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Abstract

Vision-Language Models (VLMs) excel at
tasks such as image captioning and visual ques-
tion answering but frequently produce halluci-
nated outputs that deviate from the actual visual
input or prompt. While prior work links halluci-
nation to biases in data or representation, their
causal origins remain unclear. We propose a
causal framework to analyze and mitigate hal-
lucination in VLMs. Our key hypothesis is
that hallucinations arise from unintended direct
influences of the vision or text modality that
bypass the intended multi-modal fusion. To
examine this, we construct a causal graph of
the VLM and use counterfactual analysis to
estimate the Natural Direct Effect (NDE) of
each modality and their interaction. By sys-
tematically identifying and suppressing these
direct effects, we encourage outputs that are
more faithfully grounded in true cross-modal
reasoning. Our approach consists of three steps:
(1) designing structural causal graphs to distin-
guish correct fusion pathways from spurious
modality shortcuts, (2) estimating modality-
specific and cross-modal NDE using perturbed
image representations, hallucinated text embed-
dings, and degraded visual inputs, and (3) im-
plementing a test-time intervention module to
dynamically adjust the model’s dependence on
each modality. Experimental results demon-
strate that our method significantly reduces hal-
lucination while preserving task performance,
providing a robust and interpretable framework
for improving VLM reliability.

1 Introduction

Vision-Language Models (VLMs) have made sig-
nificant progress in multi-modal tasks such as im-
age captioning (Mokady et al., 2021), visual ques-
tion answering, and visual reasoning (Li et al.,
2023a; Alayrac et al., 2022; Liu et al., 2023b; Rad-
ford et al., 2021; Li et al., 2025a). By integrating
visual and textual inputs, VLMs generate descrip-
tive outputs that enhance machine understanding

of multi-modal contexts (Chowdhery et al., 2023).
They typically comprise a vision encoder for ex-
tracting image features and a language model for
generating outputs conditioned on both modali-
ties. Advances in large-scale pre-training and trans-
former architectures have further improved their
generalization (Zhai et al., 2022; Li et al., 2025b),
making VLMs key to AI applications.
Hallucination in VLMs. Despite strong perfor-
mance, VLMs are prone to hallucination (Ji et al.,
2023; Song et al., 2025): producing outputs incon-
sistent with the visual input or textual prompt, of-
ten introducing incorrect or fabricated information.
This reduces reliability in high-stakes domains such
as medical imaging (Goddard, 2023), autonomous
driving (Chen et al., 2024a), and surveillance (Zhao
et al., 2020). While several factors contribute to hal-
lucination, e.g., modality misalignment and learned
biases, its root causes remain understudied, which
needs systematic investigation and mitigation.
Existing Approaches. Prior work has explored var-
ious ways to understand and reduce hallucination in
VLMs (Ji et al., 2023; Zhou et al., 2023; Rohrbach
et al., 2018; Yang et al., 2025), with different expla-
nations and mitigations. Some studies link halluci-
nations to biases in training data (Zhou et al., 2023;
Song et al., 2025), where models latch onto spuri-
ous correlations rather than truly learning visual-
text relationships. Others point to overreliance on
language priors (Yang et al., 2025; Rohrbach et al.,
2018), leading to text-focused outputs that over-
look visual context. Additional research highlights
biased feature learning (Kayhan et al., 2021; Chen
et al., 2024b; Sun et al., 2022), which can cause
certain patterns to dominate the representations
and distort multi-modal reasoning. However, most
approaches focus on statistical or empirical anal-
yses and often do not differentiate VLMs from
LLMs, overlooking the distinct challenges inherent
in multi-modal architectures in VLMs.
Our Causal Perspective. In this work, we propose
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How many people are eating in this kitchen?

There are two people eating in this kitchen.   

There are no people eating in this kitchen. 

LLaVA 1.5 with our method：

Regular LLaVA 1.5：

Which cat (left, right or middle) in the image opens its mouth?

The middle cat in the image opens its mouth.  

The cat on the right opens its mouth. 

LLaVA 1.5 with our method：

Regular LLaVA 1.5：

What is the color of the pot?

Describe the image in detail.

The image depicts a rainy day in a city, with 
wet sidewalks reflecting the surrounding 
environment. There are several people 
walking along the sidewalks,  carrying 
umbrellas to shield themselves from the rain.
The street is filled with various vehicles, 
including cars, buses, and trucks. A bus can 
be seen in the middle of the scene.  

Regular LLaVA 1.5

The image depicts a rainy day on 
a city street with a wet sidewalk. 
One of the pedestrians is carrying 
an umbrella to protect themselves 
from the rain and a few 
pedestrians are walking along the 
sidewalk. A car is driving down 
the street. 

LLaVA 1.5 with our method

The color of the pot is red.

The color of the pot is silver.

LLaVA 1.5 with our method：

Regular LLaVA 1.5：

Figure 1: Case study illustrating the impact of our method on VLM hallucination. The figure compares outputs
from the original model and our enhanced approach, highlighting reductions in hallucinated content and improved
alignment with the visual context. Our method effectively mitigates incorrect descriptions by refining modality
interactions, leading to more accurate and reliable multi-modal reasoning.

a causal framework to analyze and mitigate hallu-
cination in VLMs. We construct a causal graph
(Neuberg, 2003) for VLMs, hypothesizing that hal-
lucination may arise due to unintended direct in-
fluences from either the vision or text modality,
bypassing the intended multi-modal fusion process
(Kiros et al., 2014). Specifically, each modality can
have independent direct effects on the output, lead-
ing to inconsistencies between generated answers
and their intended multi-modal context. Based
on this premise, we employ counterfactual anal-
ysis (Lewis, 2013) to estimate the Natural Direct
Effect (NDE) (Robins and Greenland, 1992) of
each modality and systematically remove these ex-
traneous influences. By doing so, we ensure that
responses are primarily driven by joint vision-text
reasoning, thereby reducing hallucination.

This can be described as a three-step methodol-
ogy. First, we design structural causal graphs (Neu-
berg, 2003) to capture the relationships between
vision, text, and outputs, distinguishing correct fu-
sion pathways from spurious shortcuts. Second,
we systematically estimate the NDE of vision, text,
and their cross-modal interaction. For vision, we
generate perturbed images by applying multiple
random masks, then measure how these perturba-
tions shift latent representations. For text, we create

“hallucinated” captions via a language model (Zhao
et al., 2023) and compare their embeddings with
those of the original input. Finally, we develop
a dynamic test-time intervention module that ad-
justs the model’s reliance on each modality, ef-
fectively reducing hallucination while preserving
overall performance. Our method requires only 50
randomly selected samples to estimate intervention
directions. These directions generalize well across
different benchmarks and VLM architectures, indi-
cating that the modality-specific biases we correct
are stable and transferable. This efficient estima-
tion enables broad applicability without heavy re-
training or model-specific tuning.
Our key contributions are as follows:

• Causal Analysis of Hallucination. We present a
structured causal framework for VLMs, showing
the unintended direct effects from both vision and
text that bypass proper multi-modal fusion. By
conducting rigorous counterfactual analysis, our
approach uncovers how each modality’s direct
influence underlies hallucinations.

• Test-time Hallucination Reduction. We de-
velop a lightweight method to mitigates hallu-
cination in VLMs by proper multi-modal fu-
sion and reasoning, without requiring model re-
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training or additional parameters.

• Effectiveness. Our approach consistently outper-
forms existing methods on two VLMs across two
diverse benchmarks. For instance, it improves
the F1 score of LLaVA 1.5 by over 10% on the
POPE benchmark. Notably, our method remains
robust across random, popular, and adversarial
scenarios, with broad applicability and resilience.

• Accessibility and Reproducibility. Our inter-
vention is model-agnostic, incurs no training
or inference cost, and is fully test-time deploy-
able. We release all code and data to support fu-
ture research: https://github.com/TREE985/
Treble-Counterfactual-VLMs.

2 Related Works

Hallucination in Vision-Language Models. Re-
cent work has developed VLMs by integrating vi-
sual encoders with pre-trained LLMs (Dai et al.,
2023; Liu et al., 2023b; Zhu et al., 2023). This
allows LLMs to interpret vision tokens from a pre-
trained backbone, achieving strong multimodal un-
derstanding (Zhang et al., 2023). However, these
models also inherit the LLMs’ tendency to generate
ungrounded content, commonly termed “hallucina-
tion" (Bang et al., 2023; Huang et al., 2021; Favero
et al., 2024; Dong et al., 2025, 2024). A major issue
in VLM hallucinations is the incorrect inclusion of
objects absent from the visual input (Bang et al.,
2023; Huang et al., 2021; Li et al., 2023c; Wang
et al., 2023). Studies suggest this often involves
common or co-occurring objects in training data
(Li et al., 2023a). Moreover, VLMs struggle with
instructions requiring the recognition of absent ob-
jects, prompting research on improving model ro-
bustness (Liu et al., 2023a). Some studies attribute
hallucinations to object co-occurrence, model un-
certainty, and spatial positioning in text, proposing
post-hoc correction methods (Zhou et al., 2023).
Hallucination, originally studied in NLP, has be-
come a concern in multimodal models due to its
impact on performance (Ji et al., 2023). Common
mitigation strategies rely on additional training to
improve alignment with ground truth (Yue et al.,
2024; Gao et al., 2025), but these methods demand
significant data and computation. Training-free
alternatives, such as self-feedback correction, aux-
iliary knowledge models, and enhanced decoding,
offer practical solutions but often primarily focus

on text rather than addressing vision-induced hallu-
cinations (Yin et al., 2024).
Causality-Inspired Vision-Language Models.
Causal inference provides a powerful framework
for understanding and controlling the underlying
mechanisms in machine learning models. By esti-
mating causal effects, it enables the removal of spu-
rious correlations, disentanglement of meaningful
model behaviors, and identification of invariant fea-
tures that enhance generalization across diverse sce-
narios (Li et al., 2022). Recently, causal methods
have been increasingly applied to computer vision,
benefiting tasks such as visual explanation (Wang
and Vasconcelos, 2020), image and video recogni-
tion (Li et al., 2023b), scene graph generation (Li
et al., 2024b), and representation learning (Li et al.,
2024a). In the context of VLMs, causal analysis is
particularly valuable for addressing hallucination,
as it allows us to separate genuine multi-modal
reasoning from biased modality dominance. By
leveraging causal graphs and counterfactual reason-
ing, we can systematically diagnose and mitigate
modality-specific artifacts, ensuring that model pre-
dictions are grounded in meaningful cross-modal
interactions rather than unintended shortcuts.

3 Preliminaries

3.1 Structural Causal Graph

The SCGs for different scenarios are illustrated
in Fig. 2. The effects of visual input V and tex-
tual input T on the output A can be categorized
into two types: single-modal impact (Traditional
computer vision tasks or Large Language Models)
and multi-modal impact (Vision-Language Mod-
els). As shown in Fig. 2a, the single-modal im-
pact captures the direct influence of V or T on A
through V → A or T → A. In contrast, the multi-
modal impact represents the indirect effect of V
and T on A via the multi-modal fused knowledge
F , formulated as (V, T ) → F → A, as shown in
Fig. 2b. The underlying rationale behind the SCG
is explained as follows:
• T → A: This represents the data flow in tra-
ditional Large Language Models (LLMs), where
natural language inputs (typically comprising in-
structions and data) are processed by the LLM to
generate the corresponding output A.
• V → A: This corresponds to traditional com-
puter vision tasks, such as image captioning, where
images are provided as input, and the output A is
generated solely based on visual information with-
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T A

V A

(a) Causal graph for traditional single-
modal model.

T

V

F A

(b) Causal graph for Vision-Language
Model.

T

V

F A

(c) Causal graph for biased Vision-
Language Model.

Figure 2: Causal graphs for single-modal models and Vision-Language Models (VLMs) are shown. An optimal
VLM generates answers conditioned on both vision and text input pairs. However, vision and text inputs may
individually exert a direct influence on the output. This direct influence can lead to the hallucination problem in
VLMs, where the generated answers are inconsistent with the provided visual or textual context. T: Text input. V:
Vision input. F: Fusion. A: Answer.

out language-based context.
• (V, T ) → F → A: This illustrates the mech-
anism of modern Vision-Language Models. The
visual input V is first processed by a vision back-
bone (e.g., a convolutional neural network or a
transformer-based vision encoder) to extract high-
level visual features. These visual features are then
projected into a shared embedding space compati-
ble with the LLM. Simultaneously, the textual input
T is encoded by the LLM. The multi-modal fusion
module combines the visual and textual representa-
tions to form the fused knowledge F . Finally, the
LLM leverages this fused knowledge F to generate
the answer A, integrating both vision and language
modalities for coherent and context-aware outputs.

3.2 Potential Biased Independent Influence

Although the optimal Vision-Language Model is
expected to generate answers solely based on the
combined vision and text input pairs, in practice,
vision and text inputs may still exert direct and in-
dependent influences on the output A (Kiros et al.,
2014). As illustrated in Fig. 2c, these unintended
direct influences are highlighted by dashed arrows,
indicating potential shortcut paths that bypass the
multi-modal fusion process. Such direct influences
can lead to the hallucination problem, where the
generated answer A does not align with the pro-
vided visual context or textual input.
• T → A: The textual input T may directly influ-
ence the output A without considering the visual
information. For instance, the model might rely
heavily on language priors or contextual cues from
the text alone, resulting in answers that ignore rele-
vant visual details. This direct influence can lead
to hallucinated responses that appear semantically

plausible based on the text but remain inconsistent
with the actual visual content.
• V → A: Similarly, the visual input V may di-
rectly affect the output A without proper alignment
with the textual input. In this scenario, the model
might over-rely on visual patterns or features, pro-
ducing answers that are disconnected from the
given textual instructions or questions. This form
of direct influence also contributes to hallucina-
tions, where the output appears visually grounded
but fails to reflect the intended textual semantics.

These dashed causal paths emphasize the inher-
ent challenge in VLMs: ensuring that the answer A
is truly conditioned on the coherent fusion of both
V and T , rather than being dominated by a sin-
gle modality. Addressing these unintended direct
influences is essential for mitigating hallucination
problems and improving the overall reliability and
consistency of VLMs.

3.3 Causal Perspective on VLM Hallucination

From a causal perspective, the hallucination prob-
lem in VLMs arises when the model over-relies
on a single modality, leading to outputs that are
misaligned with the intended multi-modal context.
Specifically, unintended direct influences from ei-
ther the vision or text modality, or their interac-
tion, can dominate the output generation process,
causing hallucinated responses. To systematically
examine and mitigate these biases, we focus on the
Natural Direct Effect (NDE) as a means to quantify
the direct contributions of each modality.

Definition 1 (Causal Notations). Causal notations
are used to translate causal assumptions from struc-
tural causal graphs into formal mathematical ex-
pressions, allowing precise quantification of modal-
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ity influences on model outputs. Formally, given
the causal graph illustrated in Fig. 2c, the answer
A is influenced by three paths: T → A, V → A,
and F → A. The corresponding causal notation is
as follows:

AT,V = A(t, v, F (t, v)), (1)

where t and v are text and visual inputs, and F (·)
denotes the multi-modal fusion process.

Definition 2 (Natural Direct Effects (NDE)). The
Natural Direct Effect (NDE) measures the direct
impact of a modality on the output A while hold-
ing the multi-modal fusion process consistent. We
consider three types of NDEs to capture both the
individual and interactive effects of the vision and
text modalities:

1) Vision Direct Effect (NDEV): The direct influ-
ence of the vision modality is assessed by altering
the vision input while keeping the textual input
fixed. Formally:

NDEV = Y (t, v, F (t, v))− Y (t, v∗, F (t, v∗)), (2)

where v denotes the original vision input and v∗
represents the treated vision input. This formula-
tion captures how much the vision modality alone
contributes to the output, independent of multi-
modal fusion consistency.
2) Text Direct Effect (NDET): The direct influ-
ence of the text modality is measured by modifying
the textual input while keeping the visual input
constant:

NDET = Y (t, v, F (t, v))− Y (t∗, v, F (t∗, v)), (3)

where t is the original text input and t∗ represents
the treated text input. This equation reflects how
text alone influences the output, independent of
visual grounding.
3) Cross-Modality Direct Effect (NDEV, T):
While the treatment of vision modality assesses
the direct influence of vision by altering visual in-
put, it does not capture how vision complements
textual information in multimodal reasoning. In
practice, vision often provides contextual cues that
improve text interpretation. Thus, it is essential to
evaluate how vision interacts with text to influence
the output.

To this end, we propose the Cross-Modality Di-
rect Effect (NDEV,T), which quantifies the comple-
mentary role of vision when combined with text.

Unlike vision treatment, which isolates vision’s
standalone contribution, this analysis evaluates sce-
narios where textual input is paired with a partially
informative image versus a non-informative one.
The formulation is:

NDEV,T = Y (t, v∗, F (t, v∗))− Y (t, vnull, F (t, vnull)), (4)

where vnull denotes a non-informative visual input.
A high NDE(V, T ) indicates meaningful visual-
textual complementarity, while a low or negative
value suggests that vision introduces noise, poten-
tially leading to hallucinations.

By focusing on these direct effects, our causal
analysis framework provides a clear diagnostic ap-
proach to understanding and mitigating hallucina-
tion in VLMs. This framework highlights the ne-
cessity of balanced multi-modal fusion, where each
modality contributes appropriately to the final pre-
diction without dominating the reasoning process.

4 Methodology

Building on prior work in editing vision-language
model intermediate representations (Liu et al.,
2024; Jiang et al., 2024), we quantify the NDEs
of different modalities by analyzing representation
shifts before and after applying modality-specific
perturbations. This allows us to analyze separately
the contributions of vision and text, along with their
interaction, to the final model output.
Measuring NDEV. To measure the vision modal-
ity’s direct effect, we introduce perturbations to the
visual input and assess impacts on representations.

Given an image input I , we extract its vision
representation V I

i,k from the i-th layer at the k-th
visual token. We then apply m different random
masks, Cj for j ∈ {1, . . . ,m}, to corrupt the im-
age, producing masked versions Mj(I). The vi-
sion encoder processes each perturbed input Mj(I),
yielding the corresponding representations V Mj(I)

i,k .
To estimate the perturbed vision representation, we
take the avg. of these masked representations V̄ I

i,k.
The direct effect of the vision modality for the

image I is then quantified as the difference between
the original and perturbed representations:

DI
i,k = V I

i,k − V̄ I
i,k. (5)

To obtain a global-level estimate of NDEV (as
opposed to the instance-level effect DI

i,k), we sam-
ple N images and compute their respective direct
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Settings Method
LLaVA 1.5 InstructBlip

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

Random

Regular 83.49 88.83 76.70 82.34 80.42 78.93 83.21 81.01

VCD 86.84 87.15 86.68 86.91 84.10 84.21 85.36 84.78

Opera 87.53 94.52 79.80 86.53 85.07 88.39 80.73 84.39

Our Method 89.10 90.59 87.27 88.89 88.83 88.04 89.87 88.95

Popular

Regular 79.98 82.47 76.72 79.48 76.10 73.22 82.94 77.78

VCD 82.65 87.15 80.60 83.74 79.94 77.84 83.33 80.49

Opera 84.21 88.00 79.80 83.70 78.33 73.85 87.73 80.19

Our Method 87.53 87.73 87.27 87.50 83.27 79.39 89.87 84.30

Adversarial

Regular 76.03 76.11 76.80 76.45 72.37 68.78 83.06 75.24

VCD 77.31 73.43 86.47 79.42 76.32 73.24 84.08 78.29

Opera 80.88 82.16 79.76 80.94 75.50 70.50 87.73 78.17

Our Method 81.70 78.90 87.27 82.87 76.23 70.84 89.87 79.22

Table 1: Performance comparison on POPE (Regular, Popular, and Adversarial) across two state-of-the-art Vision-
Language Models (LLaVA 1.5 and InstructBlip). The best performance in each column is indicated in bold, and the
second-best is underlined. Our proposed causal intervention method consistently outperforms existing methods
(VCD, Opera), demonstrating improved accuracy and reduced hallucination across different evaluation settings.

effects, systematically stacking them into a struc-
tured matrix:

[DI1
i,k, D

I2
i,k, ..., D

IN
i,k ]. (6)

Following Liu et al. (2024), we perform PCA on
this matrix and use the first principal direction as
the global-level estimate of NDEV .
Measuring NDET. To measure the direct effect
of the text modality, we introduce controlled tex-
tual hallucinations and analyze their influence on
representations.

We randomly sample N image captions CN and
generate their hallucinated counterparts Ch

N using
a GPT model. For each caption, we extract the last-
token representation from the i-th layer, denoted

as TCN
i for the original text and T

Ch
N

i for the hallu-
cinated version. The direct effect of text modality
can be computed as:

DT
i = TCN

i − T
Ch

N
i . (7)

To estimate global-level NDET , we stack the
text direct effect vectors for all sampled captions
into a matrix and apply PCA, obtaining the first
principal direction as the final measure of NDET .

Measuring NDEV,T. To quantify the cross-
modality direct effect of vision and text, we eval-
uate how vision complements textual information
in multi-modal reasoning. Unlike NDEV , which
isolates vision’s standalone impact, NDEV,T com-
prehensively captures the extent to which vision
enhances or distorts textual semantic grounding.

We begin by sampling N images IN and their
corresponding textual descriptions CN . For each
image, we generate two perturbed versions: 1)
Iblack — a fully black image, containing no mean-
ingful visual information. This setting ensures that
the vision encoder receives an input with no struc-
tured content while preserving input dimensions
and format. 2) Inull — a no-input condition, where
the model receives no visual input at all. This
serves as an extreme reference case to assess the
model’s reliance on textual information alone.

For each case, we obtain the visual representa-
tions V Iblack

i,k and V Inull
i,k at the i-th layer and k-th

token. The cross-modality direct effect is as:

DV,T
i,k = V Iblack

i,k − V Inull
i,k . (8)

A high NDEV,T suggests that vision provides
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Method Average Attribute Adversarial Comparison Counting Relation Environment Holistic Other

Regular 2.06 3.25 1.83 2.25 2.40 1.83 1.92 1.67 1.33
VCD 2.69 3.25 2.18 3.00 2.42 2.58 3.25 2.42 2.42
Opera 2.64 2.92 2.25 2.75 2.41 2.92 3.26 2.33 2.25

Our Method 2.82 4.00 2.17 3.83 2.25 2.42 2.83 2.42 2.67

Table 2: Performance comparison on MMHal-Bench with LLaVA 1.5. The best performance in each column
is indicated in bold, and the second-best is underlined. Our proposed causal intervention method consistently
outperforms existing methods (VCD, Opera), demonstrating improved accuracy and reduced hallucination across
different evaluation settings.

complementary information to text, improving
multi-modal understanding. Conversely, a low or
negative NDEV,T suggests that vision introduces
noise or misalignment, potentially leading to hallu-
cinated responses.

For global-level analysis, we stack the cross-
modality direct effect vectors across N samples
and apply PCA, using the first principal direction
as the final estimate of NDEV,T .
Test-time Intervention. We integrate the com-
puted Natural Direct Effects, NDEV , NDET , and
the cross-modal component NDEV,T , to adjust the
outputs of both the vision and text encoders during
inference. We modify the intermediate representa-
tions at every layer and token position as follows:

V I′
i,k = V I

i,k + a ·NDEV , (9)

T
C′

N
i = TCN

i + b ·NDEV,T + c ·NDET . (10)

Our intervention method operates entirely at
test time, offering a lightweight and architecture-
agnostic solution compatible with all mainstream
VLMs. The intervention directions are derived
once from a random collection of N = 50 exam-
ples from MSCOCO (Lin et al., 2014), and remain
unchanged throughout all evaluations. This unified
configuration across datasets and tasks highlights
the broad generalizability of the approach.

5 Experiments

5.1 Datasets and Evaluation Metrics
Datasets. We evaluate on two hallucination bench-
marks: (1) MMHal-Bench (Sun et al., 2023), and
(2) POPE (Li et al., 2023c).
Evaluation Metrics for MMHal-Bench. Accord-
ing to the evaluation results in MMHal-Bench,
GPT-4 (OpenAI, 2023) can achieve a 94% agree-
ment rate with human judgments. Therefore, we
use GPT-4o-mini (OpenAI, 2024) to analyze and
score the responses of LMMs. Following the as-
sessment method in MMHal-Bench, we provide

Overall

Attribute

Adversarial

Comparison

CountingRelation

Environment

Holistic

Other

1
2

3

Regular VCD Opera Our method

Figure 3: Overall performance and detailed score of dif-
ferent methods on the 8 question categories of MMHal-
Bench. Our method achieves the best overall perfor-
mance and significantly outperforms existing methods
(VCD, Opera) in Attribute and Comparison.

GPT-4o-mini with the question and the VLM’s
response. Additionally, we supply the category
name of the image content and a standard human-
generated answer to improve the accuracy of re-
sponse evaluation. Ultimately, GPT-4o-mini re-
turns the VLM’s scores across the 8 question cate-
gories and its hallucination rate.
Evaluation Metrics for POPE. Since POPE con-
sists entirely of Yes/No questions, the correctness
of VLM responses can be directly determined
based on the ground-truth answers. This allows
for the calculation of accuracy, precision, recall,
and F1 score, with F1 score as the primary metric.

5.2 Implementation Details

We evaluate the effectiveness of our method on
three widely used 7B VLMs, LLaVA 1.5 (Liu
et al., 2023b), InstructBLIP (Dai et al., 2023), and
Qwen2.5-VL-7B-Instruct (Bai et al., 2025). Addi-
tionally, we evaluate our method against two state-
of-the-art baselines for alleviating hallucinations in
the decoding stage: VCD (Leng et al., 2024) and
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PCA dim Average Attribute Adversarial Comparison Counting Relation Environment Holistic Other

Regular 2.06 3.25 1.83 2.25 2.40 1.83 1.92 1.67 1.33
1 2.82 4.00 2.17 3.83 2.25 2.42 2.83 2.42 2.67
3 2.51 3.58 1.67 3.58 1.92 2.5 3.08 1.67 2.08
5 2.42 3.58 1.67 3.08 1.75 2.08 3.08 1.58 2.5

Table 3: Performance of LLaVA 1.5 on MMHal-Bench with different PCA dimensions. ‘Regular’ denotes the
baseline method without any enhancement.

Number of samples Average↑ Hallucination rate↓

Regular 2.06 64.58
25 2.45 51.04
50 2.82 45.83
75 2.62 45.83
100 2.58 50.00

Table 4: Performance of LLaVA 1.5 on MMHal-Bench
with different numbers of samples. ‘Regular’ denotes
the baseline method without any enhancement.

Opera (Huang et al., 2024). Our default hyperpa-
rameter is sampling size N = 50. To ensure a fair
comparison, we set a = b = c = 0.9 for all models
across all experiments. Experiments are conducted
using PyTorch with Nvidia RTX A6000 GPUs.

5.3 Experimental Results

Tab.1, Tab.2, and Fig. 3 demonstrate the effective-
ness of our method compared to the SOTA ap-
proaches in three VLMs and two benchmarks. Our
method consistently achieves best or near-best re-
sults in all metrics.

Results from Tab. 1 highlight key trends across
Random, Popular, and Adversarial settings for
LLaVA 1.5 and InstructBlip. In the Random setting,
our method significantly improves accuracy (e.g.,
83.49 to 89.10 in LLaVA 1.5) and recall (76.70 to
87.27), demonstrating the effectiveness of remov-
ing unintended direct modality influences. In the
Popular setting, our method mitigates reliance on
language priors, leading to higher accuracy (e.g.,
79.98 to 87.53 in LLaVA 1.5) and F1 scores. Un-
der the challenging Adversarial setting, our ap-
proach remains robust, significantly improving re-
call (76.80 to 87.27 in LLaVA 1.5) and F1 scores.
These results validate that our causal intervention
mechanism systematically reduces hallucination
while enhancing resilience in diverse conditions.

Tab. 2 further demonstrates our method’s superi-
ority across MMHal-Bench categories, achieving
the highest average performance (2.82). It excels
in Attribute (4.00), Comparison (3.83), and Other

Settings Method
Qwen2.5-VL-7B-Instruct

Acc Prec Rec F1

Random

Regular 84.43 99.71 69.07 81.61
VCD 86.44 98.90 70.23 82.14
Opera 85.80 98.40 69.90 81.90
Ours 85.50 98.17 71.60 83.16

Popular

Regular 83.87 98.02 69.13 81.08
VCD 85.63 96.91 70.47 81.60
Opera 85.10 96.40 70.60 81.50
Ours 84.37 96.15 71.60 82.08

Advers.

Regular 83.40 96.91 69.00 80.61
VCD 84.53 94.30 70.43 80.64
Opera 84.00 94.90 71.10 81.00
Ours 83.77 95.13 71.60 81.52

Table 5: Performance of Qwen2.5-VL-7B-Instruct
across three POPE evaluation settings (Regular, Popular,
Adversarial). Best values are in bold and second-best
are underlined.

(2.67) categories, indicating enhanced multi-modal
reasoning. Strong performance in Holistic (2.42)
and Environment (2.83) categories confirms that
reducing unintended modality influences improves
vision-text alignment.

We provide more qualitative results to showcase
the effectiveness of our method, as shown in Fig. 4.

5.4 In-Depth Analysis

Measuring NDE with Different PCA Dimen-
sions. Tab. 3 shows that using a single principal
component yields the highest overall performance,
outperforming PCA dim = 3 and PCA dim = 5.
This suggests that restricting modality influence
to a single direction effectively mitigates halluci-
nations while preserving multi-modal reasoning.
Performance declines in Adversarial and Holistic
categories with higher PCA dimensions indicate
that excessive components may reintroduce noise,
weakening robustness and interpretability. These
results highlight that a minimal but targeted reduc-
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In the image, which truck (left or right) has its door open? Which company owns the airplane displayed in the back of the image?

What are the colors of the dogs from right to left? How many forks are there in the image?

How many mobile phones are there in the image?

There are two mobile phones in 
the image. 

There is only one mobile phone in the 
image.

LLaVA 1.5 with our method：Regular LLaVA 1.5：

What is shown in the mirror?

The mirror shows a washing machine.

LLaVA 1.5 with our method：

The mirror shows a view of the washer 
and dryer in the laundry room. 

Regular LLaVA 1.5：

The colors of the dogs from right to 
left are brown, black, and white.  

The colors of the dogs from right to 
left are brown and black.

LLaVA 1.5 with our method：Regular LLaVA 1.5：
There are three forks visible in 
the image. 

There are two forks visible in the 
image.  

LLaVA 1.5 with our method：Regular LLaVA 1.5：

The air plane in the back of the 
image is owned by United Airlines. 

The air plane displayed in the back of 
the image is owned by Virgin.

LLaVA 1.5 with our method：Regular LLaVA 1.5：
The truck on the right has its 
door open.   

The truck on the left has its door 
open. 

LLaVA 1.5 with our method：Regular LLaVA 1.5：

Figure 4: Case study illustrating the impact of our method on VLM hallucination. The figure compares outputs
from the original model and our enhanced approach, highlighting reductions in hallucinated content and improved
alignment with the visual context. Our method effectively mitigates incorrect textual descriptions by refining
modality interactions, leading to more accurate and reliable multi-modal reasoning.

tion in the influence of the modality enhances the
accuracy of reasoning.

Effect of Sample Size. As shown in Tab. 4, using
50 samples achieves the best performance, outper-
forming both smaller (25 samples, 2.45) and larger
settings (75 and 100 samples). Gains are most
evident in Attribute and Comparison, indicating
improved hallucination mitigation. Performance
drops at 75 and 100 samples suggest redundancy or
overfitting, particularly in Adversarial and Holistic
categories. These findings indicate that an opti-
mal sample size (50) ensures robust estimation of
modality influences while avoiding excessive noise,
leading to better reasoning and reduced hallucina-
tions.

6 Conclusion

In this work, we introduced a causal framework
to analyze and mitigate hallucination in VLMs.
By constructing structural causal graphs and es-
timating the Natural Direct Effect of each modal-
ity, we identified unintended direct modality influ-
ences as a key contributor to hallucination. Our
proposed test-time intervention mechanism effec-
tively reduces modality bias, ensuring that gener-
ated outputs are more accurately grounded in fused
multi-modal information. Empirical results across
multiple benchmarks demonstrate that our method
improves the reliability of VLMs while maintain-
ing task performance.
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7 Limitation & Ethical Consideration

Limitation: The causal framework may not cap-
ture all hallucination sources, especially in open-
ended tasks. Also, the intervention introduces in-
ference overhead, impacting real-time use. Future
work can refine the causal model, develop task-
specific adaptive interventions, and integrate con-
trastive learning for better multi-modal alignment.
Ethics Statement: Our method improves the relia-
bility of the VLM by reducing hallucinations and
improving trust in AI applications such as health-
care and autonomous systems. However, it does not
eliminate biases in training data, and strict halluci-
nation control may limit creative applications. Fu-
ture work should balance factual consistency with
flexibility across different use cases. This research
improves the factual grounding of VLM without
altering training data. Although our approach re-
duces hallucination, it does not guarantee complete
accuracy, requiring users to apply additional val-
idation in sensitive applications. Responsible de-
ployment is key to effectively prevent misuse or
excessive overreliance on AI-generated outputs.
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