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Abstract

Large Language Models (LLMs) typically rely
on a large number of parameters for token
embedding, leading to substantial storage re-
quirements and memory footprints. In par-
ticular, LLMs deployed on edge devices are
memory-bound, and reducing the memory foot-
print by compressing the embedding layer not
only frees up the memory bandwidth but also
speeds up inference. To address this, we intro-
duce CARVQ, a post-training novel Corrective
Adaptor combined with group Residual Vector
Quantization. CARVQ relies on the compo-
sition of both linear and non-linear maps and
mimics the original model embedding to com-
press to approximately 1.6 bits without requir-
ing specialized hardware to support lower-bit
storage. We test our method on pre-trained
LLMs such as LLaMA-3.2-1B, LLaMA-3.2-
3B, LLaMA-3.2-3B-Instruct, LLaMA-3.1-8B,
Qwen2.5-7B, Qwen2.5-Math-7B and Phi-4,
evaluating on common generative, discrimina-
tive, math and reasoning tasks. We show that in
most cases, CARVQ can achieve lower average
bitwidth-per-parameter while maintaining rea-
sonable perplexity and accuracy compared to
scalar quantization. Our contributions include a
novel compression technique that is compatible
with state-of-the-art transformer quantization
methods and can be seamlessly integrated into
any hardware supporting 4-bit memory to re-
duce the model’s memory footprint in memory-
constrained devices. This work demonstrates a
crucial step toward the efficient deployment of
LLMs on edge devices.

1 Introduction

Transformer-based Large Language Models (LLM)
are designed to handle extended contexts efficiently
through processing tokens with attention mecha-
nisms. Transformer architecture can be primar-

*Equal Contribution
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Figure 1: Overview of the CARVQ framework. (a)
The embedding matrix M is partitioned into groups,
and each group is compressed using Residual Vector
Quantization, with the results stored in a look-up table.
LUT is stored in κ-bit and VQ elements are stored in
original precision p. (b) At inference time, each token
retrieves its corresponding quantized vectors from the
look-up table. Simultaneously, it is processed by the
corrective adaptor, a lightweight MLP.

ily separated into three core components: embed-
ding layer, transformer blocks, and prediction head.
Each of these plays a distinct role in the overall
processing pipeline, enabling the model to handle
complex tasks across diverse domains.

While various compression techniques have
been widely studied for transformer blocks, em-
bedding layer compression has not been investi-
gated extensively due to its simple nature of di-
rectly mapping from vocabulary tokens to high-
dimensional vector representations. As most quan-
tization are done to 4-bit datatypes, scalar quanti-
zation is often sufficient. We show in Figure 2 that
the portion of the embedding layer shrinks in larger
models, but increases rapidly when post-training
quantization (PTQ) operations are applied to the
transformer layers. This ratio for INT4 quantized
models are 52.06% for LLaMA-3.2-1B (Grattafiori
et al., 2024), 13.22% for Phi-4 (14B) (Abdin et al.,
2024), and 87.18% for Gemma3-270M (Team et al.,
2025). Compressing the embedding layer thus
has a more pronounced impact on smaller models,
making them essential for deployment in resource-
limited inference scenarios. Therefore, the embed-
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Figure 2: With transformer layer quantization, the mem-
ory ratio of embedding layer increases compared to
embedding layers left in FP16.

ding layer often becomes a bottleneck in resource-
constrained environments as its relative memory
footprint expands in compressed models, prompt-
ing further investigation into embedding layer com-
pression.

In this work, we specifically focus on the de-
ployment of LLMs on memory-constrained edge
devices, where available memory is limited to a
few GB. Such situations usually require the use of
smaller (less than 8B), quantized models where the
relative contribution of the full-precision (FP16)
embedding layer to the total model memory is
greater compared to larger models. Saving of a
mere 0.5GB can grant 2B additional parameters
at 4-bit precision or longer context-length, which
would greatly improve the output performance.

Quantization can be applied either during train-
ing in what is called quantization-aware training
(QAT) or after during post-training quantization
(PTQ). While QAT remains the most effective for
preserving the model’s accuracy, it also presents
some practical limitations. It requires access to the
original training data, which is often private for
LLMs. Secondly, QAT is computationally inten-
sive as it requires retraining and fine-tuning of the
model, often requiring a repeat of the specific train-
ing procedure of the model (e.g., instruction-tuning
with RLHF). These constraints make QAT diffi-
cult to apply generally across diverse pre-trained
models. On the other hand, PTQ offers a more
generalizable and data-independent solution, as it
can directly be applied to a frozen model. This is
the solution adopted in this work.

To effectively target the embedding layer, we
propose a novel compression method called

CARVQ, a post-training Corrective Adaptor with
Group RVQ. The proposed Corrective Adaptor (γ)
relies on the composition of both linear and non-
linear maps. More precisely, we define it as the
composed map γ = σ1 ◦ σ0, where σ0 first embeds
the tokens into a very small dimension m and σ1
expands the resulting vectors back to the embed-
ding dimension n through a multi-layer perceptron
with small hidden dimensions. This Corrective
Adaptor compensates the loss from group RVQ op-
eration, which we use as an inexpensive strategy to
retain the essential knowledge in the original em-
bedding matrix. Through a careful decision of cen-
troid bitwidth κ, CARVQ is orthogonal to existing
transformer-layer quantization approaches such as
activation-aware weight quantization (AWQ) with-
out requiring any additional datatype support.

To study the impact of CARVQ on pre-trained
LLMs, we apply the proposed method on vari-
ations of three architectures, namely LLaMA-
3.2-1B (Grattafiori et al., 2024), LLaMA-3.2-
3B (Grattafiori et al., 2024), LLaMA-3.2-3B-
Instruct (Grattafiori et al., 2024), LLaMA-3.1-8B
(Grattafiori et al., 2024), Qwen2.5-7B (Yang et al.,
2024a), Qwen2.5-Math-7B (Yang et al., 2024b),
and Phi-4 (14B) (Abdin et al., 2024). We evaluate
these models on four common types of NLP tasks:
generative, discriminative, math, and reasoning. In
most cases, we observe that the model performance
drop to be near-lossless at 2.4-bit bitwidth-per-
parameter (bpp) and reasonable (perplexity < 18)
at 1.6-bit bitwidth-per-parameter on average.

The main contributions are summarized below:

1. We introduce CARVQ, a novel post-training
method for LLM embedding layer compres-
sion without requiring specialized hardware
to support lower-bit storage. CARVQ com-
bines group RVQ with Corrective Adaptor to
maximize information retention in low bits.

2. We evaluate the proposed compression
method on various task types, achieving better
model perplexity and evaluation scores than
the common approach of scalar quantization.
CARVQ achieves 1.6 average-bitwidth-per-
parameter compression on all models while
scalar quantization does not hold model per-
formance below 3 bits.

3. We demonstrate that CARVQ is compati-
ble with transformer-layer quantization meth-
ods without requiring special datatype sup-
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ports, unlike scalar quantization. This allows
CARVQ to be readily fitted to most deployed
LLMs today. We evaluate CARVQ on INT4-
AWQ-quantized LLMs.

2 Related Works

The rapid evolution of transformer-based archi-
tectures has significantly enhanced performance
across natural language processing (NLP), com-
puter vision (CV), and multimodal (MMMU) tasks.
However, the massive computational and memory
demands of these models remain a significant bar-
rier to their deployment in resource-constrained
environments such as edge devices and real-time
applications. To address this issue, various com-
pression techniques have been investigated.

Architecture Preserving Compression (Xiao
et al., 2023; Lin et al., 2024; Fang et al., 2023;
Ma et al., 2023) aims to reduce the size of trans-
former models while preserving their overall struc-
ture and operational flow. These methods focus
on minimizing redundant computations or parame-
ters without altering the architecture itself. Quanti-
zation (Xiao et al., 2023; Lin et al., 2024; Hui-
jben et al., 2024; Egiazarian et al., 2024; van
Baalen et al., 2024; Dettmers et al., 2024) con-
verts high-precision weights and activations into
lower-precision representations to reduce memory
and computational costs. By carefully balancing
precision loss and performance, quantization meth-
ods are particularly effective in deploying models
on hardware with constrained resources, such as
system-on-chip (SoC). Another complementary ap-
proach, pruning (Fang et al., 2023; Ma et al., 2023;
Ashkboos et al., 2024), eliminates weights or at-
tention heads deemed less impactful based on pre-
defined criteria. For example, head pruning and
structured pruning have shown that many weights
in transformer blocks contribute minimally to the
overall accuracy. These methods allow significant
reductions in size and computational demand while
retaining the architectural integrity of the model.

Architecture Adaptive Compression (Hu et al.,
2022; Oseledets, 2011) involves reconfiguring the
model structure to achieve compression by replac-
ing or simplifying specific layers. These methods
embrace the notion that certain architectural mod-
ifications can provide significant efficiency gains
while maintaining task accuracy. Low-Rank Adap-
tation (LoRA) (Hu et al., 2022) introduces low-
rank parameter updates to large pre-trained weights,

reducing memory footprint during fine-tuning on
downstream tasks without the need to retrain. An-
other innovative method, Tensor Train Decomposi-
tion (Oseledets, 2011), decomposes large tensors
into smaller low-rank tensors, significantly reduc-
ing memory footprint while maintaining accuracy.

Embedding Layer Compression (Xu et al.,
2023; Vincenti et al., 2024) specifically targets the
reduction of parameters associated with embed-
ding layers, which often constitute a substantial
proportion of the overall model size, especially
in multilingual architectures. In transformer mod-
els, embedding layers map input vocabulary and
image-patch tokens to high-dimensional vectors,
and their size grows proportionally with the vocab-
ulary size. TensorGPT (Xu et al., 2023) leverages
tensor train decomposition to represent these high-
dimensional embeddings in a more compact man-
ner, achieving parameter reduction with minimal
degradation to model accuracy. However, the linear
nature of TensorGPT results in accuracy drops in
high-compression. Similarly, Dynamic Vocabulary
Pruning (Vincenti et al., 2024) adjusts the vocab-
ulary size adaptively based on the task or data re-
quirements, pruning infrequently used tokens to
reduce the embedding matrix dimensions. How-
ever, these methods are limited by the requirement
of fine-tuning, lacking generalization.

3 Background

3.1 Input embedding matrix M
We denote by W the set of all tokens, known as the
vocabulary, for a given alphabet.

Definition 3.1. An embedding is a mapping from
W to Rn for n ≥ 1. It takes as input a token T
and returns an n-dimensional real vector, that is
σ : W → Rn sends T to (v1, v2, · · · , vn), where
vi ∈ R.

The embedding map is learned during training
where weights of the following matrix are given.

Definition 3.2. Let V denote the number of to-
kens in a given vocabulary, i.e., we have V = |W|.
The embedding weight matrix is the matrix M ∈
RV×n where each row Mi, for i = 1, · · · , V of the
matrix corresponds to Mi = σ(Ti) for Ti ∈ W .

The number of coefficients V × n in the em-
bedding weight matrix corresponds to the number
of parameters in the model. Initially, the embed-
ding coefficients in the matrix M are set to random
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real values. During the training process, these co-
efficients are updated through backpropagation as
the model analyzes more and more data. Token
embeddings can be pre-trained using traditional al-
gorithms such as skip gram (Guthrie et al., 2006)
or CBOW (Mikolov, 2013). However, for task-
specific foundational LLM model fine-tuning, it is
usually preferable to adapt the token embedding to
the data distribution considered and the semantics
of the specific downstream tasks.

3.2 Group Residual Vector Quantization
Residual Vector Quantization (Chen et al., 2010)
(RVQ) can be used to compress the embedding
layer in an LLM by representing the n-dimensional
embedding vectors using a sequence of lower-
dimensional quantized residuals. More specifically,
RVQ works by iteratively applying vector quantiza-
tion (Gray, 1984) (VQ) and encoding the residuals.

Vector quantization represents a high-
dimensional vector with the closest centroid
from a pre-trained codebook C ∈ RK×n defined
as a set of K centroids, i.e., n-dimensional
vectors. First, the codebook is trained using for
example K-mean clustering algorithm on the
entire embedding matrix. For each embedding
vector σ(Ti) ∈ Rn, one can compute the distance
ĵ = argminj ||σ(Ti) − ci||2 from it to each
centroid ci ∈ C and identify the closest one.
The embedding vector σ(Ti) is now represented
by the index ĵ of the closest centroid ci ∈ C.
During inference, the embedding vector σ(Ti)
is reconstructed as an approximation of the
original vector with some quantization error, called
residual, defined by the quantity ri = σ(Ti) − ci,
computed for all Ti ∈ V . This process can be
repeated iteratively, say L times, and one can then
apply vector quantization on the residuals obtained
from the previous step using a new codebook C′,
resulting in a new set of residuals r′i = ri − c′i. If
one repeats this process where at each iteration
a different codebook is used, each embedding
vector σ(Ti) is now represented by a vector of
length L which represents the sequence of L
quantized indices (ji,1, · · · , ji,L) where ji,j is the
index of the closest centroid in the codebook Cj
at layer j for the embedding vector σ(Ti). In
order to reconstruct the embedding vector σ(Ti)
one can sum the centroids selected by the indices
(ji,1, · · · , ji,L). The goal of RVQ is to minimize
the reconstruction error while still keeping the
storage cost as small as possible.

Group RVQ. Group RVQ was introduced
in (Yang et al., 2023) and offers a variant of RVQ
where the set of embedding vectors is divided into
groups and RVQ is applied to each group sepa-
rately as described above. The group RVQ outputs
are then combined to obtain the final quantization
results. In this work, we will consider this group
RVQ method as it is expected to have smaller recon-
struction error than standard RVQ since it operates
over smaller sets.

Compression with group RVQ. Residual Vec-
tor Quantization is used to reduce the storage size
of the embedding matrix but does not effectively
reduce the number of parameters in the embedding
layer. Let us analyze how the storage size is com-
pressed when using group RVQ with group size
g with sub-vector dimension h. We initially have
n-dimensional embedding vectors for each vocabu-
lary in V resulting in an embedding matrix of size
n × V . We start by splitting the input set of em-
bedding vectors into nV/gh groups such that each
group contains g embedding vectors of dimension
h for any g, h > 0 such as gh|nV . We then con-
sider the bit-compression ratio for a single group.
We will compute the following ratio:

storage emb. matrix
storage comp. model

=
gh× p

storage comp. model

where p is the precision of the original embedding
coefficients. Let us now count the storage size in
the compression model. There are two elements
that need to be stored. The quantized indices and
the codebooks. The total number of centroids is 2κ,
where κ is the number of bits necessary to index
a centroid, and each centroid is of length h. The
resulting codebook storage for L iterations is then
equal to Lh2κ×p bits. For the quantization indices,
each of the g embedding vectors goes through L
iterations. For each iteration, an index is stored into
a 2κ-sized codebook, requiring κ bits. Finally, we
have the compression ratio

compression-ratiobits =
gh× p

Lh2κ × p+ gLκ
.

In our work, we will focus on the average bitwidth-
per-parameter representing how many bits per orig-
inal parameter we are now effectively using after
compression. This quantity is computed as

BRVQ =
p

comp-ratiobits
= p× Lh2κ × p+ gLκ

gh× p
.
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Figure 3: Wikitext-2 Perplexity for LLaMA-3.2-3B and
LlaMA-3.1-8B with scalar quantization and CARVQ.

4 CARVQ Embedding Compression

In this section, we introduce a novel embedding
CARVQ, defined as the composition of two meth-
ods: Corrective Adaptor (4.1) and Group RVQ
(4.2). Corrective Adaptor works as non-linear inter-
mediate maps σ1 expanding the small dimension
output of linear map σ0 to the original embedding
dimension. Through this design we can efficiently
compensate the precision loss from Group RVQ op-
eration. Figure 1 illustrates CARVQ’s framework.

4.1 Corrective Adaptor

Corrective Adaptor (CA) performs contraction-
expansion strategy to significantly reduce the num-
ber of parameters required to map a token to its
embedding. First, let us define the following map
to map a token W to a small-dimension vector
σ0 : W → Rm sending T 7→ (v1, v2, · · · , vm)
where m ≪ n. We will call index the output of σ0.
We will refer to the dimension m as the corrective
width. Then, we define σ1 : Rm → Rn sending
(v1, v2, · · · , vm) 7→ (ṽ1, ṽ2, · · · , ṽn). This map ex-
pands the m-dimensional vectors to the embedding
dimension n. Note that the number of parameters
in the model is then equal to mV + nm, and as V
and n are usually fixed by the dataset and model
considered, the corrective width m is the hyper-
parameter introduced by our new method that will
change the average bitwidth-per-parameter.

Defining the map σ0. Initially, for a given cor-
rective width m, the coefficients of the vectors
σ0(T ) = (v1, · · · , vm) are randomly assigned for
each token T in the vocabulary. These coefficients
are then updated via training against the original
embedding matrix M.

Defining the map σ1. The question now remains
as to how one defines the map σ1. We define σ1
as a multi-layer perceptron, a composition of lin-
ear and non-linear functions hL and hNLi , respec-
tively. This means we have the following com-
posed embedding σ1 = hL ◦ hNLk

◦ · · · ◦ hNL1 ,
where the non-linear maps hNLi for i = 1, · · · , k,
are defined as hNLi : Rmi → Rmi+1 sending
x 7→ Relu(Wi · x+ bi) with Wi ∈ Rmi+1×mi and
bi ∈ Rmi+1 . Note that m1 = m. The last function
hL is linear and corresponds to a weighted summa-
tion hL : Rmk+1 → Rn sending x 7→ WL · x+ bL
with WL ∈ Rn×mk+1 and bL ∈ Rn. The last em-
bedding hL must be linear so that the token em-
bedding can have both negative and positive values
in its vector representation. We add layer normal-
ization between dense layers with ReLU activa-
tion to facilitate training. The dimensions mi for
i = 1, · · · , k + 1 are experimentally chosen and
fine-tuned taking into account downstream tasks.
Moreover, the number k of non-linear maps to ap-
ply can also vary. The number of model parameters
in this case is equal to

NP = mV +
k∑

i=1

mimi+1+
k∑

i=1

mi+1+mk+1n+n

where the values mimi+1 are the number of param-
eters in the matrices Wi, the mi+1 are the number
of parameters in the bi, mV is the size of Mσ0 as
before, nmk+1 and n are the sizes of WL and bL.

Compression ratio. By introducing an interme-
diate mapping that operates on much smaller vec-
tors of dimension m, we were able to compress our
model by the following ratio

nV
mV+

∑k
i=1 mimi+1+

∑k
i=1 mi+1+mk+1n+n

Parameters corresponding to biases are nearly neg-
ligible compared to weight parameter counts.

4.2 Combining Corrective Adaptor with
group RVQ

For the final compression of the embedding matrix,
we combine our Corrective Adaptor method with
group RVQ explained in Section 3.2. Group RVQ
retains knowledge in the original embedding matrix
of the pre-trained model with a minimal number
of bits without requiring any special datatype sup-
port in hardware. As the original datasets for most
models are not available during compression, this
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Prec. Method LLaMA-3.2-1B LLaMA-3.2-3B LLaMA-3.2-3B-Inst LLaMA-3.1-8B Qwen2.5-7B Mean
Prec. PPL Prec. PPL Prec. PPL Prec. PPL Prec. PPL Prec. ∆ PPL

16 FP16 16 9.75 16 7.81 16 11.05 16 6.24 16 6.85 16 0
4± 0.5 INT4 4 9.98 4 7.92 4 11.18 4 6.26 4 6.85 4 0.098

3± 0.5
INT3 3 11.42 3 8.58 3 12.26 3 6.33 3 6.86 3 0.750

CARVQ-4 3.201 10.15 3.155 7.97 3.155 11.48 3.133 6.43 3.131 6.86 3.155 0.238

2± 0.5
INT2 2 181 2 154 2 110 2 8.65 2 7.44 2 83.88

CARVQ-3 2.451 10.81 2.405 8.43 2.405 11.70 2.383 6.55 2.381 6.87 2.405 0.532
CARVQ-2 1.701 14.27 1.655 16.34 1.655 14.49 1.633 7.41 1.631 6.91 1.655 3.544

Table 1: CARVQ Results on Text Generation for Wikitext-2. LLaMA-3.2-1B (128256x2048), LLaMA-3.2-3B
(128256x3072), LLaMA-3.1-8B (128256x4096), Qwen2.5-7B (152064x3584). CARVQ-L represents L-iteration
RVQ. For CARVQ, the centroid count K is fixed to 16 (4-bit), the sub-vector dimension h to 8, and the group size g
to 1024. Precision in the table above corresponds to average bitwidth-per-parameter B.

Method BRV Q BCA mem. gain (GB)
CARVQ-4 3.000 0.155 0.756
CARVQ-3 2.250 0.155 0.831
CARVQ-2 1.500 0.155 0.877

Table 2: Memory overhead of the corrective adaptor is
sufficiently small compared to the group RVQ for the
overall compression ratio to be dictated by the group
RVQ compression.

Model Model (GFLOPS) CA (MFLOPS) CA (MB)
LLaMA-3.2-1B 0.62 0.63 2.52
LLaMA-3.2-3B 1.61 0.89 3.56
LLaMA-3.1-8B 3.75 1.15 4.62
Qwen-2.5-7B 3.53 1.02 4.08
Phi-4 (14B) 7.08 1.41 5.66

Table 3: Corrective adaptor computational overhead is
at most 0.1% of the original model with configurations
described in Section 5.1.

PTQ approach allows retention of knowledge, es-
pecially when leveraging Corrective Adaptor to
minimize the precision loss between the output of
original embedding M and CARVQ. Without the
Corrective Adaptor, group RVQ would be too de-
structive, significantly impacting the performance
of the model. Their combination allows an inex-
pensive method minimizing the reconstruction loss
without any fine-tuning.

We now concretely explain how we combine
these methods. We start by reshaping the embed-
ding matrix. We divide each embedding vector (i.e.,
each row of M) into j sub-vectors each of dimen-
sion h, where naturally jh = n. The embedding
matrix M is then reshaped into matrix M′ of size
nV/h× h where each row now corresponds to an
h-dimensional sub-vector. The reason we reshape
the matrix is to consider RVQ on smaller vectors
of dimension h ≪ n for which similarity search
(e.g., nearest neighbor search) is more effective. In

addition to this reshaping, as we consider group
RVQ, we split M′ into nV/gh groups such that
each group corresponds to a matrix of size g × h
which will be compressed using RVQ.

Recall that L is the number of iterations consid-
ered in RVQ, 2κ is the number of centroids, and
for each group of size g, each sub-vector of dimen-
sion h, after applying RVQ, is represented as an
L-dimensional vector (j1, j2, · · · , jL) of indices.
From Section 3.2, we already have the average
bitwidth-per-parameter after applying group RVQ
referred to as BRVQ. Let us now analyze the aver-
age bitwidth-per-parameter when combining group
RVQ with our Corrective Adaptor. We have already
described in Section 4.1 the parameter count Np

corresponding to our embeddings σ0 and σ1. There-
fore, we define BCA = p× Np

nV , to be the average
bitwidth-per-parameter resulting from our Correc-
tive Adaptor compression. The average bitwidth-
per-parameter considering group RVQ and Correc-
tive Adaptor is equal to BCARVQ = BCA+BRVQ. In
most scenarios, the number of parameters in RVQ
is much greater than the corrective layer, meaning
BCA ≪ BRV Q. We show this in Table 2. This
shows that, as long as the corrective width m is
kept relatively low, the hidden dimension of the
intermediate map σ1 is not too relevant. We also
find the computational overhead to be at most 0.1%
of the entire model, as shown in Table 3.

5 Experimental results

5.1 Implementation Details

LLM Evaluation. We evaluate our method on
different architectures: LLaMA-3.2-1B (Grattafiori
et al., 2024), LLaMA-3.2-3B (Grattafiori et al.,
2024), LLaMA-3.2-3B-Instruct (Grattafiori et al.,
2024), LLaMA-3.1-8B (Grattafiori et al., 2024),
Qwen2.5-7B (Yang et al., 2024a), Qwen2.5-Math-
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Model Dataset FP16 INT4 INT3 CARVQ-4 INT2 CARVQ-3 CARVQ-2
Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc. Prec. Acc.

LLaMA-3.2-1B
Hella

16
47.72

4
47.66

3
46.83

3.201
47.09

2
30.43

2.451
45.86

1.701
40.58

Wino 60.69 60.85 60.46 59.98 54.93 60.30 56.04
Piqa 74.48 74.70 73.23 73.76 60.83 72.31 70.46

LLaMA-3.2-3B
Hella

16
55.31

4
54.22

3
50.46

3.155
55.38

2
35.15

2.405
54.63

1.655
50.33

Wino 69.85 68.98 69.38 68.67 56.83 67.80 64.48
Piqa 76.66 76.39 75.57 76.88 67.57 76.33 74.59

LLaMA-3.1-8B
Hella

16
60.01

4
60.07

3
60.00

3.133
59.83

2
54.74

2.383
59.41

1.633
55.11

Wino 73.88 73.72 73.24 73.72 70.00 73.24 70.32
Piqa 80.14 79.82 79.33 79.82 75.57 79.33 77.15

Qwen2.5-7B
Hella

16
60.02

4
59.97

3
60.03

3.131
59.90

2
59.11

2.381
59.98

1.631
60.05

Wino 72.93 73.32 72.69 72.69 70.80 72.14 71.11
Piqa 78.73 78.45 78.73 78.62 78.89 78.56 78.78

Qwen2.5-Math-7B GSM8K 16 83.62 4 83.78 3 83.02 3.131 84.08 2 47.54 2.381 83.70 1.631 83.24

Phi-4 (14B)
GSM8K

16
88.78

4
88.25

3
88.02

3.138
88.63

2
88.55

2.388
88.10

1.638
87.79

ARCC 55.55 55.72 56.74 54.86 55.03 55.20 55.38
ARCE 81.48 81.61 81.90 81.65 82.24 81.82 80.43

Avg. Precision / Mean ∆ Acc. 16 - 4 -0.15 3 -0.64 3.148 -0.27 2 -8.23 2.398 -0.70 1.648 -2.75

Table 4: Comparison of accuracy on discriminative and math/reasoning tasks. Phi-4’s embedding matrix is of size
(100352×5120). Exact-match accuracy with flexible extraction is reported for GSM8K. ARCC and ARCE represent
ARC challenge and easy tasks, respectively. CARVQ-L represents L-iteration RVQ. For CARVQ, the centroid
count K is fixed to 16 (4-bit), the sub-vector dimension h to 8, and the group size g to 1024. Precision in the table
above corresponds to average bitwidth-per-parameter B.

7B (Yang et al., 2024b), and Phi-4 (14B) (Abdin
et al., 2024). All pretrained models are open-source
from HuggingFace, with our Corrective adaptor im-
plemented in PyTorch. We do not consider weight-
tying (Press and Wolf, 2017) in our work due to
its limited usage in recent high-complexity tasks.
We assess four types of LLM tasks for evaluation:
generative, discriminative, math, and reasoning.
For the generative task, we evaluate perplexity on
Wikitext-2 (Merity et al., 2016) following previ-
ous quantization works (Lin et al., 2024; Chen
et al., 2025). Discriminative tasks are evaluated
with three benchmarks: HellaSwag (Zellers et al.,
2019), WinoGrande (Keisuke et al., 2019), and
Piqa (Bisk et al., 2020). Math tasks are evaluated
with GSM8K (Cobbe et al., 2021). We evaluate on
ARC Challenge and ARC Easy (Clark et al., 2018)
for the reasoning task.

Corrective Adaptor Implementation. Our
method consists of two components: group
RVQ and our Corrective Adaptor method. We
acquire RVQ by applying K-Means clustering
at each iteration for each group with a tolerance
of 1e−4. Corrective Adaptor hyper-parameters
are [m1,m2,m3] = [16, 384, 512] for all models.
Note that we promote overfitting during training
as we want the network output to be as close as
possible to the original embedding vector.

Training. As the input to embedding layers are a
scalar pointing to a row in the embedding matrix,

the data used to train the Corrective Adaptor is lim-
ited to the input dimension of embedding matrix.
This also means that we can overfit the MLP as the
input is fixed to a specific set, further lowering the
expressiveness requirement of the adaptor. Then,
with roughly 150,000 data points (English), we
train such that the L1 loss of the final output sum of
RVQ and Corrective Adaptor with the original em-
bedding vector for each vocabulary is minimized.
We train for 500 iterations with Adam for learning
rate of 1e-3 on a RTX 4090 for 2 minutes.

Quantization Scheme for Comparison. To our
knowledge, there are no open-source post-training
compression methods targeting embedding layers.
Thus, we compare Corrective Adaptor with scalar
quantization, as prior quantization works (Lin et al.,
2024; Liu et al., 2024) utilize scalar quantization
for the embedding layer. To ensure fair compari-
son, we keep the transformer layers in their original
precision (FP16/BF16). Although scalar quantiza-
tion can achieve a slightly lower average error per
dimension, its uniform bins make it highly sensi-
tive to large-magnitude embedding values, produc-
ing a skewed error distribution. In contrast, group
RVQ’s iterative residual steps produce errors that
are approximately zero-mean and more concen-
trated. Such zero-centered, low-variance errors are
better suited for being corrected by the corrective
adaptor.
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5.2 Evaluation Details

Generative Tasks. Table 1 presents perplexity
changes when applying different post-training com-
pression methods to the embedding matrix, namely
scalar quantization and our CARVQ-L method for
L-iteration RVQ. For 4, 3 and 2-layer CARVQ,
we observe a 0.238, 0.532, and 3.544 perplexity
increase on average compared to the FP16 base-
line models. On the other hand, scalar quantiza-
tion works well up to 3-bit quantization with av-
erage perplexity increase of 0.098 and 0.75. How-
ever, 2-bit quantization fails to capture enough in-
formation for most models with an average per-
plexity loss of 84. In comparison, the proposed
CARVQ is very stable at 3 iterations with an av-
erage bit-per-parameter of 2.405, even preserving
most of the structure at 2 iterations with 1.655 bit-
per-parameter. We sometimes also notice marginal
improvements (< 1%) over baseline when CARVQ
is applied. We visualize the comparison in Fig. 3
with LLaMA-3.2-3B and LLaMA-3.1-8B. Further-
more, compared to INT3 and INT2 quantization,
which require hardware optimization due to lim-
ited architecture support, CARVQ-3 and CARVQ-2
only utilize 4-bit and 16-bit datatypes for storage,
making them compatible with all recent architec-
tures supporting INT4. By adapting the centroid
bitwidth κ, we can adapt CARVQ to any appro-
priate hardware. This demonstrates that the com-
bination of group RVQ and corrective adaptors in
CARVQ significantly reduces quantization error,
achieving low-bit embedding without sacrificing
hardware compatibility.

Discriminative Tasks. Table 4 exhibits a compar-
ison of evaluation accuracy on discriminative tasks
with CARVQ and scalar quantization applied. With
L=2, 3 and 4, we attain mean accuracy loss of 0.34,
0.88, and 3.45 for discriminative tasks, showing
decent performances even at average bitwidth-per-
parameter of 1.68. In comparison, scalar quanti-
zation mean losses are at 0.87 for INT3 and 7.97
for INT2, so 2-bit quantization would risk signifi-
cant loss in answer quality. Moreover, this bigger
gap is more pronounced in smaller models such as
LLaMA-3.2-1B, where the accuracy gap between
INT2 and CARVQ-2 is more than 10%. This shows
that CARVQ can achieve much smaller bidwidth-
per-parameter while maintaining good accuracy
compared to scalar quantization for this task.

Method LLaMA-3.2-3B Qwen2.5-7B
Prec. PPL Prec. PPL

FP16 16 7.81 16 6.85
CA+INT3 3.155 7.90 3.131 6.86
CARVQ-4 3.155 7.97 3.131 6.86
CA+INT2 2.155 12.51 2.131 7.39
CARVQ-3 2.405 8.43 2.381 6.87
CA+INT1 1.155 14528 1.131 46480
CARVQ-2 1.655 16.34 1.631 6.91

CARVQ-2 (k=3) 1.155 3230 - -

Table 5: Ablation of quantization with scalar quantiza-
tion. We evaluate the perplexities of LLaMA-3.2-3B
and Qwen2.5-7B on Wikitext-2.

Method Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct
Wiki PPL Wiki PPL

AWQ 11.75 9.10
CARVQ-4+AWQ 12.12 9.19
CARVQ-3+AWQ 12.76 9.40
CARVQ-2+AWQ 15.91 10.61

Table 6: CARVQ applied on AWQ-quantized models.
We evaluate perplexities of Llama-3.2-3B-Instruct and
Qwen2.5-3B-Instruct on Wikitext-2.

Math Tasks. Table 4 also compares the accuracy
on math tasks with Qwen2.5-Math-7B and Phi-4.
For both models, CARVQ methods result in an
average minimal accuracy loss of less than 0.5%.
However, we see a sudden loss of accuracy in INT3
and INT2, each of 0.6% and 36%. As mathemat-
ical prompts require high retention of reasoning
and memory, scalar quantization to INT2 likely
simplifies the complex math problems too much.
However, we observe CARVQ holding accuracy
even at 1.63 bits, likely due to improved precision
withheld from storing the VQ vectors in the origi-
nal precision of FP16.

Reasoning Task. We include reasoning tasks
evaluation with Phi-4 to demonstrate further gen-
eralization to different tasks in Table 4. As Phi-4
is larger at 14B parameters, we see retention of
performance even with low-bit quantization, even
showing improvements in both easy and challenge
evaluations. Overall, both scalar quantization and
CARVQ quantization result in a minimal (< 1.1%)
drop in accuracy under reasoning tasks when a suf-
ficiently large model is used to counter the quanti-
zation loss in the embedding layer. Through exten-
sive evaluation across various tasks, we conclude
CARVQ-3 offers the best trade-off between accu-
racy retention and compression ratio.
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5.3 Additional Analysis

Ablation of Quantization. To better understand
the effect of RVQ in our method, we swap the RVQ
operation with regular scalar quantization and train
the Corrective Adaptor with the same configura-
tions. Table 5 evaluates the effect of replacing RVQ
with a scalar quantization. In both 3B and 8B pre-
trained models, RVQ clearly shows an advantage,
especially below 2-bit, where INT1 (binary) quan-
tization completely fails (the perplexity goes up to
14528 while with CARVQ-2, it remains 16.84).

For the comparison to be fair, the group RVQ’s
average bitwidth must be equal to the INT-N
(BRV Q = N ). For that, we must say BRV Q =
(pLh2k + gLk)/gh = N , where p is fixed to 16
and L fixed to the CARVQ-L. Due to the gh|nV
constraint as well as to avoid odd overflows into the
next rows when grouping, it is unadvisable to ma-
nipulate g = 1024 and h = 8 unless we are scaling
them by whole numbers. Thus, this leaves k = 4,
the bit-width determining the centroid counts, to be
manipulated. We calculate this for LLaMA-3.2-3B.
For CARVQ-3 to be equal to INT-2, we would re-
quire k = 3.704, to which it rounds to the original
k = 4. For CARVQ-2 to be equal to INT-1, we
require k = 3, which we report in Table 5. How-
ever, keep in mind that we decrease the number of
centroids, which significantly increases the quanti-
zation error that has to be regained by the proposed
Corrective Adaptor.

Combining with Transformer Quantization.
AWQ allows models to be quantized to 4-bit with
minimal loss to quality and coherence. As the Cor-
rective Adaptor only works on the embedding layer,
it is inherently orthogonal to existing post-training
quantization operations on transformer layers, as-
suming such methods do not amplify error cas-
cades. We evaluate the perplexity of W4A16 AWQ
(Lin et al., 2024) quantized models with CARVQ.
Table 6 details the result of our comparison. The
perplexity loss of CARVQ remains low (< 5) even
on AWQ-quantized models, with CARVQ-3 keep-
ing the loss less than 1.1 in all tests. Notably, the
perplexity loss with CARVQ-4 and CARVQ-3 on
Qwen2.5 architecture is kept below 0.3, showing
significant bitwidth reduction with near-lossless
performance. Further, as W4A16 AWQ natively
uses 4-bit and 16-bit datatypes, we can set κ = 4
and p = 16 for the proposed CARVQ to be com-
patible with the machines running such models.

6 Conclusion

In this work, we introduced CARVQ, a novel post-
training method for LLM embedding layer com-
pression to ∼1.6 bits without requiring specialized
hardware to support lower-bit storage. By care-
fully reorganizing the matrix into vector-quantized
tables, CARVQ reduces the embedding layer pre-
cision without utilizing equally low-bit datatypes.
We focused on evaluating varying-complexity mod-
els on a diverse set of tasks, showing that CARVQ
can achieve lower average bitwidth-per-parameter
while maintaining reasonable perplexity and ac-
curacy compared to scalar quantization. More-
over, the CARVQ system can be seamlessly in-
tegrated into any hardware supporting 4-bit mem-
ory to reduce model memory footprint in signif-
icantly memory-constrained devices where every
MB counts. CARVQ’s compatibility with state-of-
the-art transformer quantization methods, which
can be highly prone to error propagation, unveils
promising potential for future scalability.

7 Limitations

Despite its conceptual simplicity, CARVQ cannot
be directly applied to transformer layers due to a
substantial increase in computational complexity
without a specialized lookup-table implementation.
Such an implementation is feasible for embedding
layers, which operate on discrete token indices, but
not for continuous transformer activations. This
constraint limits CARVQ’s applicability in larger
language models, where the proportion of the em-
bedding layer to the overall model size becomes
relatively small, even with compression applied to
transformer layers. Furthermore, the Corrective
Adaptor in CARVQ does not preserve the struc-
tural properties of the original embedding matrix,
effectively acting as a coarse additional RVQ itera-
tion. While we did not observe notable degradation
in our experiments, this simplification may result
in the loss of fine-grained semantic information,
potentially affecting performance on tasks that de-
pend on subtle representational nuances. Lastly,
we observe that larger models tend to be more tol-
erant to quantization errors in the embedding layer;
however, if the accompanying transformer layer
compression is excessively lossy, it may fail to
compensate for even small embedding-level errors,
diminishing the overall robustness of the model.
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