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Abstract

LLMs are becoming increasingly capable and
widespread. Consequently, the potential and
reality of their misuse is also growing. In
this work, we address the problem of detect-
ing LLM-generated text that is not explicitly
declared as such. We present a novel, general-
purpose, and supervised LLM text detector,
SElected-Next-Token tRAnsformer (SENTRA).
SENTRA is a Transformer-based encoder
leveraging selected-next-token-probability se-
quences and utilizing contrastive pre-training
on large amounts of unlabeled data. Our exper-
iments on three popular public datasets across
24 domains of text demonstrate SENTRA is
a general-purpose classifier that significantly
outperforms popular baselines in the out-of-
domain setting.

1 Introduction

The problem of determining whether a text has
been generated by an LLLM or written by a human
has been widely studied in both academia (Tang
et al., 2024) and industry. Several commercial-
level automated text detection systems have been
developed, including GPTZero (Tian and Cui,
2023), Originality (Originality.Al, 2025), Sapling
(Sapling Al 2025), and Reality Defender (Real-
ity Defender, 2025). Although significant progress
has been made in detecting LLM-generated text
over the past several years, these systems remain
far from perfect and are often unreliable. A ma-
jor limitation is their brittleness: they can perform
well on certain types of LLM-generated text but
fail catastrophically in other cases (Dugan et al.,
2024). This issue is particularly pronounced when
operating in a real world scenario, where models
must handle out-of-domain (OOD) data, different
LLM generators, or various LLM "attacks" (Dugan
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et al., 2024; Zhou et al., 2024). Therefore, it is
crucial to develop more generalizable methods that
deliver reliable performance across these settings.

The probability of a document under an LLM’s
model can be measured by auto-regressively feed-
ing the document’s tokens into the LLM and ob-
serving the predicted probabilities for each token.
This process produces a sequence of values called
selected-next-token-probabilities (SN'TP) that has
been extensively used in prior work on LLM-
generated text detection (Guo et al., 2023; Hans
et al., 2024; Verma et al., 2024). These prior works
primarily rely on either heuristics (handcrafted
functions) applied to SNTP sequences or linear
models trained on expert-derived features (Hans
et al., 2024; Verma et al., 2024). In contrast, our
proposed approach encodes SNTP sequences us-
ing a Transformer model pre-trained on unlabeled
data, leveraging the expressivity of Transformers
to directly learn a representation of the probability
that a single or multiple LLMs assign to tokens in a
document. More specifically, we propose SElected-
Next-Token tRAnsformer (SENTRA ), a method for
detecting LLM-generated text that directly learns
a detection function in a supervised manner from
SNTP sequences. This method utilizes a novel
Transformer-based architecture with a contrastive
pre-training mechanism. The learned representa-
tion can be fine-tuned on labeled data to create a su-
pervised model that distinguishes LLM-generated
texts from human-written texts.

For the LLM-text-detection task, supervised de-
tectors have been shown to generalize poorly out-
side the training distribution (Dugan et al., 2024).
Prior supervised methods typically leverage raw to-
kens as input and tend to overfit to token selections
in a document. Heuristic or linear models on SNTP
input have been shown to generalize well, but these
simple models lack the expressivity to fully exploit
the information in the SNTP sequences. Our SEN-
TRA network addresses this issue by learning gen-
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eralizable functions on SNTP. We show empirically
that the supervised method presented in this paper
generalizes to unseen domains better than both su-
pervised and unsupervised baselines by leveraging
our proposed Transformer-based architecture, thus
demonstrating greater generalization to distribution
shifts.
In this paper, we demonstrate the following:

* Detectors utilizing SENTRA as their encoder
generalize well to domains outside of the training
distribution(s).

* Contrastive pre-training of SENTRA leads to im-
proved generalization results on new domains.

* SENTRA outperforms all studied baselines in
out-of-domain evaluations on three widely used
benchmark datasets.

Because of the number of possible domains, im-
proving out-of-domain generalization is the most
important task to achieve LLM generated text de-
tection in the wild.

2 Related Work

With the rise of LLMs, significant research has
been conducted on accurately detecting text gener-
ated by these models (Tang et al., 2024). At a high
level, these detectors can be categorized into three
approaches: watermarking, unsupervised (or zero-
shot) detection, and supervised detection. Water-
marking generally relies on the LLM deliberately
embedding identifiable traces in its output (Liu
et al., 2025). In this work, we focus on the general
detection problem, including cases involving non-
cooperative LLMs; therefore, we do not consider
watermarking as a point of comparison. Unsuper-
vised methods typically leverage metrics computed
by an LLM on the target document. These meth-
ods can be further divided into white-box detection,
where the candidate LLM is known (Mitchell et al.,
2023), and black-box detection, where the candi-
date LLM is unknown (Tang et al., 2024). Given
our focus on the general detection problem, we pri-
oritize black-box detection methods. Supervised
methods, on the other hand, involve collecting a
corpus of human-written and LLM-generated text
samples, which are then used to train the detection
models (Verma et al., 2024; Soto et al., 2024).
Selected-next-token-probabilities (SNTP) have
been widely used for LLM detection in both white
and black box settings (Guo et al., 2023; Hans et al.,
2024; Verma et al., 2024). Perplexity (Jelinek et al.,

1977) is a commonly used metric to evaluate an
LLM’s ability to model a given dataset. In the con-
text of Al detection, a lower perplexity score on
a document indicates an LLM "fits" a document
and this indicates a higher likelihood the document
was LLM-generated. Conversely, a higher perplex-
ity score suggests the LLM’s probability model
does not fit or accurately represent the candidate
text, implying a lower likelihood that the text was
generated by the LLM (Guo et al., 2023).

Some detectors use multiple sequences of SNTP
for the detection task (Verma et al., 2024; Hans
et al., 2024). Verma et al. (2024) leveraged SNTPs
from two Markov models, along with an LLM’s
SNTP, extracted features, and a forward feature
selection scheme as inputs to a linear classifier. In
contrast to Guo et al. (2023), Hans et al. (2024)
argued that relying solely on the perplexity score
for LLM-generated content detection can be mis-
leading. Although human-authored text generally
results in higher perplexity, prompts can signifi-
cantly influence perplexity values. The authors
highlighted the "capybara problem", where the ab-
sence of a prompt can cause an LLM-generated
response to have higher perplexity, leading to false
detections. They addressed this issue by introduc-
ing cross-perplexity as a normalizing factor to cali-
brate for prompts that yield high perplexity.

DetectGPT is an unsupervised method based on
the idea that texts generated by LLMs tend to "oc-
cupy negative curvature regions of the model’s log
probability function" (Mitchell et al., 2023). The
method generates perturbations of the sample text
using a smaller model and compares the log proba-
bility of the sample text to that of the perturbations.
Fast-DetectGPT replaces the perturbations in De-
tectGPT with a more efficient sampling step (Bao
et al., 2024). Nguyen-Son et al. (2024) observed
that the similarity between a sample and its counter-
part generation is notably higher than the similarity
between the counterpart and another independent
regeneration. They demonstrated that this differ-
ence in similarity is useful for detection.

The most common supervised baseline for LLM-
generated text detection is a RoBERTa classifier
(Liu et al., 2019) trained on a corpus of labeled
text, where each document is marked as either
human-written or LLM-generated. Several stud-
ies have expanded on this approach to supervised
text-based classification. Yu et al. (2024) trained
a feed-forward classifier with two hidden layers
using intrinsic features derived from Transformer
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Figure 1: SENTRA leverages the selected-next-token-probabilities from two frozen LLMs. These two sequences
of logits are concatenated into a vector. Each of these vectors are projected to the dimension of the bi-directional

Transformer.

hidden states, determined via KL-divergence. Tian
et al. (2024) address the challenge of detecting
short texts by treating short samples in the training
corpus as partially "unlabeled". Hu et al. (2023)
employed adversarial learning to improve the ro-
bustness of their RoOBERTa-based classifier against
paraphrase attacks.

Several publications have explored contrastive
training for the LLM detection task (Bhattacharjee
et al., 2023, 2024; Soto et al., 2024; Guo et al.,
2024). These studies use contrastive pre-training
for a text Transformer, which is chosen to be
RoBERTa (Liu et al., 2019) in many cases, to guide
the network toward a representation more useful
for LLM-generated text detection. Furthermore,
many prior contrastive training strategies focus on
identifying stylometric features (Soto et al., 2024;
Guo et al., 2024), while other studies extract stylo-
metric features directly and train classifiers using
those features (Kumarage et al., 2023a). Rather
than focusing on text representations, our method is
mainly designed to produce useful SNTP represen-
tations and, thus, proposes a different contrastive
pre-training scheme that compares textual represen-
tations with those of the SNTP Transformer.

However, SNTP and supervised methods have
been shown, both intuitively and empirically, to
struggle with generalization to unseen domains (Li
et al., 2024a; Roussinov et al., 2025).

For instance, Lai et al. (2024) applied adap-
tive ensemble algorithms to enhance model per-
formance in OOD scenario. Meanwhile, Guo et al.
(2024) and Soto et al. (2024), recognizing the lim-
ited number of widely adopted general-purpose Al
assistants, proposed to train an embedding model
to learn the writing style of LLMs, and thereby
improving the detection accuracy.

Prior work has shown SNTP to be an effective in-

put for identifying LLM generated text (Guo et al.,
2023; Hans et al., 2024; Verma et al., 2024), but
they rely on relatively simple metrics or heuris-
tics. In this paper, we propose a Transformer-based
SENTRA model that learns a representation of
SNTP sequences used for more effective training
of detection models that better generalize to unseen
domains.

3 Methodology
3.1 Overview of the SENTRA Method

Consider a document ¢ consisting of an input se-
quence of T tokens ¢t = (t1,to, - ,t7). Assum-
ing an LLM has parameters 6, the probability of
document ¢ given this LLM can be specified as

T
P(t17t27”' 7tT|9) :HQZ<0) (1)
t=1
where
qi(0) = P(t; | t1,ta,- -+ ,ti—1;0) 2

is the probability of token ¢; given the pre-
ceding tokens (t1,ta,---,t;—1). We denote
the observed sequence of selected-next-token-
probabilities (SNTP) as

q(0) = (¢1(0),¢2(0),--- ,qr(0)) . (3)

It is common, and done in this work, to use the
log representation of these sequences

£;(0) = —log qi(0) )

where / is the log of the SNTP sequences.

Prior work, reviewed in Section 2, has proposed
various heuristic functions on these sequences that
are useful in detecting LLM-generated text (Guo
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Figure 2: Pre-training: the outputs of SENTRA and a frozen text encoder go through linear layers, (W and W)
respectively, and normalization before a matrix multiplication (matmul) operation to produce the similarity matrix
M. Blue and orange blocks indicate trainable and frozen components respectively.

et al., 2023; Hans et al., 2024). SENTRA replaces
these heuristic functions on SNTP sequence(s) with
a neural network, as shown in Figure 1 illustrating
our proposed method. In particular, we leverage k
LLMs, each with parameters 9% to produce SNTP
sequences /(¥) and for a candidate document with
T tokens using process in Equation 2. The k se-
quences are concatenated to form input sequence x.
Note that in Figure 1, £ = 2. In this work, we focus
on the k = 2 case. Setting k > 1 allows the model
to learn from similarities and deviations in SNTP
sequences produced by LLMs. This comparison
was a key idea in (Li et al., 2024b), and following
that work, we focus on the & = 2 case where the
two LLMs share a tokenizer. This allows the SNTP
sequences to be aligned.

Instead of token embeddings often seen in Trans-
former architectures (Devlin et al., 2019), each
token-indexed representation x; € x is indepen-
dently projected using a fully connected layer.

he = f(Wa +b) + Z, 5)

where h is the dense embedding representation, f
is the ReLU activation function, W is the weight
matrix, b is the bias, and Z; are Z € RT*P learned
positional embeddings. This transformation re-
sults in a representation of size 7' x D for a single
document. Note a learned [CLS] representation
hicrs) € RP is pre-pended to the sequence be-
fore the positional embeddings are applied. This
representation h; is passed through a bi-directional
Transformer (Devlin et al., 2019) @), as shown in
Figure 1.

The output of SENTRA is a learned representa-
tion over SNTP, capturing the probability assigned
by two LL.Ms to the tokens in a document. For clas-
sification, we use the representation at the [CLS]
token and append a classification head. This Trans-
former produces our SENTRA representation R;

over SNTP sequences.

Ry =Q(h) (6)

where R; is a D dimensional representation of
the document over the token length 7.

In summary, SENTRA is the first Transformer-
based encoder to systematically learn a useful
representation of SNTP sequences. Similar to
many Transformer-based approaches (Devlin et al.,
2019; Radford et al., 2021), that have traditionally
used different modalities of input information, we
demonstrate in Section 3.2 that our method can
leverage large quantities of unlabeled data to en-
hance this learned representation.

3.2 SENTRA Contrastive Pre-Training

We further explore the pre-training of SENTRA
using unlabeled text data and demonstrate in Sec-
tion 4.4 that it significantly improves SENTRA’s
performance. Notably, this pre-training scheme is
reminiscent of CLIP (Radford et al., 2021). Figure
2 illustrates our concept for pre-training SENTRA.
We leverage off-the-shelf, pre-trained text represen-
tations to help SENTRA learn a useful representa-
tion of SNTP sequences. A document is encoded
using both a pre-trained text encoder (Devlin et al.,
2019; Liu et al., 2019) and our SENTRA network,
producing representations R; and R. These repre-
sentations are projected to a joint embedding space,
U, and S,, using fully connected layers C; and Cj
for the text and SNTP representations respectively.

Ue = Ci(R))

Se - Cs (Rs) (7)

After applying L2 normalization to U, and S, to
control for scaling, we then compute a comparison
matrix M

M = (U.8T)e" ®)
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where r is learned temperature scalar.

The two encoders learn to match representations
of the same document within a batch B. Employing
the contrastive learning objective,

Ls+ L

L=—— ©)

(10)

o) o

we then minimize the cross-entropy loss over the
columns (text-to-SNTP), and rows (SNTP-to-text)
of the comparison matrix M, using the ground truth
text-SNTP pairings in the batch, y = 0,1, ...5 — 1.

The pre-training scheme effectively enables
SENTRA to produce representations that align with
those generated by the frozen text encoder, thereby
yielding more useful representations of the /=1
and ¢*=2 sequences.

In (Radford et al., 2021)’s work, the authors
jointly trained text and image encoders from
scratch. Unlike CLIP, which deals with text and
images, we focus solely on text and on pre-training
only the SENTRA SNTP encoder. To do this, we
freeze a pre-trained text encoder and train only
SENTRA and the contrastive embedding projec-
tions.

3.3 Implementation

We implement our SENTRA model with eight at-
tention heads, eight layers, and a hidden dimension
of 768 for a total of 57M parameters. The Trans-
former architecture and positional embeddings fol-
low the same definitions as in BERT (Devlin et al.,
2019). Before pre-training, the SENTRA parame-
ters are randomly initialized. The frozen text en-
coder used for contrastive pre-training is initialized
from RoBERTa (Liu et al., 2019). SENTRA is pre-
trained on a 600K sample of Common Crawl data
from RedPajama (Weber et al., 2024). Pre-training
is conducted for 20 epochs with a batch size of
256 and a maximum token length of 64. We then
continue contrastive training for 10 epochs with a
batch size of 128 and a maximum token length of
512 to pre-train the later position embeddings. The
peak learning rate was set to 1e — 4 for both phases.

We use the AdamW (Loshchilov and Hutter, 2019)
optimizer with a weight decay of 1e — 2 and set the
contrastive learning temperature to 0.007 (Chen
et al., 2020). During fine-tuning, we initialize SEN-
TRA from the pre-trained model, use a learning
rate of 1le — 4, a weight decay of 1e — 2, and apply
early stopping with a patience of two epochs on a
validation dataset.

As shown in Figure 1, we implemented SEN-
TRA with two SNTP sequences and therefore k =
2. Following Binoculars (Hans et al., 2024), we
use Falcon-7B and Falcon-7B-Instruct (Almazrouei
et al., 2023) to produce these sequences. We used a
sequence of two SNTP because Binoculars showed
it is useful for the detector to compare both SNTP,
and we used the Falcon models specifically because
Binoculars showed they worked well (Hans et al.,
2024). During SENTRA training, the SNTP se-
quences are precomputed and cached. At inference,
the computational complexity is dominated by the
Falcon models. Because we use the same LLMs as
Binoculars (Hans et al., 2024) and our SENTRA
encoder is small, our method has the same order
of complexity as Binoculars. See Appendix C for
additional details.

4 Experiments

4.1 Datasets

If we define text similar to the training data distribu-
tion as in-domain and text that is dissimilar as out-
of-domain, it is well established supervised LLM
detection methods perform significantly better in-
domain than out-of-domain (Dugan et al., 2024).
However, a model designed for LLLM-generated
text detection in real world scenarios will inevitably
encounter out-of-domain texts. For this reason, this
work focuses on out-of-domain experiments, where
key subsets of data are withheld from the training
dataset.

To evaluate the effectiveness of our proposed
method, we used three publicly available datasets:
RAID (Dugan et al., 2024), M4GT (Wang et al.,
2024a) and MAGE (Li et al., 2024a), focusing ex-
clusively on English-language data.

RAID: The full RAID dataset contains over 6
million human- and LLM-generated texts spanning
8 domains, 11 LLM models, multiple decoding
strategies, penalties, and 11 adversarial attack types.
We down-sampled it to 500K instances before per-
forming out-of-domain split sampling. With the
included attacks, the RAID dataset also assesses
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the effectiveness of different supervised baseline
methods against adversarial attacks under the in-
attack setup.

M4GT: An extension of M4 (Wang et al.,
2024b), the M4GT dataset is a multi-domain and
multi-LLM-generator corpus comprising data from
6 domains, 9 LLMs, and 3 different detection tasks.

MAGE: The MAGE dataset covers 10 content
domains, with data generated by 27 LLMs using 3
different prompting strategies. It is specifically de-
signed to assess out-of-distribution generalization
capability. We use the "Unseen Domains" evalua-
tion from (Li et al., 2024a).

Each dataset is further split into training, val-
idation and test sets. For MAGE, we used the
published split. To mitigate the label imbalance
problem, the train and validation splits are balance-
sampled to ensure an equal number of human- and
LLM-generated texts. This was achieved by down-
sampling the majority class to match the size of the
minority class within split. Addressing this imbal-
ance is crucial for two reasons: 1) the percentage
of LLM-generated text is over 97% in the RAID
dataset by design; 2) across the three datasets, the
proportion of LLM-generated text varies signifi-
cantly. The average train and validation set sizes
show how much data went into the training of the
supervised methods while ensuring class balance,
providing a clear comparison to the total dataset
size. The MAGE dataset has significantly shorter
texts and this adds difficulties to the detection task
(Tian et al., 2024; Fraser et al., 2024).

Beyond out-of-domain evalution, we further as-
sessed our method in an out-of-LLM (OOLLM)
setup using MAGE’s out-of-LLM testbed which
contains 7 LLM splits. Table 5 contains detailed
statistics on the evaluation datasets. For fair com-
parison across methods, we use the first 512 tokens
from each document in all datasets.

4.2 Baseline Methods

We evaluated and compared the performance of our
approach against multiple existing methods, includ-
ing zero-shot, embedding-based, and supervised
detectors. For zero-shot, we selected perplexity
(Guo et al., 2023), Fast-DetectGPT (Bao et al.,
2024), and Binoculars (Hans et al., 2024) detec-
tors. For embedding-based detectors, we selected
UAR (Soto et al., 2024) and evaluated both its
Multi-LLM and Multi-domain models. For super-
vised detectors, we chose RoBERTa (Liu et al.,
2019) with direct fine-tuning, Ghostbuster (Verma

et al., 2024) which trains a logistic regression clas-
sifier on forward-selected crafted log-probability
features, and Text Fluoroscopy (Yu et al., 2024)
which utilizes intrinsic features. For RoBERTa, we
used the same settings as the fine-tuning of SEN-
TRA: a learning rate of 1le — 4, a weight decay of
le — 2, and a patience of two epochs.

We used Falcon-7B and Falcon-7B-Instruct
across all baseline methods that required LLMs,
except for Fast-DetectGPT where we followed its
black-box setting. Appendix D provides a detailed
description of the setup, assumptions and modifica-
tions made for each baseline method.

We compared the baseline methods mentioned
above with our proposed methods. We present
results from two SENTRA encoder variations, R-
SENTRA and SENTRA. R-SENTRA has all non-
LLM weights in SENTRA encoder initialized at
random (without pre-training), whereas the full
SENTRA model has those weights pre-trained as
described in Section 3.3.

Interestingly, prompting an LLM to do the LLM-
text detection task is not well studied and does
not appear in standard benchmarking work (Dugan
et al., 2024; Wang et al., 2024b; Li et al., 2024a).
We performed a small case study to evaluate how a
SOTA LLM, GPT-40 (OpenAl et al., 2024a), and a
reasoning model, ol (OpenAl et al., 2024b), could
perform on a sample of the OOD datasets. We were
unable, due to the high cost of these APIs, to run
the full evaluation datasets through these models
and therefore chose to randomly sample from the
full datasets and perform a fair comparison on the
smaller test sets. The evaluation results for the
GPT4-0 and o1 LLMs and their comparison with
SENTRA performance are reported in Section 4.5.

4.3 Ablation Study

Table 1 shows the effect of pre-training SENTRA
on all datasets. -SENTRA is the "raw" SENTRA
showing the architecture’s performance without
pre-training on any dataset and then evaluating on
the M4GT dataset. Across the four datasets, the
average and worst-case performance over the do-
mains was increased after pre-training. This shows
the contrastive pre-training method presented in
Figure 2 is an effective method for improving SEN-
TRA as an encoder for the LLM text detection.
Table 2 presents an ablation study on SENTRA
components. Rows 2 and 3 of Table 2 show the
AUROC performance metric after removing each
of the two LLMs used to create SENTRA’s SNTP

18504



RAID-OOD MA4GT-OOD MAGE-OOD MAGE-OOLLM

Avg W  Avg W Avg W Avg W
r-SENTRA 909 855 928 839 938 84.6 935 89.9
SENTRA 925 870 93.0 871 942 86.0 93.6 88.0

Table 1: Effect of Pre-training on SENTRA performance. Results are the average (Avg) and worst (W) AUROC

across the domains in the evaluation.

Avg W
r-SENTRA 92.8 839
— Base LLM 89.4 81.8
— Instruct LLM 88.1 74.1
— Falcon + Qwen-2.5-3b 893 75.0
— Falcon + Gemma-3-1b 91.2 82.7

Table 2: Ablation Study. Results show the average (Avg)
and worst (W) domain AUROC on the M4GT dataset.
The top section, r-SENTRA, is our method without
pre-training. The second section shows the effect of
dropping each of the two frozen LLMs. The last section
shows the effect of swapping the Falcon-7b models for
different pairs of LLMs.

input (see Figure 1). Rows 4 and 5 of the table
show the results when the Falcon-7b models (Al-
mazrouei et al., 2023) are replaced by different
pairs of LLMs: Qwen-2.5-3b (Qwen et al., 2025)
and Gemma3-1b (Team et al., 2025). From the
results, we can see that Gemma3-1b (Team et al.,
2025) is competitive with Falcon-7b, and could be
an alternative for more compute constrained envi-
ronments. These choices in LLMs are by no means
an exhaustive search, and this ablation shows SEN-
TRA can work with other LLM pairs while echoing
Binocular’s result showing Falcon-7b is particu-
larly effective (Hans et al., 2024).

4.4 Results

We measure performance of all the methods de-
scribed in Section 4.2 on three out-of-domain and
one out-of-LL.M evaluation, and the average and
worst-case AUROC results are presented in Table 3.
For the supervised methods, these evaluations as-
sess how well the LLM text detectors perform in
real world scenarios, where data distributions dif-
fer from the training distribution. Detectors that
remain more invariant across these evaluations are
considered more robust to changes and variations in
data, thus showing better generalization to unseen
domains and generators.

Methods that are not zero-shot or linear models
are inherently more stochastic; therefore, the UAR,
RoBERTa, and SENTRA methods were ran over
three random seeds. The main results in Table 3
show the mean over these seeds. Mean and stan-
dard deviation over the seeds across all domains
and evaluations are shown in Appendix B. On each
evaluation, our performance metric is the mean or
minimum over the domains. For each method, this
requires training a separate model for each random
seed, each domain, and each evaluation. Because
of the combinations of methods, seeds, domains,
and datasets, each additional run becomes very ex-
pensive, and therefore, we were limited to three
runs on each evaluation.

Table 3 presents performance of different base-
lines measured by AUROC across different OOD
test data for the RAID, M4GT and MAGE datasets
(columns RAID-OOD, M4GT-OOD and MAGE-
OOD in Table 3 respectively) and for the OOLLM
test data for the MAGE dataset (column MAGE-
OOLLM in the table). The top section of Table 3
shows the performance of label-dependent methods
while the second section shows the performance of
heuristic methods.

Table 3 shows that SENTRA outperformed all
the baselines on average and in the worst case
across the three OOD and one OOLLM evalua-
tions. SENTRA achieved average AUROC perfor-
mance improvements of 1.8%, 5.4% and 6.7% for
RAID (Dugan et al., 2024), M4GT (Wang et al.,
2024a) and MAGE (Li et al., 2024a) out-of-domain
datasets respectively, as compared to the second-
best performing baseline. For the OOLLM evalu-
ation, SENTRA showed a 7.5% increase over the
next best baseline. These results show SENTRA
serves as a generalizable encoder for LLM detec-
tion models when one considers likely OOD or
OOLLM distribution shifts. These results show,
in the likely event your detector encounters a do-
main outside the training distribution, we expect
SENTRA to have the best expected performance
and best worst-case performance on those unseen
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RAID-OOD MA4GT-OOD MAGE-OOD MAGE-OOLLM

Avg W Avg W Avg W Avg W
RoBERTa [21] 90.9 844 882 828 883 744 8&7.1 69.9
Text-Fluoroscopy [43] 764 70.6 832 78.1 639 478 415 28.3
UAR-D [33] 81.7 714 753 639 634 405 717 65.8
UAR-L [33] 873 763 847 710 764 612 804 70.7
Ghostbuster [38] 84.7 741 878 733 792 650 685 343
PPL [9] 729 694 870 81.7 572 457 590 254
Binoculars [11] 82.0 794 89.1 79.0 61.7 529 6138 14.7
Fast-DetectGPT [2] 78.6 756 874 79.1 63.0 549 379 2.8
SENTRA 925 87.0 930 87.1 942 86.0 93.6 88.0

Table 3: Average (Avg) and worst (W) out-of-domain AUROC across the domains or LLMs. Methods in the top
section are supervised while the methods in the second section are unsupervised. SENTRA is our method with
pre-training. Results for non-deterministic methods are averaged over three random seeds.

domains.

Since LLMs became increasingly available and
their usage has surged, interest in detection tools,
such as those presented in this paper, has grown
(Wu et al., 2023). At the same time, countermea-
sures have emerged to attack these LLM text detec-
tors, typically by altering LLLM-generated text to
elicit false negatives (Koike et al., 2024). Dugan
et al. (2024) demonstrated many attacks can sig-
nificantly degrade detector performance. In that
study, the best open-source tool, Binoculars (Hans
et al., 2024), exhibited much stronger performance
on non-attacked data than on attacked data. For
the unsupervised methods, (Guo et al., 2023; Hans
et al., 2024; Bao et al., 2024), it is not immedi-
ately clear how to adapt the approach to a known
attack. In contrast, for the supervised methods, the
adaptation strategy is straightforward: train on at-
tacked data. A model that is robust to a known
attack, like the common paraphrase attack, should
be able to detect LLM generated text even if that
attack appears in a new domain. The RAID-OOD
(Dugan et al., 2024) dataset demonstrates this situa-
tion where 11 attacks appear in the training and test
sets. The results in Table 3 show SENTRA outper-
formed other methods when training and evaluating
in the out-of-domain scenario where known attacks
are included.

4.5 LLM Prompting Case Study

As part of our benchmarking, we also eval-
uated OpenAl’s proprietary models, namely
gpt-40-2024-08-06 ("40") and 01-2024-12-17
("ol"), by prompting them directly to classify

whether a given text was written by a human or
generated by an Al. The prompt is included in Ap-
pendex A.

To control inference costs, we limited the eval-
uation to 100 samples per domain/model, using
the same datasets from the OOD and OOLLM ex-
periments. The evaluation results are presented in
Table 4, alongside SENTRA’s performance. Over-
all, the reasoning-based ol model demonstrated
stronger detection capabilities than the standard
40 model, particularly on RAID-OOD and M4GT-
OOD. Nevertheless, SENTRA consistently outper-
formed both OpenAl models across all datasets.

This case study underscores the need for full and
rigorous evaluation when assessing LLM perfor-
mance on the task of Al-text detection.

5 Conclusions

In this paper, we proposed a novel general pur-
pose supervised LLM text detector method SEN-
TRA that is a Transformer-based encoder lever-
aging SNTP sequences and utilizing contrastive
pre-training on large amounts of unlabeled data.
We show this supervised method acting on SNTP
input outperforms previously considered heuristic
functions and other methods that rely on text in-
put. Since supervised detectors tend to perform
better on data that is similar to their training dis-
tributions (Dugan et al., 2024), it is essential to in-
clude a wide variety of domains when testing such
general-purpose detectors. Therefore, we tested the
performance of SENTRA on three public datasets
RAID, MAGT and MAGE containing a broad range
of different domains (24 in total) across various ex-
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Dataset ol | SENTRA
RAID-OOD 79.5 1 90.0 91.1
M4GT-O0D 654 | 91.1 92.9
MAGE-OOD 75.1 | 784 92.9
MAGE-OOLLM | 72.1 | 75.3 93.8

Table 4: AUROC scores for OpenAl models and SENTRA. Best score per dataset is bolded.

perimental settings and compared its performance
with eight popular baselines. We also evaluated
SENTRA and the baselines on a out-of-LLM eval-
uation.

We empirically demonstrated that SENTRA sig-
nificantly outperformed all baselines in our stud-
ied experimental settings. On our three evaluation
datasets, SENTRA outperformed all eight popular
baselines for the average and the worst-case OOD
scenarios.

These results show that SENTRA is a strong
method for training LLM text detectors that can
generalize well to unseen domains and LLLM gen-
erators. Our ablation study showed performance
of SENTRA increases when two frozen LLMs
are used instead of one frozen LLM. We also
demonstrated our contrastive pre-training strategy
increased the performance of SENTRA on all out-
of-domain evaluations.

Because SENTRA is better able to handle these
critical out-of-domain and out-of-LLM settings,
these results demonstrate SENTRA is a general-
purpose encoder that can serve as a foundation for
the LLM text detector models.

6 Limitations

In this work, we studied the effects of domain
shifts on detection models. While these have sig-
nificant impacts on detector performance, other
factors can also influence results. Notably, prompt
variation can have a large effect on detectors (Ku-
marage et al., 2023b). Many LLM detection bench-
mark datasets use prompt templates (Dugan et al.,
2024) to generate their samples. However, these
templates exhibit significantly less prompt variety
than what a real-world detector is likely to en-
counter. Benchmark datasets with a broader range
of prompting strategies are needed to further assess
the robustness of detection methods.

We pre-trained our model on a relatively small
sample of Common Crawl data. The volume of
data and the amount of compute used for pre-
training were small relative to what is typically

used for foundation models (Liu et al., 2019; Rad-
ford et al., 2021). It is very likely SENTRA
could be significantly improved with additional
pre-training on larger datasets.

7 Ethical Considerations

In this study, we did not observe any detector
achieving perfect performance on any slice of data.
Therefore, any detector will inherently make trade-
offs between false positives and false negatives
when deployed in real-world scenarios, such as
plagiarism detection. Users of LLM detection tech-
nology should be aware that these detectors are not
perfect.

LLM Acknowledgement: We used ChatGPT
for generating first iterations of some software snip-
pets. We also consulted ChatGPT on the phrasing
of some points in the paper and for catching some
grammatical errors.
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A LLM Case Study Details

At the time of writing, we estimated that evaluating
the full datasets would cost approximately $10,000
for GPT-40 and $60,000 for ol - several orders of
magnitude more expensive than any other method
considered. We therefore elected to sample the
datasets and move them to a seperate study than
the other methods.

We used the following system prompt to obtain
both a label and a confidence score: "You are an
expert in identifying whether text was written by a
human or generated by an Al language model. You
are tasked to identify if a provided text is written
by a human or generated by an Al language model.
Return your answer on the first line as one word
only: "Human’ or AI’. On the second line, pro-
vide a confidence score between 0 and 1. Do not
output anything else.”. The returned confidence
score was interpreted as the model’s probability
of the predicted class. To compute AUROC fairly,
scores were flipped for predictions labeled as "Hu-
man". Due to the stochastic nature of its reasoning
mechanism, we ran ol three times and averaged the
results. For 40, we set temperature = 0 to reduce
randomness.

We emphasize that prompt engineering was not
a focus of this work; we did not explore alternative
prompting strategies such as few-shot examples,
chain-of-thought reasoning, or tailored instruction
tuning. These results should therefore be viewed
as a simple baseline reference rather than a com-
prehensive exploration of prompt-based detection.
A more thorough investigation—including experi-
ments on full datasets, alternative prompting meth-

ods, and other comprehensive settings—is left for
future work.

B Additional Results and Experimental
Notes

Here we present mean and standard deviation
across the three random seeds. We first show ta-
bles with AUROC as the metric. The later tables
show class-weighted F1 score. When computing
F1, we set the class threshold at 0.50. Because un-
supervised methods require tuning a classification
threshold, we only include the supervised meth-
ods for the F1 score. Notice the threshold of 0.50
is arbitrary. In practical settings, we have found
threshold tuning to be a challenging and critical
problem, but we found it to be mostly separate
from evaluating the overall quality of a classifier.
When deploying Al detection models in the wild,
we found it useful to tune the threshold to a desired
false positive rate on common crawl data before
the release of GPT2. For these reasons, the main
text of the paper focuses on a threshold agnostic
metric: AUROC.

The datasets used in this work were used for
research purposes. This aligns with their intended
use and licenses. The details of the datasets are
shown in Table 5.

Here we show the mean and standard deviation
across three runs, (random seeds 42,43,44) for the
methods that are not zero shot or logistic regres-
sion based. Note there were three M4AGT and four
RAID samples where Ghostbuster could not make
an inference due to the low number of tokens in the
document. For this documents, we infilled a low
prediction score indicating human prediction. For
the RAID dataset, we used the Binoculars for each
document released by (Dugan et al., 2024).

C Computational Complexity

LLM generators are computationally expensive.
Unfortunately, methods that rely on SNTP inputs
depend on LLM inference, making it the most
costly component of all detection methods stud-
ied in this work. However, SENTRA is a relatively
small model with only eight Transformer layers,
meaning that computational costs at inference are
dominated by the production of SNTP inputs. Dur-
ing training, we cache the SNTP sequences so that
the LLMs are run only once per sample. SENTRA
uses the same LLMs as Binoculars (Hans et al.,
2024), and because the cost of the SENTRA en-
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Dataset Size Domains LLMs Attks A.Tokens % LLM-Gen A.Train A.Val A.Test
RAID-OOD 500,000 8 11 11 712 97.16% 22,398 2,488 62,500
M4GT-OOD 267,863 6 14 0 471 67.6% 97,584 10,893 33,482
MAGE-OOD 430,630 10 - 0 267 34.86% 167,972 50,387 5,682
MAGE-OOLLM 314,817 - 7 0 267 31.92% 186,636 47,988 8,022

Table 5: Overview of datasets used in the study. Attks is the number of attacks included in the dataset. A.Tokens is
the average token length using the Falcon 1 tokenizer. A.Train, A.Val, and A.Test are the average train, validation,
test set sizes across all domain splits. The train and validation datasets are class balanced. LLM stats for MAGE-
OOD and domain stats for MAGE-OOLLM are not disclosed by the data authors.
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Table 6: Mean and standard deviation of the AUROC across random seeds on the RAID dataset.

coder is minimal compared to LLM inference, the
overall computational complexity of SENTRA is
roughly equivalent to that of the Binoculars method.
Refer to Table 14 for detailed number of parame-
ters.

Pre-training took approximately 36 hours on a
GH200 GPU. We also fine-tuned RoBERTa and
SENTRA models on GH200 instances. Fine-tuning
for each data split too between .5 and 12 hours.

D Baseline Assumptions and Setups

This section details the assumptions and setups for
all baseline methods if we have made modifica-
tions.

For UAR, the original paper compares the dis-
tance between the input query and the closest
machine support query against the distance be-
tween the closest machine support query and the
closest human support query. Mathematically
speaking, given () the input query, H the clos-
est human support query, and M is the seeded
machine support queries, the distance dy =
min,,em[d(Q, m), d(H, m)] is used as the predic-
tion. Though this allows d¢ to be directly usable
for metric calculation, this is less trivial than a sim-
ple nearest neighbor classification where we cal-
culate the percentage of machine support queries
among k as the prediction. in our baseline, we em-
ployed the simple nearest neighbor approach with
k = 10 and cosine similarity distance measure. For

each domain, we randomly sampled 1,000 human
and machine texts respectively to form the kNN
seed corpus. We did not group texts into episodes
and kept episode size of 1 due to the generally
longer text lengths compared to twitter posts.

For Text Fluoroscopy, we switched the model
from gte-Qwenl.5-7B-instruct to Falcon-7B-
Instruct to better align with other baselines by elim-
inating the effect of model selection. With this
change, we modified the input dimension to the
feed forward network from 4096 to 4454 due to
falcon models hidden state sizes. Despite the possi-
bilities of under-training, we followed their imple-
mentation and sampled 160 data points for training,
and 20 for validation (during training). The test
set metric at the earliest highest validation accu-
racy was reported. We also optimized the feature
selection script for more efficient batch processing.

For Ghostbuster, we included a minimum accu-
racy score improvement threshold of 1e—4 to avoid
over-fitting and allow early stopping for MAGE
dataset where we observed significantly more fea-
ture selection iterations compared to the other two
datasets. In the case of least square convergence
failure (max_iter=1000) in Logistic Regression
fitting, the current feature list is taken as the best
features for evaluation.
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Ghostbuster 88.8+£0.0  79.840.0  78.1+0.0 54.5+0.0 65.7+0.0 78.1£0.0  34.3£0.0
R-SENTRA 96.8+£0.2  93.9+0.9  92.5£0.8 89.94+0.6 93.3+0.3 96.4+0.3 91.5£1.0
SENTRA 97.2+£0.3* 933+15 94.1+04 92.4+2.0% 92.6£1.4  97.5£0.5% 88.0£2.3

Table 9: Mean and standard deviation of the AUROC across random seeds on the MAGE-OOLLM dataset.

F1 abstracts books news poetry recipes reddit reviews wiki
RoBERTa 90.8+0.4 92.7+1.7 94.0+£2.1 94.842.1 94.242.1 94.0£1.6 93.0+£1.9 95.540.5
Text-Fluoroscopy | 81.1+0.0 79.6+0.0 83.7£0.0 91.6+£0.0 93.94+0.0 73.2£0.0 86.3£0.0 79.24+0.0
UAR-D 81.44+5.7 91.0+£0.8 89.840.9 86.7+2.7 88.7£1.0 89.8+0.7 88.7+0.8 85.7+0.6
UAR-L 85.44+0.6 89.4+0.6 88.2+1.8 79.1£24 70.5£2.1 89.1+04 87.2+1.0 86.8+0.0
Ghostbuster 86.5+0.0 87.0£0.0 85.840.0 68.7+0.0 84.5£0.0 90.6+0.0 83.840.0 78.54+0.0
R-SENTRA 90.1+1.5 88.6+1.3 83.2+3.1 87.8+0.9 92.8+1.7 91.5+£3.4 88.4+3.7 83.0+4.1
SENTRA 88.7£1.8 89.3+1.3 8544+2.0 88.4+0.7 91.5£1.0 91.9+£03 90.5+1.5 88.9+1.6

Table 10: Mean and standard deviation of average F1 on RAID-OOD dataset. A class-1 threshold of 0.50 was
chosen for all classifiers.
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arxiv outfox peerread reddit wikihow  wikipedia
RoBERTa 82.1£7.5 88.5+1.6 88.7£3.3 73.7+£3.2 77.6+£0.6 56.0£11.3
Text-Fluoroscopy | 48.4+0.0 84.6+0.0 78.1£0.0 57.2+£0.0 68.0£0.0 69.3+0.0
UAR-D 52.3£3.9 86.2£0.3 65.7£1.5 78.0+£0.9 59.2£0.6 59.5+1.9
UAR-L 79.9+£0.5 83.4+0.2 83.5+£04 73.1£09 67.0£1.6 78.0+£0.9
Ghostbuster 86.7£0.0 83.3+0.0 88.6+0.0 87.0£0.0 66.4+0.0 87.9£0.0
R-SENTRA 84.7£0.3 83.9+£0.3 90.4+0.2 91.5£0.9 75.1£0.8 92.24+0.3
SENTRA 82.8t1.4 84.2+0.2 90.4£0.2 89.4+£15 782+03 92.0+£0.9

Table 11: Mean and standard deviation of average F1 on M4GT-OOD dataset. A class-1 threshold of 0.50 was
chosen for all classifiers.

cmy eli5 hswag roct sci_gen squad tldr wp Xsum yelp
RoBERTa 747453 737438 66.2+10.7 39.6+2.8 67.0+4.5 59.1£42 553+45 73.6+£6.1 47.1£62 642427
Text-Fluoroscopy | 55.6+£0.0 47.7£0.0 44.840.0 66.3+0.0 66.4+0.0 47.5+0.0 39.44+0.0 45.940.0 33.7+0.0 50.940.0
UAR-D 732£1.6 67.54£22 53.04£3.0 469433 458+4.8 53.4+4.8 544+22 57.6+1.1 38.8+1.3 61.1+0.6
UAR-L 82.24+0.7 73.9+£0.7 46.0+1.5 50.8+29 70.4+25 63.0+£2.1 50.1+3.5 80.4+1.1 62.1+2.8 68.2+1.3
Ghostbuster 82.440.0 78.7£0.0 60.4+0.0 51.0£0.0 75.8+0.0 70.9+0.0 653+0.0 86.2+0.0 65.5+0.0 73.3+0.0
R-SENTRA 92.840.7 86.8+1.0 76.9+0.7 69.9+3.1 91.5+0.7 859+14 84.5+04 94.1£0.5 86.0+2.3 855+09
SENTRA 929+0.3 87.1+£0.6 78.5+0.6 69.7+4.7 90.8+1.1 86.0+£0.5 84.6£0.3 93.5£0.9 86.5t1.3 86.6+0.8

Table 12: Mean and standard deviation of average F1 on MAGE-OOD dataset. A class-1 threshold of 0.50 was
chosen for all classifiers.

F1 GLM130B _7B bloom_7b flan_t5_small gpt.3.5.trubo ept_j opt_125m
RoBERTa 7134224 884413 84.0+2.7 63.1£19.2 80.0+£14  739+13.6 86.6£1.6
Text-Fluoroscopy | 33.0£0.0 38.5+0.0 36.440.0 54.7£0.0 42.1£0.0 40.8£0.0  33.9£0.0
UAR-D 71.5+£1.0 63.9+0.5 68.2+04 61.44+0.6 64.1£1.7 66.6+0.6  60.6+1.1
UAR-L 749+1.2 63.5£0.2 75.7£0.5 64.4+0.3 69.8+0.8 80.5+0.3 74.7+1.2
Ghostbuster 78.8+£0.0 71.8+£0.0 70.7£0.0 55.4+0.0 60.5+0.0 70.5+£0.0  36.0+0.0
R-SENTRA 89.7£0.2 86.2+1.2 82.0+1.8 77.7£3.3 83.8+0.5 89.9+£0.2  82.5£1.2
SENTRA 89.8+0.5 85.1+1.8 84.9+1.1 83.1+3.0 82.6+1.7 91.1+£0.5  77.0+2.9

Table 13: Mean and standard deviation of average F1 on MAGE-OOLLM dataset. A class-1 threshold of 0.50 was
chosen for all classifiers.
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Method Parameter Count
RoBERTa-base 124M

Text Fluoroscopy 7B (LLM) + 5.1M (FCN) ~ 7B
UAR 82M

Perplexity 7B (LLM)

Binoculars 14B (2 LLMs)
Fast-DetectGPT 2.7B + 6B (2 LLMs) = 8.7B
Ghostbuster 7B (LLM) + N (LR, N « 7B) ~ 7B
SENTRA 57M (training), 14B (inference)
R-SENTRA 57M (training), 14B (inference)

Table 14: Parameter count of all methods with the actual LLM(s) used in evaluation. LR stands for logistic
regression, FCN stands for fully connected network. For Ghostbuster, we observed N to be between 20 to 40.

E Hyper-parameter Selection

For RoBERTa, we chose one domain from the
MAGE dataset to tune the learning rate. ROBERTa
was initialized from RoBERTa base for both the
supervised baseline and during contrastive pre-
training. With this learning rate, the ROBERTa
diverged before the first epoch on one MAGE split
and one RAID split. We then turned down the learn-
ing rate for these two splits and reran RoBERTa,
but the models still diverged. It is possible with
additional tuning, RoBERTa could better fit these
datasets, but we did not want to pay special atten-
tion to the fine-tuning any one method.

For SENTRA, we did a small search over the
number of layers, {2,4,8}, for the CMV-MAGE
data split by looking at the in-domain develop-
ment loss. We found four layers to work best.
We later found SENTRA had trouble fitting the
in-distribution validation data of a data. We found
that varying the LR and batch size on this dataset
had no significant effect, so we kept the defaults
of a LR of 1le — 4 and a batch size of 128 which
were the defaults from RoBERTa. We then manu-
ally tuned the pre-training model while looking at
this in-distribution loss. We ultimately found that
eight layers and and two pre-training phases pro-
duced the best performance on this in distribution
validation dataset.
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