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Abstract

Multimodal Procedural Planning (MPP) aims
to generate step-by-step instructions that com-
bine text and images, with the central chal-
lenge of preserving object-state consistency
across modalities while producing informa-
tive plans. Existing approaches often leverage
large language models (LLMs) to refine textual
steps; however, visual object-state alignment
and systematic evaluation are largely under-
explored. We present MMPlanner, a zero-
shot MPP framework that introduces Object
State Reasoning Chain-of-Thought (OSR-CoT)
prompting to explicitly model object-state tran-
sitions and generate accurate multimodal plans.
To assess plan quality, we design LLM-as-
a-judge protocols for planning accuracy and
cross-modal alignment, and further propose a
visual step-reordering task to measure temporal
coherence. Experiments on RECIPEPLAN and
WIKIPLAN show that MMPlanner achieves
state-of-the-art performance, improving textual
planning by +6.8%, cross-modal alignment by
+11.9%, and visual step ordering by +26.7%.
� https://plan-lab.github.io/mmplanner

1 Introduction

Procedural planning involves generating a se-
quence of steps to accomplish a goal (Lyu et al.,
2021), e.g., baking a cake or assembling a book-
shelf. Domains such as robotics (Kovalchuk et al.,
2021; Zhao et al., 2023), reasoning systems (Chen
et al., 2017; Wei et al., 2022), etc., rely on effec-
tive procedural planning. Consequently, the field
has received growing attention, driven by the re-
cent advancements in LLMs (Liu et al., 2023; Zhu
et al., 2023). Existing works utilize task-specific
concept knowledge (Sun et al., 2023), knowledge
from LLMs (Yuan et al., 2023), or multimodal in-
put (Zhou et al., 2023; Wang et al., 2023), and gen-
erate linear (Wang et al., 2023; Yuan et al., 2023;
Sun et al., 2023) or non-linear (Zhou et al., 2023)

textual procedural plans. However, text-only in-
structions often lack the visual clarity and speci-
ficity required for complex tasks, limiting under-
standing, accessibility, and engagement. Multi-
modal Procedural Planning (MPP) addresses these
limitations by jointly generating textual step in-
structions with corresponding step images, yielding
more precise and accessible procedural knowledge.

A central challenge in MPP is generating step vi-
suals that accurately reflect object state transitions.
These transitions can be explicit, when the change
is clearly described in the current textual step, or
implicit, when it must be inferred from prior steps
or broader context. For instance, in Figure 1, step
2 explicitly describes mixing ingredients, so the
corresponding image should depict a bowl contain-
ing the mixed dry ingredients. Step 3, in contrast,
involves adding butter, and the image must implic-
itly incorporate the existing mixture from Step 2.
In this case, the visual should show butter being
added into the bowl of mixed dry ingredients, even
though ingredients are not restated in the step text.

Another important challenge involves the eval-
uation of multimodal plans, particularly in deter-
mining whether the generated steps successfully ac-
complish the intended task. Prior work has primar-
ily measured semantic similarity between gener-
ated and reference textual plans (Wang et al., 2023;
Yuan et al., 2023), which cannot effectively verify
true task completion. Furthermore, text-based se-
mantic metrics overlook critical dimensions such
as visual–text alignment, temporal coherence, and
the informativeness of visual steps. As a result,
evaluation of multimodal plans still relies heavily
on human judgment (Lu et al., 2024; Wang et al.,
2023), which is labor-intensive, difficult to scale,
and prone to inconsistency across annotators.

To address these challenges, we introduce
MultiModal Planner (MMPlanner), a zero-shot
framework for generating consistent multimodal
plans that capture both explicit and implicit ob-
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How to make cheesy
garlic pull-apart bread?

Goal
T-PlanScore: 80 CA-Score: 67

Multimodal Procedural Sequencing Model

VS-Ordering

Unordered Image Sequence

Ordered Image Sequence

Multimodal Steps

Step 1. Preheat your
oven to 375°F.

Step 2. In a large
mixing bowl, combine
2 cups bread flour, 1
tsp salt, and 1 tsp
garlic powder.

Step 3. Add 1 cup
butter, cut into small
pieces, and mix until
mixture is crumbly.

Step 4. In a separate
bowl, combine 1 cup
of milk, 1 full egg and
half cup grated
cheddar cheese.

Step 5. Gradually
add the milk mixture
to the flour mixture,
stirring until a dough
forms.

Step 6. Turn the
dough out onto a
floured surface and
knead until smooth
and elastic.

Step 7. Place dough
in a greased loaf
pan and let it rise
until doubles in size.

Step 8. Bake for 35-
40 minutes, or until a
toothpick inserted
into center comes
out clean.

Step 9. Remove the
loaf from the oven
and let it cool for 10
minutes

Step 10. Serve with
dipping sauce. Enjoy!

Figure 1: Multimodal Procedural Planning. Left: MMPlanner, processes overall goals to produce comprehensive
step-by-step textual and visual plans. Right: Our proposed evaluation assesses the planning accuracy of the textual
plan, the cross-modal alignment between visual and textual steps, and the temporal coherence of the visual steps.

ject state changes across visual steps. MMPlanner
leverages Chain-of-Thought (CoT) prompting with
Object State Reasoning (OSR-CoT) to guide the
model in reasoning about object transitions across
steps. To the best of our knowledge, MMPlanner is
the first MPP approach to generate zero-shot multi-
modal plans that jointly model implicit and explicit
state changes through prompted reasoning, without
requiring task-specific training.

To enable scalable and automatic evaluation
of MPP, we introduce a set of customized mul-
timodal LLM-based evaluators and propose a com-
prehensive evaluation framework comprising: (1)
Textual-Plan Score (T-PlanScore), which mea-
sures the planning accuracy of the generated textual
plan by assessing the alignment between the goal
and the generated textual steps; (2) Cross-modal
Alignment Score (CA-Score), which evaluates the
relevance between generated step images and cor-
responding textual steps; and (3) Visual Step Or-
dering (VS-Ordering), a task that assesses the
informativeness and temporal coherence of the vi-
sual plan by recovering the correct step order from
shuffled images. The contributions of our work are:

• We introduce MMPlanner, a zero-shot MPP
method that generates coherent multimodal
plans reflecting object state changes in visual
plan sequences. We empirically validate MM-
Planner on two benchmark datasets, achieving
improvements of up to 6.8% in textual plan
quality, 11.9% in cross-modal alignment, and
26.7% in visual step ordering accuracy.

• MMPlanner incorporates background con-
text from previous task steps through an
Object State Reasoning Chain-of-Thought
(OSR-CoT) prompting strategy, enabling
explicit modeling of evolving object states
across steps, and reducing inference time by

∼46.25% compared to SoTA MPP baselines.
• We propose a reference-free evaluation

framework to assess planning accuracy, cross-
modal alignment, temporal coherence, and
visual informativeness of generated plans,
achieving stronger correlation with human
judgments than prior cross-modal metrics
(ρ = 0.57 vs. 0.37 for CLIPScore) while re-
ducing step-level evaluation time by ∼66%
(90s → 30s). For textual planning, our auto-
mated evaluation requires only ∼0.7s per plan
compared to ∼5mins for human assessment,
enabling large-scale evaluation.

2 Related Work

Procedural Planning. Procedural planning
methods fall into two categories: selection-
based and generation-based. Selection-based ap-
proaches (Zhao et al., 2023; Lu et al., 2022;
Song et al., 2023; Wu et al., 2022; Zhou et al.,
2022; Ashutosh et al., 2023) rely on predefined
candidates, limiting generalization to unseen sce-
narios. Generation-based methods, powered by
LLMs (Zhu et al., 2023; Ouyang et al., 2022), fo-
cus on generating textual plans (Wang et al., 2023;
Sun et al., 2023). Recently, TIP (Lu et al., 2024)
generates multimodal plans by prompting an LLM
and image generation model twice sequentially, in-
creasing the inference time. In summary, existing
methods often fail to accurately reflect changes in
object states throughout the steps.

Although recent work explores tracking state
changes in videos (Niu et al., 2024) and leverages
large-scale datasets (Souček et al., 2025), these
approaches typically assume access to full video
sequences (Niu et al., 2024) and struggle to main-
tain state consistency across frames (Souček et al.,

18624



+RZ�WR�PDNH�FKHHVH\
JDUOLF�SXOO�DSDUW�EUHDG"

���3UHKHDW�RYHQ�WR�����)�
���,Q�D�ODUJH�PL[LQJ�ERZO�
FRPELQH���FXSV�RI�EUHDG�IORXU��
��WVS�RI�VDOW��DQG���WVS�RI�JDUOLF
SRZGHU�
�����������������������������������������������
����6HUYH�ZLWK�\RXU�IDYRULWH
GLSSLQJ�VDXFH��(QMR\�

���$Q�LPDJH�RI�DQ�RYHQ�ZLWK�WKH
WHPSHUDWXUH�VHW�WR�����)�
���$�ODUJH�PL[LQJ�ERZO�ZLWK�IORXU��VDOW�
DQG�JDUOLF�SRZGHU�EHLQJ�FRPELQHG
WRJHWKHU�
���������������������������������������������������
����$�VHUYLQJ�SODWH�ZLWK�VOLFHV�RI
ZDUP��FKHHV\�JDUOLF�SXOO�DSDUW�EUHDG
DQG�D�ERZO�RI�GLSSLQJ�VDXFH�QH[W�WR�LW�

0XOWLPRGDO�*RDO 7H[WXDO�3ODQ ,PDJH�'HVFULSWLRQ

7H[WXDO�
3ODQ

*HQHUDWRU

,PDJH
'HVFULSWLRQ
*HQHUDWRU

9LVXDO�
3ODQ

*HQHUDWRU

9LVXDO�3ODQ

��������������

��

��

���

Figure 2: MMPlanner Overview. Given a goal instruction, MMPlanner first generates a corresponding visual goal.
Then, the Textual Plan Generator produces textual plans aligned with this multimodal goal. Each step is passed to
the Image Description Generator, which produces detailed visual descriptions capturing explicit and implicit object
state changes. Finally, the Visual Plan Generator uses these descriptions to create step-by-step images, resulting in a
comprehensive multimodal plan that maintains consistency across both textual and visual steps.

2025). In addition, Statler (Yoneda et al., 2024)
focuses on maintaining object states for embodied
robotic reasoning with low-level, fine-grained ac-
tions in closed environments. In contrast, our work
generates visual plans from scratch in a zero-shot
setting, given only a goal, and emphasizes high-
level, interpretable steps aimed at human-centric
multimodal procedural planning.

Beyond procedural planning, prior work has ex-
plored cross-modal coherence and multimodal dis-
course, focusing on temporal and narrative consis-
tency across modalities (Alikhani et al., 2019; Inan
et al., 2021). Such studies show that modeling dis-
course relations and coherence cues can strengthen
alignment and narrative flow. Our work is comple-
mentary, and future extensions could incorporate
discourse-aware prompting to further enhance tem-
poral and narrative consistency in visual plans.
Multimodal Plan Evaluation. Procedural plans
can be evaluated manually or automatically. Hu-
man evaluations (e.g., crowdsourcing) can be time-
intensive and error-prone, while automatic met-
rics such as WMD (Kusner et al., 2015), Sentence-
BERT (Reimers and Gurevych, 2019), etc., though
scalable, fall short in assessing temporal relation-
ships and completeness of textual plans. For evalu-
ating multimodal plans, prior work measures simi-
larity between textual plans and captions from vi-
sual plans, encountering similar limitations (Lu
et al., 2024). To the best of our knowledge, there is
currently a lack of automatic frameworks for evalu-
ating the quality of multimodal plans. To address
this gap, we propose T-PlanScore for task com-
pletion and CA-Score for cross-modal alignment
evaluation. Additionally, we introduce a visual
reordering task to assess temporal coherence.

3 Method

The goal of MPP is to generate a sequence of steps,
each with a textual and visual component, that to-

gether achieve a high-level task goal. Given a high-
level goal instruction Gt that outlines the task, the
objective is to generate a sequence of low-level
steps S = {s1, s2, . . . , sn}, where n denotes the
number of steps. Each step si comprises a textual
description ti and a corresponding step image vi,
denoted as (ti, vi). The step-wise textual and vi-
sual plans are denoted as T ={t1, t2, . . . , tn} and
V={v1, v2, . . . , vn}, respectively.

3.1 MMPlanner Overview

We introduce MMPlanner, a method for generating
a multimodal plan S = (T ,V) from a given task
goal Gt, consisting of (1) a Textual Plan Generator
that produces a sequence of textual steps T from
goal Gt, (2) an Image Description Generator that
produces detailed image descriptions D from tex-
tual steps T , capturing both explicit and implicit
object state changes, and (3) a Visual Plan Genera-
tor that generates visual plans V from descriptions
D. An overview is shown in Figure 2.

3.2 Textual Plan Generator

Recent advancements in LLMs (Taori et al., 2023)
have facilitated the generation of step-by-step tex-
tual plans from a high-level goal (Lu et al., 2024;
Wang et al., 2023; Sun et al., 2023; Yuan et al.,
2023). However, text-only goal instructions Gt of-
ten under-specify the task and omit visual cues
such as object appearances or spatial configura-
tions that are crucial for accurate plan generation.
These missing cues can lead to ambiguous or in-
complete plans, especially in tasks requiring im-
plicit state reasoning. To address this, we enhance
task comprehension by extending goal instructions
Gt to include a corresponding visual goal Gv, gen-
erated using Stable Diffusion (Rombach et al.,
2022). The resulting multimodal goal is denoted
as G=(Gt,Gv), where Gt and Gv represent textual
and visual goals, respectively. We then utilize a
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VLM (Liu et al., 2023) to generate a step-by-step
textual plan T from G.

3.3 Image Description Generator

While Text-to-Image (T2I) generation models can
produce images from the information explicitly
present in the textual descriptions (Rombach et al.,
2022), they struggle to interpret implicit state
changes from textual steps. For example, when
prompted with the step instructions “3. Add 1
cup of unsalted butter, cut into small pieces, and
mix until the mixture is crumbly”, Stable Diffu-
sion produces an image of butter, unable to infer
the concept of a “mixture” due to the lack of ex-
plicit information present in the prompt. To address
this limitation, following recent works (Niu et al.,
2024; Menon and Vondrick, 2022), we employ an
LLM (Brown et al., 2020) to generate image de-
scriptions from textual plans, leveraging inherent
commonsense knowledge. Specifically, we feed the
LLM with each textual step along with the overall
goal and previous steps to offer additional context
and enable it to infer implicit object state changes.
A corresponding simple prompt for generating im-
age descriptions is as follows:
Prompt:
In the process of [goal], current step is [step].
The previous steps are [prev_steps]. Describe an
image containing the items involved in the
current step, after completing the current step.
Focus on the items and their physical states.
Answer: <Image Description>

However, with this prompt, the model neglects key
details like texture and often struggles to contex-
tualize previous steps as background information,
thereby tending to include extraneous details from
previous steps in the image description of the cur-
rent step. For instance, for the input [step] illus-
trated in Figure 3, the above prompt generates:
“The image shows a bowl of bread flour mixture with small

pieces of unsalted butter. The flour is white and powdery,

while the salt and garlic powder are both fine grains”.
Here, the model overlooks the texture “crumbly
mixture” and hallucinates irrelevant details about
flour, salt, and garlic powder from previous steps.
Chain-of-Thought Prompting with Object State
Reasoning (OSR-CoT): To address these chal-
lenges, inspired by (Niu et al., 2024), we introduce
OSR-CoT, a Chain-of-Thought (CoT) prompting
strategy designed to reduce hallucinations by guid-
ing the model through a stepwise reasoning process.
First, OSR-CoT prompts the model to describe the
current step in detail, incorporating relevant back-
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Figure 3: Image Description Generator. Our proposed
OSR-CoT prompts the LLM to include both explicit
(red) and implicit (green) state changes of the associated
objects in the generated image description.

ground information from the overall goal and pre-
vious steps. Next, OSR-CoT instructs the model
to reason about object state changes before and af-
ter the current step. Finally, it directs the model
to incorporate these state changes into a coherent
image description. As illustrated in Figure 3, OSR-
CoT generates concise image descriptions, includ-
ing both explicit and implicit object state changes.
Unlike the previously introduced simple prompt,
the image description generated by OSR-CoT (Fig-
ure 3) is concise without unnecessary hallucinated
information. We denote the sequence of generated
image descriptions as D = {d1, . . . , di, . . . , dn}
where n is the total number of steps and di is the
image description for the i-th step.

3.4 Visual Plan Generation

Given a step image description di, we generate
a corresponding step image vi using Stable Diffu-
sion (Rombach et al., 2022). Since Stable Diffusion
is a stochastic generative model, prompting it mul-
tiple times with the same description di yields a
set of diverse images Ii={Ii1, . . . , Iik, . . . , IiK}.
Empirically, we observe that while some samples
accurately reflect the fine-grained attributes in di,
others may miss key visual details. As shown in
Figure 4, only I2 captures both the “crumbly” tex-
ture and the “mixture” mentioned in the description,
whereas I1 and IK fail to depict these elements. To
ensure consistency and visual fidelity across steps,
we sample multiple candidates and select the one
that best aligns with the textual description.
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K Images sampled from the T2I generation model

A bowl of a crumbly mixture made from bread flour,
salt, garlic powder, and small pieces of unsalted butter.

Figure 4: Cross-modal Step Image Selection show-
ing multiple images generated with SD given the same
image description as prompt for step “3. Add 1 cup
of unsalted butter, cut into small pieces, and mix until
the mixture is crumbly”. Here, I2 successfully captures
“crumbly” and “mixture” textures (blue bbox), whereas
I1 and IK fail to incorporate these fine-grained details.

We introduce a cross-modal selection strategy to
choose the best image from Ii. Each image sample
is assigned a similarity score based on its alignment
with the description di in the feature space. To map
di and Ii into a shared feature space, we utilize a
pretrained BLIP-2 (Li et al., 2023) feature extractor.
In BLIP-2, a Querying Transformer (Q-Former) is
trained to bridge the gap between a frozen image
encoder and an LLM, where the objective is to gen-
erate a visual feature representation that is relevant
to the prompt and interpretable by the LLM. Let
fdi and fik denote the BLIP-2 feature embeddings
of the image description di and the k-th sampled
image Iik, respectively, where 1 ≤ k ≤ K. We
select an image based on cross-modal similarity
argmaxk sim(fik, fdi), where sim(·, ·) refers to
cosine similarity. This process is repeated for all
steps to obtain the final visual plan V consisting of
all generated step images.

4 MPP Evaluation

LLMs have demonstrated strong performance on
complex reasoning tasks, motivating their use as au-
tomated evaluators that often surpass human work-
ers in efficiency (Gilardi et al., 2023). Building
on this insight, we introduce CA-Score, which
measures the alignment between each textual step
and its corresponding visual depiction, and T-
PlanScore, which evaluates whether a generated
textual plan is both task-consistent and logically
coherent. In practice, T-PlanScore completes eval-
uation in an average of 0.7 seconds per task, com-
pared to approximately 5 minutes for human anno-
tators. For complex tasks (e.g., “How to weave a
rag rug?”), human evaluation takes a longer time

due to domain-specific knowledge requirements.
Similarly, for CA-Score, each step-level evaluation
completes in about 1 minute, representing a 66%
reduction in time compared to human assessment,
which averages 3 minutes. These results highlight
the efficiency and practicality of LLM-based evalu-
ation for multimodal planning tasks.
T-PlanScore. Prior approaches to textual plan eval-
uation often rely on semantic similarity to reference
plans (Lu et al., 2024), which may not fully cap-
ture planning accuracy or temporal coherence. We
propose T-PlanScore, a reference-free method that
prompts a language model (Brown et al., 2020) to
assess how well a generated plan aligns with the
overall task goal. The prompt guides the model
to consider both procedural correctness and logi-
cal step ordering. Empirically, we find that higher
T-PlanScore values correspond to more coherent
plans that accurately reflect the intended procedure.
CA-Score. Cross-modal alignment between tex-
tual and visual plans is often evaluated using
similarity-based metrics such as CLIPScore (Hes-
sel et al., 2021) or Sentence-BERT (Reimers and
Gurevych, 2019), computed between generated vi-
sual captions and reference textual plans (Lu et al.,
2024). While effective for coarse semantic match-
ing, these methods may fail to capture finer-grained
alignment, such as implicit object state changes not
explicitly described in the text. To address this,
we leverage multimodal language models, which
have shown strong cross-modal reasoning capabil-
ities (Zhu et al., 2023; Liu et al., 2023). Inspired
by recent work on text-to-image evaluation (Huang
et al., 2024), we employ a VLM with Chain-of-
Thought (CoT) to assess cross-modal alignment at
the step level. Specifically, we prompt the model
to describe the contents of a generated image and
compare the resulting description with the corre-
sponding step text, evaluating alignment in terms
of depicted actions and object states. We refer to
the resulting score as CA-Score.
VS-Ordering. To assess the informativeness and
temporal coherence of visual plans, we addition-
ally introduce a visual step reordering task. Given
an unordered sequence of visual steps, the objec-
tive is to recover their correct temporal order. This
task provides a direct measure of how well the
visual outputs capture procedural structure. A re-
lated task was proposed by Wu et al. (2022), who
introduced multimodal instruction sequencing in-
volving both textual and visual inputs. However,
we find that including text in the sequence biases
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Model
RECIPEPLAN WIKIPLAN

T-PlanScore ↑ S-BERT ↑ WMD ↑ METEOR ↑ T-PlanScore ↑ S-BERT ↑ WMD ↑ METEOR ↑
Text-Ref+SD 73.85 0.72 0.13 0.09 62.53 0.78 0.70 0.20
GPT-3.5+SD 80.43 0.73 0.86 0.14 81.93 0.75 0.77 0.09
TIP 82.00 0.73 0.86 0.14 83.00 0.78 0.77 0.09
MMPlanner 82.05 0.78 0.88 0.15 84.43 0.77 0.75 0.23

Table 1: Textual Evaluation on RECIPEPLAN and WIKIPLAN. Across both datasets, MMPlanner consistently
surpasses or achieves competitive performance against baselines.

evaluation toward the textual modality, limiting
sensitivity to visual quality (Appendix D). To ad-
dress this, our formulation focuses solely on the
visual modality, enabling the evaluation of visual
procedural understanding independent of textual
cues. We adopt a pretrained visual sequencing
model (Wu et al., 2022) that consists of a CLIP
image encoder and an order decoder based on the
BERSON framework (Cui et al., 2018). The vision
encoder is trained with self-supervised objectives
such as masked language modeling, patch-based
image swapping, and sequential masked region
modeling. For each visual plan, we randomly shuf-
fle the step order and use the model to predict the
correct sequence. Figure 1 illustrates an example.

5 Experiments

We evaluate MMPlanner on the RECIPEPLAN

and WIKIPLAN (Lu et al., 2024) datasets.
RECIPEPLAN consists of 1,000 recipe tasks
adapted from RecipeQA (Yagcioglu et al., 2018),
where each task includes a goal (taken from the
recipe title) and a sequence of text-image pairs rep-
resenting procedural steps. WIKIPLAN contains
1,000 tasks sourced from WikiHow articles, where
the article title serves as the goal, the main body
text forms the textual plan, and accompanying im-
ages comprise the visual plan. We conduct experi-
ments comparing MMPlanner with TIP (Lu et al.,
2024), a dual prompting MPP method that inte-
grates procedural knowledge from LLMs and T2I
models by prompting both twice during inference.
We also compare against two baselines from TIP:
(1) GPT-3.5+SD, which independently generates
textual plans using GPT-3.5 and visual plans us-
ing Stable Diffusion (SD); and (2) Text-Ref+SD,
which generates images with Stable Diffusion (SD)
from brief step titles instead of detailed steps.

Our evaluation is structured across three dimen-
sions: (i) textual planning, which assesses the
accuracy and coherence of the generated textual
plan; (ii) cross-modal alignment, which evaluates

Model
RECIPEPLAN WIKIPLAN

CA-Score ↑ CLIPScore ↑ CA-Score ↑ CLIPScore ↑
Text-Ref+SD 70.81 60.68 61.61 65.42
GPT-3.5+SD 71.49 73.00 63.18 71.08
TIP 67.68 73.09 63.30 72.17
MMPlanner 77.07 77.44 69.23 76.10

Table 2: Cross-Modal Step-level Evaluation on
RECIPEPLAN and WIKIPLAN. MMPlanner improves
cross-modal alignment between visual and textual steps.

the relevance between each visual step and its cor-
responding text; and (iii) visual ordering, which
measures the temporal consistency and informa-
tiveness of the visual plan. Implementation details
can be found in Appendix A.

5.1 Quantitative Evaluation
Textual Evaluation. We employ T-PlanScore
to assess planning accuracy, alongside stan-
dard text similarity metrics Sentence-BERT (S-
BERT) (Reimers and Gurevych, 2019), Word
Movers Distance (WMD) (Kusner et al., 2015),
and METEOR (Banerjee and Lavie, 2005). Table 1
compares MMPlanner against baselines. Overall,
MMPlanner achieves strong performance across
both datasets. On T-PlanScore, GPT-3.5+SD, TIP,
and MMPlanner perform similarly, reflecting the
effectiveness of LLMs in producing coherent goal-
aligned textual plans. In contrast, Text-Ref+SD
performs worse due to the limited information avail-
able in step titles used as input. Unlike reference-
based metrics, T-PlanScore does not rely on a
fixed ground-truth sequence. Instead, it provides
a reference-free assessment of how well the gener-
ated plan aligns with the task goal, accommodating
multiple valid solution paths. On feature similarity
metrics (S-BERT, WMD, METEOR), MMPlanner
consistently outperforms baselines, particularly on
RECIPEPLAN, indicating strong semantic align-
ment with the reference plans.
Cross-modal Step-Level Evaluation. We evalu-
ate step-level cross-modal alignment using CLIP-
Score (Hessel et al., 2021) and our proposed CA-
Score. As shown in Table 2, MMPlanner out-
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Model RECIPEPLAN WIKIPLAN

Acc ↑ LCS ↑ τ ↑ Dist. ↓ MS ↓ WMS ↓ Acc ↑ LCS ↑ τ ↑ Dist. ↓ MS ↓ WMS ↓
Text-Ref+SD 22.60 2.09 0.04 7.76 2.66 6.07 19.70 2.80 0.01 7.87 2.78 6.43
GPT-3.5+SD 21.65 1.83 0.03 7.78 2.63 5.99 18.95 2.69 0.01 7.66 2.67 6.23
TIP 21.70 1.81 0.05 7.79 2.66 5.99 18.79 2.83 0.02 7.92 2.75 6.30
MMPlanner 27.50 3.09 0.22 6.51 2.39 4.99 23.43 2.91 0.05 7.60 2.60 5.90

Table 3: Visual Sequence Ordering (VS-Ordering) Evaluation. MMPlanner consistently outperforms baselines.

performs all baselines on both datasets. On CA-
Score, MMPlanner improves over TIP by 11.9%
on RECIPEPLAN and 9.37% on WIKIPLAN. Ad-
ditionally, our Cross-modal Step Image Selector
yields CLIPScore improvements of 6.1% and 5.5%
over TIP on RECIPEPLAN and WIKIPLAN, respec-
tively. These results demonstrate that MMPlan-
ner produces visual plans that are more semanti-
cally aligned with their corresponding textual steps.
Importantly, CA-Score shows stronger correlation
with human ratings (ρ = 0.57) compared to CLIP-
Score (ρ = 0.37) (details in Appendix D.3), under-
scoring the reliability of our proposed metric.
Visual Ordering. We evaluate the temporal coher-
ence of generated visual step sequences on the VS-
Ordering task with six established ordering metrics:
Accuracy (Acc), Distance (Dist), Minimum Swap
(MS), Weighted Minimum Swap (WMS), Longest
Common Subsequence (LCS), and Kendall’s Tau
(τ ) (Lapata, 2003). Detailed metric definitions
can be found in Appendix B. Table 3 reports re-
sults on both datasets. On RECIPEPLAN, MMPlan-
ner outperforms all methods by substantial mar-
gins, achieving gains of 26.7%, 16.4%, 10.15%,
and 16.7% over the second-best method (TIP)
on Accuracy, Dist, MS, and WMS, respectively.
On WIKIPLAN, MMPlanner shows consistent
improvements over TIP with relative gains of
24.7%, 4.0%, 5.5%, and 6.3% on the same met-
rics. On RECIPEPLAN, MMPlanner surpasses TIP
by 47.85% in LCS and by over 340% in Kendall’s
Tau, further indicating stronger global temporal
consistency in the generated visual plans.
Inference Comparison. TIP requires two sequen-
tial prompts for text-to-image and image-to-text
models, resulting in increased inference time. In
contrast, MMPlanner integrates reasoning over pre-
vious steps and object states directly via OSR-
CoT, eliminating the need for dual prompting and
significantly streamlining inference. As a result,
MMPlanner achieves an average inference time of
52.02 seconds, compared to 96.77 seconds for TIP
— a relative reduction of approximately 46.25%.

Model CA-Score ↑ CLIPScore ↑ Acc ↑ Dist.↓ MS ↓ WMS ↓
RECIPEPLAN

LLaVa+SD 72.02 73.87 22.10 7.71 2.70 6.41
+ OSR-CoT 75.15 75.12 25.50 7.03 2.53 5.16
+ Previous Steps 75.27 75.19 26.80 6.82 2.48 5.03
+ CM Sel. (MMPlanner) 77.07 77.55 27.50 6.51 2.39 4.99

WIKIPLAN
LLaVa+SD 71.65 72.83 22.01 7.70 2.62 6.06

+ OSR-CoT 74.58 74.27 22.29 7.66 2.61 5.98
+ Previous Steps 75.70 74.35 23.17 7.78 2.60 6.16
+ CM Sel. (MMPlanner) 77.48 76.10 23.43 7.60 2.60 5.90

Table 4: Ablation on MMPlanner Components. MM-
Planner’s components collectively improve cross-modal
alignment and temporal coherence.

5.2 Ablation Studies

We conduct ablation studies to analyze the contri-
butions of MMPlanner components (Section 5.2
and Appendix C). We evaluate: (1) the impact of
each MMPlanner module; (2) the importance of
different components within the OSR-CoT prompt;
(3) the effectiveness of BLIP-2 as a cross-modal
feature extractor; (4) the influence of the sampling
hyperparameter K in visual selection; and (5) the
role of the visual goal in textual plan generation.
We further validate our proposed evaluation by: (1)
assessing the reliability of T-PlanScore; (2) evaluat-
ing the correlation between CA-Score and human
judgments; and (3) analyzing robustness across dif-
ferent LLMs/VLMs (Appendix D).
MMPlanner Components. We conduct an abla-
tion to evaluate the contribution of each module
in MMPlanner. We begin with a baseline variant,
LLaVa+SD, where textual plans are generated us-
ing LLaVa and directly passed to Stable Diffusion
(SD) to produce visual steps. We then integrate the
Image Description Generator component with Ob-
ject State Reasoning via Chain-of-Thought prompt-
ing (OSR-CoT), without conditioning on previous
steps. Next, we incorporate prior step context into
OSR-CoT (Previous Steps), followed by the inte-
gration of our Cross-modal Step Image Selection
module (CM Sel.). As shown in Table 4, each
component incrementally improves performance,
with the full model (MMPlanner) achieving the
highest scores in both cross-modal alignment and
VS-Ordering. Notably, the introduction of OSR-
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Figure 5: Qualitative Comparison TIP vs. MMPlanner on RECIPEPLAN task “How to make broiled grapefruit
recipe”. Explicit state changes are those clearly described in the textual step and expected in the visual step. Implicit
state changes are not explicitly stated in the step text but are necessary to convey in the visual step. Left: TIP fails
to accurately reflect both explicit and implicit object state changes in visual steps (red text and bboxes). Right:
MMPlanner captures both explicit (blue) and implicit (green) object state changes. Explanations in orange text.
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Figure 6: User Study MMPlanner vs. TIP. Multi-
modal plans evaluated by participants across four di-
mensions. Bars present percentage of wins and ties.

CoT leads to a substantial gain in CA-Score on both
RECIPEPLAN and WIKIPLAN, underscoring the
value of structured image descriptions. While im-
provements on VS-Ordering are more modest for
WIKIPLAN, the inclusion of OSR-CoT, previous
step context, and CM Sel. still results in consistent
gains across Acc., Dist., and WMS.

5.3 Human Evaluation
We conduct a user study to compare MMPlanner
and TIP across four key dimensions: 1) Planning
Accuracy, i.e., whether following the multimodal
plan would successfully complete the task; 2) Vi-
sual Informativeness, i.e., how well the visual
steps support task execution; 3) Temporal Coher-
ence, i.e., whether the steps are presented in a log-
ical order; and 4) Cross-modal Alignment, i.e.,
the consistency between each step image and its
corresponding textual step. We conducted a human
evaluation with 26 participants who assessed mul-
timodal plans generated by TIP and MMPlanner

across 12 distinct tasks. Each participant compared
plans from both models across four key dimensions,
resulting in a total of 1,248 pairwise judgments.
For each task, participants were presented with two
unlabeled step-by-step multimodal plans, one from
each model, alongside the high-level task objec-
tive and were asked to choose their preferred plan
based on four criteria: (i) accuracy of the steps
in achieving the task goal; (ii) visual informative-
ness of each step; (iii) temporal coherence across
steps; and (iv) alignment between textual and vi-
sual modalities. This setup ensures an unbiased
and comprehensive evaluation of plan quality. As
shown in Figure 6, MMPlanner receives consis-
tently higher preference across all evaluation cri-
teria, demonstrating improved planning accuracy,
visual clarity, temporal structure, and visual-text
consistency compared to TIP.

5.4 Qualitative Evaluation

We compare multimodal plans generated by TIP
and MMPlanner. Figure 5 presents example step-
by-step plans for the task “How to make broiled
grapefruit recipe”. TIP’s visual steps often fail to
capture key object state changes, both explicit and
implicit, as described in the textual instructions.
This observation aligns with its lower CA-Score
scores. In contrast, MMPlanner generates visual
steps that more accurately reflect the described ex-
plicit (highlighted with blue color) and implicit
(highlighted with green color) object states. Fur-
thermore, the visual plan produced by MMPlan-
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ner is qualitatively closer to the ground truth plan,
demonstrating better alignment between text and
image modalities and stronger procedural under-
standing. Additional examples in Appendix E.

6 Broader Impacts

This work aims to advance the deployment of mul-
timodal generative models, such as LLMs and text-
to-image models, for real-world, step-by-step task
assistance. Our goal is to make task-driven assistive
technology more practical and accessible, partic-
ularly for users who benefit from visual guidance.
We acknowledge the limitations of generative mod-
els, especially their susceptibility to hallucination
and misinformation. To address this, OSR-CoT
encourages grounded reasoning by decomposing
tasks into smaller, verifiable steps, reducing the risk
of unsupported outputs. Future directions could fo-
cus on integrating external knowledge verification
to further enhance the reliability and trustworthi-
ness of AI-generated multimodal plans.

7 Limitations

MMPlanner leverages LLMs and VLMs for mul-
timodal plan generation and evaluation via T-
PlanScore and CA-Score. However, hallucinations
remain a known limitation of LLMs (Xu et al.,
2024). This issue is most evident before applying
OSR-CoT (Section 3.3). For example, the gener-
ated description of the task “How to make cheese
garlic pull-apart bread?” (Figure 7) for step 5 is “A
bowl of dough mixture is forming. Flour and butter
can be seen in the background” without OSR-CoT,
showing that the LLM introduces unrelated details
about flour and butter from earlier steps. In contrast,
OSR-CoT yields “The milk mixture being slowly
stirred into the dry ingredients”, more accurately
aligning with the step’s intent and focusing on what
is relevant (ingredients, processes, etc) for that spe-
cific step. This shows how OSR-CoT reduces hal-
lucinations and improves step relevance. OSR-CoT
improves object state reasoning, but MMPlanner
does not explicitly enforce visual consistency for
peripheral elements such as cookingware shape or
material. For instance, in Figure 7, the bowl de-
picted in steps 2, 3, and 5 varies in appearance.
MMPlanner inherits limitations from Stable Diffu-
sion, particularly its inability to render concepts ab-
sent from its training data. For example, given the
step “Beat the egg with a fork” from the task “How
to make an omelet”, the model fails to generate an

accurate depiction of a “beaten egg”. Addressing
such inconsistencies remains an avenue for future
work. Finally, while T-PlanScore shows consistent
monotonic trends under plan degradations, its ab-
solute calibration can be imperfect. In some cases,
low-quality plans (e.g.with many deleted steps) still
receive high scores. This reflects a broader limita-
tion of LLM-based evaluators, where prompt ad-
herence and human alignment are not guaranteed.
Future work could improve calibration through
human feedback, refined prompts, or preference-
based fine-tuning. As multimodal LLMs continue
to improve, they offer potential for better MPP eval-
uation frameworks, but further work is needed to
refine both generation and evaluation.

8 Conclusion

We present MMPlanner, a zero-shot multimodal
procedural planning method using OSR-CoT
prompting to capture explicit and implicit object
state changes. To evaluate generated plans, we pro-
pose an automatic evaluation that assesses planning
accuracy, cross-modal alignment, and temporal co-
herence. Experiments show MMPlanner generates
accurate and coherent multimodal plans.
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A Implementation Details

We employ LLaVa-1.5-7B (Liu et al., 2023)
and GPT-3.5 (Brown et al., 2020) for the Tex-
tual Plan Generator (Section 3.2) and Image De-
scription Generator (Section 3.3), respectively.
For T-PlanScore and CA-Score, we utilize GPT-
3.5 (Brown et al., 2020) and MiniGPT-4 (Zhu et al.,
2023), respectively. Prompts are described below.
Textual Plan Generator: Given a multimodal
goal, we construct a prompt that asks the VLM
to generate a textual step-by-step plan, i.e.,

Using the image as a reference, and goal
"How to make garlic pull-apart bread?",
give step-by-step brief instructions,
according to the following format:
1. Start each step with the step number.
2. 1 sentence of 50 words maximum for each step.

Image Description Generator. We introduce
Chain-of-Thought with Object State Reasoning
(OSR-CoT) prompting designed to generate de-
scriptions for visual steps based on textual instruc-
tions. To manage token limitations in GPT-3.5, we
cap the number of prior steps ([prev_steps]) used
as background information to 10, closely matching
the average number of ground truth steps (8.92).
The prompt also includes an in-context example
to guide the model’s reasoning. For example, the
OSR-CoT prompt and in-context example for
the [goal] “How to make cheesy garlic pull-apart
bread” and example [step] “3. Add 1 cup of un-
salted butter, cut into small pieces, and mix until
the mixture is crumbly” is as follows:

First, describe details of [step] for [goal]
with one verb. Use [prev_steps] for
background information.
Second, use 3 sentences to describe the state
changes of objects before and after [step],
avoiding using [verb].
Third, write description of the [step] image
containing the 3 sentences after [step].
[goal]: Task: How to make fried egg with cheese.
[step]: 3. Pour a small amount of butter

or oil into the pan.
[prev_steps]: 1. Crack an egg into a bowl.

2. Heat a non-stick frying pan
on medium heat.

Description:
Pour a small amount of butter or oil into a pan.
Before:
- An egg is cracked in a bowl.

- Non-stick frying pan is heated on medium heat.
- The pan is empty without any butter/oil in it.
After:
-The butter or oil is in the pan.
- The pan is coated with butter or oil.
- The pan is ready for cooking the egg.
Image Description:
A non-stick frying pan with butter or oil
poured into it.

[goal]: How to make a cheesy garlic pull-apart
bread?

[step]: 3. Add 1 cup of unsalted butter, cut
into small pieces, and mix until the
mixture is crumbly.

[prev_steps]: 1. Preheat oven to 375°F (190°C).
2. In a large mixing bowl, combine
2 cups of bread flour, 1 tsp salt,
and 1 tsp of garlic powder.

Description: ....

T-PlanScore. We utilize the following prompt tem-
plate for computing the T-PlanScore:

You are my assistant in evaluating the alignment
between the overall goal [goal] and the
step-by-step instructions [steps].
[goal]: How to make tomato chutney?
[steps]: 1. Gather Ingredients ..........
Evaluate how well [goal] aligns with [steps]
Give a score from 0 to 100, according to
the following criteria:
100:[steps] perfectly describe the steps for

completing [goal].
80: [steps] mostly describe the steps for

completing [goal] but with minor
discrepancies in the step ordering.

60: [steps] describe the steps for completing
[goal], but missed some important steps.

40: [steps] didn't describe steps for completing
[goal] as it has discrepancies in step
ordering and missed few important steps.

20: [steps] completely failed to describe the
steps for completing the [goal] as it has
lots of discrepancies in step ordering and
missed a lot of important steps.

Provide your analysis and explanation in JSON
format with the following keys:
score, explanation.

The LLM returns a JSON-formatted output with
“score” and “explanation” as keys.

CA-Score: For CA-Score, we prompt VLM with
two questions sequentially. First, we prompt the
model to describe the contents of the visual step.

You are my assistant to evaluate the corres-
pondence of the image to a given text prompt.
Briefly describe the image within 50 words.
Focus on the objects in the image and their
attributes, such as color, shape, texture, and
action relationships.

Then, based on the answer, we ask the model to
assign a step image-text cross-modal alignment
score using the following prompt:
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According to the image and your previous answer,
evaluate how well the image describes action in
step: [step], a subprocess of the task [goal].
Give a score from 0 to 100, according to
the following criteria:
100: the image perfectly describes the action of

[step] and object states after [step],
with no discrepancies.

80: the image portrayed most of the action of
[step] and object states after [step],
but with minor discrepancies.

60: the image depicted some action of [step]
and object states after [step] but ignored
some key parts or details.

40: the image did not depict any action of
[step] and object states after [step].

20: the image failed to convey the full action
of [step] and object states after [step].

Provide your analysis and explanation in JSON
format with the following keys:
score and explanation.

B Evaluation Metrics

Cross-modal Step-level Evaluation. We utilize
CLIPScore (Hessel et al., 2021), i.e.CLIP embed-
ding similarity between visual and textual steps,
and our proposed CA-Score that accounts for align-
ment in object states and implied actions. CLIP-
Score was originally designed for image caption-
ing and hence may underperform in MPP settings
where visual steps contain implicit cues or elements
not explicitly stated in the corresponding text. We
report average CLIPScore and CA-Score across all
steps and tasks. Both scores are normalized to a
1–100 scale, with higher values indicating stronger
cross-modal alignment.
Textual Evaluation. In addition to T-PlanScore,
which evaluates planning accuracy and temporal
coherence, we report traditional text generation
metrics: Sentence-BERT (S-BERT) (Reimers
and Gurevych, 2019), Word Movers Dis-
tance (WMD) (Kusner et al., 2015), and ME-
TEOR (Banerjee and Lavie, 2005). S-BERT and
WMD measure feature-level similarity, and ME-
TEOR captures word-level lexical similarity be-
tween generated and reference text plans. Follow-
ing TIP, we compute WMD-based similarity over
sentence embeddings, where higher values denote
stronger alignment. All metrics are reference-based
and normalized to [0,1], whereas T-PlanScore pro-
duces reference-free scores in [0,100].
VS-Ordering. VS-Ordering evaluates predicted
step order with position-based metrics. Accu-
racy (Acc) is the percentage of steps in the cor-
rect absolute position (range 0–100), and Distance
(Dist) is the average positional deviation (Dist
≥ 0). Longest Common Subsequence (LCS)

measures the average overlap in subsequences (0
to sequence length), while Kendall’s Tau (τ ) (La-
pata, 2003) quantifies pairwise order consistency
via τ = 1 − 2 ∗ #inversion

#pairs , where #inversion is
the number of pairs in the predicted order with
incorrect relative order, and #pairs =

(
n
2

)
, with

τ ranging from –1 to 1. Minimum Swap (MS)
is the minimum number of swaps needed to re-
cover the correct order (0 to sequence length–1),
and Weighted Minimum Swap (WMS) penalizes
larger swap distances (non-negative, unbounded).
Higher Acc, LCS, and τ indicate stronger ordering,
while lower Dist, MS, and WMS indicate fewer de-
viations. Following Wu et al. (2022), we evaluate
on the first five sequence steps.

C Ablations on MMPlanner Components

C.1 OSR-CoT Prompt Ablation

OSR-CoT consists of three key components: (1) a
one-shot example illustrating the image descrip-
tion generation process (1-Shot), (2) reasoning
about the current step (Desc.), and (3) reasoning
about object state changes before and after the step
(State). To assess the contribution of each compo-
nent, we conduct an ablation study with three vari-
ants, where components are added incrementally.
In OSR-CoT-V1, the LLM is prompted to generate
an image description using only the [goal], [step],
and [prev_steps] without utilizing any of these com-
ponents. OSR-CoT-V2 adds the one-shot example
to guide the model with a concrete reference. The
detailed prompt for OSR-CoT-V2 is as follows:

Write description of the [step] image
containing the 3 sentences after [step].
Use [prev_steps] for background information.
[goal]: Task: How to make fried egg with cheese.
[step]: 3. Pour a small amount of butter

or oil into the pan.
[prev_steps]: 1. Crack an egg into a bowl.

2. Heat a non-stick frying pan
on medium heat.

Image Description: A non-stick frying pan with
butter or oil poured into it.

[goal]: How to make a cheesy garlic pull-apart
bread?

[step]: 3. Add 1 cup of unsalted butter, cut
into small pieces, and mix until the
mixture is crumbly.

[prev_steps]: 1. Preheat oven to 375°F (190°C).
2. In a large mixing bowl, combine
2 cups of bread flour, 1 tsp salt,
and 1 tsp of garlic powder.

Image Description: ....

OSR-CoT-V3 extends V2 by incorporating the
description component, prompting the model to
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Dataset Model 1-Shot Desc. State CA-Score ↑ CLIPScore ↑ Acc ↑ LCS ↑ τ ↑ Dist.↓ MS ↓ WMS ↓
R

E
C

IP
E

P
L

A
N

OSR-CoT-V1 ✗ ✗ ✗ 71.85 75.11 24.42 2.88 0.07 7.59 2.67 5.87
OSR-CoT-V2 ✓ ✗ ✗ 73.42 75.62 24.49 2.90 0.14 6.99 2.68 5.59
OSR-CoT-V3 ✓ ✓ ✗ 74.33 77.18 26.21 3.01 0.16 6.82 2.48 5.13
OSR-CoT (MMPlanner) ✓ ✓ ✓ 77.07 77.55 27.50 3.09 0.22 6.51 2.39 4.99

W
IK

I
P

L
A

N

OSR-CoT-V1 ✗ ✗ ✗ 70.31 72.98 20.10 2.80 0.02 7.90 2.70 6.30
OSR-CoT-V2 ✓ ✗ ✗ 72.11 74.67 23.17 2.98 0.05 7.67 2.66 5.97
OSR-CoT-V3 ✓ ✓ ✗ 75.42 75.59 23.72 2.82 0.04 7.71 2.69 5.87
OSR-CoT (MMPlanner) ✓ ✓ ✓ 77.44 76.10 23.43 2.91 0.05 7.60 2.60 5.90

Table 5: Ablation on OSR-CoT Components. Incrementally adding each component improves cross-modal
alignment and temporal coherence in the generated visual plans.
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Table 6: Qualitative Examples of generated descriptions by prompting with the proposed OSR-CoT method.

first describe the current step in detail before gen-
erating the corresponding image description.
First, describe details of [step] for [goal]
with one verb. Use [prev_steps] for
background information.
Second, write description of the [step] image
containing the 3 sentences after [step].
[goal]: Task: How to make fried egg with cheese.
[step]: 3. Pour a small amount of butter

or oil into the pan.
[prev_steps]: 1. Crack an egg into a bowl.

2. Heat a non-stick frying pan
on medium heat.

Description:
Pour a small amount of butter or oil into a pan.
Image Description:
A non-stick frying pan with butter or oil
poured into it.
[goal]: How to make a cheesy garlic pull-apart

bread?
[step]: 3. Add 1 cup of unsalted butter, cut

into small pieces, and mix until the
mixture is crumbly.

[prev_steps]: 1. Preheat oven to 375°F (190°C).
2. In a large mixing bowl, combine
2 cups of bread flour, 1 tsp salt,
and 1 tsp of garlic powder.

Description: ....

Finally, the full OSR-CoT prompt incorporates the
state-change component, guiding the model to rea-
son about object transitions before and after each
step. The complete prompt is provided in Ap-
pendix A. As shown in Table 5, both CA-Score
and CLIPScore improve steadily with the inclusion
of each component, underscoring their collective
role in producing accurate, state-aware image de-
scriptions. Table 6 presents qualitative examples.

Dataset FE CA-Score ↑ CLIPScore ↑ τ ↑ Dist.↓ MS ↓ WMS ↓

R
E

C
IP

E
P

L
A

N

No FE 75.27 75.19 0.16 6.82 2.48 5.03

CLIP 75.85 75.67 0.14 7.01 2.46 5.15

BLIP-2 77.07 77.55 0.22 6.51 2.39 4.99

W
IK

I
P

L
A

N

No FE 75.70 74.35 0.03 7.78 2.60 6.16

CLIP 75.76 76.00 0.04 7.67 2.64 5.97

BLIP-2 77.44 76.10 0.05 7.60 2.60 5.90

Table 7: Ablation on Cross-Modal Feature Extrac-
tors (FEs) with no feature extractor (No FE), CLIP, and
BLIP-2 for cross-modal step image selection.

C.2 Cross-modal Feature Extractor

Effectiveness of BLIP-2 as Feature Extractor. To
evaluate the impact of different cross-modal fea-
ture extractors (FEs) in step image selection (Sec-
tion 3.4), we compare: (1) No FE, which selects an
image based solely on the step image description
without any kind of cross-modal feature extraction;
(2) CLIP, a retrieval-based model; and (3) BLIP-2,
the cross-modal feature extractor used in MMPlan-
ner. As shown in Table 7, BLIP-2 consistently
outperforms other variants, likely due to its align-
ment strategies, which better capture fine-grained
visual-textual correspondence.
Ablation on Hyperparameter K. We investigate
the effect of the hyperparameter K in the cross-
modal step image selector, which determines the
number of candidate images generated per step.
Specifically, we vary K across the following val-
ues: K ∈ {1, 5, 10, 15, 20}. As shown in Table 8,
increasing K leads to consistent gains in CA-Score
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Dataset K CA-Score ↑ CLIPScore ↑ τ ↑ Dist.↓ MS ↓ WMS ↓
R

E
C

IP
E

P
L

A
N

1 75.27 75.19 0.16 6.82 2.48 5.02
5 75.34 75.30 0.19 6.76 2.44 4.93
10 75.43 75.27 0.20 6.68 2.41 4.97
15 76.05 77.24 0.20 6.64 2.41 5.00
20 77.07 77.55 0.22 6.51 2.39 4.99

W
IK

I
P

L
A

N

1 75.70 74.35 0.03 7.78 2.61 6.16
5 75.94 75.14 0.03 7.75 2.63 6.16
10 75.88 75.21 0.04 7.68 2.64 6.13
15 76.11 76.12 0.04 7.71 2.61 6.13
20 77.44 76.10 0.05 7.60 2.60 5.90

Table 8: Ablation on Cross-Modal Step Image Selec-
tion Hyperparameter K (number of generated images).

Dataset Gv T-PlanScore ↑ S-BERT ↑ WMD ↑ METEOR ↑

R
E

C
IP

E
P

L
A

N ✗ 80.88 0.75 0.76 0.10
✓ 82.05 0.78 0.88 0.15

W
IK

I
P

L
A

N ✗ 82.30 0.77 0.76 0.20
✓ 84.43 0.77 0.75 0.23

Table 9: Ablation on Multimodal Goal. Generating
textual plans w/ and w/o a Goal Image.

and CLIPScore, indicating improved alignment be-
tween selected images and step text. While im-
provements in VS-Ordering metrics are modest,
the results suggest that higher K values enhance
visual relevance and semantic fidelity w.r.t. the
corresponding step texts.

C.3 Ablation on Multimodal Goals

We conduct an ablation to analyze the role of goal
image Gv in generating textual plans. As shown
in Table 9, incorporating the visual goal consis-
tently improves performance compared to using
the textual goal alone, demonstrating that the goal
image Gv contributes complementary information
that enhances the quality of generated textual plans.

D Ablations on MPP Evaluation

D.1 Robustness of T-PlanScore and CA-Score

We evaluate T-PlanScore and CA-Score across
different LLMs and VLMs. As shown in Ta-
ble 10, MMPlanner consistently achieves the high-
est scores across all configurations, demonstrat-
ing its effectiveness independent of the underlying
evaluation model. Moreover, the consistent trends
across baselines confirm that both T-PlanScore and
CA-Score serve as stable and reliable metrics for
evaluating procedural plans.

D.2 T-PlanScore Reliability

Both RECIPEPLAN and WIKIPLAN include tasks
requiring domain expertise, such as “How to fix a
leaky faucet” and “How to pasteurize”. Given the
complexity of these tasks, human evaluation for

assessing plan accuracy would be costly and labor-
intensive. Instead, to evaluate the reliability of
T-PlanScore, we conduct an ablation study by per-
turbing LLM-generated plans using two strategies:
(i) random permutation, which shuffles the step
order; and (ii) random deletion, which randomly
removes 50% of the textual plan steps. We compute
T-PlanScore using both GPT-3.5 and LLaVa-1.5-
13B to assess its robustness across model types. As
shown in Table 11, T-PlanScore consistently de-
grades when steps are deleted or permuted, demon-
strating its sensitivity to structural disruptions in the
plan. In contrast, standard metrics such as WMD,
METEOR, and S-BERT exhibit minimal variation
and fail to capture these structural inconsistencies.
This highlights T-PlanScore’s unique ability to pe-
nalize violations in temporal coherence, which are
often overlooked by traditional text similarity met-
rics. Furthermore, we vary the deletion percentage
to test granularity. Table 12 shows T-PlanScore
increases with more complete plans, demonstrating
its sensitivity to missing steps.

D.3 CA-Score and Human Correlation
To evaluate how well CA-Score aligns with human
judgment, we conducted a human study involving
30 step-image examples: 10 from ground truth, 10
from TIP, and 10 from MMPlanner. 14 annota-
tors independently assessed each image’s relevance
to its paired textual instruction, resulting in 420
human ratings in total (30 examples × 14 raters).
Evaluations were performed on a 5-point Likert
scale, with annotators instructed to consider both
the depicted action and object states, as well as the
image’s alignment with the overarching task goal.
A score of 1 reflects an image that is irrelevant to
both the step and the overall goal, whereas a score
of 5 signifies perfect alignment with both. To eval-
uate inter-annotator agreement, we compute both
the weighted Cohen’s kappa and Spearman’s rank
correlation coefficient (Sedgwick, 2014), obtaining
scores of 0.61 and 0.67, respectively, indicating
moderately strong inter-rater agreement.

Table 13 presents the average human rating
along with CA-Score and CLIPScore for the col-
lected examples, suggesting that raters preferred
the step images generated from MMPlanner while
step images generated by TIP are perceived to be
less accurate or relevant compared to the ground
truth and MMPlanner generated plans. Finally, to
assess the alignment between automated metrics
and human evaluation, we compute Spearman’s
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Model
CA-Score T-PlanScore

RECIPEPLAN WIKIPLAN RECIPEPLAN WIKIPLAN

MiniGPT-4 LLaVa MiniGPT-4 LLaVa GPT-3.5 LLaMa GPT-3.5 LLaMa

Text-Ref + SD 71.47 55.65 70.81 54.51 73.85 71.66 62.53 55.20
GPT-3.5 + SD 72.24 56.42 71.49 55.52 80.43 85.86 81.93 85.36
TIP 70.08 54.49 67.68 55.76 82.00 87.12 83.00 90.43
MMPlanner 77.07 63.10 77.44 62.59 82.05 87.67 84.43 90.46

Table 10: Ablation on LLM/VLMs used in LM-based evaluation CA-Score and T-PlanScore.

Permute Delete RECIPEPLAN WIKIPLAN

T-PlanScore (GPT-3.5) T-PlanScore (LLaMa) WMD METEOR S-BERT T-PlanScore (GPT-3.5) T-PlanScore (LLaMa) WMD METEOR S-BERT

✓ ✓ 77.50 55.8 0.87 0.09 0.76 78.10 66.34 0.74 0.19 0.77
✗ ✓ 78.12 60.68 0.87 0.09 0.76 80.10 70.75 0.74 0.19 0.76
✓ ✗ 78.60 64.78 0.89 0.15 0.77 80.20 74.64 0.75 0.23 0.77
✗ ✗ 82.05 79.81 0.88 0.15 0.77 84.43 86.07 0.75 0.23 0.77

Table 11: Verifying T-PlanScore on MMPlanner’s textual plans with unordered or missing steps.

Deletion % RECIPEPLAN WIKIPLAN

GPT-3.5 LLaMa GPT-3.5 LLaMa

80 75.02 50.56 77.14 68.01
60 76.88 61.23 79.26 75.04
50 78.12 70.13 80.10 77.18
40 78.38 76.02 80.43 80.70
20 80.51 80.10 81.57 82.55
0 82.05 86.67 84.43 89.46

Table 12: T-PlanScore Ablation with varying % of
missing steps for plans generated by MMPlanner.

rho (ρ) for both CA-Score and CLIPScore against
human ratings, yielding a correlation of 0.57 for
CA-Score and 0.37 for CLIPScore, suggesting CA-
Score reflects human judgment better.

D.4 Motivation of VS-Ordering Task

Wu et al. (2022) propose a multimodal sequencing
task that assesses temporal coherence by predict-
ing the correct order of an unordered multimodal
plan (text and image steps). We apply this task to
evaluate the output of baseline models under the
hypothesis that more interpretable and expressive
plans would yield higher reordering accuracy. How-
ever, as shown in Table 14, all baselines perform
similarly, largely due to their accurate textual plans.
Since the sequencing model primarily relies on tex-
tual cues, improvements in visual quality have a
limited impact. To better isolate visual coherence,
we instead adopt the vision-only reordering model
from Wu et al. (2022), where gains in visual plan-
ning directly enhance task performance.

E Qualitative Examples

Figure 7 compares TIP and MMPlanner on the task
“How to make cheese garlic pull-apart bread?”.
In this example, TIP generates a generic cheese

Model CA-Score ↑ CLIPScore ↑ Human Rating ↑
GroundTruth 86.00 77.16 4.19

TIP 58.00 76.00 2.51
MMPlanner 85.00 79.19 4.19

Table 13: Comparison of CA-Score, CLIPScore, and
Human Ratings for step image-text pairs evaluated by
humans across ground truth (GroundTruth), TIP, and
MMPlanner generated plans.

Modality Model Acc ↑ LCS ↑ τ ↑ Dist.↓ MS ↓ WMS ↓

M
ul

ti
m

od
al TIP 74.20 4.34 0.80 1.80 0.75 1.02

MMPlanner 74.43 4.37 0.80 1.70 0.73 1.01

V
is

io
n

O
nl

y TIP 21.70 1.81 0.05 7.79 2.66 5.99
MMPlanner 27.50 3.09 0.22 6.51 2.39 4.99

Table 14: Comparison of Multimodal and Vision-
Only Sequence Ordering on RECIPEPLAN.

block for step 7, failing to reflect the dish-specific
context (pull-apart bread), which is not explicitly
mentioned in the text. In contrast, MMPlanner cor-
rectly depicts the baked bread in step 8, despite the
step only referring to baking the dough, demon-
strating its ability to infer object state transitions
beyond surface text. Figures 8 and 9 provide ad-
ditional qualitative examples on two WIKIPLAN

tasks, “How to Get a Sick Kitten to Eat?” and
“How to Weave a Rag Rug?”, respectively. In Fig-
ure 8, while all TIP-generated images include a
kitten, they lack consistency across steps (e.g., step
5) and often omit explicit objects mentioned in the
text, such as the dish/bowl in step 1 and the food in
step 4. MMPlanner produces step images that more
faithfully reflect the textual instructions and main-
tain higher visual consistency. In Figure 9, TIP
fails to infer implicit object state information such
as “rag rug” in step 5. MMPlanner, however, in-
cludes the rug in steps 5-6, demonstrating its ability
to maintain visual consistency across step images.
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Figure 7: Qualitative Comparison between TIP and MMPlanner on RECIPEPLAN for the task goal “How to
make cheese garlic pull-apart bread”. Left: In step 7, TIP fails to incorporate the dough state in the generated
step image, as it was not mentioned in the textual step (orange text). Moreover, in step 6, TIP does not depict the
“shredded cheese” in the step image, which is explicitly mentioned in the textual step (red text and bboxes). Right:
In step 9, MMPlanner depicts the correct state of “baked loaf” (green) even if it was not mentioned in the textual
step (orange text). In step 3, the generated step image illustrates the explicit object state “crumbly” (blue).
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Figure 8: Qualitative Comparison between TIP and MMPlanner on WIKIPLAN for the task goal “How to
Get a Sick Kitten to Eat”. Left: In step 1, TIP fails to incorporate the explicit object states in the generated step
image (red texts and boxes). Right: In step 1, MMPlanner incorporates the explicit state of the foods (blue).

Step 6. If the kitten
continues to refuse
food, consult a
veterinarian for
advice on how to
proceed. Note: It is
important to monitor
the kitten's health
and behavior.

Step 5. If the kitten
does not eat the food,
try offering it again in
a few hours or when
the kitten appears
more hungry.

Step 1. Offer the
kitten a small amount
of food, such as a
piece of chicken or a
small treat, to
encourage it to eat.

Step 2. Hold the food
in your hand and let
the kitten sniff it,
allowing the kitten to
become familiar with
the scent.

Step 3. Gently place
the food on the
kitten's nose or
mouth, making sure it
is not too close to the
kitten's eyes or face.

Step 4. Wait patiently
for the kitten to eat
the food, offering
encouragement and
praise when the kitten
starts eating.

Step 1. Gather
supplies: Before
attempting to feed a
sick kitten, make
sure.. This includes
wet food appropriate
for kittens, a small
dish or bowl, and a
syringe (if needed).

Step 2. Create a
comfortable
environment: Sick
kittens may not feel
like eating if they are
stressed or
uncomfortable....

Step 3. Determine
how much food to
offer: The amount of
food your sick kitten
needs will vary
depending on its age
and size. Consult ..

Step 4. Offer enticing
smells: If the kitten
has no appetite, try
offering foods with
strong aromas such
as canned tuna or
chicken baby food.

Step 5. Warm up the
food: Cats are more
likely to eat warm
meals than cold ones
so consider heating
up their food before
offering it to them.

Step 6. Use an
appetizer stimulant
(optional): Some cats
may benefit from an
appetite stimulant
prescribed by their
veterinarian if they
refuse to eat at all.

Step 1. You may offer
it small amounts of
food at a frequent
intervals.....

Step 2. Change your
kitten’s food
brand......

Step 5. Do not try to
hide the medicine in
your kitten’s food......

Step 6. Make sure
kitten stays
hydrated......

Step 3. Ask your
veterinarian about a
convalescent diet......

Step 8. Try feeding
your kitten via syringe.

Step 7. Try finger
feeding your kitten.....

Step 4. You can try
heating the food......

TIP MMPlanner
How to Get a Sick Kitten to Eat?

Ground Truth

Figure 9: Qualitative Comparison between TIP and MMPlanner on WIKIPLAN for the task goal “How to
weave rag rug”. Left: In step 1, TIP fails to incorporate the explicit object states in the generated step image (red
texts and boxes). Moreover, in step 5, the step image does not contain the implicit object information “rag rug”
(orange text). Right: In step 1, MMPlanner incorporates the explicit state of the ingredients (blue). In step 6, the
generated step image includes the implicit object state “finished rag rug” (green).
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