Internal states before wait modulate reasoning patterns

Dmitrii Troitskii *!*, Koyena Pal *2, Chris Wendler?, Callum Stuart McDougall®,
Independent, 2Northeastern University, *Google Deepmind

Correspondence: troitskii.d @northeastern.edu, pal. k@northeastern.edu

Abstract

Prior work has shown that a significant driver
of performance in reasoning models is their
ability to reason and self-correct. A distinc-
tive marker in these reasoning traces is the to-
ken wait , which often signals reasoning be-
havior such as backtracking. Despite being
such a complex behavior, little is understood
of exactly why models do or do not decide to
reason in this particular manner, which lim-
its our understanding of what makes a reason-
ing model so effective. In this work, we ad-
dress the question whether model’s latents pre-
ceding wait tokens contain relevant informa-
tion for modulating the subsequent reasoning
process. We train crosscoders at multiple lay-
ers of DeepSeek-R1-Distill-L1ama-8B and
its base version, and introduce a latent attribu-
tion technique in the crosscoder setting. We lo-
cate a small set of features relevant for promot-
ing/suppressing wait tokens’ probabilities. Fi-
nally, through a targeted series of experiments
analyzing max-activating examples and causal
interventions, we show that many of our identi-
fied features indeed are relevant for the reason-
ing process and give rise to different types of
reasoning patterns such as restarting from the
beginning, recalling prior knowledge, express-
ing uncertainty, and double-checking.

1 Introduction

A growing class of language models known
as reasoning models, for instance, DeepSeek-
R1 (DeepSeek-Al et al., 2025), OpenAl ol se-
ries (OpenAl et al., 2024), and others (Team, 2024;
Kavukcuoglu, 2025; Anthropic, 2025), produce de-
tailed internal reasoning chains before generating
responses. While they showcase sophisticated rea-
soning capabilities, our understanding of their in-
ternal reasoning mechanisms remains limited. A
recent work by Venhoff et al. (2025) categorized
DeepSeek R1’s reasoning process into behavioral
patterns such as example testing, uncertainty es-
timation, and backtracking to show how models

Crosscoder

00000
00000

Output: y ¢ log po(Ywait | Lk)

D+0_5.....[Z]D

Transformer Models

| C——]

Base(B)

10pood(] Ipoduy

Reasoning (R)
oy

I think the answer is 5. . hmm ‘iarn teotit J
Input: 2ot Toeveree-- Tt Latent Attribution for k Latents

Figure 1: We determine reasoning related crosscoder
features via latent attribution with respect to wair to-
kens’ logits.

solve reasoning tasks. This leads us to ask the fol-
lowing question: when and how do these reasoning
patterns form?

This is a broad question that encompasses
both the training dynamics, such as when and
how reasoning circuits form, and the emergence
of reasoning patterns and behaviors during in-
ference. In this work, we focus on the lat-
ter, specifically within the distilled R1 model
DeepSeek-R1-Distill-Llama-8B.! From obser-
vation, in this model the token wait is strongly as-
sociated with the self-reflection of the model (Baek
and Tegmark, 2025), which could relate to rea-
soning patterns such as backtracking, deduction,
and uncertainty estimation (Venhoff et al., 2025).
Hence, we hypothesize that the features that mod-
ulate this token prediction can be useful in under-
standing the shifts in the reasoning patterns of the
reasoning model.

Contributions. Motivated by this observation,
we train Sparse Crosscoders (Lindsey et al., 2024)
a recent mechanistic interpretability technique that
allows to learn features within a paired base and
finetuned model in an unsupervised way and can
be used to perform model diffing.

1Although we work with the distilled model, we will refer
to it as R1 for succinctness.

18640

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 18640-18649
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain

We leverage our crosscoders to discover latent
features that modulate reasoning behaviors. To re-
duce the search space, our case study focuses on
features promoting and suppressing wait tokens
that we hypothesize to play a key role in R1’s rea-
soning. To this end, we extend attribution patch-
ing (Kramdr et al., 2024) to the crosscoder setting.
Our crosscoder latent attribution method allows us
to efficiently score all of our 32,768 features regard-
ing their contribution to the logits of wait tokens.
As a result, we obtain two short lists of relevant
features, the 50 top features with the largest contri-
butions to wait logits and the 50 bottom ones, that
we can effectively investigate.

By utilizing the crosscoders -classification
of the features in to base, shared, and
reasoning-finetuned we found that surprisingly
many reasoning related features fall inside of the
bottom bucket, suggesting that both amplifying as
well as suppressing wait are of key importance to
reasoning. By studying max-activating examples
we observe a similar pattern. While top features
mostly occur in the frequently reported backtrack-
ing and self-verification behaviors, we again notice
that bottom features stand out in terms of the di-
versity of the reasoning behaviors within which
they occur (e.g., starting again from an earlier step,
expressing uncertainty, wrapping up, etc.). Finally,
we perform a causal analysis via activation steering,
in which we observe effects matching our interpre-
tations based on the max-activating examples for
many features, in particular the ones mentioned
in parenthesis before. Our work showcases how
to reduce the combinatorial complexities of cross-
coder feature-based interpretability with the help
of our novel crosscoder latent feature attribution
technique. We thereby open the door for future
researchers to explore such findings in other chat
and reasoning models.

2 Methods

To discover features, we create reasoning data
instances (Section 2.2) and train Sparse Cross-
coders (Section 2.1). We then apply Latent At-
tribution patching (Section 2.3) to filter features
that strongly modulate wait tokens. Finally, we
steer these features (Section 2.4) to evaluate their
impact on the model’s reasoning behavior, helping
us determine how actionable they are.

2.1 Sparse Crosscoder

Sparse Autoencoder (SAE) decomposes model
activations into a sparse set of linear feature di-
rections. Sparse Crosscoder extends this by de-
composing activations from different layers, mod-
els, or context positions. To explore feature cor-
respondence between two models, we train L1
Sparse Crosscoders (Lindsey et al., 2024) be-
tween DeepSeek-R1-Distill-Llama-8B and its
base version. We train three Crosscoders at 25%,
50%, and 75% layers depth, which correspond to
layers 7, 15, and 23 respectively, using an expan-
sion factor of 8 to learn 32768 features. For training
details, refer to Appendix A.

2.2 Data: Reasoning Instances with wait

Venhoff et al. (2025) released rollouts on reasoning

problems from DeepSeek-R1-Distill-L1ama-8B
that have reasoning traces across ten categories
that include topics like mathematical logic, creative
problem solving, and scientific reasoning. 193 out
of 500 samples have either of the following wait
tokens — “Wait", “ Wait", “ wait", “wait". For
every wait in every sample that has a preceding rea-
soning sequence, we create a subsequence from the
beginning of the sentence to the token right before
wait. This filters for wait tokens related to reason-
ing behavior. This generates 350 subsequences.

2.3 Latent Attribution

As shown in Figure 1, latent attribution observes
and computes how much each latent component
in the crosscoder contributes to the change in the
downstream metric, Mp¢ch, Which we define as
the log probability of the sum of the four tokens of
wait as follows:

Mpater, =log(> po(y|L)) (1)
yEKvait

where L € Rbatchxseqxdim are the Jatents obtained
from the crosscoder, and Y,,,;; denotes the token
sequence corresponding to wait, which includes
“Wait",” Wait", “ wait", “wait". To investigate the
causal constribution of these representations, we
intervene on the model’s activations. Extracting
an intermediate result from a forward pass and in-
serting it into another is typically performed across
minimally different runs to causally probe the role
of specific subcomponents. In our case, we ap-
proximate this by replacing the activations with
zero activations (i.e., performing ablations), which

18641

is similar to attention attribution, a non-patching
variant of attribution patching (Nanda, 2023). See
more info on the setup at Appendix B.

24 Steering

After training, the columns of the decoder matrix
W) e R¥" can be thought of as ny linear
feature directions/features W) = (fy, ... f,)

where R denotes to the reasoning model, d is the di-
mension of the activations being decomposed, and
ny is the number of features extracted by our cross-

coder. These features can then be used to modulate
the model’s rollouts by adding them to the model’s

activations (a(R)) during token generation:

alld (@)= {G(R)(m)i " a%ﬂw ifixt
steered otherwise,

(2)
in which we “steered” with strength o € R and the
kth feature at the last token of the input x1, . .., z;
and each newly generated token position z¢11,
We steer at layer 15.

a™ (x)s,

3 Results

Intermediate decoding. As a first check we inves-
tigate our selected features through the patchscope-
lens (Ghandeharioun et al., 2024). It is an interme-
diate decoding technique that decodes (some) of
the information contained in a latent by inserting
it at its corresponding layer in a parallel forward
pass that is processing a patchscope-lens prompt.
Since we are using a reasoning model, we slightly
adapt the patchscope-lens prompt to the reasoning
model’s format and thought prefilling (see Ap-
pendix C). For each of the top/bottom features, we
compute the patchscope’s next token distribution
and take the average within the top/bottom groups.
As aresult, we obtain Figure 4. As can be seen top
features indeed promote “Wait” and related tokens,
whereas, bottom ones share “” as top token.
Model diffing. Crosscoders by design allow to
classify their learned features into base, shared,
and finetuned. As Minder et al. (2025) have re-
cently shown this classification is not perfect, we
ask the reader to take Figure 5 with a grain of
salt. Figure 5 shows the fraction of top and bottom
features classified into the three categories. Both
top and bottom features contain a significant num-
ber of shared features, which is expected, since
most of the features learned by the crosscoder are
in this category. The bottom features also contain
some base-only features, - we hypothesize that
some of the features that only the base model uses

would decrease the likelihood of the wait token in
reasoning sequences, since the base model was not
trained to predict the wait token in such context.

As expected, none of the top features are base-
only. Most interestingly, the bottom features con-
tain a larger number for finetuned-only, i.e.,
reasoning features. This suggests reasoning tun-
ing allocates a substantial number of features to
both suppressing as well as promoting wait token’s
probabilities.

Max activating examples. Next, we examine
the features’ max activating examples, which we
obtain by computing feature coefficients over a
dataset of 20 million tokens. Max-activating ex-
amples are input samples of various lengths from
the crosscoder training data that elicit the highest
activation of a given feature. They are identified by
running the trained crosscoder on 200,000 valida-
tion samples, recording each feature’s activation,
and selecting the top 100. For each sample, we
highlight the most activating tokens, aiding inter-
pretation. Top features most positively influence
the logprob of the wait token, while Bottom fea-
tures have the strongest negative effect. We man-
ually expect a set of 100 max activating examples
and generate an automated annotation for each of
our 100 features.

We observe that the Top features largely con-
tribute to backtracking (max activating examples
activate on wait and "But" tokens). Bottom features
correspond to behavior which can be interpreted as
the model restarting its thinking process or conclud-
ing the reasoning trace. For example, feature #1565
activates on full stops at the end of the reasoning
sequence and feature #32252 activates on a final
answer at the end of samples with mathematical
reasoning.

Feature steering. Finally, we investigate fea-
tures’ causal impact on the rollouts in the reasoning
model by performing steering. This is done by ac-
tivating a feature, represented as a column vector
of our learned decoder matrix, and multiplying it
with a steering coefficient that sets its strength be-
fore adding it to the residual stream. We steer on
a single input example, see Figure 3. To match
the setting in which we extracted the features we
start steering the rollout from the token before the
first wait token and from there generate up to 200
tokens while steering. Since steering is sensitive
to the steering strength hyperparameter, we steer
with multiple strengths -1.5, -1.25, -1.0, -0.75, -0.5,
0.5, 0.75, 1, 1.25, 1.5 for each feature. This results

18642

Bottom Features
600 Top Features

500

400

%)
=3
S

Avg num of characters until "wait"
= 8
=] (=]

o

-15 -1.25 -1.0 1.0 1.25 1.5
Strength Value

Figure 2: We compute how many characters occur be-
fore the first wait token in the continued rollout, while
steering with all of our features and different interven-
tion strengths. Steering with positive coefficient for the
top features slightly increases the distance to the first
wait which is due to oversteering, for bottom features as
one would expect the distance to the first wait increases
significantly. Negative steering has the opposite effect.

in 10 different continuations for each of the 100
features.

In Figure 2, we verified that the causal role of
our features is broadly aligned with our expecta-
tions about them based on our feature selection
criterion. In particular, we measure the number of
characters occurring before the first wait . Since
we selected our features based on latent attribution
with respect to wait , for top features the number
of characters should be small when steering pos-
itively and for bottom features it should be large.
Similarly, for features that have meaningful effects
in both directions—which is not guaranteed, since
feature coefficients are always positive—steering
with negative strength should increase the number
of characters before ‘wait’ for top features and de-
crease it for bottom features. Figure 2 matches
these expectations.

Steered generations. We show example con-
tinuations under our interventions in Figure 3. As
can be seen, in particular, the bottom features lead
to interesting reasoning patterns that we have not
seen before in the literature. Among the top fea-
tures we observed many instances of steering posi-
tively quickly resulting in degenerate sequences
like “WaitWaitWait...” or “ wait wait wait...”.
Steering these into the negative direction leads
to wait disappearing from the outputs. Our best
guess is that those features literally contribute to
the wait tokens and it is unclear whether they can
also trigger any specific reasoning patterns that
would be comparable to the ones reported in Fig-

Table 1: Math500 (n=100) downstream evaluation
with feature steering at layer 15 (a=1.5) over first 100
tokens; Acc = exact-match accuracy; Alen = median
token increase; Adh. is LLM-judge score

Feature Type Acc ALength (med, tok) [%] Adh.
188 Bottom 84% +429 (+28%) 83
744 Bottom 81% +473 (+39%) 58
25929 Bottom 79% +310 (+21%) 317
31748 Top 61% +526 (+45%) 36

ure 3. Additionally, we found several features that
when steered positively/negatively lead towards
the model wrapping up and providing the final re-
sponse and when steered into the opposite direction
lead to extended reasoning.

Downstream evaluation on MATH500. We
compute rollouts for each sample with tempera-
ture=0.6, top_p=0.95, and max_tokens=7500, re-
sulting in 86% accuracy. Next, we filter for com-
pletions containing the wait token. From these,
we sample 100 problems with 81 correct / 19 in-
correct rollouts. We steer with one feature at a
time (IDs 188, 744, 25929, 31748) at layer 15 with
strength o = 1.5, applied to the first 100 tokens
(full-sequence steering was found to degrade con-
tinuation quality).

We evaluate using exact-match accuracy, median
change in completion length, and LLM-judge ad-
herence score (GPT-5-nano (OpenAl, 2025)). Ac-
curacy remained close to 81% baseline for three fea-
tures but decreased to 61% for 31748. Detailed re-
sults are provided in Table 1, and judge implemen-
tation details are included in Appendix D. Manual
inspection suggests the judge systematically under-
estimates adherence, and thus the reported scores
should be interpreted as lower bounds.

4 Related Work

To understand reasoning models, Venhoff et al.
(2025) looks into the chain-of-thought texts and cat-
egorizes the trace into various reasoning behavior
patterns such as deduction, adding knowledge, and
example testing. They further find steering vectors
to increase or decrease the appearance of a particu-
lar reasoning behavior. Baek and Tegmark (2025)
investigates reasoning features, learned by cross-
coders, via qualitative analysis of max activating
examples. An additional perspective on token-level
and feature-level analysis of reasoning features is a
concurrent work by Lee et al. (2025) that performs
a case study on the self-verification process of a
task-specific reasoning model.

18643

Input

<| begin_of_sentence | >< | User | >Find three prime numbers that add up to 100.< | Assistant | ><think>Alright, so I need to find three
prime numbers that add up to 100. Hmm, okay. Let me think about how to approach this. Prime numbers are numbers greater than 1 that have no
divisors other than 1 and themselves. So, the primes are 2,3, 5,7, 11, 13, and so on. ...

Reference
Response

Wait, but just to make sure there are no other combinations, maybe without using 2? Let me think. If T don't include 2, then all three primes are odd.
Adding three odd numbers: odd + odd + odd = odd + odd = even, then even + odd = odd. But 100 is even, so that won't work. Therefore, we must
include 2 as one of the primes. So, the other two primes must add up to 98, which we found as 19 and 79. ...

Feature ID: 744 (in bottom 50)

Feature ID: 31748 (in top 50)

Feature ID: 25929 (in bottom 50)

Intervened Responses and Observed Reasoning Behavior Change

Feature ID: 188 (in bottom 50)

[Steering Strength: 1.5] Let me get
back to the main point. Maybe I should
get back to the initial approach. Maybe
I should try another prime and see if 1
should go back to the beginning, Let's
go back to 3. Maybe I should start over
and try a different approach. Maybe I
should get back to the original problem.

[Steeting Strength: 1.5] Whait, I think
T just remembered a question about
the Goldlerian Numbers, or
something about a recent question. Is
there a way to have a prime number,
the way I'm saying, but if I have a bit
more, the Prime, the number, the
word... I'm talking about the number
of the following, just a thought, ...

[Steering Strength: 1.0] Alternatively,
I might have started with a different
prime. Let me try another approach.
Let's assume all three primes are odd.
Since 2 is the only even prime, this is
impossible. So, one prime must be 2,
and the other two are primes.
Therefore, this is the only solution. 1
think this is the answer.</think> ...

[Steeting Strength: 1.5] I don't know
if T need to find which primes exactly
I don't know how many more I don't
know what other primes I don't know
how to find the other two primes
without which I don't know what? 1
don't know which one I don't know I
don't know what I don't know ...

[Steering Strength: 1.25] Wait, let me

approach. Maybe I should go back to
the original problem and try to start
over. Let's get back to the beginning I

Let's not forget that I should try to
stick to primes ...

go back and see if I should try another

was trying to find three prime numbers.

[Steeting Strength: 1.25] Wait, T
think I read something about there are
three prime numbers with a tip of the
week. Hmm, what's the latest in the
news. Wait, I just made a note of the
new study about the U.S. government,
did you see the new study about the
U.S. government, ...

[Steering Strength: - 1.25] Wait a
second, hold on. Is there another
possibility? Because sometimes, if 1
don't include 2, would it be possible to
have three primes that add up to 1002
Let me check that because maybe it's
not necessaty to use 2, but ...

[Steering Strength: 1.25] Wait, I
don't know if I need to find which
ones exactly, I don't know how many
there are, so maybe I don't know
which ones I are, I don't know how
many I don't know how many primes.
I don't know how many I don't know

Reasoning Behavior:
Go to Initial Approach

Reasoning Behavior:
Random Knowledge Recall

Reasoning Behavior:
Conclusion (in positive steer)
Re-trying (in negative steer)

how many, I don't know how ...

Reasoning Behavior:
Uncertainty

Figure 3: Change in reasoning behavior observed when features are steered in the positive and/or negative directions.

Top Features

Top 50

Bottom 50

0.06

0.04

0.02

0.00

~ . .
N <& > © Q@\\ @

Bottom Features

N &“0 AN a

Figure 4: Top token probabilities from patchscope: top
features promote Wait’ and related tokens, while bot-
tom features show no clear pattern.

Similarly, Zhang et al. (2025) show that reason-
ing models “know” when they are right by train-
ing linear probes that can predict the correctness
of intermediate solutions from the models’ inter-
nals with high accuracy. In contrast to (Venhoff
et al., 2025; Lee et al., 2025; Zhang et al., 2025)
that focus on specific features and reasoning behav-
iors on labeled datasets, we are using crosscoders
to discover features relevant to distilled reasoning
model’s “thought” process with minimal supervi-
sion.

Compared Baek and Tegmark (2025) we focus

Figure 5: Crosscoder classification of the features into
base, shared, reasoning-finetuned categories,
with distribution attributed using the Crosscoder Rela-
tive Norm Difference

on a more narrow set of the features that we ob-
tain by our latent attribution technique that selects
features most relevant for modulating the logits of
different “wait” tokens.

5 Conclusion

Our study sheds light on how the model’s latents
preceding wait tokens signal behaviors like back-
tracking. We introduce latent attribution patching
for identifying and testing which internal features
influence these tokens in crosscoder models. We
show that these features not only predict wait to-
kens but also shape how the model reasons.

18644

Limitations

While our method identifies and manipulates fea-
tures influencing wait tokens, it is currently limited
to a specific model family and may not general-
ize across architectures without adaptation. Addi-
tionally, our analysis focuses on a narrow slice of
reasoning behavior, potentially missing out other
important markers or mechanisms. Finally, while
we demonstrate causal influence on reasoning be-
havior, fully constructing a circuit that also shows
latent-to-latent dependency across layers for these
reasoning behaviors remains an open area for fu-
ture work.

Data and Code Availability

Crosscoder weights: https://huggingface.
co/mitroitskii/Crosscoder-Llama-3.
1-8B-vs-Llama-R1-Distill-8B.

Crosscoder training: https://github.com/
science-of-finetuning/crosscoder_
learning.

Crosscoders analysis and max activating examples:
https://github.com/
science-of-finetuning/
sparsity-artifacts-crosscoders

Attribution experiments: https://github.com/
mitroitskii/interp-experiments/tree/
main/reasoning_circuits.

Steering experiments: https://github.com/
wendlerc/rihelpers

Acknowledgments

This project began as part of the training phase of
Neel Nanda’s MATS 8.0 stream. We are grateful to
Neel and Arthur Comny for their valuable feedback
and suggestions during that time. We would also
like to thank Clément Dumas and Julian Minder
for their helpful guidance on crosscoder setup, Ca-
den Juang for advice on the attribution setup, Con-
stantin Venhoff for providing the dataset, as well
as the Bau Lab for providing compute resources.

References
Anthropic. 2025. Claude 3.7 sonnet system card.

David D. Baek and Max Tegmark. 2025. Towards un-
derstanding distilled reasoning models: A representa-
tional approach. In ICLR 2025 Workshop on Building
Trust in Language Models and Applications.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,

Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 181 others.
2025. Deepseek-rl: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Asma Ghandeharioun, Avi Caciularu, Adam Pearce,
Lucas Dixon, and Mor Geva. 2024. Patchscopes:
A unifying framework for inspecting hidden rep-
resentations of language models. arXiv preprint
arXiv:2401.06102.

Koray Kavukcuoglu. 2025. Gemini 2.5: Our most intel-
ligent ai model.

Janos Kramar, Tom Lieberum, Rohin Shah, and Neel
Nanda. 2024. Atp*: An efficient and scalable method
for localizing llm behaviour to components. Preprint,
arXiv:2403.00745.

Andrew Lee, Lihao Sun, Chris Wendler, Fernanda Vié-
gas, and Martin Wattenberg. 2025. The geometry of
self-verification in a task-specific reasoning model.
Preprint, arXiv:2504.14379.

Jack Lindsey, Adly Templeton, Jonathan Marcus,
Thomas Conerly, Joshua Batson, and Christopher
Olah. 2024. Sparse crosscoders for cross-layer fea-
tures and model diffing.

Samuel Marks, Can Rager, Eric J Michaud, Yonatan Be-
linkov, David Bau, and Aaron Mueller. 2025. Sparse
feature circuits: Discovering and editing interpretable
causal graphs in language models. In The Thirteenth
International Conference on Learning Representa-
tions.

Julian Minder, Clément Dumas, Bilal Chughtai, and
Neel Nanda. 2025. Latent scaling robustly identifies
chat-specific latents in crosscoders. In Sparsity in
LIMs (SLLM): Deep Dive into Mixture of Experts,
Quantization, Hardware, and Inference.

Neel Nanda. 2023. Attribution patching: Activa-
tion patching at industrial scale. Mechanistic Inter-
pretability blog post, accessed August 16, 2025.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, Alex Beutel, Alex
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard
Passos, Alexander Neitz, Alexander Prokofiev,
Alexander Wei, Allison Tam, and 244 others. 2024.
Openai ol system card. Preprint, arXiv:2412.16720.

OpenAl. 2025. Gpt-5-nano — models & capa-
bilities. https://platform.openai.com/docs/
models/gpt-5-nano. Documentation page.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Constantin Venhoff, Ivan Arcuschin, Philip Torr, Arthur
Conmy, and Neel Nanda. 2025. Understanding rea-
soning in thinking language models via steering vec-
tors. In Workshop on Reasoning and Planning for
Large Language Models.

18645

https://huggingface.co/mitroitskii/Crosscoder-Llama-3.1-8B-vs-Llama-R1-Distill-8B
https://huggingface.co/mitroitskii/Crosscoder-Llama-3.1-8B-vs-Llama-R1-Distill-8B
https://huggingface.co/mitroitskii/Crosscoder-Llama-3.1-8B-vs-Llama-R1-Distill-8B
https://github.com/science-of-finetuning/crosscoder_learning
https://github.com/science-of-finetuning/crosscoder_learning
https://github.com/science-of-finetuning/crosscoder_learning
https://github.com/science-of-finetuning/sparsity-artifacts-crosscoders
https://github.com/science-of-finetuning/sparsity-artifacts-crosscoders
https://github.com/science-of-finetuning/sparsity-artifacts-crosscoders
https://github.com/mitroitskii/interp-experiments/tree/main/reasoning_circuits
https://github.com/mitroitskii/interp-experiments/tree/main/reasoning_circuits
https://github.com/mitroitskii/interp-experiments/tree/main/reasoning_circuits
https://github.com/wendlerc/r1helpers
https://github.com/wendlerc/r1helpers
https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf
https://openreview.net/forum?id=UYZCcnwgc4
https://openreview.net/forum?id=UYZCcnwgc4
https://openreview.net/forum?id=UYZCcnwgc4
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2403.00745
https://arxiv.org/abs/2504.14379
https://arxiv.org/abs/2504.14379
https://transformer-circuits.pub/2024/crosscoders/index.html
https://transformer-circuits.pub/2024/crosscoders/index.html
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=I4e82CIDxv
https://openreview.net/forum?id=JGRtSAlQ3h
https://openreview.net/forum?id=JGRtSAlQ3h
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#attention-attribution
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#attention-attribution
https://arxiv.org/abs/2412.16720
https://platform.openai.com/docs/models/gpt-5-nano
https://platform.openai.com/docs/models/gpt-5-nano
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://openreview.net/forum?id=OwhVWNOBcz
https://openreview.net/forum?id=OwhVWNOBcz
https://openreview.net/forum?id=OwhVWNOBcz

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Au-
rojit Panda, Jinyang Li, and He He. 2025. Rea-
soning models know when they’re right: Probing
hidden states for self-verification. arXiv preprint
arXiv:2504.05419.

18646

A Crosscoder Training Details

To train a crosscoder using activations from two models, base B and reasoning-finetuned R, the crosscoder
feature activation can be computed as follows:

flae) = ReLU(> Wi.a® () +b0),) 3)
i=B,R
a'@ (x¢) = chelf(:nt) + b((ie)c 4)

where Wéﬁ)c is the model ¢’s encoder matrix, ché)c is model i’s decoder matrix, a(?) is the model i’s
activation at token x; and a’(*) (z) is the reconstructed activation.
The crosscoder training minimizes the loss that consists of the sum of reconstruction MSE and the sum

of the per-feature decoder vector’s L2 norm.

Loss = Z |a'® — H2+ka Tt) Z W, deck)

i=B,R i=B,R
We trained three such crosscoders for 18 hours using 50-100% of x8 A100 GPUs.

B Additional information on Latent Attribution

Let M,,q4ch, be a scalar metric computed via a computational graph that operationalizes the concept of
promoting or suppressing wait . Following the attribution setup in Marks et al. (2025), we quantify the
importance of each crosscoder latent on this metric via its indirect effect on Mpqcp:

IE(Mpath L) Wd}ic) - Mpatch(L|d0(a - aactive)) - Mpatch(L|dO(a = O)) (6)

Here, ayqtive represents the value that latent activations during the computation of Mpatch(L), and
Mpatcn(Lldo(a = 0)) denotes the value of M, when computing M40, (L) but intervening in the
computation by manually setting latent activations to zero.

We cannot compute IEs efficiently for a very large number of latent components L € R¢ using
Equation (6). We thus employ linear approximations to Equation (6) that can be computed for many
latents in parallel. The simplest such approximation that attribution patching (Nanda, 2023) employs is a
first-order Taylor expansion:

fI?]atp(]wpatch; L, Wﬁc) = vL]wpatch‘L L : (aactive - 0) @)

=Liclean

which estimates Equation (6) for every latent in parallel using only two forward and one backward
pass.
The gradient with respect to latents is computed via the chain rule is

8]wpatch _ 0 Mpatch
oL o0H
where the matrix multiplication projects the hidden-state gradient onto all decoder directions simul-

taneously using batch operations (implemented via einsum(‘bth, hk—btk’, gradient, W_dec) for
batch size b, sequence length ¢, hidden dimension h, and k latents).

- Wi, (8)

Per-token attribution For token ¢ and latent &, the location contribution is:

VE X Lt,k (9)

where vy, is the k-th column of W£C. Positive value of attr; ;, implies promoting local effect on the metric,
while negative implies a suppressing local effect.

18647

Aggregation to per-feature scores We summarize each latent’s influence by summing over tokens in
the analysis window and averaging over examples in the batch:

score(k) = meanpycn [Z attrt7k] (10)

tew

Sorting score(k) produces the top (positive, promoters) and bottom (negative, suppressors) feature lists
used in Section 3.

C Patchscope-lens prompt

<begin of sentence><User>Continue the
following pattern: cat cat

1135 1135

hello hello

<Assistant><think>

Okay I need to complete: cat cat

1135 1135

hello hello
?

D LLM-Judge Prompt

We use an automated judge to score whether steered generations exhibit the intended behavior. The judge
returns a 1-100 adherence score and a brief rationale.

Model GPT-5-nano.

Prompt template (verbatim).

"You are an expert evaluator of language model behavior and steering interventions.

Please analyze the following example and assess how much the steered response
corresponds to the steering direction "{steering_direction}”
on a scale from 1 to 100, where:

- 1-20: Very little to no correspondence with the steering direction

- 21-40: Some correspondence but not strong

- 41-60: Moderate correspondence

- 61-80: Strong correspondence

- 81-100: Very strong/excellent correspondence with the steering direction

%0riginal Context:
{text_before}

**0riginal Response (before steering):xx*
{original_text_after}

**Steered Response (after steering):xx*
{steered_text_after?}

**Assessment Criteria:*x*

- Consider how well the steered response reflects the intended steering direction
"{steering_direction}"”

- Look for behavioral changes, linguistic patterns, and content shifts

18648

- Compare the steered response to the original response
- Evaluate the consistency and strength of the steering effect

Please provide your assessment as a JSON object with the following format:

{

"score”: <number between 1-100>,
"reasoning”: "<brief explanation of your assessment>"

Assessment:”

18649

