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Abstract

Recent advances in Chain-of-Thought (CoT)
reasoning have improved complex video under-
standing, but existing methods often struggle to
adapt to domain-specific skills (e.g., event de-
tection, spatial relation understanding, emotion
understanding) over various video content. To
address this, we propose VIDEO-SKILL-COT
(a.k.a. VIDEO-SKOT) a framework that auto-
matically constructs and leverages skill-aware
CoT supervisions for domain-adaptive video
reasoning. First, we construct skill-based CoT
annotations: We extract domain-relevant rea-
soning skills from training questions, cluster
them into a shared skill taxonomy, and create
detailed multi-step CoT rationale tailored to
each video-question pair for training. Second,
we introduce a skill-specific expert learning
framework. Each expert module specializes in
a subset of reasoning skills and is trained with
lightweight adapters using the collected CoT
supervision. We demonstrate the effectiveness
of the proposed approach on three video un-
derstanding benchmarks, where VIDEO-SKOT
consistently outperforms strong baselines. We
also provide in-depth analyses on comparing
different CoT annotation pipelines and learned
skills over multiple video domains.

1 Introduction

Understanding complex video content requires in-
tegrating rich spatiotemporal cues and adapting
to diverse domain-specific reasoning needs from
cinematic narratives, egocentric recordings, to in-
door scenes (Fusier et al., 2007; Huang et al., 2018;
Buch et al., 2022; Lin et al., 2023; Chen et al.,
2024; Li et al., 2024c). Models should acquire and
integrate a wide range of distinct reasoning skills,
such as temporal grounding, spatial relationship
recognition, and multi-step planning.

*Equal contribution.

Recent work has extended chain-of-thought
(CoT) reasoning (Wei et al., 2023; Kojima et al.,
2022) to multimodal large language models
(MLLMs) for video understanding (Fei et al., 2024;
Feng et al., 2025; Li et al., 2025; Liu et al., 2025;
Zhi et al., 2025). However, most prior approaches
rely on fixed, general-purpose reasoning traces that
are insensitive to domain-specific skills. Fig. 1
(left) shows a t-SNE (van der Maaten and Hinton,
2008) plot of embeddings of questions from dif-
ferent video datasets, where questions from the
same datasets are strongly clustered as they require
shared skills/domains. For example, models pre-
trained on general corpora such as LLaVA-Video-
178K (Zhang et al., 2024) often lack the nuanced
narrative understanding needed in CinePile (Rawal
et al., 2024). This limits their ability to generalize
to unseen domains or specialized skills.

To address this, we propose VIDEO-SKILL-COT
(aka VIDEO-SKOT), a novel video understanding
framework for creating and leveraging skill-aware
CoT supervision, helping effective domain adap-
tation of MLLMs (Sec. 3). As shown in Fig. 1
(Right), VIDEO-SKOT consists of two main com-
ponents. First, in skill-based CoT annotation
(Sec. 3.2), we introduce a method to automatically
construct high-quality, skill-conditioned CoT ratio-
nales for video QA tasks. Given a training question,
we first extract high-level reasoning skill descrip-
tions (e.g., “Determine object location relative to
a person’s orientation” and “Inferring emotional
state from expressions and body language”), then
cluster them into a shared skill taxonomy (Fig. 1
Right-(a)). Then, each question is annotated with
its top-K relevant skills and used to generate a
multi-step CoT annotation conditioned on these
skills (Fig. 1 Right-(b)). This enables diverse and
domain-relevant reasoning traces without requiring
manual annotation.

Once we have prepared the skill-based CoT an-
notations, in skill-specific expert learning (Sec. 3.3
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Figure 1: Left: Video datasets require different reasoning skills. Right: VIDEO-SKOT that automatically constructs
and leverages skill-aware CoT supervisions for domain-adaptive video reasoning.

and Fig. 1 Right-(c)), we train skill-specialized ex-
pert models with multiple LoRAs (Hu et al., 2022).
Each expert specializes in a specific set of reason-
ing capabilities, determined by a predefined group
of related questions. During inference, the model
routes each input to the expert aligned with the
most relevant question group.

We evaluate VIDEO-SKOT on three video QA
datasets with diverse domains (E.T.-Bench (Liu
et al., 2024), VSI-Bench (Yang et al., 2024), and
CinePile (Rawal et al., 2024)), where VIDEO-
SKOT consistently improves over strong baselines,
showcasing its strong domain adaptation capabili-
ties. We also present ablation studies on our design
choices and visualize the learned domain-specific
skills to validate the effectiveness and interpretabil-
ity of our skill-guided reasoning framework.

2 Related Work

Video Understanding with MLLMs. Prior
video understanding models focused on pretrain-
ing strategies (Sun et al., 2019; Li et al., 2020; Lei
et al., 2021). Recent work incorporates CoT reason-
ing (Kojima et al., 2022; Wei et al., 2023) from the
NLP domain and studies how to collect and learn to
generate such CoT reasoning for different video un-
derstanding tasks (Fei et al., 2024; Li et al., 2025;
Liu et al., 2025; Zhi et al., 2025). Unlike these
methods, which often struggle with comprehend-
ing videos without explicit skill-specific guidance,
our approach introduces a skill-aware reasoning
framework incorporating question-adaptive skill
selection and skill-guided CoT supervision.

Skill-specific Expert Learning. Modular and
expert-based architectures have been widely ex-
plored to improve parameter efficiency and miti-
gate interference in multi-task and multi-domain
settings, where each expert learns different
knowledge. Mixture-of-experts (MoE) frame-

works dynamically route inputs to expert sub-
networks (Shazeer et al., 2017), while adapter-
based methods introduce lightweight, task-specific
modules into pretrained models (Houlsby et al.,
2019; Hu et al., 2022). Li et al. (2024b) studies
learning skill-specific expert diffusion models for
the text-to-image generation task. A concurrent
work, Liu et al. (2025) studies a multi-agent system
where each agent is implemented as a LoRA (Hu
et al., 2022) expert. While Liu et al. (2025) re-
lies on predefined expert roles (planner, grounder,
verifier, and answerer), specific architectures, and
manually curated role-specific annotations, our ex-
pert framework flexibly adapts to any video under-
standing dataset by automatically discovering and
leveraging relevant reasoning skills.

3 VIDEO-SKILL-COT

3.1 Problem Setup

Given a video v and a question q, our objective
is to produce both an answer a and a reasoning
trace r that offers an interpretable, step-by-step
justification. Prior work typically uses a single
MLLM f to generate these: {r; a}=f(q, v).

In contrast, VIDEO-SKOT decomposes the rea-
soning process into two stages: First, given
q, we select the most relevant expert e ∈
{1, . . . , N experts} based on the set of pre-defined
question groups and predicted required skills. Next,
a skill-specific expert MLLM fe then generates a
skill-guided reasoning trace rs along with the final
answer: {rs; a}=fe(q, v). We illustrate VIDEO-
SKOT in Fig. 1 (right).

This design enables targeted expert learning and
adaptation to diverse reasoning skills in a new
video domain. In the following, we describe how
we automatically construct the skill-based CoT
(Sec. 3.2) and how to train MLLMs with the col-
lected skill-based CoT annotations (Sec. 3.3).
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3.2 Skill-based CoT Annotation

We first construct skill-based CoT rationale anno-
tations for any Video QA dataset, leveraging skill-
aware reasoning to enable domain-adaptive video
understanding. We perform the following two steps
for each (q, v) in the training set to obtain skill-
conditioned reasoning traces.

Step 1: Skill Description & Clustering (Fig. 1
Right-(a)). We define a skill as a shared, high-
level reasoning capability (e.g., temporal ordering,
visual counting, spatial understanding) that recurs
across multiple video QA examples within a spe-
cific domain. For each question q, we prompt an
MLLM to describe what kind of skill is necessary
to answer it (e.g., “Estimate distance between two
objects using visual cues”). Then, we encode all
skill descriptions into text embeddings and perform
k-means clustering (with k=N skills=10) to form a
shared skill taxonomy. Each cluster centroid repre-
sents a prototypical skill.

Step 2: Skill-based CoT Collection (Fig. 1 Right-
(b)). For each (q, v) pair, we generate a multi-
step reasoning trace conditioned on the descrip-
tions of the top 3 assigned skills, a process we refer
to as Skill Selection. Next, we generate the skill-
aware CoT rs; We prompt an MLLM to produce
intermediate sub-questions and corresponding an-
swers, guided by selected skills from the previous
stage. These sub-QA pairs are then merged into
a coherent CoT paragraph that explicitly reflects
the assigned reasoning skills. To ensure the quality
of the skill-based CoT rationales, we further verify
and filter out reasoning steps that are irrelevant to
the correct answer using an LLM evaluator.

After these steps, each training example is now
annotated with relevant expert labels e and a ver-
ified, skill-grounded CoT trace rs. These anno-
tations form the basis for downstream training of
skill-specific expert models.

3.3 Skill-specific Expert Learning

As illustrated in Fig. 1 Right-(c), we perform modu-
larized fine-tuning to learn task-specific knowledge
for skill-based CoT training. Specifically, we first
project all questions in training set Dtrain into the
text embedding space and perform k-means cluster-
ing (with k=N experts=5). Unlike step 2 of Sec. 3.2
where N skills clusters represent the groups of skill
descriptions, these N experts cluster centroids rep-
resent the groups of questions. After assigning

each training example to its closest N experts, we
conduct parameter-efficient training using the cor-
responding N experts expert LoRA (Hu et al., 2022)
modules, ensuring task-specific adaptation while
minimizing interference across skills. During test
time, we assign each test question by finding the
closest question group by finding the closest ques-
tion embedding centroids.

Training Objective. Following previous work
(Hu et al., 2024; Shi et al., 2024), we train an
MLLM by minimizing cross-entropy losses for pre-
dicting both the answer (Lanswer) and CoT tokens
(LCoT), respectively:

L = Lanswer + λLCoT

= ℓ(f(q, v), a) + λℓ(f(q, v), rs),
(1)

where we find λ = 0.5 balances the two losses well.

4 Experiments

4.1 Experiment Setups

Implementation Details. To obtain text embed-
dings (of skill taxonomy in Sec. 3.2 and of ques-
tions in Sec. 3.3), we use all-mpnet-base-v2
SentenceTransformers (Reimers and Gurevych,
2019) implementation. We use LLaVa-Video
(7B) (Zhang et al., 2024) as a main backbone model.
Additional training details including hyperparame-
ters, the specific MLLMs and LLMs used at each
stage, as well as results with the Qwen2.5-VL (7B)
backbone are provided in Appendix Secs. A.1, A.2
and B.2.

Datasets and Baselines. We experiment with
three different video understanding benchmarks
with distinct domains: E.T.Bench (Liu et al., 2024)
(temporal understanding), VSI-Bench (Yang et al.,
2024) (spatial understanding), and CinePile (Rawal
et al., 2024) (movie narrative understanding). For
multiple-choice questions, we report the aver-
age accuracy. For temporal captioning tasks in
E.T.Bench, we use the benchmark’s official evalu-
ation script. Baseline MLLMs include mPLUG-
Owl (Ye et al., 2024), Video-ChatGPT (Maaz
et al., 2023), Video-LLaMA2 (Zhang et al., 2023),
LLaVa-OneVision (Li et al., 2024a), and LLaVa-
Video (Zhang et al., 2024), GPT4o (Achiam et al.,
2023a) and Gemini 1.5 Flash, Pro (Georgiev et al.,
2024). Additional details are provided in the Ap-
pendix Sec. A.3.
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Question: Which of these objects is the closest to the stove?

A. dishwasher B. chair C. washer D. refrigerator  (Answer: C)

'Locate specific objects positions.’, ‘Assess spatial proximity of objects’, 
‘Estimate distance between two objects using visual cues. … 

Q1: Where are the dishwasher, …, and stove located in the kitchen?
A1: The stove is located on the same wall, between the refrigerator and the washer. 
…

The video begins with a …. The camera first focuses 
on a section of the kitchen with an oven and 
cabinets. It then pans to the right, showing a stove, 
and then continues to pan to the right, revealing a 
dishwasher, a washer, and a refrigerator. The 
dishwasher and refrigerator are further away, and the 
chair is in a different part of the kitchen, separated by a 
counter. Therefore, the object closest to the stove is 
the washer.

“Please write a detailed, 
step-by-step chain of thought that explains how 

one would arrive at the correct answer.”

(a) CoT

Skill 

Selection 

CoT 

Generation 

Skill-focused QA

The dishwasher, washer, and refrigerator are all located along one wall of the kitchen, 
with the stove on the same wall between the refrigerator and the washer. The chair is at 
the kitchen island. Since the washer and refrigerator are on either side of the stove, 
they are closest to the stove. The dishwasher is further down the wall, and the chair is 
across the room at the island. The washer is closer to the stove than the refrigerator. 
Therefore, the washer is the closest to the stove. The answer is C.

Q2: Which of the dishwasher, …, and refrigerator are closest to the stove?”
A2: The washer and refrigerator are closest to the stove.  … 

(b) Skill-based CoT (Ours)

Q3: Which is closer to the stove, the washer or the refrigerator?
A3: The washer is closer to the stove than the refrigerator. … 

Figure 2: Comparison of CoT annotations: (a) regular CoT and (b) our skill-based CoT. Additional examples
are provided in Appendix Sec. C.

Fine-tuned
E.T.Bench VSI CinePile
(Temporal) (Spatial) (Movie)

Closed-source MLLMs
GPT4o (Achiam et al., 2023a) 24.69 34.00 56.06
Gemini 1.5 Pro (Georgiev et al., 2024) 26.73 45.40 60.12
Gemini 1.5 Flash (Georgiev et al., 2024) 27.92 42.10 58.75

Open-source MLLMs (7B)
mPLUG-Owl (Ye et al., 2024) ✗ 11.87 - 13.93
Video-ChatGPT (Maaz et al., 2023) ✗ 13.02 - 15.08
Video-LLaMA2 (Zhang et al., 2023) ✗ 8.30 - 44.57
LLaVA-Video (Zhang et al., 2024) ✗ 19.35 35.60 55.83
LLaVA-Video (Zhang et al., 2024) ✓ 20.32 47.45 56.29
Ours ✓ 22.21 53.15 57.88

Table 1: Evaluation results on domain-specific video
reasoning benchmarks.

4.2 Quantitative Evaluation

Comparison to Baselines. We compare VIDEO-
SKOT to recent MLLM baselines on three video un-
derstanding benchmarks (E.T.Bench, VSI-Bench,
CinePile) with domains and required skills. Ta-
ble 1 shows that VIDEO-SKOT consistently out-
performs all baselines, achieving improvements of
+4.10, +5.70, and +1.59 over the fine-tuned ver-
sion of LLaVA-Video on E.T.Bench, VSI-Bench,
and CinePile, respectively. These results highlight
the effectiveness of our modular, expert-driven
framework in enabling domain-adaptive CoT video
reasoning by leveraging relevant skills.

Ablation Studies. We compare the impact of two
key components in our framework: (1) skill-based
CoT reasoning and (2) skill-specific expert mod-
ules. As shown in Tab. 2, our full model, com-
bining both components (Top row), achieves the
highest performance. Removing either the skill-
specific expert modules (2nd row), the skill-based
CoT (3rd row), or both components (last row) con-
sistently leads to performance degradation, high-

Skill-CoT (Sec. 3.2) Skill-specific Experts (Sec. 3.3) 3-Task Avg.

✔ ✔ 44.41
✔ - 42.91
- ✔ 38.53
- - 41.04

Table 2: Ablation studies on removing the main com-
ponents: Skill-CoT and skill-specific experts.

Criterion Regular CoT Skill CoT (Ours) ∆ (Ours - Regular)

Correctness 2.88 ± 1.61 4.97 ± 0.16 +2.09
Relevance 3.16 ± 1.55 4.80 ± 0.59 +1.64
Coherence 2.80 ± 1.42 4.73 ± 0.64 +1.93

Table 3: Human evaluation results comparing Regu-
lar CoT and Skill-CoT. Scores are reported as mean ±
standard deviation.

lighting their complementary roles: skill-CoT en-
ables structured reasoning, while expert modules
bring modular specialization. This synergy proves
essential for improving video understanding.

Human Evaluation. We conduct a human eval-
uation with five researchers who are familiar with
the relevant field, where 15 randomly selected ques-
tions were assessed by comparing regular CoT and
the proposed Skill-based CoT. Each explanation is
rated on a 1–5 Likert scale (5 = best, 1 = worst)
across three dimensions: Correctness (factual accu-
racy), Relevance (task appropriateness), and Coher-
ence (clarity and logical flow). As shown in Tab. 3,
Skill-based CoT consistently outperforms regular
CoT across all criteria, with substantial gains in cor-
rectness, relevance, and coherence, confirming that
our method produces explanations that are more ac-
curate, aligned, and easier to follow. These results
provide strong evidence that Skill-based CoT pro-
duces explanations that are not only more accurate
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First, we see a man in a suit standing in a room. Then, another 
man enters the room and approaches the first man. Next, the 
second man turns his head towards the first man. Finally, the first 
man reacts to the second man's approach. Therefore, the correct 
order of events is that the second man approaches the first man, 
then turns his head towards him, and finally the first man reacts.

Answer: 
E. Peter approaches him, Peter turns to look at him, Edgar flinches

Based on the scene analysis, Peter approaches Edgar at [00:00:16]. 
Then, Edgar flinches at [00:00:30]. Finally, Peter turns to look at him 
at [00:00:42]. Therefore, the correct sequence of events is: Peter 
approaches Edgar, Edgar flinches, Peter turns to look at him. 

Answer: 
B. Peter approaches Edgar, Edgar flinches, Peter turns to look at him.

Question: What is the correct sequence of events? (Answer: B) 

A. Edgar flinches, Peter approaches him, Peter turns to look at him.
B. Peter approaches Edgar, Edgar flinches, Peter turns to look at him.
C. Edgar flinches, Peter turns to look at him, Peter approaches him.
D.     Peter turns to look at Edgar, Edgar flinches, Peter approaches him.
E.     Peter approaches him, Peter turns to look at him, Edgar flinches

17s 30s 42s

(a) LLaVA-Video + Regular CoT

(b) LLaVA-Video + Skill-based CoT (Ours)

Inference prompt: 
“Explain the rationale to answer the question and answer the question” 

Figure 3: Inference output comparison: (a) LLaVA-Video trained with regular CoT and (b) LLaVA-Video
trained with our skill-based CoT. VIDEO-SKOT successfully generates temporally grounded and precise rationales
that more effectively support accurate answer generation.

but also more relevant and human-readable.

4.3 Qualitative Analysis
Regular CoT vs. Skill-based CoT. Fig. 2 com-
pares the different annotated CoTs from the reg-
ular CoT and our skill-based CoT. Given a ques-
tion about which object is closest to the stove, the
regular CoT (left) offers a linear, scene-based nar-
ration that lacks structure and includes irrelevant
details (“Camera first focuses ... it then pans to
the right ...”), making it often harder to extract key
spatial information. In contrast, our skill-based
CoT starts by identifying relevant skills (e.g., spa-
tial proximity) and breaking the task into focused
sub-questions, like comparing the washer and re-
frigerator.

Inference rationale comparison We compare
the inference-time rationales generated by LLaVA-
Video trained with (a) regular CoT and (b) the
proposed skill-based CoT. During inference, we
prompt each model with: “Explain the rationale to
answer the question and answer the question.” As
shown in Fig. 3, the model trained with regular CoT
produces an incorrect reasoning process, ultimately
leading to a wrong answer. In contrast, VIDEO-
SKOT successfully generates temporally grounded
and precise rationales that more effectively support
accurate answer generation.

5 Conclusion

We propose VIDEO-SKOT, a novel video under-
standing framework for effective domain adapta-
tion of MLLMs. We propose to automatically
collect skill-specific CoT annotations from video

QA datasets and construct a skill-based reasoning
pipeline that combines a lightweight skill assigner
with a collection of LoRA-based expert adapters.
Empirical results on three diverse benchmarks
demonstrate consistent gains of VIDEO-SKOT over
strong baselines, highlighting the enhanced quality
of our reasoning traces.

Limitations

Our proposed framework demonstrates strong
video reasoning capabilities, generating fine-
grained, domain-adaptive rationales based on re-
quired skills. However, it may still produce oc-
casional inaccuracies or hallucinations (Liu et al.,
2023; Wang et al., 2024; Zhou et al., 2024) in its
text outputs. Additionally, the overall performance
is influenced by the underlying pre-trained back-
bones, namely, the LLM (Achiam et al., 2023b) and
MLLM (Georgiev et al., 2024) used. Nonetheless,
we highlight that VIDEO-SKOT can benefit further
from future advancements in LLM and MLLM
backbones.
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A VIDEO-SKOT Implementation Details

A.1 Details of skill description & clustering

Skill Description. To extract skill descriptions
given the training dataset, we prompt GPT-41 with
its questions and answers. (The prompt is provided
in Fig. 8) Each extracted skill is written as a con-
cise skill phrase (6–12 words), preserving the core
visual or temporal reasoning concept. Here, we in-
tentionally exclude audio-based cues (e.g., sound,
speech, or music) in this process. Specific object
names (e.g., "TV", "sofa", "John") are replaced
with generic terms, and vague terms (e.g., "reason-
ing", "analysis") are avoided to enhance clarity. We
also provide the exact name of the skills in Tab. 4.

A.2 Details of skill-based CoT generation

For skill-based CoT generation, we utilize Gemini-
2.0 Flash with video input. As illustrated in Fig. 9,
we first prompt Gemini-2.0 to identify the relevant
skills and generate corresponding sub-questions
and answers. Then, we construct step-by-step rea-
soning based on this output. Finally, we use GPT-4
to filter and verify the reasoning by assessing its
relevance to the ground-truth answers using Fig. 11
as a prompt.

1gpt-4-32k

A.3 Details of training

Training datasets. Instead of using the full
video instruction tuning dataset, we randomly sam-
pled 10k and 2.1k examples from ET-Bench and
CinePile, respectively. For VSI-Bench, which is
intended solely for evaluation and does not provide
a training set, we manually split the available data
into training and test sets using a 7:3 ratio. We use
3k training dataset for VSI-Bench.
Hyperparameters. For training, we set the learn-
ing rate as 1e-5 and the batch size as 1. For LoRA,
we use rank 32. We set 1 epoch for ET-Bench
training and 3 epochs for the other two datasets.
For other parameters, we use the default setup of
LLaVA Video. We use 4 A6000 GPUs for training.

A.4 Prompts

In Figs. 8 to 11, we attach prompts for skill-based
CoT annotation. We also attach prompt to generate
regular CoT in Fig. 12.

B Additional Quantitative Results

B.1 Per-category performance

In Tabs. 5 to 7, we additionally report the per-
category performance for each dataset. We also
include ablation studies comparing regular CoT vs
skill-based CoT, and single-LoRA vs multi-LoRA
configurations. VIDEO-SKOT, which combines
skill-based CoT with multi-LoRA training, consis-
tently outperforms across all datasets, showing par-
ticularly strong gains on reasoning-intensive tasks
such as Route Planning in VSI-Bench and temporal
understanding tasks in CinePile.

B.2 Qwen2.5-VL backbone

We further evaluate VIDEO-SKOT on VSI-Bench
using the Qwen2.5-VL (7B) (Bai et al., 2025) back-
bone. As shown in Tab. 8, VIDEO-SKOT achieves
the highest overall performance (40.76 avg), con-
sistently surpassing both regular-CoT and single-
LoRA baselines. These results highlight the ro-
bustness and effectiveness of VIDEO-SKOT when
applied to a different backbone architecture.

B.3 Cross-dataset generalization

We evaluate cross-domain generalization from ET-
Bench (source) to CinePile (target). As shown in
Tab. 9, VIDEO-SKOT achieves the best average per-
formance (56.21) among ET-Bench–trained vari-
ants, performing competitively with the CinePile
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Skill descriptions

VSI-Bench

"Determine object location relative to a person’s orientation.",
"Locate specific objects and identify their positions in the scene.",
"Identify the closest object to a reference point.",
"Recognize objects based on shape, color, and features.",
"Identify and count distinct objects based on location and appearance.",
"Assess spatial proximity of objects relative to a reference point.",
"Identify initial appearances of objects in the video timeline.",
"Estimate distance between two objects using visual cues.",
"Determine room boundaries using structural elements like walls and floors.",
"Identify sequential order of object appearances in a scene."

ET-Bench

"Identify head orientation and gaze direction to infer focus.",
"Identify spatial proximity between people in the scene.",
"Identifying the timestamp of an action in a scene.",
"Detect object using shape, texture, and visual features.",
"Track individuals interacting with an object and their actions.",
"Identify a person performing an action involving an object.",
"Identifying the moment an action occurs in a scene.",
"Detect a person using body shape, face, and clothing.",
"Identify actions through body movements and postures.",
"Identify hand movement and physical interaction with an object."

CinePile

"Identify thematic parallels between actions and overarching narrative themes.",
"Inferring emotional tone from facial expressions and actions.",
"Tracking emotional shifts through expressions and body language changes.",
"Identifying interpersonal conflict through observed actions and interactions.",
"Inferring symbolic meaning of an object in a scene.",
"Inferring emotional state from expressions and body language.",
"Track a person’s movements and reactions to scene changes.",
"Identifying body language among the scene.",
"Identify event sequence to infer action context and significance.",
"Identifying the main person or subject in the scene."

Table 4: Detailed skill descriptions from three datasets.

fine-tuned model (56.29) and surpassing the zero-
shot baseline (55.83). This highlights the effective-
ness of skill-guided reasoning for transfer across
domains.

C Additional Qualitative Results

C.1 Skill descriptions over different datasets

In Fig. 7, we visualize the skill descriptions for
each dataset after performing skill extraction and
clustering (Sec. 3.2). To create the visualization,
we first obtain text embeddings using Sentence-
Transformer and compute N skills cluster centroids.
We then apply t-SNE to reduce the dimensionality
of the embeddings for visualization purposes. The
results highlight that each domain-specific dataset
emphasizes different skill sets, though certain skills
are shared across datasets. For instance, the skill
“Inferring emotional tone from facial expressions
and actions” from CinePile is distinct from “Esti-
mating distance between two objects in the video
timeline” from VSI-Bench. However, general skills

like “Identifying objects or people” appear across
multiple datasets. A more detailed list of the ex-
tracted skills is provided in Tab. 4.

C.2 Selected skills over different video
datasets

In Figs. 4 and 5, we present statistics on the se-
lected top 3 assigned skills for each task in VSI-
Bench (presented in Sec. 3.2). As shown in the
results, object identification skills are commonly
used across tasks. However, each task also requires
domain-specific skills. For instance, the Room Size
Estimation task necessitates skills such as “Deter-
mining room boundaries using structural elements
like walls and floors.”

C.3 Additional comparison with regular CoT

In Fig. 6, we provide additional comparison with
regular CoT and ours.
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Appr. Order Rel. Dist. Route Plan Rel. Dir. Abs. Dist. Obj. Count Obj. Size Room Size Avg

LLaVA-Video 31.28 41.57 35.59 46.05 10.78 52.24 47.54 19.77 35.60
LLaVA-Video (fine-tune) 54.16 36.97 41.66 42.26 29.71 56.89 70.16 54.51 47.45
Single-LoRA + Regular-CoT 68.75 36.97 41.66 43.07 31.37 62.62 70.22 65.96 52.58
Single-LoRA + Skill-CoT 64.58 42.01 36.11 44.45 33.11 56.89 74.27 64.35 52.97
Multi-LoRA + Regular-CoT 56.25 34.45 41.66 39.53 12.24 43.00 55.11 23.87 38.27

VIDEO-SKOT (Ours) 68.75 36.13 50.00 47.69 32.13 62.61 70.83 57.09 53.15

Table 5: Detailed VSI-Bench Results.

RAR EVC RVQ TVG ERM TAL EVS VHD DVC (F1) DVC (Sim) SLC (F1) SLC (Sim) TEM GVQ Avg

LLaVA-Video 41.6 38.8 56.6 8.2 1.8 14.0 14.8 28.2 20.1 10.0 11.5 8.1 15.7 1.5 19.3
LLaVA-Video (fine-tune) 44.8 34.6 58.2 9.4 2.2 12.0 9.2 29.7 28.6 14.8 10.1 10.2 18.6 2.1 20.3
Single-LoRA + Regular-CoT 43.6 37.8 58.6 10.7 1.9 13.7 7.5 33.8 14 12.2 6.5 10.6 12.4 3.1 19.0
Single-LoRA + Skill-CoT 43.2 40.8 56.8 10.0 1.7 15.2 7.1 30.2 17.3 16.5 10.0 10.6 11.2 1 19.4
Multi-LoRA + Regular-CoT 43.2 40.6 59.8 6.9 1.9 16.5 11.1 31.1 30.3 16.4 6.2 9.5 16.6 1.0 20.7

VIDEO-SKOT (Ours) 49.0 41.2 59.4 15.8 2.4 16.4 8.4 35.5 27.0 15.0 11.9 10.0 16.5 2.4 22.2

Table 6: Detailed E.T-Bench Results.

D License

We list the license of the benchmark dataset and
models we used. We use these existing artifacts
consistently with their intended use.

• LLaVA-Video: Apache License 2.0

• CinePile: cc-by-nc-sa-4.0

• VSI-Bench: Apache License 2.0

• ET-Bench: cc-by-nc-sa-4.0
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CRD NPA STA TH TEMP Avg

LLaVA Video 56.78 58.53 60.31 60.52 43.02 55.83
LLaVA Video (fine-tune) 57.74 58.32 60.44 61.05 43.90 56.29
Single-LoRA + Regular CoT 59.18 59.61 61.81 61.05 40.91 56.11
Single-LoRA + Skill-CoT 57.88 56.8 60.77 60.52 40.84 56.36
Multi-LoRA + Regular CoT 58.17 59.17 60.18 62.63 42.44 56.52

VIDEO-SKOT (Ours) 60.00 59.61 61.44 63.15 45.20 57.88

Table 7: Detailed Cinepile Results. We ablate the accuracies across the question categories: TEMP - Temporal,
CRD - Character and Relationship Dynamics, NPA - Narrative and Plot Analysis, STA - Setting and Technical
Analysis, TH - Thematic Exploration.

Model Appr. Order Rel. Dist. Route Plan Rel. Dir. Abs. Dist. Obj. Count Obj. Size Room Size Avg

Qwen2.5-VL 10.41 35.29 36.11 37.80 20.43 23.98 54.22 33.06 31.41
Qwen2.5-VL (fine-tune) 18.75 34.45 36.11 38.65 21.88 31.74 62.55 47.74 36.48
Single-LoRA + Regular-CoT 20.83 35.29 36.11 39.92 21.73 34.56 63.33 48.06 37.48
Single-LoRA + Skill-CoT 27.08 35.61 41.66 40.12 21.57 35.33 65.77 48.58 39.47

Ours (Multi-LoRA + Skill-CoT) 31.28 37.89 36.50 43.67 28.12 37.48 67.31 43.79 40.76

Table 8: Qwen2.5-VL (7B) Results on VSI-Bench.

Setting Training Data CRD NPA STA TH TEMP Avg

LLaVA-Video - 56.78 58.53 60.31 60.52 43.02 55.83
LLaVA-Video (fine-tune) CinePile 57.74 58.32 60.44 61.05 43.90 56.29
LLaVA-Video (fine-tune) ET-Bench 53.34 57.02 57.83 60.53 40.55 53.85
Single-LoRA + Regular-CoT ET-Bench 56.23 60.47 58.09 63.68 38.66 55.43

Multi-LoRA + Skill-CoT (Ours) ET-Bench 56.02 61.25 58.88 63.33 41.57 56.21

Table 9: Cross-dataset evaluation on CinePile. Source: ET-Bench → Target: CinePile. Backbone: LLaVA-Video.

Figure 4: Skill selection results of VSI-Bench (1)
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Figure 5: Skill selection results of VSI-Bench (2)

Figure 6: Additional comparison of CoT annotations: (a) regular CoT and (b) our skill-based CoT.
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Determine object location relative to a person's orientation.

Locate specific objects and identify their positions in the scene.

Identify the closest object to a reference point.

Recognize objects based on shape, color, and features.

Identify and count distinct objects based on location and appearance.

Assess spatial proximity of objects relative to a reference point.

Identify initial appearances of objects in the video timeline.

Estimate distance between two objects using visual cues.

Determine room boundaries using structural elements like walls and floors.

Identify sequential order of object appearances in a scene.

Identify thematic parallels between actions and overarching narrative themes.

Inferring emotional tone from facial expressions and actions.

Tracking emotional shifts through expressions and body language changes.

Identifying interpersonal conflict through observed actions and interactions.

Inferring symbolic meaning of an object in a scene.

Inferring emotional state from expressions and body language.

Track a person's movements and reactions to scene changes.

Identifying body language among the scene.

Identify event sequence to infer action context and significance.

Identifying the main person or subject in the scene.

Identify head orientation and gaze direction to infer focus.

Identify spatial proximity between people in the scene.

Identifying the timestamp of an action in a scene.

Detect object using shape, texture, and visual features.

Track individuals interacting with an object and their actions.

Identify a person performing an action involving an object.

Identifying the moment an action occurs in a scene.

Detect a person using body shape, face, and clothing.

Identify actions through body movements and postures.

Identify hand movement and physical interaction with an object.

Skill description from different domain datasets
Dataset

VSI
Cinepile
ET-Bench

Figure 7: Skill description from different domain datasets. We visualize the skill descriptions for each dataset
after performing skill extraction and clustering. (Sec. 3.2)

Your task is to generate a step-by-step reasoning process to answer the following video-based question correctly, using a chain of 
distinct visual or temporal reasoning skills. 
Each step must: 
- Apply **one specific visual or temporal skill** (e.g., spatial reasoning, object tracking, causal inference) 
- Clearly describe what is being inferred or understood at that step 
- Build logically on the previous step 
- Avoid using audio-based skills (e.g., sound, speech, music)

If fewer than five steps are necessary, return only the needed steps. 
Each step should contribute uniquely to the final answer.

Return the output as a JSON list of objects with this format:

[
{{
"skill": "name of the reasoning skill used",
"step": "description of the reasoning step"
}},
...
]

Question: {question} 
Answer: {answer}

Figure 8: Prompt for Skill Description
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You are a video understanding assistant that performs modular reasoning using visual skills. You are given:
- A video-based question
- The ground-truth answer
- The relevant video content (as input)
- A list of domain-specific visual reasoning skills

Your task is to:
1. Select the skills needed to answer the question.
2. For each selected skill:
a. Generate a focused sub-question that applies the skill.
b. Answer the sub-question using information from the video.

Use the exact format below. Make sure the output is valid and parseable.
---

Question: {question}
Answer: {answer}
Relevant Skills:
{skill_list}

Output Format:
{
"selected_skills": [ "Skill A", "Skill B", ... ],
"skill_reasoning_steps": [
{
"skill": "Skill A",
"sub_question": "...",
"output": "..."
},
{
"skill": "Skill B",
"sub_question": "...",
"output": "..."
}
]
}

Figure 9: Prompt for skill selection and sub-QA generation

You are a reasoning assistant that combines modular skill outputs to solve a complex video understanding task.

Given the original question and a set of skill-based outputs derived from the video, 
your task is to use these as evidence to perform multi-step reasoning and produce a final answer.

Use the skill outputs to guide your reasoning. Do not copy them verbatim—use them as evidence in your own words.

---

Question: {question}

Skill Outputs:
{skill_output_text}

Final Answer with Reasoning:

Figure 10: Prompt for skill-based CoT generation

You are given a question, its ground-truth answer, and a reasoning chain.

Your task is:
1. If the reasoning is irrelevant to the answer, return:
{{ "relevance": "No", "revised_reasoning": null }}

2. If the reasoning is relevant, do the following:
- Convert any bullet-point or timestamped list into a natural, coherent paragraph.
- Ensure the final reasoning clearly ends with a statement of the correct answer.

Then respond with:
{{ "relevance": "Yes", "revised_reasoning": "[Revised reasoning with natural paragraph and final answer]" }}

Keep the original reasoning steps as intact as possible.

Respond in JSON format only.

Question: {question}
Answer: {answer}
Reasoning: {cot}

Figure 11: Prompt for CoT filtering
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Given the video and the question: {question}
The correct answer is: {answer}

Please write a detailed, step-by-step chain of thought that explains how one would arrive at the correct answer. Your explanation 
should be written as a coherent paragraph rather than a list or dictionary.
Focus solely on visual elements and any on-screen text from the video. Do not use or rely on any audio information such as speech, 
sound effects, or music.
Do not reveal or repeat the final answer in your reasoning. Focus only on the logical visual steps that would justify the correct 
answer without stating it explicitly.
Ensure that each step in your reasoning naturally follows from the previous one, and that the overall explanation clearly supports 
why the provided answer is correct (without mentioning the answer itself).

Figure 12: Prompt for regular CoT generation
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