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Abstract

Understanding temporal relations between
events in a text is essential for determin-
ing its temporal structure. Recent advance-
ments in large language models (LLMs) have
spurred research on temporal relation extrac-
tion. However, LLMs perform poorly in zero-
shot and few-shot settings, often underperform-
ing smaller fine-tuned models. Despite these
limitations, little attention has been given to
improving LLMs in temporal structure extrac-
tion tasks. This study systematically examines
LLMs’ ability to extract and infer discourse-
level temporal relations, identifying factors in-
fluencing their reasoning and extraction capa-
bilities, including input context, reasoning pro-
cess and ensuring consistency. We propose a
three-step framework to improve LLMs’ tem-
poral relation extraction capabilities: context
selection, prompts inspired by Allen’s inter-
val algebra (Allen, 1983), and reflection-based
consistency learning (Shinn et al., 2024). Our
results show the effectiveness of our method in
guiding LLMs towards structured processing
of temporal structure in discourse.

1 Introduction

Temporal relations describe the interaction between
events along the temporal dimension, forming a
crucial aspect of natural language understanding.
Humans can encode temporal information in lan-
guage, using various linguistic expressions to con-
vey time-related concepts. Beyond mere extraction
of explicit temporal markers such as before and
after, humans leverage their linguistic competence
and cognitive reasoning to interpret time in lan-
guage, constructing a coherent mental timeline of
events. This allows them to infer implicit tempo-
ral relations, even when direct temporal cues are
absent or ambiguous (Zhang and Hudson, 2018;
Klein, 1994, 2009). In contrast, LLMs encode tex-
tual information in a high-dimensional latent space,

capturing intricate semantic patterns without an ex-
plicitly defined mechanism for understanding time.

Extracting temporal structures is essential in a
wide range of NLP applications, including docu-
ment summarisation (Ng et al., 2014), storyline
construction (Do et al., 2012; Minard et al., 2015),
and reading comprehension (Sun et al., 2018; Ning
et al., 2020).

In recent years, LLMs’ impressive text genera-
tion and processing abilities have attracted signif-
icant attention, directing extensive research into
their capabilities in various ranges of tasks. Rela-
tion extraction has emerged as a common task for
evaluating LLMs, with studies showing that LLMs
often underperform smaller fine-tuned models in
zero-shot or few-shot settings (Wei et al., 2024;
Gao et al., 2023, 2024). This issue is particularly
pronounced in temporal relation extraction, where
LLMs struggle with zero-shot and few-shot set-
tings (Hasegawa et al., 2024; Yuan et al., 2023;
Chan et al., 2024). Three critical challenges in
discourse-level temporal relation tasks remain un-
derexplored: (1) Context Selection: Recent studies
leveraging LLMs often rely on two common strate-
gies—feeding the entire document or using sliding
windows to extract context—both of which intro-
duce significant noise. (2) Performance: Even in
the fine-tuning setting, LLMs still exhibit a notable
performance gap compared to the methods based
on smaller-scale pre-trained language models (Roc-
cabruna et al., 2024), such as BERT (Devlin et al.,
2019) and RoBERTa (Liu et al., 2019). (3) Consis-
tency: While most recent work focuses on achiev-
ing high F1 scores, limited attention has been given
to evaluating and improving model consistency.
This study, motivated by prior work, is dedicated to
tackling the above-mentioned challenges. As noted
by Naik et al. (2019), extracting complete temporal
structures from discourse-level texts is complex,
labour-intensive, and costly for humans. Enhanced
LLM performance in this task can support corpus
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annotation, significantly reducing time and finan-
cial costs while advancing downstream NLP appli-
cations. We propose a three-step framework to im-
prove LLMs’ temporal relation extraction capabili-
ties: context selection, prompts inspired by Allen’s
interval algebra (Allen, 1983), and reflection-based
consistency learning (Shinn et al., 2024). Context
selection minimises noise by focusing on relevant
text and addressing LLMs’ challenges with long
contexts and distant event relations. Prompt engi-
neering inspired by Allen’s interval algebra enables
structured reasoning about temporal attributes like
start and end times. Reflection-based consistency
learning iteratively identifies and corrects inconsis-
tencies, teaching LLMs temporal coherence. The
ablation study demonstrates that our context se-
lection strategy is effective and computationally
efficient. Besides, our novel self-reflection strat-
egy improves the consistency of model predictions
and offers a new perspective for addressing consis-
tency challenges within the field. To the best of our
knowledge, we are the first to use self-reflection to
ensure consistency in the discourse-level temporal
relation extraction task. Our method enhances the
temporal relation extraction ability of LLMs and
achieves performance that surpasses the state-of-
the-art models.

2 Related Work

Before the introduction of TDDiscourse (TDD)
(Naik et al., 2019), most studies focused on local-
level corpora like TimeBank (Pustejovsky et al.,
2003) and TimeBank-dense (Cassidy et al., 2014).
While recent advancements have improved tempo-
ral relation extraction on local corpora, progress on
discourse-level datasets remains limited.

Early research relied on linguistic features such
as dependency relations and grammatical cues
(D’Souza and Ng, 2013; Mirza and Tonelli, 2014;
Chambers et al., 2007). With neural networks,
methods evolved to use BERT-R-GCN models, as
demonstrated by TIMERS (Mathur et al., 2021),
which set a strong foundation for subsequent stud-
ies (Liu et al., 2021; Wang et al., 2022a; Yuan et al.,
2024). In contrast, SCS-EERE (Man et al., 2022)
uses reinforcement learning to select relevant con-
texts, focusing only on those beneficial for tempo-
ral relation prediction, reducing noise compared to
sliding window or all-event sentence approaches.

In discourse-level extraction, the distance be-
tween events may span ten or more sentences, but

Figure 1: The above example illustrates an inconsis-
tent temporal graph and a consistent temporal graph
extracted from the same text. In the text, e1 is before e2
and e2 is before e3. Logically, if we know that e1 is be-
fore e2 and e2 is before e3, then we can easily infer that
e1 is before e3. If the system produces an inconsistent
temporal graph with e1 after e3, it means the system
does not understand the input text well.

not all provide helpful temporal cues. Poor context
selection introduces noise, hindering performance.
Besides, LLMs are susceptible to the "Lost in the
Middle" phenomenon (Liu et al., 2024), where in-
formation placed in the middle of a long document
receives diminished attention. When event pairs re-
quiring temporal relation prediction are positioned
centrally in a document, providing the entire text
as input causes further degraded performance.

Consistency is a critical yet often overlooked as-
pect in discourse-level temporal relation extraction,
which aims to construct coherent temporal graphs
from text. Inconsistent model outputs undermine
this goal by introducing contradictions among pre-
dicted relations, ultimately impairing document-
level temporal understanding (see Figure 1). Prior
work has addressed this issue via global constraints,
such as formulating it as an ILP problem (Cham-
bers and Jurafsky, 2008; Punyakanok et al., 2005;
Zhao et al., 2012; Ning et al., 2017) or applying pre-
training strategies like graph masking (Liu et al.,
2021). Although such constraints may sometimes
reduce local prediction performance, maintaining
global consistency is essential for accurate tempo-
ral graph construction.

In the domain of LLMs, Yuan et al. (2023) eval-
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uated ChatGPT1 under a zero-shot setting for tem-
poral relation extraction. However, performance
was suboptimal, mainly due to an eight-sentence
input limit, which constrained the model’s ability
to leverage broader context for reasoning. Wei et al.
(2024) comprehensively investigated LLMs’ perfor-
mance on discourse-level event relation extraction
tasks. Their study primarily focused on evaluat-
ing the models using various prompting strategies
without fine-tuning. Their findings reveal two sig-
nificant challenges. Firstly, the transitive rules are
often violated, leading to inconsistently predicted
temporal relations. Secondly, LLMs have difficul-
ties capturing long-distance event dependencies,
resulting in poor performance. Hu et al. (2025) ex-
plored fine-tuning approaches to enhance LLM per-
formance on MAVEN-ERE (Wang et al., 2022b), a
large-scale dataset encompassing temporal, causal,
subevent, and coreference annotations, and MA-
TRES (Ning et al., 2018). Despite the observed
improvements, their transitivity chains did not ex-
tend to temporal relations, and thus, the issue of
temporal consistency remains unresolved. While
Wadhwa et al. (2023) assert that LLMs should be
considered the default approach for relation ex-
traction and serve as the benchmark for evaluating
relation extraction tasks, there is currently no well-
established LLM-based baseline for discourse-level
event temporal relation extraction. To the best of
our knowledge, existing studies have yet to give
a standard method for improving LLM’s perfor-
mance in this task. Jain et al. (2023) conducted
an in-depth investigation into LLMs’ temporal rea-
soning capabilities, highlighting several key lim-
itations, including difficulties in reasoning over
long contexts, predicting future events, and under-
standing event temporal states. Chen et al. (2024)
demonstrated that while LLMs struggle with main-
taining logical consistency, their reasoning capabil-
ities can be enhanced by explicitly incorporating
logical constraints into the learning process. There-
fore, critical gaps remain in better-guiding LLMs
toward understanding implicit event temporality
and improving their consistency in temporal rela-
tion extraction tasks.

3 Method

To improve LLMs’ performance in temporal rela-
tion extraction, we propose a three-step framework:
(1) Context selection, (2) Instruction and Chain-

1https://openai.com/blog/chatgpt

of-thought (CoT) (Wei et al., 2022) prompt design
and (3) Consistency learning. Figure 2 shows an
overview of our method.

3.1 Context Selection

Feeding the entire document into an LLM risks
introducing noise, dispersing the model’s attention
and impairing its ability to focus on relevant tem-
poral cues. To address this, we employ two distinct
methods for selecting event-relevant contexts.

3.1.1 Entity-Based Discourse Segmentation
Our first step segments the input text into dis-
course segments based on entity coherence. For-
mally, the input document D consisting of a sen-
tence list S = [s1, . . . , si, . . . , sn] and an event list
E = [e1, . . . , ei, . . . , em], where n,m represent
the total number of sentences and event mentions
in the document D. We begin by applying neu-
ralcoref2 to perform coreference resolution across
the document. Next, we extract each sentence’s
subject, objects (both direct and indirect), and all
other noun and noun phrases, forming an entity
list SEi = [sei1, sei2, ..., seim], where i is the sen-
tence number and m is the number of entities se-
lected in sentence i. We measure semantic sim-
ilarity between consecutive sentences’ extracted
entities to determine discourse segmentation. As-
suming the current sentence is Si, and the following
sentence is Sj , we compute the cosine similarity
between each pair of entities in the two lists, SEi

and SEj , and select the maximum value Simij . If
Simij exceeds a predefined threshold γ, then Si

and Sj are considered part of the same discourse
segment; otherwise, they are assigned to differ-
ent segments. The segmentation algorithm follows
the procedure outlined in Appendix A. Upon com-
pletion, the document is divided into multiple dis-
course segments, DS = [ds1, ds2, ..., dsk], where
k is the total number of discourse segments in docu-
ment D. When constructing the input for temporal
relation extraction, if event e1 appears in dsi and
event e2 in dsj , we concatenate dsi and dsj as in-
put to the model. If event pairs are within the same
discourse segment (dsi = dsj), that segment is
directly selected as context without concatenation.

3.1.2 LLM-Guided Context Selection
Each sentence is annotated in the input document
with a numerical index and provides explicit in-
struction to the LLM. Then, the model identifies

2https://spacy.io/universe/project/neuralcoref

18607

https://openai.com/blog/chatgpt
https://spacy.io/universe/project/neuralcoref


Figure 2: The input documents are split into different discourse segments in step 1. If the target event pair is e11:
subjected and e18: believes, then the discourse segments, including those two events, will be concatenated and
serve as the context. Then, according to Allen’s interval algebra, in step 2, the model has to compare the start time
and end time of two events to give the prediction. After the first round of fine-tuning is done, all the predictions are
examined for consistency and form the new training data for self-reflection in step 3.

the sentences most relevant to each pair of events.
This allows the model to actively select and filter
the most important portions of the text for temporal
relation extraction for a specific event pair. The
instructions can be found in Appendix C.

3.1.3 Highlighting Target Events in Input
In order to accurately locate the target events
within the extracted text, event mentions are high-
lighted using angle brackets to ensure the model
explicitly recognises their positions within the in-
put. For instance, the original event string taking
and said in the input document are replaced by
<e1>taking</e1> and <e2>said</e2>. This in-
put design improves the model’s ability to focus on
temporal relations for a specific event pair rather
than being distracted by irrelevant content. For in-
stance, if the input has multiple words that are the
same as our target events, the model’s prediction
process is affected.

3.2 Instruction and Prompt Design

Inspired by Allen’s interval algebra (Allen, 1983),
and insights from Cohen and Bar (2023), we pro-
pose a Chain-of-Thought (CoT) prompting frame-
work that structures temporal reasoning into a step-
by-step process. Rather than directly predicting the
temporal order between two events, our approach
first decomposes the task into a granular compari-
son of event start and end points. In this framework,
the model must produce a full-sentence response
articulating its reasoning process, explicitly com-
paring the start and end times of event pairs. For ex-

ample, if the temporal relation of Event 1 to Event
2 is before, then the expected output is: Event 1
starts before Event 2 starts, and Event 1 ends before
Event 2 starts, so the temporal relation of Event 1
to Event 2 is before. By structuring the task in
this way, we reinforce a systematic inference pro-
cess, encouraging the model to anchor events on a
temporal axis and derive implicit temporal bound-
aries. This method enhances the model’s ability to
establish event sequences by reasoning over tem-
poral intervals rather than relying solely on direct
order inference. For a comprehensive breakdown
of reasoning steps, refer to Appendix C.

3.3 Consistency Learning

Previous studies have highlighted the inconsistency
of LLMs in temporal relation prediction tasks. A
widely adopted method to address this issue is In-
teger Linear Programming (ILP) (Chambers and
Jurafsky, 2008), which effectively enforces con-
sistency in encoder-based models. ILP relies on
the availability of probabilistic predictions for all
labels to optimise outcomes. However, this ap-
proach is not directly applicable to LLMs, as their
predictions are typically generated as sentences
rather than discrete probabilities for each label. In-
spired by Shinn et al. (2024) and Chen et al. (2024),
we propose a self-reflection approach that enables
LLMs to learn consistency iteratively to address
this limitation, shown in Figure 3. The first fine-
tuning phase in our framework involves standard
temporal relation prediction, where the model pre-
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Figure 3: According to the prediction generated after
the first round of fine-tuning, we check the consistency
within it. If we find inconsistent triples, we will con-
struct the new input only for the test datasets indicating
the inconsistent triples and reasons. In this process, the
new input does not include the true label, only pointing
out the inconsistent fact. Then, our model fine-tunes
again with the new input in the second round in order to
improve consistency.

dicts the relation between event pairs. After this
phase, we identify any inconsistent event triples in
the model’s predictions. These inconsistent triples
form the basis for a second fine-tuning phase. In
the second round, the model is provided with its
predictions from the first round and explicit instruc-
tions highlighting and explaining the inconsisten-
cies identified. The input for this phase includes
the relevant event pairs and the corresponding sen-
tences or discourse segments related to the target
events. Notably, the true labels are not revealed
during this process. The model must re-evaluate
its inconsistent predictions and reason about them
to generate updated predictions. This iterative re-
flection mechanism aims to teach the model the
concept of consistency through self-reflection and
correction. By repeatedly engaging in this reflec-
tive process, the model is expected to internalise
the principle of consistency, ultimately improving
its performance in maintaining logical coherence
across temporal relation predictions.

4 Experiments

4.1 Dataset
We use three discourse-level corpora in this work:
TDD-Man (Naik et al., 2019), MAVEN-ERE
(Wang et al., 2022b) and TimeBank (Pustejovsky
et al., 2003). TDD-Man is annotated by experts,
aiming to provide a complete temporal structure
in the document. We focus on the temporal rela-
tions for MAVEN-ERE, and our data split follows
Hu et al. (2025). Since TimeBank lacks an official
training/test split, we adopt the partitioning strategy

from TimeBank-Dense (Cassidy et al., 2014), and
simplify the original annotations to align with the
TimeBank-Dense label schema.

4.2 Experimental Settings

We use the open-source model LLaMA (Grattafiori
et al., 2024), specifically Llama-3.3-70B-Instruct
and Llama-3.1-8B-Instruct. We use the Lora tech-
nique (Hu et al., 2022) to fine-tune LLaMA. The
Lora alpha is set from [8, 16], and the Lora rank is
set from [16, 32]. The learning rate we use is from
[3e-5, 5e-5]. We train our model for three epochs
at most. In the context selection step, we use pre-
trained Sentence-BERT (Reimers and Gurevych,
2019) to extract the representation of extracted en-
tities and then compute the cosine similarity. We
use the grid search method for the threshold to se-
lect the optimal γ from [0.7, 0.75, 0.8, 0.85, 0.9].
All the above-mentioned models can be accessed
freely through Huggingface3. For comparison, we
also employ the topic modelling tool BERTopic
(Grootendorst, 2022) to retrieve sentences that
share the same topic as those containing the tar-
get events. These sentences are used as input to
compare against our proposed context selection
strategy in the ablation study. We chose the micro
F1-Score for the evaluation metric, following pre-
vious work. We evaluate the consistency within the
output of our model by using the method in Naik
et al. (2019). Specifically, we examine each triple
of events (e1, e2, e3) to determine whether tempo-
ral relations exist between e1 and e2, e2 and e3, and
e1 and e3. If such relations exist, we apply tran-
sitivity rules to check for consistency among the
three events. For instance, if e1 occurs before e2
and e2 occurs before e3, then e1 must occur before
e3. If this condition is met, we identify the tempo-
ral relations among the three events as consistent.
Then, the consistency rate is computed by using the
number of consistent triples to divide the number
of triples within the prediction. We reproduced CP-
TRE (Yuan et al., 2024) for comparison purposes.
And all experimental results are averaged over five
runs.

4.3 Experimental Results

In Table 1, we select five models based on BERT
(Devlin et al., 2019) or RoBERTa (Liu et al., 2019),
etc., as reference points. We also compare the per-
formance of two zero-shot and few-shot LLMs and

3https://huggingface.co/
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Method P R F1 Cons.

BERT (Liu et al., 2021) 39.9 39.9 39.9 51.7
BERT+ILP (Liu et al., 2021) 39.2 39.2 39.2 53.8
UCGraph (Liu et al., 2021) 44.5 42.3 43.4 55.9
SCS-EERE (Man et al., 2022) - - 51.1 -
CPTRE (Yuan et al., 2024) 56.5 56.5 56.5 65.9
(Yuan et al., 2023) 26.8 22.3 24.3 -
(Chan et al., 2024) - - 16.8 -
(Zhang et al., 2024) - - 52.6 -
OursLlama−3.1−8B−Instruct 55.3 55.3 55.3 91.3
OursLlama−3.3−70B−Instruct 57.9 57.9 57.9∗ 93.6

Table 1: Performance comparison of different methods on the TDD-Man dataset. ’Ours’ indicates using entity-based
context selection, prompt engineering inspired by Allen’s interval algebra and self-reflection. The last five results
are based on large language models, while the first five results are based on pre-trained language models such as
BERT or RoBERTa. * indicates statistical significance tested at a p-value of 0.05 compared with CPTRE (Yuan
et al., 2024). All the results above, except our models and CPTRE, are copied from the original paper. Cons. means
the consistency rate of the model. If the original paper reported this performance, we also show it above.

Method F1 Score Cons.

Majority 84.8 100
Llama-3.1-8B-Instructzs 10.2 36.9
Llama-3.3-70B-Instructzs 76.3 87.1
Llama-3.1-8B-Instructft 88.8 90.1
Llama-3.3-70B-Instructft 89.2 90.3
OursLlama−3.1−8B−Instruct 91.5 91.8
OursLlama−3.3−70B−Instruct 91.9∗ 92.7

Table 2: Results on the MAVEN-ERE dataset. The
subscript zs means zero-shot setting, and ft means fine-
tuning setting without our proposed strategies. Majority
means the majority baseline. * indicates statistical sig-
nificance tested at a p-value of 0.05 compared with the
fine-tuning setting.

one fine-tuned LLM. Our fine-tuned model, built
upon Llama-3.3-70B-Instruct, surpasses the cur-
rent state-of-the-art (Yuan et al., 2024), achieving
both a high F1 score and strong global consistency.
The version based on Llama-3.1-8B-Instruct also
demonstrates competitive performance. Note that
a high F1 score enables high consistency, but high
consistency does not necessarily guarantee a high
F1 score. Besides, despite utilising a large-scale
model, the F1 score gain over previous state-of-the-
art models, which rely on smaller pre-trained lan-
guage models, remains modest. However, the gain
in consistency is substantial, indicating that our
model exhibits stronger logical consistency. Fur-
ther analysis is provided in the Discussion.

For MAVEN-ERE, our setup provides the event

Method F1 Score Cons.

CPTRE (Yuan et al., 2024) 61.1 51.7
Llama-3.1-8B-Instructzs 11.3 50
Llama-3.3-70B-Instructzs 27.9 55.5
Llama-3.1-8B-Instructft 51.7 42.0
Llama-3.3-70B-Instructft 62.2 46.6
OursLlama−3.1−8B−Instruct 59.6 82.7
OursLlama−3.3−70B−Instruct 66.0* 87.8

Table 3: Results on TimeBank. * indicates statistical
significance tested at a p-value of 0.05 compared with
CPTRE. The CPTRE result above is based on our repro-
duction.

pairs directly as input, and the model performs
only relation classification. Table 2 provides a ma-
jority baseline since the label imbalance is severe
in MAVEN-ERE. Since most data is labelled as
before, fine-tuning settings can have relatively
high consistency. We offer more details in Ap-
pendix D. We mainly compare our models with the
fine-tuned LLaMA baseline we provide. We can
observe that our model performs better than the
fine-tuned baseline, showing the effectiveness of
our strategy.

In Table 3, our method outperforms CPTRE and
the fine-tuned baseline in TimeBank, especially
in consistency. These results state our proposed
strategy’s advantages in improving classification
accuracy and producing more logically coherent
temporal relation predictions.
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5 Discussion

5.1 Ablation Studies

In this subsection, we discuss the findings from ab-
lation studies. For simplicity, we focus on reporting
the experimental results of our model using Llama-
3.1-8B-Instruct on TDD-Man, as the model’s per-
formance based on Llama-3.1-8B-Instruct and
Llama-3.3-70B-Instruct settings on the tested cor-
pora is similar. Table 4 shows the ablation experi-
ments’ results.

Model setting F1 Score Cons.

ECS+PE+SR 55.3 91.3
MS+PE+SR 47.8 88.8
BT+PE+SR 53.3 89.4
ECS+PE+PA 55.2 84.5
PE+SR 47.5 88.4
ECS+SR 52.9 88.3
ECS+PE 55.8 82.6
MS+PE 50.3 81.9

Table 4: Ablation study results with Llama-3.1-8B-
Instruct. ECS: entity-based context selection, PE:
prompt engineering inspired by Allen’s interval alge-
bra, SR: self-reflection, MS: model selected context,
BT: BERTopic context selection, PA: predict again for
inconsistent predictions.

The first three rows of Table 4 demonstrate that
our proposed entity-based context selection method
significantly outperforms the context selected by
the LLM and BERTopic. To better understand
this improvement, we analysed the contexts se-
lected by the model and BERTopic. The analy-
sis reveals that in some cases, the model includes
low-relevance sentences, resulting in excessively
long inputs. Such input length negatively impacts
the model’s ability to predict temporal relations,
as evidenced by the performance drop under full-
document input (Table 4, Row 5), where excessive
noise leads to degraded performance. Our method
mitigates this issue by selectively including only
sentences from the discourse segments containing
the target events, limiting the input length to 20
sentences. Moreover, while the contexts selected
by the model and BERTopic tend to be sparse and
non-contiguous, our approach ensures continuity,
providing more coherent and complete informa-
tion surrounding the event pair. Our experimental
results emphasise the critical role of context selec-
tion in discourse-level temporal relation extraction,

aligning with previous work (Jain et al., 2023; Wei
et al., 2024; Liu et al., 2024). While our method
partially mitigates this issue, future work should
develop more effective context selection strategies
or explore stronger topic-aware models, such as
TopicGPT (Pham et al., 2024). Row 4 reports re-
sults obtained by re-prompting the LLM with incon-
sistent event predictions, without additional fine-
tuning. This step aims to disentangle the contribu-
tion of inconsistency detection and self-reflection
to consistency improvement. While inconsistency
detection alone leads to a slight improvement in
consistency, the most critical factor is to learn what
constitutes consistency (Rows 1 and 4 in Table 4).
This finding aligns with Chen et al. (2024).

Besides, when our CoT prompt is removed, the
model is required to predict a label directly from
five temporal relations. Row 6 shows that guiding
the model using Allen’s Interval Algebra improved
its ability to extract temporal relations. However,
whether the model genuinely understands tempo-
ral information behind the event—specifically, the
start and end times of events—remains an open
question, which we further explore in the Label
Imbalance subsection.

The results in the last two rows reveal that leav-
ing out self-reflection fine-tuning improves the
model’s F1 score at the expense of a decline in
consistency. This aligns with (Liu et al., 2021),
who observed that enhancing consistency through
ILP or other constraints often reduces F1 perfor-
mance. Additionally, after fine-tuning without self-
reflection, our model still yields moderate con-
sistency. Future work should aim to jointly im-
prove both the F1 score and temporal consistency,
striking a balance between predictive accuracy and
structural coherence.

5.2 Label Imbalance
Figure 4 shows the confusion matrix of our best-
performing model. We observe that the model per-
forms better on labels with a higher number of
instances, which aligns with our expectations. We
can observe that the most significant confusion oc-
curs between the labels "before" and "includes".
The model predicts 114 instances of "includes" in-
stead of true "before" labels, indicating difficulty
distinguishing between these temporal relations. In
this case, the model correctly compared the start-
ing time of both events but wrongly estimated the
events’ end time. Also, the model is confused when
the duration of Event 1 includes Event 2 and usu-
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Figure 4: The confusion matrix of our model in TDD-
Man’s test set.

ally predicts it as "is_included". That erroneous
prediction indicates that the model misunderstands
the duration of both events. One reason is that
LLMs do not acquire the real-world knowledge
of one event’s duration (Qiu et al., 2024). This
problem can be alleviated if LLMs are fine-tuned
properly (Xiong et al., 2024). Our results show
that LLMs struggle to extract the temporal infor-
mation conveyed by stative verbs relating to opin-
ions, feelings, perceptions, etc., such as believe,
relate, and seem. Since some stative verbs inher-
ently lack clear temporal boundaries, it is difficult
to determine their precise duration. Future work
can combine temporal relation extraction with tem-
poral reasoning tasks to fine-tune the model. Given
that existing corpora are annotated across entire
documents rather than single sentences, achieving
a balance among labels is nearly impossible.

5.3 Sentence Distance

Sentence distance Number of data Accuracy

0-2 245 57.02
3-5 472 53.39
6-8 381 61.89
9-11 231 62.34
12-14 101 66.34
15-17 43 62.79
18-20 21 38.1
21-23 6 100

Table 5: Statistics of intervals between sentences con-
taining events in TDD-Man’s test set.

In Table 5, sentence distance refers to the number
of sentences between the two events to be predicted.

Our model performs poorly in the 0–5 range. Ini-
tially, we suspected this might be due to our con-
text selection strategy. However, further analysis
reveals that even when using the full context as in-
put, performance in this range remained suboptimal
and is, in fact, worse than with our selection-based
input. This suggests that LLMs when trained on
discourse-level temporal relation corpora, strug-
gle to learn short-distance temporal dependencies.
These findings indicate that future work focusing
on long-range event pairs should not overlook the
challenges of short-distance temporal relation ex-
traction. We offer more details in Appendix E.

6 Conclusions

Our three-step strategy effectively addresses key
limitations of LLMs in temporal relation extrac-
tion. Experimental results demonstrate that our
model achieves a high F1 score while maintaining
a strong level of temporal consistency, which is
often overlooked in previous research.

Our ablation study highlights that context selec-
tion is essential for discourse-level tasks in LLMs.
Future research on LLMs handling long-text in-
puts should prioritise context selection techniques
to improve performance and mitigate noise. Ad-
ditionally, while our prompt inspired by Allen’s
Interval Algebra encourages the model to reason
about implicit temporal information, our model
still struggles to accurately predict event duration
in many cases. Future work should explore the inte-
gration of temporal reasoning tasks with temporal
relation extraction, enabling models to better cap-
ture implicit temporal information encoded in the
events. Besides, our reflection-based learning strat-
egy significantly enhances prediction consistency.
In tasks requiring temporal coherence, researchers
should not solely focus on F1 scores and accuracy
but also emphasise ensuring logical consistency in
model predictions.

Finally, although our model achieves high F1
scores and strong consistency, its performance does
not meet our expectations. Given that our model
utilises significantly larger parameters than previ-
ous works, the limited performance improvement
suggests LLMs remain relatively weak at capturing
temporal structures in text. This indicates that in-
creasing the model scale does not necessarily yield
substantial gains in temporal relation extraction,
emphasising the need for more effective strategies
to enhance LLMs’ temporal understanding.
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Limitations

Since TDD-Man, MAVEN-ERE, and TimeBank
predominantly consist of news articles, the label
distribution inherently reflects the characteristics
of this genre. However, this presents a limitation:
the label distribution observed in news texts may
not generalise well to other text genres, such as nar-
rative or procedural texts. Consequently, models
trained on such corpora lack the ability to gener-
alise across different types of texts. Moreover, we
have run experiments on all existing discourse-level
corpora that we can use, except TIMELINE (Al-
sayyahi and Batista-Navarro, 2023). We cannot
access its original text, which requires a specific
membership to download it. Although extensive
empirical results demonstrate that our context se-
lection strategy outperforms full-document input,
we observe that some irrelevant sentences are still
included in the selected context. Precisely iden-
tifying sentences that contain cues essential for
predicting the temporal relation of each event pair
remains challenging. Future work should address
this limitation by exploring more effective context
selection strategies.

Ethics Statement

This study uses the Llama model from Meta exclu-
sively for this specific research task, adhering to
Meta’s Acceptable Use Policy. The TDD-Man cor-
pus and MAVEN-ERE used in our experiments are
publicly available and intended solely for research
purposes. However, as the corpus consists of news
reports, it may contain inaccuracies or potentially
harmful content. The presence of such content does
not reflect the opinions of the authors.

Acknowledgements

The authors would like to thank the anonymous
reviewers for their comments. This work has been
funded by the Klaus Tschira Foundation, Heidel-
berg, Germany.

References
James F Allen. 1983. Maintaining knowledge about

temporal intervals. Communications of the ACM,
26(11):832–843.

Sarah Alsayyahi and Riza Batista-Navarro. 2023.
TIMELINE: Exhaustive annotation of temporal rela-
tions supporting the automatic ordering of events in
news articles. In Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Process-
ing, pages 16336–16348, Singapore. Association for
Computational Linguistics.

Regina Barzilay and Mirella Lapata. 2005. Model-
ing local coherence: An entity-based approach. In
Proceedings of the 43rd Annual Meeting of the As-
sociation for Computational Linguistics (ACL‘05),
pages 141–148, Ann Arbor, Michigan. Association
for Computational Linguistics.

Taylor Cassidy, Bill McDowell, Nathanael Chambers,
and Steven Bethard. 2014. An annotation framework
for dense event ordering. In Proceedings of the 52nd
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 501–506,
Baltimore, Maryland. Association for Computational
Linguistics.

Nathanael Chambers and Daniel Jurafsky. 2008. Jointly
combining implicit constraints improves temporal
ordering. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing,
pages 698–706, Honolulu, Hawaii. Association for
Computational Linguistics.

Nathanael Chambers, Shan Wang, and Dan Jurafsky.
2007. Classifying temporal relations between events.
In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 173–176, Prague, Czech Republic. Association
for Computational Linguistics.

Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2024. Exploring the potential of ChatGPT on sen-
tence level relations: A focus on temporal, causal,
and discourse relations. In Findings of the Associ-
ation for Computational Linguistics: EACL 2024,
pages 684–721, St. Julian’s, Malta. Association for
Computational Linguistics.

Meiqi Chen, Yubo Ma, Kaitao Song, Yixin Cao, Yan
Zhang, and Dongsheng Li. 2024. Improving large
language models in event relation logical prediction.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 9451–9478, Bangkok, Thailand.
Association for Computational Linguistics.

Omer Cohen and Kfir Bar. 2023. Temporal relation clas-
sification using Boolean question answering. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 1843–1852, Toronto, Canada.
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

18613

https://doi.org/10.18653/v1/2023.emnlp-main.1016
https://doi.org/10.18653/v1/2023.emnlp-main.1016
https://doi.org/10.18653/v1/2023.emnlp-main.1016
https://doi.org/10.3115/1219840.1219858
https://doi.org/10.3115/1219840.1219858
https://doi.org/10.3115/v1/P14-2082
https://doi.org/10.3115/v1/P14-2082
https://aclanthology.org/D08-1073
https://aclanthology.org/D08-1073
https://aclanthology.org/D08-1073
https://aclanthology.org/P07-2044
https://aclanthology.org/2024.findings-eacl.47/
https://aclanthology.org/2024.findings-eacl.47/
https://aclanthology.org/2024.findings-eacl.47/
https://doi.org/10.18653/v1/2024.acl-long.512
https://doi.org/10.18653/v1/2024.acl-long.512
https://doi.org/10.18653/v1/2023.findings-acl.116
https://doi.org/10.18653/v1/2023.findings-acl.116
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


Quang Do, Wei Lu, and Dan Roth. 2012. Joint infer-
ence for event timeline construction. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 677–687, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Jennifer D’Souza and Vincent Ng. 2013. Classifying
temporal relations with rich linguistic knowledge. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 918–927, Atlanta, Georgia. Association for
Computational Linguistics.

Chufan Gao, Xulin Fan, Jimeng Sun, and Xuan Wang.
2024. PromptRE: Weakly-supervised document-
level relation extraction via prompting-based data
programming. In Proceedings of the 1st Work-
shop on Towards Knowledgeable Language Models
(KnowLLM 2024), pages 132–145, Bangkok, Thai-
land. Association for Computational Linguistics.

Jinglong Gao, Xiao Ding, Bing Qin, and Ting Liu. 2023.
Is ChatGPT a good causal reasoner? a comprehensive
evaluation. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, pages 11111–
11126, Singapore. Association for Computational
Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,

Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,

18614

https://aclanthology.org/D12-1062
https://aclanthology.org/D12-1062
https://aclanthology.org/N13-1112
https://aclanthology.org/N13-1112
https://doi.org/10.18653/v1/2024.knowllm-1.11
https://doi.org/10.18653/v1/2024.knowllm-1.11
https://doi.org/10.18653/v1/2024.knowllm-1.11
https://doi.org/10.18653/v1/2023.findings-emnlp.743
https://doi.org/10.18653/v1/2023.findings-emnlp.743


Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai

Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The Llama 3
Herd of Models. Preprint, arXiv:2407.21783.

Maarten Grootendorst. 2022. Bertopic: Neural topic
modeling with a class-based tf-idf procedure. arXiv
preprint arXiv:2203.05794.

Barbara J. Grosz, Aravind K. Joshi, and Scott Weinstein.
1995. Centering: A framework for modeling the local
coherence of discourse. Computational Linguistics,
21(2):203–225.

Kimihiro Hasegawa, Nikhil Kandukuri, Susan Holm,
Yukari Yamakawa, and Teruko Mitamura. 2024. For-
mulation Comparison for Timeline Construction us-
ing LLMs. ArXiv, abs/2403.00990.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zhilei Hu, Zixuan Li, Xiaolong Jin, Long Bai, Jiafeng
Guo, and Xueqi Cheng. 2025. Large language model-
based event relation extraction with rationales. In
Proceedings of the 31st International Conference on
Computational Linguistics, pages 7484–7496, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Raghav Jain, Daivik Sojitra, Arkadeep Acharya, Sri-
parna Saha, Adam Jatowt, and Sandipan Dandapat.
2023. Do language models have a common sense
regarding time? revisiting temporal commonsense
reasoning in the era of large language models. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6750–
6774, Singapore. Association for Computational Lin-
guistics.

W. Klein. 1994. Time in Language. Germanic linguis-
tics. Routledge.

Wolfgang Klein. 2009. How time is encoded. In Wolf-
gang Klein and Ping Li, editors, The Expression of
Time, pages 39–82. Mouton de Gruyter, Berlin, New
York.

Jian Liu, Jinan Xu, Yufeng Chen, and Yujie Zhang.
2021. Discourse-level event temporal ordering with
uncertainty-guided graph completion. In IJCAI,
pages 3871–3877.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy

18615

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://aclanthology.org/J95-2003/
https://aclanthology.org/J95-2003/
https://api.semanticscholar.org/CorpusID:268230597
https://api.semanticscholar.org/CorpusID:268230597
https://api.semanticscholar.org/CorpusID:268230597
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2025.coling-main.500/
https://aclanthology.org/2025.coling-main.500/
https://doi.org/10.18653/v1/2023.emnlp-main.418
https://doi.org/10.18653/v1/2023.emnlp-main.418
https://doi.org/10.18653/v1/2023.emnlp-main.418
https://books.google.de/books?id=wnBAs-2KzvYC


Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157–173.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv, abs/1907.11692.

Hieu Man, Nghia Trung Ngo, Linh Ngo Van, and
Thien Huu Nguyen. 2022. Selecting optimal context
sentences for event-event relation extraction. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 36(10):11058–11066.

Puneet Mathur, Rajiv Jain, Franck Dernoncourt, Vlad
Morariu, Quan Hung Tran, and Dinesh Manocha.
2021. TIMERS: Document-level temporal relation
extraction. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 524–533, Online. Association for Computa-
tional Linguistics.

Anne-Lyse Minard, Manuela Speranza, Eneko Agirre,
Itziar Aldabe, Marieke van Erp, Bernardo Magnini,
German Rigau, and Rubén Urizar. 2015. SemEval-
2015 task 4: TimeLine: Cross-document event order-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015), pages
778–786, Denver, Colorado. Association for Compu-
tational Linguistics.

Paramita Mirza and Sara Tonelli. 2014. Classifying tem-
poral relations with simple features. In Proceedings
of the 14th Conference of the European Chapter of
the Association for Computational Linguistics, pages
308–317, Gothenburg, Sweden. Association for Com-
putational Linguistics.

Aakanksha Naik, Luke Breitfeller, and Carolyn Rose.
2019. TDDiscourse: A dataset for discourse-level
temporal ordering of events. In Proceedings of the
20th Annual SIGdial Meeting on Discourse and Dia-
logue, pages 239–249, Stockholm, Sweden. Associa-
tion for Computational Linguistics.

Jun-Ping Ng, Yan Chen, Min-Yen Kan, and Zhoujun
Li. 2014. Exploiting timelines to enhance multi-
document summarization. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
923–933, Baltimore, Maryland. Association for Com-
putational Linguistics.

Qiang Ning, Zhili Feng, and Dan Roth. 2017. A struc-
tured learning approach to temporal relation extrac-
tion. In Proceedings of the 2017 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1027–1037, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt
Gardner, and Dan Roth. 2020. TORQUE: A reading

comprehension dataset of temporal ordering ques-
tions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1158–1172, Online. Association for
Computational Linguistics.

Qiang Ning, Hao Wu, and Dan Roth. 2018. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1318–1328, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Chau Minh Pham, Alexander Hoyle, Simeng Sun, Philip
Resnik, and Mohit Iyyer. 2024. TopicGPT: A prompt-
based topic modeling framework. In Proceedings of
the 2024 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long
Papers), pages 2956–2984, Mexico City, Mexico. As-
sociation for Computational Linguistics.

Vasin Punyakanok, Dan Roth, Wen-tau Yih, and Dav Zi-
mak. 2005. Learning and inference over constrained
output. In IJCAI, volume 5, pages 1124–9.

James Pustejovsky, Patrick Hanks, Roser Sauri, Andrew
See, Robert Gaizauskas, Andrea Setzer, Dragomir
Radev, Beth Sundheim, David Day, Lisa Ferro, et al.
2003. The timebank corpus. In Corpus linguistics,
volume 2003, page 40. Lancaster, UK.

Yifu Qiu, Zheng Zhao, Yftah Ziser, Anna Korhonen,
Edoardo Ponti, and Shay Cohen. 2024. Are large
language model temporally grounded? In Proceed-
ings of the 2024 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (Volume
1: Long Papers), pages 7064–7083, Mexico City,
Mexico. Association for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence Embeddings using Siamese BERT-
Networks. In Conference on Empirical Methods in
Natural Language Processing.

Gabriel Roccabruna, Massimo Rizzoli, and Giuseppe
Riccardi. 2024. Will LLMs replace the encoder-only
models in temporal relation classification? In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pages 20402–
20415, Miami, Florida, USA. Association for Com-
putational Linguistics.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Yawei Sun, Gong Cheng, and Yuzhong Qu. 2018. Read-
ing comprehension with graph-based temporal-casual
reasoning. In Proceedings of the 27th International
Conference on Computational Linguistics, pages 806–
817, Santa Fe, New Mexico, USA. Association for
Computational Linguistics.

18616

https://doi.org/10.1162/tacl_a_00638
https://doi.org/10.1162/tacl_a_00638
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://doi.org/10.1609/aaai.v36i10.21354
https://doi.org/10.1609/aaai.v36i10.21354
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/2021.acl-short.67
https://doi.org/10.18653/v1/S15-2132
https://doi.org/10.18653/v1/S15-2132
https://doi.org/10.18653/v1/S15-2132
https://doi.org/10.3115/v1/E14-1033
https://doi.org/10.3115/v1/E14-1033
https://doi.org/10.18653/v1/W19-5929
https://doi.org/10.18653/v1/W19-5929
https://doi.org/10.3115/v1/P14-1087
https://doi.org/10.3115/v1/P14-1087
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/D17-1108
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/2020.emnlp-main.88
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/P18-1122
https://doi.org/10.18653/v1/2024.naacl-long.164
https://doi.org/10.18653/v1/2024.naacl-long.164
https://doi.org/10.18653/v1/2024.naacl-long.391
https://doi.org/10.18653/v1/2024.naacl-long.391
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://api.semanticscholar.org/CorpusID:201646309
https://doi.org/10.18653/v1/2024.emnlp-main.1136
https://doi.org/10.18653/v1/2024.emnlp-main.1136
https://aclanthology.org/C18-1069
https://aclanthology.org/C18-1069
https://aclanthology.org/C18-1069


Somin Wadhwa, Silvio Amir, and Byron Wallace. 2023.
Revisiting relation extraction in the era of large lan-
guage models. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 15566–
15589, Toronto, Canada. Association for Computa-
tional Linguistics.

Liang Wang, Peifeng Li, and Sheng Xu. 2022a. DCT-
centered temporal relation extraction. In Proceed-
ings of the 29th International Conference on Com-
putational Linguistics, pages 2087–2097, Gyeongju,
Republic of Korea. International Committee on Com-
putational Linguistics.

Xiaozhi Wang, Yulin Chen, Ning Ding, Hao Peng, Zimu
Wang, Yankai Lin, Xu Han, Lei Hou, Juanzi Li,
Zhiyuan Liu, Peng Li, and Jie Zhou. 2022b. MAVEN-
ERE: A unified large-scale dataset for event coref-
erence, temporal, causal, and subevent relation ex-
traction. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 926–941, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Kangda Wei, Aayush Gautam, and Ruihong Huang.
2024. Are LLMs good annotators for discourse-level
event relation extraction? In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2024,
pages 1–19, Miami, Florida, USA. Association for
Computational Linguistics.

Siheng Xiong, Ali Payani, Ramana Kompella, and Fara-
marz Fekri. 2024. Large language models can learn
temporal reasoning. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 10452–
10470, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Chenhan Yuan, Qianqian Xie, and Sophia Ananiadou.
2023. Zero-shot temporal relation extraction with
ChatGPT. In The 22nd Workshop on Biomedical
Natural Language Processing and BioNLP Shared
Tasks, pages 92–102, Toronto, Canada. Association
for Computational Linguistics.

Chenhan Yuan, Qianqian Xie, and Sophia Ananiadou.
2024. Temporal relation extraction with contrastive
prototypical sampling. Knowledge-Based Systems,
286:111410.

Meng Zhang and Judith A Hudson. 2018. The devel-
opment of temporal concepts: Linguistic factors and
cognitive processes. Frontiers in Psychology, 9:2451.

Xiaobin Zhang, Liangjun Zang, Qianwen Liu, Shu-
chong Wei, and Songlin Hu. 2024. Event temporal

relation extraction based on retrieval-augmented on
llms. 2024 International Joint Conference on Neural
Networks (IJCNN), pages 1–8.

Ran Zhao, Quang Do, and Dan Roth. 2012. A robust
shallow temporal reasoning system. In Proceedings
of the Demonstration Session at the Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 29–32, Montréal, Canada. Association
for Computational Linguistics.

Appendix

A Entity-based Discourse Segmentation
Algorithm

The algorithm we use for entity-based discourse
segmentation is shown in Algorithm 1.

Algorithm 1 Entity-Based Discourse Segmentation

Require: Input document D as a sentence list
S = {s1, s2, . . . , sn}, predefined similarity
threshold γ

Ensure: Discourse segments DS
1: Initialize DS ← ∅
2: Apply coreference resolution on D using neu-

ralcoref
3: for each sentence si ∈ S do
4: Extract the subject, direct objects, indirect

objects, and all noun and noun phrases from
si

5: Create an entity list SEi =
{sei1, sei2, ..., seim} for sentence si

6: end for
7: Initialize a new discourse segment

current_segment← {s1}
8: for i = 2 to n do
9: Compute cosine similarity

sim(SEi−1, SEi) between entities in
entity sets of si−1 and si

10: if max(sim(SEi−1, SEi)) ≥ γ then
11: Add si to current_segment
12: else
13: Append current_segment to DS
14: Start a new segment

current_segment← {si}
15: end if
16: end for
17: Append the final current_segment to DS
18: return DS

In temporal relation extraction, most events are
verbs, as verbs are closely tied to the subject and
object within a sentence. We hypothesise that each
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discourse unit centres around a coherent topic in-
volving its associated participants, typically, in-
teractions or developments concerning a specific
subject-object pair, such as Person A and Person B.
Therefore, when the algorithm transitions between
discourse units, it typically signals a shift in topic
or participating entities. Based on this observation,
we argue that providing only the discourse units
containing Event A and Event B is sufficient for
relation classification. Other discourse units are
likely to discuss unrelated or only weakly related
subjects, introducing noise rather than useful con-
text.

To support this, we analyse MAVEN-ERE train-
ing and validation sets and find 56,377 instances
where the sentence distance between two events
exceeds 15, with an average of 668 tokens per in-
stance. The longest sentence distance is 74, and
the maximum token count reaches 2,126. Similarly,
in TDD-Man, 1,192 such instances are observed,
with an average of 672 tokens, a maximum sen-
tence distance of 63, and up to 1,679 tokens in a
single instance. In TimeBank, the maximum sen-
tence distance is 76, with 2394 tokens between two
events. Prior discourse-level temporal relation ex-
traction work has typically relied on full-text input
or sliding window strategies. However, our abla-
tion studies suggest that such approaches introduce
substantial noise, often degrading model perfor-
mance. Moreover, studies on entity-based coher-
ence (Grosz et al., 1995; Barzilay and Lapata, 2005)
suggest that excessive shifts in sentence focus often
lead to incoherent discourse. However, the input
documents in our setting are formal news articles
written by professionally trained authors, whose co-
herence can reasonably be assumed. Consequently,
the key information required to determine the tem-
poral relation between two events is unlikely to
be scattered across the document, but rather con-
centrated around the events themselves. While our
method may not represent the optimal solution, we
hope it offers insights for future research. As in
the ablation studies, future work could use more
powerful topic-aware models to explore, since the
BERTopic (Grootendorst, 2022) also brings a per-
formance gain in this task. Besides, in our work,
we could not try with TopicGPT (Pham et al., 2024)
due to the research funding limit.

Additionally, the coreference resolution compo-
nent replaces pronouns with their corresponding
entities to facilitate downstream semantic similar-
ity computations. For example, multiple pronouns

such as he or she may appear as subjects within
the same document; resolving these references to
specific named entities enables more accurate and
meaningful semantic comparisons.

B Model Selection Explanation

As illustrated in Figure 6, we first index all sen-
tences in the input document corresponding to a
target event pair. The indexed document is then
provided to the model, which is prompted to iden-
tify the informative sentences for predicting the
temporal relation between the two events. Then,
we reconstruct the input containing only the rele-
vant context based on the selected sentence indices
by the model and the event containing sentences.
Figure 7 shows one prediction generated by the
model. In Figure 7, the model selects 0, 1, 4, 9 as
the context, and the event containing sentences are
0 and 7. Therefore, the input sentence indices are
0, 1, 4, 7 and 9.

C Our Prompts and Instructions

We show an example of using LLM to extract the
context based on the input event pair in Figure 6,
and an example of input text is shown in Figure 8.
The instruction we use to fine-tune our model is
shown in Figure 9. The instruction of self-reflection
for the second round of fine-tuning is shown in
Figure 10. In the setting where we do not use
our prompts inspired by Allen’s interval algebra,
our instruction is shown in Figure 11. The true
labels we adapted from our prompts are shown in
Table 6. Figure 5 illustrates the comparison and
definition of the start and end points of the event
pairs corresponding to the five labels in TDD-Man
on the time axis.

D More Details About The Dataset

We follow the same data split strategy for MAVEN-
ERE in Hu et al. (2025). Since the test set of
MAVEN-ERE is not publicly available, we ran-
domly split the original training data into training
and validation sets with an 80/20 ratio, and repeat
this partition five times. Thus, we have five differ-
ent training and validation sets. Then we use the
original validation set as our test set. All reported
results are averaged over the five runs on different
training sets. As distinguished from our setup, the
experimental setting in Hu et al. (2025) requires
the model to take the entire document as input and
jointly identify event pairs with temporal relations
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Figure 5: Five labels in TDDiscourse indicate the temporal relation of Event 1 to Event 2.E1start means the start
time of Event 1 and E1end means the end time of Event 1, similar for E2start and E2end. In the time axis, the
orange line represents the duration of Event 1, and the blue line represents the duration of Event 2. Following
Allen’s interval algebra, the model is required to compare the event pair’s start time and end time, according to the
definition above, to make the prediction.

Original label Expected Output
Before Event 1 starts before Event 2 starts and Event 1 ends before Event 2 starts, so the

temporal relation of Event 1 to Event 2 is: before.
After Event 1 starts after Event 2 and Event 1 starts after Event 2 ends, so the temporal

relation of Event 1 to Event 2 is: after.
Includes Event 1 starts before Event 2 starts and Event 1 ends after Event 2 ends, so the temporal

relation of Event 1 to Event 2 is: included.
Is_included Event 1 starts after Event 2 starts and Event 1 ends before Event 2 ends, so the temporal

relation of Event 1 to Event 2 is: included in.
Contains Event 1 starts before Event 2 starts and Event 1 ends after Event 2 ends, so the temporal

relation of Event 1 to Event 2 is: contains.
Overlap Event 1 starts before Event 2 starts, Event 1 ends after Event 2 starts and Event 1 ends

before Event 2 ends, so the temporal relation of Event 1 to Event 2 is: overlap.
Begins-on Event 1 starts at the same time as Event 2 starts and Event 1 ends before Event 2 ends,

so the temporal relation of Event 1 to Event 2 is: begins-on.
Ends-on Event 1 starts after Event 2 starts and Event 1 ends at the same time as Event 2 ends,

so the temporal relation of Event 1 to Event 2 is: ends-on.
Simultaneous Event 1 starts at the same time as Event 2 and Event 1 ends at the same time as Event

2, so the temporal relation of Event 1 to Event 2 is: simultaneous.

Table 6: Table of labels for prompts inspired by Allen’s interval algebra
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before classifying their relation types. Besides,
their model is trained to predict not only tempo-
ral relations but also causal and subevent relations,
etc., which differs from the primary focus of our
work. In our setup, the model is provided with the
complete document and all candidate event pairs,
and is tasked solely with predicting each pair’s
temporal relation. Although MAVEN-ERE is a
large-scale dataset, it suffers from severe label im-
balance—specifically, the before label accounts for
683,581 out of 792,445 instances in the training set.
As a result, a majority baseline achieves as high as
84.8 F1 on the test set.

E More Details About The Results

We reproduce the CPTRE results on TDD-Man
and TimeBank using the same five-run evaluation
protocol. We didn’t reproduce CPTRE in MAVEN-
ERE because MAVEN-ERE does not contain the
features required by the model, such as linguistic
features, document creation time, etc. Following
the methodology in TIMERS (Mathur et al., 2021),
we employ the Wilcoxon signed-rank test to assess
statistical significance, and apply this test consis-
tently across all comparisons.

Results labelled as fine-tuning are obtained by
fine-tuning the model with a simple prompt (Fig-
ure 11), where the entire document is provided
as input and the model is trained to predict the
gold labels directly. Results labelled as zero-shot
are derived using a pure in-context learning set-
ting, without any parameter updates. These two
settings clarify the baseline setup and demonstrate
the effectiveness of our proposed strategies, while
also providing insight into the models’ pre-trained
knowledge. Additional results under both zero-shot
and fine-tuning settings on the TDD-Man dataset
are reported in Table 8.

As shown in Table 7, the model performs poorly
in the 0–5 sentence distance range under the zero-
shot setting and full-context input setting, worse
than when using our context selection strategy (in
Table 5). This result clearly demonstrates the ad-
vantage of our method over full-context input, high-
lighting its effectiveness in identifying relevant
discourse segments to support temporal relation
extraction. It also reinforces the observation that
providing the full context may introduce exces-
sive noise, ultimately degrading the performance
of LLMs in this task.

Sentence distance Acczs Accfull

0-2 18.72 44.68
3-5 15.47 45.13
6-8 17.39 51.66
9-11 16.45 49.35
12-14 15.84 51.49
15-17 20.93 67.44
18-20 14.29 33.33
21-23 16.67 83.33

Table 7: Statistics of intervals between sentences con-
taining events in TDD-Man’s test set. The subscript
zs means zero-shot setting, and full means fine-tuning
setting with full context. All results are obtained by
using Llama-3.1-8B-Instruct.

Method F1 Score Cons.

Llama-3.1-8B-Instructzs 16.8 43.8
Llama-3.3-70B-Instructzs 26.8 76.0
Llama-3.1-8B-Instructft 48.5 83.2
Llama-3.3-70B-Instructft 51.1 84.6

Table 8: Llama-3.1-8B-Instruct and Llama-3.3-70B-
Instruct performances using zero-shot setting and fine-
tuning setting on TDD-Man.

F Consistency Explanation

In the temporal relation extraction task, a high F1
score typically means a high level of consistency.
However, a high level of consistency does not guar-
antee the F1 score. For example, TDD-Man’s test
dataset contains 1500 data, and 46 data are labelled
as simultaneous. If a system predicts all the data as
simultaneous, the consistency rate is 100%, while
the F1 score is extremely low.

When we fine-tune the model, we specify the
need to maintain consistency in the prediction,
shown in 9. We input the selected context, event
pair, and file name to inform the model of other
event pairs in the same document. That’s why,
without our self-reflection step, our model can per-
form a moderate level of consistency. For previous
works using BERT or RoBERTa, the setting is typi-
cally to input the full document or sliding window
cut sentences and event pairs. Thus, their models
do not know whether other event pairs are also in
the same document when predicting the temporal
relation between two events, since the models treat
the task as a single classification problem for each
event pair. This is a shortcoming of BERT-based
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models in maintaining consistency.
Our consistency strategy is not based on repeat-

edly querying the model until F1 and consistency
metrics improve. Instead, we adopt a two-stage
fine-tuning approach. In the first stage, the model
is fine-tuned using training data where each input
consists of an event pair, and the model learns to
predict the temporal relation between them. Based
on the model’s predictions on the training set, we
identify inconsistent event triplets and construct a
second round of fine-tuning data to explicitly teach
the model consistency constraints. The model can
learn from supervised feedback since this stage still
uses gold labels. During inference, the model first
predicts temporal relations for all event pairs. We
then extract inconsistent triplets from the initial pre-
dictions and re-query the model using these triplets
as input. No gold labels are provided at this stage,
and the model is queried only twice—we do not
iterate the process. In contrast, Chen et al. (2024)
propose a fine-tuning approach that relies on con-
structing a high-order event relation dataset specifi-
cally designed to teach logical consistency. Their
method requires an additional dataset, whereas ours
is entirely data-driven: all consistency prompts are
constructed directly from the predictions on the
training and test data, without introducing new data
or manual labelling.

G Computational Resources

The GPU we use for this study is NVIDIA H200.

H Best Hyper Parameters

The best γ value for our context selection method is
0.7. The best Lora alpha and Lora rank are 16 and
32, and 32 and 64 for Llama-3.3-70B-Instruct and
Llama-3.1-8B-Instruct, for both fine-tuned models.
The best learning rate for Llama-3.3-70B-Instruct
is 3e − 5, and for Llama-3.1-8B-Instruct is 5e −
5. In the first round, we fine-tuned both of our
models for three epochs at most, then we only fine-
tuned the self-reflection for one epoch. During the
first round, we also set the warm-up step to 20.
When we evaluate our models, the top-p sampling
value is set to 0.7, and the temperature is set to 0.9.
For our context selection and BERTopic, we use
all-MiniLM-L6-v24 as the Sentence-Transformers
model.

4https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

Figure 6: An instruction example for model selection
from source file: NYT19980206.0466

Figure 7: The prediction of the context generated by
the model for a specific event pair from source file:
NYT19980206.0466

Figure 8: An input example for model selection from
source file: NYT19980206.0466
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Figure 9: The instruction

Figure 10: The self-reflection instruction

Figure 11: The instruction without CoT
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