including: DoRA,
which adapts only the directions of pre-trained
weights (Liu et al., 2024); VeRA, which shares
low-rank matrices across layers (Kopiczko et al.,
2024); AdaLoRA, which adaptively allocates pa-
rameter budgets among weight matrices according
to their importance (Zhang et al., 2023); and SoRA,
which dynamically adjusts the intrinsic rank dur-
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ing adaptation (Ding et al., 2023). Each of these
methods has a different structure to the A being
optimized, with the commonality being the training
of some function of low-rank matrices. AdaLoRA
and SoRA are also dynamic methods, which adjust
the function during adaptation.

Beyond adding structured parameters is the con-
cept of fine-tuning a small subset of the total param-
eters of the model, i.e., sparse fine-tuning, where
one must first decide which subset of parameters to
fine-tune (similar to deciding which parameters in
each layer to add adapters to in LoRA). Ansell et al.
(2024) start with an initial set of parameters and
offer procedures to drop (according to parameter
magnitude) and grow (according to gradient) the
set, i.e., they learn the set of parameters to train.
Alternatively, Ma et al. (2024) focus on the spar-
sity of neuron activations during training by pre-
computing neuron importance scores and only in-
cluding important neurons in computations during
training. Ansell et al. (2022) first fine-tune on all
parameters, select the parameters that change the
most, and then fine-tune again from scratch on the
selected parameters. Deng et al. (2025) proposes
improvements via a modified pruning strategy to
the random dropping and rescaling method of Yu
et al. (2024) which motivates this work. In contrast
to these more complex, sometimes dynamic ap-
proaches, our proposed SpaRTA method produces a
performant fine-tuned model by directly adapting
only a small percentage of the pre-trained model
parameters chosen completely at random.

Yet another related direction is that of compres-
sion which results in sparse models; algorithms
in this genre take a dense fine-tuned model with
the goal of compressing it while maintaining per-
formance. Compression (see Zhu et al. (2024) for
a survey) could be accomplished by quantization,
low-rank approximation, pruning (i.e., removing
neurons, attention heads, or even layers), or distil-
lation. The focus of this paper, however, is on fine-
tuning dense models rather than learning sparse
models as in Liu et al. (2023).

4 SpaRTA: Adapting a Random Subset of
Model Parameters

Suppose the parameters of a pre-trained language
model are fpt € R” where n is the number of
parameters, and full parameter fine-tuning (FT) is
performed with a labeled dataset characterizing a
task. FT typically updates fpt using a stochastic

first-order gradient-based optimization algorithm,
e.g., Adam from Kingma and Ba (2015), to maxi-
mize the conditional probability of the labels in the
training dataset under the model. The FT model is
then given by 0 = Opr + Apr where Apr € R™.

This has two drawbacks in terms of memory
efficiency. First, the optimizer state can be large,
e.g., the state of the Adam optimizer is 4 times as
large as the parameter space as it includes current
parameter values, their gradients as well as per
parameter statistics of those gradients. Second,
storing a new FT model takes as much memory as
the PT model which could be an issue when many
task-specific models are requested.

SpaRTA proposes to randomly select a small sub-
set of the model parameters to optimize while freez-
ing the rest. The model parameters § € R" are
partitioned into trainable fr € R™ and frozen
Or € R™ " ones, with m < n being the number
of selected parameters. This allows our approach
to have a drastically lower memory footprint than
FT by reducing the size of the optimizer state as
well as faster training by reducing the number of
gradients to compute. This is similar with respect
to LoRA in that both reduce the memory footprint by
optimizing a small set of parameters (the adapter)
while freezing most (SpaRTA) or all (LoRA) of the
model parameters.

In our SpaRTA implementation', we introduce:
(i) non-trainable indices ¢ € R" containing the in-
dices of the randomly selected elements in fpt, and
(ii) trainable parameters A, € R™ representing the
subset of A that SpaRTA learns at indices ¢. The
pseudocode for SpaRTA is given in Algorithm 1.

Whereas optimizing LoRA requires computing
gradients with respect to the A and B’s used to
compute A (which constitute additional parame-
ters, independent from fpr), SpaRTA requires com-
puting gradients with respect to Ay, the changes
over a subset of parameters chosen from fpr and
indexed by ¢.

Generating the index set ¢ in SpaRTA is done by
sampling from a Bernoulli independently and in-
cluding each scalar parameter in ¢ with probability
m/n. Hence, SpaRTA uses m trainable parame-
ters out of n in expectation. Finally, inference is
performed, similarly to LoRA, by merging the fine-
tuned A into fpr and then making the necessary
forward passes. Thus, SpaRTA does not introduce
any additional inference latency.

Code is available at https://github.com/IBM/SpaRTA.
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Algorithm 1: SpaRTA
Input: Pre-trained model with fpr € R"
Input: Task labeled dataset D
Sample ¢: Indices of (scalar) parameters to

be optimized

Initialize: A, = 0
while validation loss has not converged do

1. Merge: 04 = 04 + Ay

2. Compute loss: Continue forward
pass from 6 using a batch of labeled
data from D

3. Compute gradients with respect to
A4 using backpropagation

4. Unmerge: 04 = 04 — Ay, without
recording this operation in the
computational graph

5. Update A4 with the Adam Optimizer

Output: ¢, Ay

5 Memory Usage

Recall that SpaRTA freezes n — m (m < n)
of the model parameters. We define sparsity as
s =1—m/n € (0,1), the percentage of frozen
model parameters (e.g., if 1% of parameters are
trainable, then the sparsity is 99%). Subsequently,
density is defined as k = m/n = 1— s, the percent-
age of trainable model parameters. In practice, for
a chosen sparsity s, one can freeze a model param-
eter with probability s, expecting a total sparsity
percentage of s over all model parameters. Thus, in
expectation, k = m/n percent of the model param-
eters are chosen as trainable, for a total of n k = m
trainable parameters.

For SpaRTA, only Ay (of size m) is trainable,
which is significantly smaller than the total number
of model parameters since m < n. However, the
indices of these randomly chosen parameters must
be recorded into ¢, adding to the memory require-
ments. Indices can be stored in 16-bit integers for
all the Transformer models (Vaswani et al., 2017)
considered in this paper.

SpaRTA sparsifies neither the model head (which
is kept fully trainable) nor the embeddings (which
is kept frozen during training). The parameters in
Transformer networks consist of bias vectors and
two-dimensional weight matrices. Storing indices
for all these trainable parameters would require at
most m (2 x 16) bits of memory (m parameters,
two integers to index a 2-dimensional matrix, 16
bits per integer).

The values in Ay are of the same type as the
model parameters, e.g., using 16-bit brain floating-
point (bfloat16) tensors. Thus, SpaRTA requires
up to m (2 x 16 + 16) = 3m x 16 bits of ex-
tra memory to specify the index ¢ and delta Ay
tensors. That is 3 k£ times more memory than the
original model, which requires just n x 16 bits for
storing its parameters. For instance, using SpaRTA
on a model with sparsity 80%, 90%, 95% and 99%
would require up to 60%, 30%, 15% and 3% more
memory, respectively.

We next analyze? SpaRTA’s memory savings dur-
ing training. Optimizing the full set of model pa-
rameters (FT) using Adam (Kingma and Ba, 2015)
requires memory for the parameters, their gradi-
ents, and their (adaptive) first and second moments
estimates. This requires 4n x 16 bits of memory
when using a bfloat16 representation.

In contrast, SpaRTA only optimizes Ay, requir-
ing a total of m (4 x 16 + 2 x 16) + n x 16 bits of
memory: (i) m (4 x 16) bits needed by Adam to
optimize Ay of size m, (i) m (2 x 16) bits for ¢
with the indices identifying the model parameters
associated with A, and (iii) the PT model parame-
ters (n x 16 bits). Memory savings appear then if
and only if

m(4x16 +2x16) +n x 16 <4nx16 (1)
kn (6x16) < 3nx16
k < 0.5,

that is, SpaRTA is a real PEFT method iff & < 0.5,
i.e., a sparsity higher than 50% is required (s > 0.5),
making less than 50% of the model parameters
trainable. For instance, using SpaRTA on a model
with sparsity s = 80%, 90%, 95%, and 99% re-
quires 45%, 60%, 67.5% and 73.5% less memory
than full parameter FT, respectively, see Table 1.
Additional savings are possible regarding storing
indices given a fixed random number generator; in
this case, the random path of selected parameters
to train can be derived given a fixed seed.

6 Experimental Setup

We next detail our experimental framework. Mo-
tivation is first given for the tasks followed by a
description of models to be used and how they are
adapted (with manipulations) to the tasks.

“This analysis does not include memory requirements as-
sociated with model buffers (e.g., those used to track running
statistics for layer normalization) because they are relatively
small and the same for both the Full FT and SpaRTA.
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Model  storage  Full FT SpaRTA
n (on disk) 0% 50% 80% 90% 95% 99%
2B 4 16 16 8.8 6.4 52 42
7B 14 56 56 308 224 182 148

Table 1: SpaRTA memory usage efficiency during train-
ing for n = 2B and 7B parameter models. Memory
in Gigabytes (GB) for storing the parameters on disk
(storage) as well as for FT with Adam on (i) the full set
of parameters (Full FT) equivalent to 0% sparsity (ii)
a sparse random subset (SpaRTA) for different sparsity
percentages from 50% to 99%.

6.1 Tasks

The main experimental focus is on Natural Lan-
guage Understanding (NLU) tasks, specifically se-
quence classification, which involves classifying
natural language sequences into a given number
of classes. NLU tasks are easier to evaluate than
Natural Language Generation (NLG) tasks, as one
can use simple metrics (Accuracy, F1-scores, etc.)
that can avoid the inherent ambiguity of evaluating
more general generative tasks. While SpaRTA is
also applicable to NLG tasks, they are not used in
the following demonstrations due to the challenges
associated with their evaluation, typically requiring
human judgments as the gold standard measure of
performance. Human evaluations can be expensive
and time consuming, do not scale easily, and are
not as objective as NLU evaluations.

6.2 Language Models

Starting with available open-weight language mod-
els, the goal is to adapt them to perform a se-
lected NLU task. Two types of trained models are
used: base and instruction-tuned models, where
the latter have additionally been trained to follow
users’ intent when prompted, such as answering
questions or responding to instructions. Specif-
ically, we consider the following language mod-
els: gemma-2b and gemma-2b-it from the Gemma
family (Team et al., 2024), and mistral-7b and
mistral-7b-it from the Mistral® family (Jiang
et al., 2023). The "it" suffix refers to instruction-
tuned models. They are of particular interest for our
experiments as they will show results for models
with two different numbers of parameters. All mod-
els are readily available text-to-text, decoder-only
transformer models with open weights, download-
able from Hugging Face.

Note that when using an instruction-following

3We use v0.3 for both models.

(it) model, inputs are formatted according to the
conventions established when training the model
on instructions.

6.3 Task Adaptation

When using a base model for a sequence classifi-
cation task, the raw text to be classified is input
directly into the model as a sequence of tokens
(with some special token if necessary to deal with
structured inputs). However, when using an instruc-
tion model, these sequences are first wrapped into
a classification-specific instruction. For example,
a possible instruction could be: “Determine if the
following sentence has a positive sentiment. Re-
spond Yes or No.”, followed by the sequence itself
to be classified.

A (generative) pre-trained Transformer model
with a decoder-only architecture has a head that
transforms the final hidden state of each token in
the input sequence into vocabulary logits. Effi-
ciently adapting this model for sequence classifica-
tion requires the swap of this head for a sequence
classification head, which uses only the final hidden
state of the last token in the input sequence h € R?
to do the classification. This reduces the param-
eter size of the head, which is just a linear layer
applied to h, from a weight matrix W € Rv*¢
to W € R*? where d is the dimension of the
model’s hidden states (e.g., 2,048 and 4,096 for the
gemma-2b and mistral-7b models respectively),
v is the number of tokens in the vocabulary (e.g.,
256,000 for gemma-2b or 32,768 for mistral-7b),
and c is the number of classes (e.g. 2 to 4 in the
experiments that follow). With this small change,
the model outputs classification probabilities for
each input sequence through

p = softmax(h W7) e RC. 2)

The classification heads of our base pre-trained
models (i.e., gemma-2b and mistral-7b) are ini-
tialized with random weights. The weights of the
the original vocabulary heads of instruction-tuned
models (i.e., gemma-2b-it and mistral-7b-it)
are rather reused when initializing their classifica-
tion heads. To do so requires to first identify the
tokens in the vocabulary that the model is expected
to use for classification following the instruction.
For example, these could be the tokens associated
with a “Yes” or “No” response. The embeddings
in the original model (head) associated with those
classification tokens are extracted and used to ini-
tialize the classification head. While many models
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Dataset Classes Train Dev Test Sparsification targets Loss  Accuracy
IMDB 2 25,000 5,000 20,000 Wq, Wv (like LoRA) 0.117  96.3%
COLA 2 7,551 1,000 1,043 Wy, Wo 0.109 96.7%
MNLI 3 100,000 10,000 19,647 Wq, Wk, Wv 0.123 95.9%
MRPC 2 3,668 408 1,725 Wq, Wk, Wo 0.112  96.0%
QNLI 2 99,725 5,000 5,463 Wq, Wq, Wv, Wo 0.110  96.5%
QQP 2 100,000 5,000 40,430 MLP 0150  94.7%
RTE 2 2182 300 277 Wq, MLP 0.150  94.5%
SST-2 2 66,349 1,000 872 Wk, MLP 0150  95.1%
BoolQ 2 9,427 1,270 2,000 Wv, MLP 0.145 95.2%
MMLU 4 99,842 1,531 14,042 Wo, MLP 0.140  95.6%
Table 2: Sequence classification datasets. Training sets Wa, Wk, MLP 0.150 94.6%
limited to 100K samples. Training samples with > 256 Wv, Wo, MLP 0.136 95.8%
W, MLP, norm 0.140 95.4%

tokens are removed (here using gemma-2b tokenizer,
with mistral-7b tokenizer in Appendix B).

tie their vocabulary heads to their tokens embed-
ding matrices, these new classification heads are
never tied to the model’s input embedding matrix.

7 Experimental Results

Efficacy of SpaRTA is demonstrated empirically by
comparing it to two baselines, LoRA (only the ad-
ditional matrices representing low-rank adapters
are optimized) and DoRA (magnitude is optimized
in addition to low-rank adapters). We also explore
the performance of SpaRTA on a range of sparsity
levels, varying the number of trainable parameters.

We consider several NLU benchmarks, includ-
ing IMDB (Maas et al., 2011), GLUE (Wang
et al., 2019), BoolQ (Clark et al., 2019) and
MMLU (Hendrycks et al., 2020). See Appendix B
for detailed descriptions. Table 2 summarizes these
datasets and our splits for training, development,
and testing. A detailed description of the training
setup can be found in Appendices C and E. All
results are averaged over 3 random seeds.

7.1 IMDB

Table 4 shows the results for IMDB, where each
model is asked to classify a review as positive or
negative. Each model is fine-tuned using the fol-
lowing adaptation methods: (i) Full parameter fine-
tuning (Full FT) where all model parameters are
optimized; (ii) SpaRTA for different density levels
5%, 0.5%, 0.05%, with the last allowing SpaRTA to
have approximately the same number of trainable
parameters as LoRA; (iii) LoRA with rank » = 8§,
equivalent to about 0.05% of trainable parameters
compared to the model full parameter size.

Table 3: Loss and accuracy on the SST-2 task after
applying our SpaRTA approach to different types of pa-
rameters in the gemma-2b model, given that the same
number of trainable parameters are selected. Results are
averaged across 10 random seeds.

In Table 4, results for adaptation methods (rows)
are sorted in order of descending density as to
show the impact of decreasing the number of train-
able parameters on the overall performance. For
gemma-2b and gemma-2b-it, Full FT adaptation
gives (practically always) the best test loss and ac-
curacy numbers. This is expected since all model
parameters are fine-tuned. SpaRTA results at 5%
density are close to Full FT, even matching them
for gemma-2b-it. As the density decreases by or-
ders of magnitude, the results slowly degrade. For
0.05% density, gemma models’ performances match
or slightly lag performance from LoRA.

For mistral models, the trend is similar with
Full FT showing best (or close to best) loss and ac-
curacy numbers. SpaRTA performs well, matching
and even improving upon Full FT with a density of
0.05%. SpaRTA even improves over LoRA for both
mistral-7b and mistral-7b-it at this low den-
sity. Overall these results are encouraging; SpaRTA
is competitive, provides similar performance to
LoRA for low densities, and does not degrade the
performance of full parameter fine-tuning.

7.2 Which Parameters Should SpaRTA Target?

So far, SpaRTA has chosen trainable parameters
from any layer of the transformer with equal prob-
ability. In contrast, LoRA concentrates adaption on
the key and value self-attention weight matrices.
Now, we investigate whether it is better to con-
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gemma-2b gemma-2b-it mistral-7b mistral-7b-it
method density (%) loss acc. loss acc. loss acc. loss acc.
PT (zero-shot) - - 0.425 92.0% - - 0.435 86.1%
Full FT 100% 0.092 96.9% 0.107 96.3% 0.080 97.4% 0.080 97.3%
SpaRTA 5% 0.096 96.7% 0.105 963% 0.084 97.2% 0.081 97.5%
SpaRTA 0.5% 0.096 96.7% 0.103 96.4% 0.087 96.9% 0.087 97.0%
SpaRTA 0.05% 0.106 96.3% 0.114 96.2% 0.080 97.3% 0.076 97.4%
LoRA ~0.05% 0.101 96.5% 0.113 96.2% 0.086 97.1% 0.081 97.1%

Table 4: Test loss and accuracy of models adapted to the IMDB dataset with different fine-tuning methods. We also
report zero-shot performance of instruction following PT models. For training details, see Table 19.

Model: gemma-2b-it

QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ
method targets loss acc. loss acc. loss acc. loss acc. loss acc. loss acc. loss mcc loss acc. avg.
PT (zero-shot) 1.34 595 177 563 0.75 60.7 141 483 291 309 091 646 085 0.7 088 685 447
SpaRTA (5%) ALL 0.17 937 054 81.0 0.14 950 026 89.0 033 872 035 853 039 562 036 844 840
SpaRTA (0.5%) 0.16 940 043 80.7 0.15 947 024 897 032 878 034 865 045 549 037 847 84.1
SpaRTA (0.037 %) 0.18 93.1 048 769 0.16 945 026 888 035 864 036 845 045 548 040 83.6 8238
LoRA (0.037 %) QV 018 934 044 787 0.14 951 026 89.1 033 878 033 854 041 550 036 840 83.6
DoRA (0.037 %) 0.18 934 045 780 0.15 956 026 89.0 033 878 033 855 041 57.1 036 844 8338
SpaRTA (0.037 %) 0.19 928 046 776 0.16 948 0.26 88.6 036 863 036 842 045 545 039 834 828
SpaRTA (0.037%) O,V  0.17 935 044 80.7 0.15 949 026 8389 034 872 035 857 042 559 037 850 84.0

Table 5: Test loss and accuracy of gemma-2b-it adapted to GLUE and BoolQ datasets with different fine-tuning
methods. Standard errors can be found in Table 15, see Appendix D. For training details see Appendix E.2.

centrate the selection of sparse, trainable param-
eters on a few model layers or equally across all.
Specifically, given a budget for the number of pa-
rameters that can be trained, which type of parame-
ters should we target for sparsification (while freez-
ing the remaining) to achieve best task performance
when adapting the sparsified parameters within the
targeted types?

We conduct an ablation study to answer this
question. The gemma-2b model is adapted to the
SST-2 task using our SpaRTA approach targeting
different combinations of parameter types. We set
a budget of 1.25M trainable parameters within the
gemma-2b model so that sparsity is s = 99.95%.

Results of these experiments are shown in Ta-
ble 3. Concentrating the selection of trainable pa-
rameters through sparsification in the self-attention
value (Wv) or/and output (Wo) weight matrices
yields the best performance under the given budget.
In contrast, distributing our sparsification across
different combinations of weight types may lead to
significantly lower performance.

Corresponding results confirming, as done in Hu
et al. (2022), that targeting Wo and Wv is subop-
timal for LoRA can be found in Appendix D. Note
that concentrating our sparsification over targeted

parameter tensors, although proven beneficial in
terms of single-task adaption performance, can
decrease performance when merging since it in-
creases the chance of parameter interference.

7.3 GLUE and BoolQ

We now focus on comparing SpaRTA and LoRA
methods using the 7 NLU tasks in the GLUE bench-
mark as well as BoolQ. Table 5 presents the re-
sults for adapting gemma-2b-it. An equivalent set
of results for the gemma-2b model is given in Ta-
ble 13, see Appendix D. Adaptation results (rows)
are grouped by which type of parameters are tar-
geted, with SpaRTA further ordered in descending
order of density. SpaRTA with 0.037% density has
approximately the same number of trainable param-
eters as LoRA, for which a rank » = 8 was used.
When targeting all parameters, SpaRTA overall
exhibits better performance with higher density, i.e,
when more parameters are chosen to be trained,
with a few exceptions. Targeting the Wq and Wv
self-attention matrices shows very similar perfor-
mance between LoRA, DoRA, and SpaRTA. Target-
ing the Wo and Wv self-attention matrices within
SpaRTA, which was shown to be the optimal in
Section 7.2, yields better performance for SpaRTA
when compared to both LoRA and DoRA on four of
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Model: mistral-7b-it

QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ
method targets loss acc. loss acc. loss acc. loss acc. loss acc. loss acc. loss mcc loss acc. avg.
PT (zero-shot) 138 766 154 664 0.66 663 085 575 242 355 0.70 700 0.72 252 0.39 852 49.6
SpaRTA (5%) ALL 0.11 96.0 026 89.8 0.12 959 022 90.7 023 91.6 032 873 036 626 024 908 88.1
SpaRTA (0.5%) 0.11 958 030 905 0.12 96.0 0.23 904 024 912 032 880 035 679 024 90.5 8838
SpaRTA (0.048%) 0.12 957 031 89.2 0.12 96.1 023 90.5 024 91.1 031 882 034 673 026 895 884
LoRA (0.048%) QV 0.2 956 024 912 0.12 960 0.23 90.2 024 91.0 029 893 032 699 024 905 89.2
DoRA (0.048 %) 0.13 950 027 909 0.11 964 023 902 025 909 028 887 032 682 024 905 88.8
SpaRTA (0.048%) 0.12 956 031 883 0.13 956 023 90.1 025 909 030 88.6 035 652 026 89.7 88.0
SpaRTA (0.048%) O,V  0.11 959 031 884 0.14 958 0.23 904 024 912 030 884 034 649 026 89.7 88.1

Table 6: Test loss and accuracy of the mistral-7b-it model adapted to GLUE and BoolQ datasets with dif-
ferent fine-tuning methods. Standard errors can be found in Table 16, see Appendix D. For training details see

Appendix E.2.
method targets gemma-2b-it mistral-7b-it gemma-2b mistral-7b
LoRA Q,V 83.6 89.2 81.7 87.3
SpaRTA Q,V 82.8 88.0 78.3 86.7
SpaRTA 0,V 84.0 88.1 83.2 85.6

Table 7: Average accuracy (%) per adapted model. Averages are taken across 8 tasks (7 GLUE and BoolQ) based
on Tables 5, 6, 13, and 14. SpaRTA is shown to be competitive with LoRA, particularly when targeting Wo (O) and
Wyv (V) self-attention matrices, which were previously shown to be optimal for SpaRTA.

the eight datasets (QNLI, RTE, MRPC, BoolQ).

A similar set of results on GLUE and BoolQ is
provided for mistral-7b-it in Table 6. Again,
results for the mistral-7b model can be found
in Table 14 in Appendix D. SpaRTA exhibits com-
parable performance to LoRA and DoRA for a low
density of 0.0048%, where all methods have com-
parable numbers of trainable parameters. And once
again, with SpaRTA targeting Wv and Wo typically
outperforming the targeting of Wq and Wv.

To further illustrate the competitiveness of
SpaRTA with LoRA, Table 7 summarizes accuracy
results across the 8 datasets while Table 8 offers an-
other perspective by considering win-rates among
the competing methods for each model. Note that
LoRA exhibits best performance overall when tar-
geting the Wq and Wv self-attention matrices as
mentioned in the original LoRA paper (Hu et al.,
2022), and hence we target these parameters when
using LoRA. While we have already explored opti-
mal targets for SpaRTA, we include results targeting
Wq and Wv for completeness. Across both tables,
SpaRTA (Wo, Wv) outperforms SpaRTA (Wq, Wv)
in six out of the eight scenarios. LoRA and SpaRTA
are equally performant on average across the two
tables, demonstrating the claim that SpaRTA is com-
petitive with LoRA.

74 MMLU

We have chosen MMLU because it is known for
being a very challenging NLU task. Table 9 com-
pares SpaRTA against LoRA on adapting each of our
models to the MMLU multiple-choice question an-
swering task, where each model must predict the
correct answer to a set of questions. Solving this
task requires a high level of world knowledge and
problem solving skills. In this experiment, we re-
strict both methods to use approximately the same
number of trainable parameters. See Table 20 in
the Appendix for training details. Here again, the
results show that SpaRTA is competitive with LoRA,
providing similar performance.

7.5 Remarks

Our results establish that SpaRTA is a viable adap-
tation technique that can be competitive with LORA,
especially for larger LMs. These results demon-
strate that a simple sparsifying scheme can offer a
valid adaptation technique. This opens the possi-
bility for further investigating sparse adaptation as
the low-rank approximation of a model’s parameter
changes is not the only mechanism to provide a
performant adaptation method. This indicates that
what matters is not necessarily the adapter structure
used in PEFT techniques, but rather the number of
trainable parameters, that is relevant to the adapta-
tion task at hand.
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method targets gemma-2b-it mistral-7b-it gemma-2b mistral-7b
LoRA Q,V 37.58 62.5 37.5 50
SpaRTA QV 0 0 0 31.3
SpaRTA o,V 62.5 37.5 62.5 18.8

Table 8: Win rates (%) per adapted model, computed across 8 tasks (7 GLUE tasks and BoolQ) based on Tables
5,6, 13, and 14. SpaRTA is shown to be competitive with LoRA, particularly when targeting Wo (O) and Wv (V)
self-attention matrices, which were previously shown to be optimal for SpaRTA.

MMLU
gemma-2b gemma-2b-it mistral-7b mistral-7b-it
loss acc. loss acc. loss acc. loss acc.
PT (zero-shot) - - 5.284 353% - - 1.839  59.3%
SpaRTA 1.249 451% 1250 45.1% 0987 61.5% 0.930 63.1%
LoRA 1233  469% 1271 45.1% 0981 62.8% 0.928 63.0%

Table 9: Test loss and accuracy of models adapted to the MMLU dataset with SpaRTA and LoRA. We also report
zero-shot performance of instruction following PT models. For training details see Table 20 in Appendix E.

8 Conclusion

As PT language models have grown in size, PEFT
has become crucial for enabling fine-tuning large
PT language models on limited hardware and fi-
nancial resources. We have introduced SpaRTA, an
approach that sharply decreases the set of trainable
parameters, reducing the GPU memory used by
the optimizer and speeding up training. We have
demonstrated on a variety of task adaptation sce-
narios that our fine-tuning approach is parameter-
efficient and competitive with LoRA, the current
PEFT standard. Experiments with 2B and 7B pa-
rameter pre-trained models demonstrate good per-
formance, and as per Yu et al. (2024), we expect
larger models to allow for higher levels of spar-
sity in training, meaning that efficiency of SpaRTA
should get better with larger model sizes as also
suggested in Table 1.

Regarding future directions, while SpaRTA has
been applied to supervised learning, it is also
amenable to reinforcement learning often used for
model alignment (Ouyang et al., 2022). We also
plan to explore the merging of SpaRTA adapters due
to their potential for little interference.

9 Limitations

We have demonstrated various benefits of SpaRTA,
including low memory and high performance. Re-
garding limitations, questions remain about how
to best deal with overfitting, though we have some
insights. We have observed in our experiments that
as we increase the sparsity level, and reduce, in
turn, the number of trainable parameters, there is

less overfitting. Indeed, there is a point in which
both the training and validation losses converge
together without significantly diverging from each
other, eliminating the need for explicit overfitting
mitigation techniques. Moreover, further increas-
ing of the sparsity level beyond this point results in
underfitting. Thus, we can think of our approach as
a technique to improve generalization by limiting
a model’s capacity to overfit to the training data.
However, finding the breaking point at which this
happens requires expensive experimentation. We
leave as future work the investigation of how such
an optimal sparsity level depends on the model,
dataset sizes, and task complexity. Knowing this
relation will allow us to determine in advance how
much sparsity in the trainable parameters is needed
for reducing the capacity of a large model to a
point where it learns a new task on a relatively
small amount of examples without overfitting.
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A Ranks of Differences in Fine-Tuned
Weight Matrices

LoRA is based on the idea that the changes in the
model parameters after adapting it to a new task can
have a low-rank approximation. To see if this is the
case, we can easily check this presumption in a few
well-known fine-tuned models by comparing their
weight matrices before and after fine-tuning. Thus,
for every weight matrix Wpr (i.e. a 2-dimensional
trainable tensor) in the pre-trained model, we com-
pute the delta matrix A = Wgr — Wpr, where Wer
is the corresponding weight matrix after fine-tuning
the model over all the original model parameters
using standard supervised (or reinforcement) learn-
ing. LoRA assumes that these matrices don’t change
or their differences given by A are low-rank.

We compute all delta weight matrices for two
well-known instruction-following fine-tuned mod-
els: gemma-2b-it and mistral-7b-it, see Sec-
tion 6.2. As we can see in Tables 10 and 11, the
feedforward (MLP) delta A-matrices associated
with each layer of the transformer network are all
full rank* in both models. This is also the case
for all self attention key (k) and value (v) projec-
tion matrices. However, the self attention query (q)
and output (o) A-matrices all show relatively small
rank deficiencies: between 9 and 2 for the query
projection matrices and between 46 and 3 for the
output projection matrices, out of a potential max-
imum rank of 2, 048 for the gemma-2b-it model,;
and between 1, 788 and 28 for the query projection
matrices and between 246 and 10 for the output pro-
jection matrices, out of a potential maximum rank
of 4, 096 for the mistral-7b-it model. The token
embedding A-matrices of both the gemma-2b-it
and mistral-7b-it models are full rank. Of the
two models, mistral-7b-it is the only one that
does not tie its token embeddings’ weights to its
head; thus the mistral-7b-it’s model head (un-
tied Im head) is updated independently during fine-
tuning, and the resulting delta change of this matrix

“We compute the rank of a matrix as the number of singular
values that are greater than zero, given a specified tolerance,
using torch.linalg.matrix_rank. We did some sensitivity
analysis to determine such tolerance.

is also full rank. Basically, we observe that the
fine-tuning changes in the weight matrices of these
well known models are all full rank, with the only
exception being the changes in the query (q) and
output (0) projection matrices that show small rank
deficiencies.

The observed ranks suggest that constraining the
(delta) changes in weight matrices to be low-rank
is not essential for fine-tuning models efficiently.

B Additional Dataset Details

IMDB contains a sample of “highly polar” movie
reviews obtained from the online Internet Movie
Database (IMDb) website. IMDb registered users
provide a rating (from 1 to 10) with each re-
view. The reviews are binary (positive/negative)
labeled with their sentiment, defined from user rat-
ings (Maas et al., 2011). Reviews with a rating
higher or equal than 7 are given a positive label; and
a negative label if the rating is lower or equal than
4. No reviews with ratings beyond these ranges are
present in the dataset, which was constructed to
have an equal number of positive and negative re-
views, so guessing randomly yields 50% accuracy.

GLUE datasets are described in details in Wang
et al. (2019).

BoolQ (Clark et al., 2019) is a reading compre-
hension dataset with binary yes/no questions. Each
example is a triplet of (passage, question, answer).
It represents a natural language inference task in
which a passage and a question are given as input,
and a yes or no answer should be predicted.

MMLU (Hendrycks et al., 2020) is a benchmark
designed to measure the knowledge a model ac-
quires during pre-training. To facilitate the elicita-
tion of a model’s knowledge using multiple-choice
questions, MMLU also comes with a dataset of
examples on multiple-choice question answering.
Thus, this training set is not designed to increase
the model knowledge about the world, but to teach
a model to answer knowledge questions in multiple-
choice format in a zero-shot setting.

C Training Details

We adapted each (generative) pre-trained model in
Section 6.2 to do sequence classification as per the
examples in any of the datasets from Table 2, using
different supervised fine-tuning methods, including
SpaRTA. Base models were adapted by switching
their vocabulary heads to randomly initialized se-
quence classification heads with c output classifica-
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Weight matrix dims Layer(s) Rank(s) Rank deficiencies
tokens embed [ 256000, 2048 ] - 2048 0 (full rank)
self attn q proj [ 2048, 2048 ] 0-17 2046 - 2039 2-9

self attn k proj [ 256, 2048 ] 0-17 256 0 (full rank)
self attn v proj [ 256, 2048 ] 0-17 256 0 (full rank)
self attn o proj [ 2048, 2048 ] 0-17 2045 -2002 3-46

mlp gate proj [ 16384, 2048 ] 0-17 2048 0 (full rank)
mlp up proj [ 16384, 2048 ] 0-17 2048 0 (full rank)
mlp down proj [ 2048, 16384 ] 0-17 2048 0 (full rank)

Table 10: Rank of the change differences in gemma-2b-it model weight matrices after full fine-tuning.

Weight matrix dims Layer(s) Rank(s) Rank deficiencies
tokens embed [ 32768, 4096 ] - 4096 0 (full rank)
self attn q proj [ 4096, 4096 ] 0-31 4068 - 2308 28 - 1788
self attn k proj [ 1024, 4096 ] 0-31 1024 0 (full rank)
self attn v proj [ 1024, 4096 ] 0-31 1024 0 (full rank)
self attn o proj [ 4096, 4096 ] 0-31 4086 - 3850 10 - 246

mlp gate proj [ 14336,4096] 0-31 4096 0 (full rank)
mlp up proj [ 14336,4096] 0-31 4096 0 (full rank)
mlp down proj [ 4096, 14336] 0-31 4096 0 (full rank)
untied Im head [ 4096, 32768 ] - 4096 0 (full rank)

18661

Table 11: Rank of the change differences in mistral-7b-it model weight matrices after full fine-tuning.



tion tokens. For instruction models, we re-used the
vocabulary heads as described in Section 6.3.

The examples (e.g., text extracts, sentences) to
be classified were converted into sequences of to-
kens before passing them as inputs to a model. We
wrapped each example into an instruction to take
advantage of instruction-following models, adding
to the token length of the model inputs. We tried
to keep such instructions as short as possible while
still achieving a good initial performance before
fine-tuning. For instance, after tokenization, the
maximum token length of a training input from the
SST-2 dataset was

¢ 67 (without) and 87 (with instruction) for the

gemma-2b-it;

e 72 (without) and 95 (with instruction) for

mistral-7b-it.
We observe here how the Gemma’s tokenizer com-
presses more the input than Mistral’s because of
its larger vocabulary size; 256,000 (Gemma) vs.
32,767 (Mistral).

We tokenized all training examples before start-
ing the fine-tuning and looked at the histogram
of their token lengths. To avoid batches with too
much padding and improve training efficiency, we
dropped those training examples with a dispropor-
tionate large token length, i.e., corresponding to a
tail of extreme values in the histogram. We only do
this for the training data since evaluation (on the de-
velopment or test data) requires much less compute
and memory (no gradients need to be calculated
and stored) and is performed less frequently. We
indicate in Tables 2 the final splits after filtering
the training data this way, with the final number of
training examples used for the fine-tuning.

With SpaRTA, we froze the token embeddings
layer, made fully trainable the classification head,
and randomly chose a sparse proportion of (scalar)
parameters to be trained in all the other layers
of a model. We demonstrated our method with
varying density levels. The total average number
of trainable parameters in each case was approxi-
mately: 99M (5% density), 10M (0.5%) and 800k
(0.037%) for the (base and instruct) Gemma 2B
models; and 349M (5% density), 35M (0.5%) and
3.5M (0.048%) for the (base and instruct) Mistral
7B models.

For LoRA, we factorized the changes in the query
and value self-attention projection weight matrices
with rank r = 8 decomposition matrices, which
were optimized while keeping all other model pa-
rameters frozen. The number of new trainable pa-

rameters introduced by the LoRA approach in the
Gemma 2B and Mistral 7B models were approxi-
mately 925k and 3.5M, respectively. Also, we set
a = 16 to scale the LoRA adapters.

We observed overfitting when training with Full
parameter FT: the development loss started deterio-
rating after a few epochs (e.g., approximately 2 for
SST-2) while the training loss went quickly to zero.
We used a combination of early stopping, dropout
and weight decay to deal with overfitting. We no-
ticed that SpaRTA is a natural regularizer: increas-
ing sparsity resulted in less overfitting, to a point
in which there was no more overfitting (e.g., this
was achieved at a sparsity s > 99% for all models
under consideration). In general, overfitting was
more noticeable with the Mistral 7B models; as
expected since they are larger than the Gemma 2B
models. We also noticed that larger models require
higher sparsity levels to eliminate overfitting given
the same training data.

D Additional Experiment Results

Table 12 confirms targeting Wo and Wv is not the
best choice for LoRA (96.2% accuracy for Wo and
Wv versus 96.4% for Wq and Wv which is the
LoRA default). These results can be compared with
the corresponding SpaRTA results in Section 7.2.
Tables 13 and Table 14 present the complete set
of results on GLUE and BoolQ for the gemma-2b
and mistral-7b models, respectively. Tables 15
and 16 present standard errors from corresponding
experiments.

E Training Hyper-Parameters

The hyper-parameters used for investigating
SpaRTA and other adaptation methods are summa-
rized next.

E.1 IMDB

The sets of best parameters used in training the var-
ious adaptation methods for each model are given
in Table 19. To improve training efficiency, we ex-
cluded training examples exceeding 384 tokens in
length, resulting in the use of only 19,306 examples
for gemma-2b, 18,744 examples for gemma-2b-it,
18,373 examples for mistral-7b, and 17,672 ex-
amples for mistral-7b-it for training. That is
77%, 15%, 713%, and 71% of the original training
data of 25,000 examples, respectively.
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LoRA targets rank Loss Accuracy
Wq 16 0155 948 %
Wk 24 0182  94.5%
Wv 24 0.116  96.2%
Wo 16 0.114 96.2%
Wq, Wk 8 0152  94.8%
Wq, Wv (default) 8 0110 96.4%
Wq, Wo 6 0.107 96.6%
Wk, Wy 12 0110  96.7%
Wk, Wo 8 0.110 96.9%
Wv, Wo 8 0114 96.2%
Wq, Wv, Wo 4  0.108  96.7%
Wk, Wv, Wo 6 0113 96.7%
Wq, Wk, Wv, Wo 3 0.108  96.8%
MLP 1 0112  96.2%

Table 12: Test loss and accuracy on SST-2 after applying
LoRA to different types of parameters in the gemma-2b
model, given that the same number of trainable param-
eters are selected. Results averaged across 10 random
seeds.

E.2 GLUE and BoolQ

For GLUE and BoolQ, training was done using a
simple grid search over the learning rates: [le-3,
Se-4, 2e-4, le-4, 5e-5, 1le-5, 5e-6]. The optimal
learning rates found are given in Tables 17 and 18.
Weight decay was set to 0. Dropout was set to 0.0
for SpaRTA and 0.1 for LoRA and DoRA. Batch sizes
were set according to what could fit in GPU mem-
ory (different per dataset and model). The number
of epochs was set to 3 for instruct models and 2
for base models. Similarly to IMDB, any sample
longer than 256 tokens (which is dependnent on
the tokenizer used) is discarded from the dataset
to avoid having few minibatch with one very long
sample compared to the rest, as seen in Table 2.

E3 MMLU

As with other datasets, we started approximating
the deltas of the self-attention matrices Wq and
Wv with rank 7 = 8 matrices, resulting in approxi-
mately 1M trainable parameters for the Gemma 2B
models and 3.5M for the Mistral 7B models under
LoRA (a = 16). We choose the sparsity of our
SpaRTA adapter accordingly so both methods end
up with the same number of parameters to train.
Thus, our SpaRTA approach uses a s = 99.96%
for the Gemma models (i.e. making only 0.04% of
the original parameters trainable); and s = 99.95%
for the Mistral models.

Since we observed that gemma-2b struggled to
learn with both SpaRTA and LoRA methods, we de-
cided to increase the number of trainable parame-
ters when adapting gemma-2b to MMLU. Specifi-
cally, we increased the rank of the LoRA adaption
matrices to r = 16, which lead to approximately
2M trainable parameters; and chose accordingly a
sparsity s = 99.92% for SpaRTA.

The MMLU dataset has a small fraction of train-
ing examples that are extremely long. We enforce
a maximum input token length of 520 for training
efficiency. This reduces the number of training
examples from 99, 842 to 84, 296 and 74, 100 for
the Gemma and Mistral instruction models; and to
91, 321 and 85, 820 for their respective base mod-
els. Test and validations sets are not affected by this
decision. The training parameters used for adapting
each model to MMLU are shown in Table 20.
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Model: gemma-2b

QNLI RTE SST2 QQpr MNLI MRPC COLA BoolQ
Method Targets loss acc. loss acc. loss acc. loss acc. loss acc. loss acc. loss mcc loss acc.
SpaRTA (5%) ALL 0.15 945 050 805 0.12 96.6 023 902 039 855 038 84.6 036 626 032 86.7
SpaRTA (0.5%) 0.15 945 051 773 0.2 96.1 023 90.1 042 84.1 0.37 843 036 623 034 854
SpaRTA (0.037 %) 020 919 0.62 663 0.13 954 027 883 134 493 051 761 049 50.7 039 828
SpaRTA (0.037%) Q,V  0.18 93.0 058 704 0.13 957 026 888 1.04 56.8 043 803 041 569 036 84.5
LoRA (0.037 %) 0.15 942 0.62 655 0.11 96.8 026 889 042 84.0 047 773 040 609 034 857
DoRA (0.037 %) 0.15 944 062 665 0.11 966 025 89.0 041 844 047 776 039 60.6 043 789

SpaRTA (0.037%) O,V  0.16 938 0.55 732 0.11 965 025 893 0.51 804 039 843 039 619 034 86.1

Table 13: Test loss and accuracy of model gemma-2b adapted to GLUE and BoolQ datasets with different fine-tuning
methods. Results are averaged over 3 random seeds. For training details see Appendix E.2.

Model: mistral-7b

QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ
Method Targets loss acc. loss acc. loss acc. loss acc. loss acc. loss acc. loss mcc loss acc.
SpaRTA (5%) ALL 0.I1 959 036 850 0.11 96.8 038 821 030 892 033 86.7 035 64.6 025 90.1
SpaRTA (0.5%) 0.12 958 044 844 0.11 967 022 90.6 026 904 032 870 035 668 026 89.9
SpaRTA (0.048 %) 0.13 953 041 836 0.11 967 023 90.1 040 86.7 034 866 036 646 026 898
SpaRTA (0.048%) Q,V  0.14 945 037 840 0.11 96.6 024 897 033 886 036 855 036 652 028 893
LoRA (0.048 %) 0.12 954 039 854 0.12 965 0.23 90.1 028 89.7 032 87.0 038 645 027 89.6
DoRA (0.048 %) 0.12 956 041 853 0.12 96.8 024 90.1 028 89.7 033 864 034 658 0206 899

SpaRTA (0.048%) O,V 0.15 945 041 856 021 91.7 024 896 033 878 035 864 039 598 029 893

Table 14: Test loss and accuracy of model mistral-7b adapted to GLUE and BoolQ datasets with different
fine-tuning methods. Results are averaged over 3 random seeds. For training details see Appendix E.2.

Model: gemma-2b-it

QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ
Method targets loss acc. loss acc. loss acc. loss acc. loss acc. loss acc. loss mcc loss acc.
SpaRTA (5%) ALL 0.00 0.14 0.03 154 0.01 051 000 021 0.01 026 001 048 0.00 0.88 0.01 0.54
SpaRTA (0.5%) 0.00 0.16 0.03 0.64 001 046 0.00 0.17 0.00 0.13 0.01 0.07 001 075 0.01 0.25
SpaRTA (0.037 %) 0.00 0.12 0.01 0.55 0.00 0.17 0.00 0.18 0.00 0.14 0.00 045 0.01 044 0.00 0.09
LoRA (0.037%) QV 000 0.11 0.01 1.10 000 035 0.00 0.03 000 0.11 0.00 022 002 140 0.01 0.12
DoRA (0.037 %) 0.00 0.11 0.01 0.5 0.00 020 0.00 0.03 0.00 009 0.00 032 001 131 0.01 0.29
SpaRTA (0.037 %) 0.00 0.08 0.00 1.04 0.01 0.11 0.00 0.00 0.00 026 0.00 022 0.02 283 0.00 041

SpaRTA (0.037%) O,V  0.00 0.13 0.01 0.64 0.00 027 000 0.16 0.00 0.17 002 022 0.01 436 000 0.22

Table 15: Standard errors of test loss and accuracy of model gemma-2b-it adapted to GLUE and BoolQ datasets
with different fine-tuning methods.

Model: mistral-7b-it

QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ
Method targets loss acc. loss acc. loss acc. loss acc. loss acc. loss acc. loss mcc loss acc.
SpaRTA (5%) ALL 000 009 001 024 001 026 0.00 0.03 0.00 0.08 0.01 047 0.01 191 0.00 0.16
SpaRTA (0.5%) 0.00 005 001 107 001 0.18 0.00 0.10 0.00 0.09 0.02 025 0.0l 128 0.00 0.09
SpaRTA (0.048 %) 0.00 0.10 0.03 0.55 0.00 020 0.00 0.03 0.00 0.11 0.01 032 002 187 0.00 0.20
LoRA (0.048 %) QV 000 0.16 001 0.60 0.01 044 0.00 0.06 0.00 0.13 0.01 033 0.01 1.16 0.00 0.17
DoRA (0.048 %) 002 076 002 087 000 0.17 0.00 0.03 0.00 0.07 0.00 0.17 0.01 122 0.00 0.16
SpaRTA (0.048%) 0.00 006 001 073 0.00 023 0.00 0.04 0.00 0.05 0.01 043 0.01 1.17 0.00 0.27

SpaRTA (0.048%) O,V  0.00 0.02 0.01 042 0.01 034 000 0.07 0.00 0.13 002 024 0.01 097 000 0.23

Table 16: Standard errors of test loss and accuracy of model mistral-7b-it adapted to BLUE and BoolQ datasets
with different fine-tuning methods.
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Model: gemma-2b-it
Method QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ

SpaRTA (5%) le-5 5e4 5e-5 5e-5 le-5 2e-4 Se-5 Se-5
SpaRTA (0.5%) 2e-4 le-3 2e4 2e4 2e-4 Se-4 le-3 2e-4
SpaRTA (0.037%) 1le-3 le-3 1e-3 1e-3 le-3 le-3 le-3 le-3
LoRA (0.037 %) 2e-4 le-3 5e4 5Se4 Se-4 2e-4 S5e-4 Se-4
DoRA (0.037 %) 2e-4 le-3 5S5e-4 Se-4 Se-4 2e-4 Se-4 Se-4
SpaRTA (0.037%) Se-4 le-3 5e4 5Se4 Se-4 Se-4 le-3 Se-4
SpaRTA (0.037%) Se-4 le-3 5S5e-4 5Se-4 Se-4 Se-4 le-3 Se-4

Table 17: Optimal learning rates for gemma-2b-it model for different fine-tuning methods.

Model: mistral-7b-it
Method QNLI RTE SST2 QQP MNLI MRPC COLA BoolQ

SpaRTA (5%) le-5 5e-6 5S5e-6 le-5 le-5 5e-5 S5e-5 5e-6
SpaRTA (0.5%) 2e-4 le-4 5e-5 5Se4 2e-4 Se-4 2e-4 5e-5
SpaRTA (0.048%) 5S5e-4 5S5e-4 Se-4 le-3 Se-4 le-3 le-3 le-3
LoRA (0.048%) 2e-4 le-4 2e4 2e-4 le-4 2e-4 2e-4 le-4
DoRA (0.048 %) 2e-4 le-4 2e-4 2e-4 le-4 2e-4 2e-4 le-4
SpaRTA (0.048%) 2e-4 le-4 2e4 5Se-4 2e-4 le-3 le-3 Se-4
SpaRTA (0.048%) 2e-4 le-4 2e-4 5Se-4 2e-4 le-3 le-3 Se-4

Table 18: Optimal learning rates for mistral-7b-it model for different fine-tuning methods.

Parameter gemma-2b gemma-2b-it mistral-7b mistral-7b-it
Full FT batch size 32 32 36 36
num epochs 2 2 * *
learning rate le-5 le-5 3e-6 3e-6
max grad norm 10 50 120 120
dropout 0.1 0.1 0.15 0.15
weight decay 0.1 0.1 0.01 0.01
SpaRTA batch size 40 40 16 16
num epochs. 2 2 * *
d=5% learning rate 1.5e-5 8e-6 2e-6 2e-6
d=0.5% learning rate le-4 5e-5 3e-6 3e-6
d =0.05% learning rate 6e-5 6e-5 6e-5 6e-5
LoRA batch size 40 40 20 20
num epochs 3 3 3 3
learning rate 2e-4 2e-4 Se-6 S5e-6
max grad norm 15 15 - -
dropout 0.1 0.1 0.1 0.1
r 8 8 8 8
o 16 16 16 16
Head batch size 40 40 16 16
num epochs 4 4 3 3
learning rate 2e-4 2e-4 le-4 le-4

Table 19: (IMDB) Training parameters used with each fine-tuning method and model in Table 4. An * in number of
epochs indicates early stopping was used. For SpaRTA, parameters for density 5%, 0.5% 0,05% are reported.
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Training parameter gemma-2b gemma-2b-it mistral-7b mistral-7b-it

SpaRTA /LoRA epochs 14/6 1 1 1
batch size 40 40 40 40
learning rate le-4 le-4 Se-5 Se-5
dropout 0.0 0.05 0.1 0.1
weight decay 0.0 0.0 0.0 0.0

Table 20: Training parameters used with both SpaRTA and LoRA for each of the pre-trained models in Table 9
(MMLU).
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